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Abstract. The Fiat-Shamir (FS) transform is a well known and widely
used technique to convert any constant-round public-coin honest-verifier
zero-knowledge (HVZK) proof or argument system HVZK = (P,V) in a
non-interactive zero-knowledge (NIZK) argument system
NIZK = (NIZK.Prove,NIZK.Verify). The FS transform is secure in the
random oracle (RO) model and is extremely efficient: it adds an evalua-
tion of the RO for every message played by V.
While a major effort has been done to attack the soundness of the trans-
form when the RO is instantiated with a “secure” hash function, here we
focus on a different limitation of the FS transform that exists even when
there is a secure instantiation of the random oracle: the soundness of
NIZK holds against polynomial-time adversarial provers only. Therefore
even when HVZK is a proof system, NIZK is only an argument system.
In this paper we propose a new transform from 3-round public-coin
HVZK proof systems for several practical relations to NIZK proof sys-
tems in the RO model. Our transform outperforms the FS transform
protecting the honest verifier from unbounded adversarial provers with
no restriction on the number of RO queries. The protocols our transform
can be applied to are the ones for proving membership to the range of a
one-way group homomorphism as defined by [Maurer - Design, Codes and
Cryptography 2015] except that we additionally require the function to
be endowed with a trapdoor and other natural properties. For instance,
we obtain new efficient instantiations of NIZK proofs for relations related
to quadratic residuosity and the RSA function.
As a byproduct, with our transform we obtain essentially for free the
first efficient non-interactive zap (i.e., 1-round non-interactive witness
indistinguishable proof system) for several practical languages in the non-
programmable RO model and in an ideal-PUF model.
Our approach to NIZK proofs can be seen as an abstraction of the cele-
brated work of [Feige, Lapidot and Shamir - FOCS 1990].
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1 Introduction

Non-Interactive Zero-Knowledge (NIZK) proof and argument systems have been
studied for about 30 years [BFM88,FLS90,Gol01]. The concept of proving a
statement in just one round without leaking any information has been intriguing



for theoreticians and extremely useful as building block for designers of cryp-
tographic protocols. The initial constructions for NIZK worked in the common
reference string (CRS) model and because of various limitations (e.g., the need
of NP reductions, the non-reusability of the CRS, the expensive computations)
their impact was mainly in the theoretical foundations of cryptography.

Proofs vs arguments. The gap between NIZK proof (NIZKP) systems and NIZK
argument (NIZKA) systems consists in a different soundness requirement. The
soundness property aims to prevent an adversarial prover from convincing the
verifier about the veracity of a false statement. The powerful concept of a NIZK
proof requires the soundness guarantee to be unconditional, therefore the adver-
sarial prover can be unbounded. Instead, the notion of a NIZK argument has a
significantly weaker soundness guarantee since it applies to PPT (corresponding
to non-uniform polynomial-time algorithms) adversarial provers only.1.

The difference seems subtle but may be fundamental in real-world applica-
tions. Consider an e-voting system that uses crypgtographic proofs to ensure
the election result claimed by the authorities to be authentic. If the system uses
NIZK proofs, then there is a guarantee that the authorities cannot subvert the
result of the election whatever computing power they have. If NIZK arguments
are instead employed, then the guarantee is only conditional (it holds only if the
authorities do not have enough computational power).

The bridge between theory and practice: the Fiat-Shamir (FS) transform. The
traditional power of the simulator in a NIZK proof/argument system consists in
programming the common reference string (CRS). A popular alternative to the
CRS model is the Random Oracle (RO) model [BR93]. The RO model assumes
the availability of a perfect random function to all parties. One of the most
successful applications of the RO model in cryptography is the FS transform
that allows to obtain very efficient NIZK arguments [FS87]. The simulator of
such a NIZK argument programs the RO (i.e., the simulator replaces at least in
part the RO in answering to RO queries of the adversary).

In concrete implementations of this transform, prover and verifier replace the
RO by some “secure” hash function.

Even if the RO methodology has been shown to be controversial already
in [CGH98] and further negative results were published next [DNRS99,Bar01,GK03]
[BLV03,DRV12,GOSV14,KRR16], NIZK arguments via the FS transform are
widely used in concrete cryptographic protocols (e.g., in e-voting). We remark
that one could also consider an hybrid notion where the adversarial prover can
be unbounded except that it can query the random oracle a polynomial number
of times only. We stress that in this paper we consider a truly unbounded adver-
sarial prover, and as such, a NIZK proof system does not impose any limitation
on the number of RO queries. This difference can be crucial in applications.

1 In literature this difference is often overlooked. Despite this subtle difference, for
simplicity we will call proof the string generated by the prover, irrespective of whether
the prover be part of a proof or an argument system. We will however be precise on
using the words “proof system” and “argument system”.
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1.1 Problem statement

The FS transform induces a significant soundness loss. Indeed it receives as
input a constant-round public-coin honest-verifier zero-knowledge (HVZK) proof
system and outputs a NIZK argument system. This is a step back compared to
the known NIZK proofs in the CRS model [BFM88,FLS90,GOS06b,GS08].

Of course if one is interested in a NIZK proof system in the RO model there is
a trivial approach: just evaluate the RO on input the instance x to get a random
string that can be used to compute a NIZK proof in the common reference
string model (e.g., [FLS90]). However the trivial approach is very unsatisfying
for the following two reasons: 1) it requires expensive computations (sometimes
including an NP reduction) that make the NIZK proof completely impractical,
and 2) it requires some complexity assumptions (e.g., trapdoor permutations
in [FLS90]) therefore incurring a significant security loss in the zero-knowledge
guarantee.

These limitations of the FS-transform and of the above trivial approach mo-
tivate the main question of this work.

Open question: is there an alternative transform that outputs an efficient
NIZK proof system (i.e., soundness is guaranteed also against unbounded adver-
sarial provers) in the RO model for practical languages without introducing any
additional unproven hypothesis?

1.2 The FS transform internals

Formal definitions of NIZK proofs and arguments of knowledge in the RO model
through the FS transform have been investigated in several papers [FKMV12,BPW12,BFW15]
and are discussed in Appendix A.3. For simplicity here we will now discuss the
specific case of a 3-round public-coin HVZK proof system 3HVZK = (P,V)
where the decision of the verifier is deterministic. However our discussion can be
generalized to any constant-round public-coin HVZK argument system.

P sends a first message a to V , also called the commitment. Then V sends
back a random challenge c. Finally P outputs the final message z, the answer
to c. The triple (a, c, z) is called the transcript of an execution of 3HVZK for
an instance x and V takes deterministically the decision of accepting or not the
transcript.

The FS transform constructs NIZK = (NIZK.Prove,NIZK.Verify) as follows.
NIZK.Prove computes a precisely as P , but then the challenge c of V is replaced
by the output of the RO on input the statement x and a, i.e., c = H(x, a).2

Finally NIZK.Prove computes z precisely as P would compute it.
NIZK is only computationally sound (i.e., it is an argument system) in the

random oracle model. Indeed one can easily see that computing with non-
negligible probability an accepting transcript for a false statement when the

2 When the challenge c is computed as H(a), the FS transform offers weaker security
guarantees (see [BPW12,CPS+16]). In this work, we will consider the strong FS
transform.
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adversarial prover runs in polynomial time, implies that the challenge is the out-
put of one out of a polynomially bounded number of evaluations of the RO, and
this can be translated to proving with non-negligible probability a false state-
ment to V . Soundness cannot be claimed when instead the adversarial prover is
unbounded and can therefore make an unbounded number of queries to the RO.

If 3HVZK is also HVZK (see Appendix A.1), then the resulting NIZK argu-
ment system is additionally a computational ZK argument system. Indeed the
ZK simulator can program the queries therefore being able to produce a simu-
lated proof using the HVZK simulator that is computationally indistinguishable
from the a real proof.

If 3HVZK satisfies special soundness (i.e., there is a deterministic efficient ex-
tractor that from 2 different accepting transcripts for the same statement with
the same first message outputs a witness), then the resulting NIZK argument
system additionally enjoys witness extraction but limited to PPT adversarial
provers. Known variations [Pas03,Fis05,FKMV12] of the FS transform produce
NIZK argument systems that suffer of the same limitation of witness extraction
with respect to PPT provers. We also stress that, to our knowledge, all pre-
vious variants of the FS transform (e.g., the ones of Pass [Pas03] and Fischlin
[Fis05]) only achieve computational soundness (i.e., there is no security guaran-
tee against an unbounded adversarial prover that as such can have unlimited
access to the random oracle). In this paper we call NIZK proof of knowledge
(NIZKPoK) a NIZK proof (i.e., soundness unconditional) system that enjoys the
above extraction property (i.e., limited to PPT adversarial provers).

1.3 The soundness degradation of the FS transform

Suppose that the underlying interactive protocol has the following properties.
The space of prover commitments has cardinality ≥ 2b(λ), the verifier’s challenges
have length k(λ), the soundness error is 2−k(λ), with k(λ) ∈ ω(log(λ)), b(λ) ≥
λ + k(λ) where λ is the security parameter. Suppose further that the prover
computes the answer z deterministically based on (a, c) and suppose that for
each x /∈ L and each commitment a, there exists at least one challenge c such
that (a, c, z) is an accepted transcript (a natural Σ-protocol satisfying the above
requirements will be shown soon).

Fix an x /∈ L and consider the following unbounded prover NIZK.Prove? that
aims to compute an accepting proof for x. NIZK.Prove? searches over all pairs
of challenges and commitments (ac, c) such that the above property holds (i.e.,
(ac, c, z) is an accepting tuple, where z is the deterministic answer of the prover
to (ac, c)) and RO maps (x, ac) into c; if NIZK.Prove? can find a pair (ac, c) that
verifies such conditions, it outputs (ac, c, z) as its proof, otherwise outputs some
error ⊥.

For each challenge and commitment pair (ac, c) the probability that the RO
maps (x, ac) into c such that (ac, c, z) is an accepted transcript is ≥ 2−k(λ)

(by hypothesis on the soundness error). Thus, since there are 2b(λ) ≥ 2λ+k(λ)

commitments, NIZK.Prove? fails in proving the false statement x with probability
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< (1− 1
2k(λ)

)2
λ+k(λ)

. Therefore, NIZK.Prove? succeeds with probability ≥ 1−(1−
1

2k(λ)
)2
k(λ)·2λ ≈ 1− ( 1

e )2
λ

.3

This example shows that an unbounded prover can break the soundness of
the FS transform applied to some particular proof system satisfying the above
requirements. This is not an artificial counter-example as such requirements are
satisfied by very natural proof systems like the ones of [CP93,CDS94].

Example. Consider for instance the protocol of Chaum and Pedersen [CP93] for
proving that a tuple (g, h, u, v) of 4 group elements, in a group of prime order q,
is a Diffie-Hellman (DH, in short) tuple.4

The prover chooses a random r ∈ Zq, where q is the order of the group, and
sends the commitment a = gr, b = hr. The verifier sends a random challenge
c ∈ Zq. The prover sends back deterministically z = r + cw mod q and the
verifier accepts iff gz = auc and hz = bvc.

Let k(λ) = λ with security parameter λ equals to the length of the group
elements. Then, the challenges have length k(λ), the commitments have length
2 ·k(λ) and k(λ) is also the soundness parameter. By using the simulator (of the
special HVZK), it is easy to see that for each false statement x /∈ L and for each
challenge c, there exists (a, z) such that (a, c, z) is an accepted transcript for x.
Thus, the Chaum and Pedersen’s protocol satisfies the above requirements and
the soundness can be broken in time ≈ 2k(λ).

Ineffectiveness of parallel repetition. A natural approach to adjust the FS trans-
form in order to circumventing the above attack would be to execute p instances
of the protocol in parallel and computing each challenge ci, for i = 1, . . . , p, as
RO(x||ai||i). Unluckily, this strategy does not improve the situation. In fact,
while the number of possible challenges increases (each challenge now consists of
k · p bits) the number of possible commitments also increases. A simple analysis
shows that an attack similar to the previous one can be applied to such variant
of the FS transform as well. Observe also that the previous attack can be viewed
as a special case for p(λ) = 1.

In fact, consider a false statement x and an unbounded prover NIZK.Prove?

similar to before aiming at computing an accepting proof for x. By the previous
analysis on the protocol without repetitions (that can be seen as a special case for
p(λ) = 1) and since the p(λ) executions are independent, NIZK.Prove? succeeds

with probability
(

1− ( 1
e )2

λ
)p(λ)

that is overwhelming in λ.

It is fundamental for the previous analysis to hold that the space of commit-
ments is much bigger than the challenge space, as it is indeed the case in general

3 This follows from the fact that limλ→∞ 2k(λ) = ∞ and thus limλ→∞(1 −
1

2k(λ)
)−2k(λ) = e.

4 Our transform cannot be applied to Chaum and Pedersen’s protocol. However there
are examples of natural 3-round public-coin HVZK protocols that have a big ratio be-
tween space of commitments and space of challenges and can be made non-interactive
through our transform (e.g., quadratic residuosity).
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for natural Σ-protocols for languages where deciding membership is non-trivial.
In fact, if for instance the space of the challenges and commitments were of
the same cardinality, the lower-bound on the winning probability of the previ-

ous prover would be only
(
1− 1

e

)p(λ)
that is a negligible function. As we will

see next, our transform still uses parallel repetitions but in a more careful way
achieving NIZK proof systems for several natural and practical languages.

2 Our Results

In the main result of this work we give a positive answer to the above open ques-
tion: we show a transform that gives NIZK proof systems for practical languages.

We first (see Appendix A.3) provide formal definitions for NIZK proof/argument
systems in the RO model following the lines of Faust et al. [FKMV12] and Bern-
hard et al. [BFW15] but taking into account unbounded adversarial provers,
therefore considering statistical soundness. Then we propose a new transform
from a specific class of 3-round public-coin HVZK proof systems for a given
class of relations (see below) to NIZK proof systems in the RO model for the
same class of relations.

The protocols and relations we support are a strengthening of the ones in-
troduced by Maurer [Mau15]. Precisely, Maurer shows that most of the known
practical sigma protocols can be viewed as special case of a sigma protocol for
a group homomorphic one-way function (OWF). Sigma protocols are a special
case of 3-round public-coin HVZK proof systems (see Appendix A.1). Similarly,
our transform can be applied to sigma protocols for proving that an element y
is in the range of a group homomorphic OWF but we also require additional
properties on the function f . Namely, we require the following properties (this
is only a sketch and the complete set of properties will be presented in Def. 11).

1. f is a trapdoor OWF with range ⊆ {0, 1}m(λ) for some polynomial m(·).
The witness for the relation includes the trapdoor, i.e., the prover needs the
trapdoor to compute the proof. The trapdoor also allows to efficiently decide
whether a string y ∈ {0, 1}m(λ) is in the range of f or not.

2. The language of all strings y /∈ Range(f), y ∈ {0, 1}m(λ) is in co-NP and
using the trapdoor for f it is possible to compute a witness for the fact that
y /∈ Range(f). That is, there are: a) an algorithm Provef that on input a
string y and a trapdoor trap for f computes a proof π; b) an algorithm Verify
that on input y and a proof π accepts if and only if y /∈ Range(f); c) a PPT
simulator Simf that, with input the security parameter, outputs a pair (a, π)
that is distributed identically to (a′, π′) where a′ is selected at random in
the space of strings y ∈ {0, 1}m(λ), y /∈ Range(f) and π′ ← Provef (y, trap).

3. A random element in {0, 1}m(λ) falls outside the range of f with probability
≤ 1

q (up to a negligible factor) for some constant q > 1; this probability
affects the length of the proof.

We call such a function a special one-way group homomorphic function (SOWGHF).
To exemplify the requirements, consider the squaring function modulo a Blum
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integer N that acts on the group Z?N ; sigma protocols for such f allow to prove
whether a number is a quadratic-residue modulo N . The first condition requires
the existence of a trapdoor that in this case is the factorization of N and the
range of the function is ZN .

The second condition requires the existence of an efficient way for proving
that a number is not a quadratic residue mod N . As N is a Blum integer, −1 is
a quadratic non-residue and thus −y is a quadratic residue mod N if and only
if y is a quadratic non-residue mod N . Thus, there exists a witness for proving
that a number y is not a quadratic residue. The simulator can simply pick a
random number r ← ZN and output (−r2 mod N, r).

The third condition is also satisfied since a random number in Z?N is a
quadratic-residue modulo N with probability 1

4 and only a negligible fraction
of the integers in ZN are not in Z?N .

The second and third conditions are trivially satisfied when f is a permuta-
tion, e.g., for the RSA permutation. In that case, it makes no sense to prove with
our NIZKP that a string is in the range of the function because for permutations
the soundness is trivially satisfied. Moreover, the knowledge extraction property
is also guaranteed by the FS transform at a lower cost. Nevertheless, one might
consider statements like ∃x1, x2, x3 such that ((y1 = f1(x1)∧y2 = f2(x2))∨y3 =
f3(x3)), where one or more of the functions f1, f2, f3 are permutations and at
least one is not a permutation and all the functions satisfy our requirements.
Following Cramer et al. [CDS94], our transform can be likewise extended to
support such compound statements.

One might be worried that the first condition is very restrictive in that we do
not just require f to be a trapdoor OWF but in addition to feed the trapdoor as
input to the prover. However, notice that for many practical statements this is
the case, e.g., for a proof of correct decryption of a Goldwasser-Micali’s ciphertext
[GM84] we can assume that the prover is endowed with the factorization of N .

We defer the reader to Appendix A.2 for more details on what we call special
one-way group homomorphic functions and special protocols. In Appendix B we
show several examples of SOWGHFs that exemplify the usefulness and practical-
ity of our notion. Combined with our transform, this gives efficient NIZK proof
systems with statistical soundness for disparate relations of wide applicability.

Our transform preserves the same properties of the FS transform (except
some efficiency loss) but maintains the unconditional soundness of the start-
ing protocol (unlike the FS transform). Regarding knowledge extraction, if the
starting protocol satisfies special soundness then NIZK will have the same guar-
antee of extractability (see Appendix E) of the FS transform (i.e., extraction
is possible against a PPT adversarial prover). Our transform does not add any
computational assumption and thus our NIZK proof will be secure in the RO
model without any unproven hypothesis.

Therefore our work gives the first NIZK proof systems for a variety of useful
languages in the RO model. See Theorems 10 and 12.

As noted and proved by Yung and Zhao [YZ06] (see also Ciampi et al.
[CPSV16]), if the original 3-round public-coin HVZK proof system is witness
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indistinguishable (WI), then the FS-transformed argument is still WI, and the
security proof for WI is RO-free. Since the same holds for our transform we get
an efficient non-interactive WI proof system (also called non-interactive zap in
previous work) [GOS06a,GS08,DN00] in the non-programmable RO model. The
result is formally stated in Corollary G. In Appendix 5 we present applications
of this result to hardware-assisted cryptography. In particular we achieve an
unconditional NIWI proof system in an ideal-PUF model.

As shown earlier, if the starting interactive proof system has challenges of
length λ (with λ security parameter) and space of commitments of cardinality
2λ then the soundness guarantee of the FS transform is completely violated by
adversaries running in Θ(2λ) steps. Instead, the soundness of our transform is
preserved with respect to adversaries running in O(2λ) steps, when the instanti-
ation of the random oracle is resilient to adversaries running in time O(2λ) (e.g.,
idealized hash functions, PUFs). We formally state it in Conjecture 1.

3 Overview of Our Transform

We next describe our transform. Given an x /∈ L, we denote by “space of bad
commitments” Sx for x of a 3-round public-coin proof system the set of all com-
mitments a such that there exist e, z such that V(x, a, e, z) is accepted by the
verifier. With a slight abuse of notation, we say that the space of bad commit-
ments S of 3HVZK has cardinality ≤ N if for all x /∈ L, the cardinality of Sx is
≤ N .

Let 3HVZK be a 3-round public-coin HVZK proof system 3HVZK = (P,V)
with space of bad commitments of cardinality ≤ 2b(λ), challenges of length k(λ)
and soundness error bounded by s(λ). In Lemma 9 we prove that the FS trans-
form applied to a such 3HVZK results into a NIZK proof system with statistical
soundness that degrates “nicely” in relation to s(λ) when the space of the bad
commitments 2b(λ) is not too ”big” (see the Lemma and also Theorem 10 for a
more precise statement).

As a consequence, the problem of transforming sigma protocols into NIZK
proofs with statistical soundness can be reduced to the problem of transforming
3-round public-coin HVZK proof systems into ones having arbitrarily small ratio
between soundness error and space of bad commitments. So, we first present a
transform from interactive protocols (that do not use the RO) to interactive
protocols in the RO model with shorter commitment space. Then, applying
the FS transform to the latter protocol will result into a NIZK with statistical
soundness.

Trapdoor one-way group homomorphism and special protocols. Before presenting
our transform, we define the class of relations supported by our protocols. As
in Maurer [Mau15], the class of relations we consider are associated with an
homomorphic OWF that in our case satisfies some additional requirements. We
first recall the abstraction of Maurer [Mau15] and then we proceed to state the
additional properties we require.
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Consider two groups (G, ·), (H, ∗) and a one-way homomorphic function from
G to H, that is a OWF with the property that f(x1 · x2) = f(x1) ∗ f(x2). By
abstracting several known protocols in the literature, Maurer presents a sigma
protocol for proving that an element y ∈ H. In the Maurer’s protocol, the prover
knows x and the verifier knows y = f(x). The prover selects a random element
r in G and sends a = f(k) to the verifier. The verifier sends back a number c
selected at random in a challenge space that is a set of integers. The prover sends
z = k · xc to the verifier that accepts the transcript if and only if f(z) = a ∗ yc.

If a protocol is so defined and if in addition the function f satisfies the three
conditions given in Appendix 2 we say that the protocol is special. We now show
how to transform a special protocol (spec-prot henceforth) into one with shorter
commitment space.

Reducing the space of commitments in special protocols. We construct a 3-round
public-coin HVZK protocol 3HVZK = (3HVZK.Prove, 3HVZK.Verify) for proving
that y ∈ Range(f) from a spec-prot SpecP = (SpecP.Prove,SpecP.Verify) for the
same relation. We denote by Prove and Verify the efficient algorithms to prove
and verify that a string y /∈ Range(f) guaranteed by a spec-prot for f . We recall
that in a spec-prot (see. Def. 13) the prover SpecP.Prove computes a commitment
as f(r) where r is a string drawn at random in the domain of f .

The idea behind the transform is to make the space of the commitments to
be arbitrarily shorter than the space of the challenges. Specifically, we repeat the
protocol a sufficient number of times p to increase the space of the challenges but
at the same time we have to avoid that the space of the commitment increases
with the same ratio. To that aim, we force the space of the commitment to be
short by computing each commitment via the RO as ai = RO(y||i), i ∈ [p]. In
this way the space of the commitment is limited by 2|y| ·p and thus, e.g, doubling
p just double the space of the commitments while quadrupling the space of the
challenges.

Under one of the assumptions for any spec-prot we can assume that with
noticeable probability ai = f(ri) for some ri. If this is the case the prover, by
means of the trapdoor, can invert ai and get ri. As mentioned above, the value ri
is meant to be the randomness used by SpecP.Prove to compute a commitment.
Thus, using ri 3HVZK.Prove can complete the protocol (i.e., computing the final
answer to send to the verifier). Note that, by hypothesis, the trapdoor can be
also employed to check whether ai ∈ Range(f). On the other hand, if this is
not the case, the prover can still use the trapdoor to show the verifier that
ai /∈ Range(f). As in FS, the verifier has also to check that each commitment ai
received by the prover equals RO(y, i).

Overall transform. We define our transform to be the result of applying the
above transform to a spec-prot SpecP to obtain a protocol 3HVZK and then
apply FS transform to 3HVZK to obtain a NIZK argument. It can be seen that
our transform guarantees completeness if SpecP is perfectly complete. It can
be seen that our transform guarantees computational ZK (see Appendix A.3) if
SpecP is HVZK exactly as it is the case for the FS transform. It can be seen that
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our transform guarantees computational witness extraction (see Appendix E) if
SpecP satisfies special soundness exactly as it is the case for the FS transform.
More details will be given in Section 7.

The most important property of this new transform is that starting from a
3-round public-coin proof system that matches our requirements (i.e., what we
call a spec-prot), our transform gives in output a non-interactive proof system,
assuming a suitable choice of the parameters as we will specify later.

The parameter p(·) in our transform depends on the cardinality of the chal-
lenge space k(·) and the probability q(·) that a random element in the space of
the commitments falls to be in the range of f . A more precise statement will be
given in Section 7.

Connection to FLS. The reader may have noticed a connection to the work of
Feige, Lapidot and Shamir (FLS) [FLS90]. A CRS-based NIZK like FLS can
be easily converted to a NIZK in the RO model by setting the CRS to be the
string RO(1λ). In that case, the CRS in the FLS’ NIZK can be seen as the first
message in our protocol and then, by using a trapdoor, the prover in FLS is able
to open the bits to the verifier in a selected way.

As we want to avoid expensive NP-reductions, in our case the trapdoor de-
pends on the language. Moreover we have to handle the case when f is not a
permutation.

4 Comparison

Comparison. Here we compare in more detail the NIZK proofs obtained through
our transform with other NIZK arguments and proofs discussed before.

In Table 1 we present a comparison of the NIZK proof resulting to other
NIZK proofs and arguments known in the literature (see Section 6). The NIZK
proof and argument system in the comparison are very different in that they ad-
mit so different and disparate relations or can prove general statements through
expensive NP-reductions. Nevertheless, it makes sense to compare them in terms
of properties achieved. We omit the comparison with the transform of Mittel-
bach and Venturi that can be instantiated only for specific classes of interactive
protocols and uses strong computational assumptions.

The 3rd line in the table refers to a NIZK in the RO constructed from a CRS-
based NIZK in the trivial way by replacing the CRS with the string RO(1λ) and
programming the RO in the obvious way. The ZK type is omitted but is implicitly
assumed to be (multi-theorem adaptive) computational in the programmable
RO model5 for works in which the corresponding entry CRS is set to No and
(multi-theorem adaptive) computational for the CRS model otherwise.

5 This holds for NIZKAs resulting from the strong FS transform, not for the weak FS
one [BPW12]
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Efficiency: the case of quadratic residuosity. It is difficult to compare differ-
ent NIZK proofs and arguments systems for practical statements when they
can handle different classes of relations. However, it makes sense to compare
FS-transformed NIZK argument to the NIZK proof systems resulting from our
transform when both are for the same relation. As an example, we can com-
pare a FS-transformed NIZK argument system for proving that an integer is a
quadratic residue to a NIZK proof system resulting from our transformation for
the same relation.

The basic sigma protocol for proving quadratic residuosity has soundness
error 1

2 . To make the soundness error, let us say 2−λ, it is necessary to repeat
the protocol λ times and in turn applying the FS transform to the latter protocol
results into just a NIZK argument with computational soundness. Let us now
compare the improvement offered by our transform.

As it will be shown in our transform Transmain of Construction 2, to get
soundness error 2−λ our transform will compute a NIZKP consisting of p(λ)
repetitions of a 3-round protocol with essentially the same efficiency in terms
of communication that the basic sigma protocol for quadratic residuosity, where
p(λ) has to satisfy the equation (cf. Equation (1) in Construction 2):

22·λ+log(p(λ)) ·
(

1

q
+

(
1− 1

q

)
· 1

k(λ)

)p(λ)
≤ 2−λ.

As 1
q ≈

3
4 , the above equation can be simplified to 3 · λ+ log(p(λ)) ≤ c · p(λ)

where c
4
= 3− log2(7) ≈ 0.2.

Then it can be seen that p(λ) ≈ 16 · λ satisfies the equation. Therefore, our
transform allows to upgrade from computational to statistical soundness at a
cost of a moderate factor of inefficiency.

5 Applications

Efficient NIWI Proofs in the NPRO Model. Yung and Zhao [YZ06] (see also
Ciampi et al. [CPSV16]) observed that if the original 3-round public-coin HVZK
proof system is witness indistinguishable (WI), then the FS-transformed argu-
ment is still WI, and the security proof for WI is RO free. Since the same holds
for our transform, we get an efficient non-interactive witness indistinguishable
(NIWI) proof system (also called non-interactive zap in previous work) [GOS06a]
[GS08,DN00] in the non-programmable RO model. Next we show an application
of this primitive.

Unconditional NIWI proofs in the ideal-PUF model. In last decade, there has
been a renewed interest about hardware-assisted cryptographic protocols and
physically uncloneable functions (PUFs, in short) [PRTG02,GCvD02,TSS+05]
[Kat07,HL08,GKR08,DORS08,AMS+09,GIS+10,BFSK11,OSVW13,RvD13]. We
note that our unconditional NIWI proof system in the NPRO can be turned in
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an unconditional NIWI proof system in the ideal-PUF model, in which the PUF
acts like a RO.

More specifically, we consider the availability of an ideal-PUF. Note that this
is different from assuming a RO. In the RO model, all parties need to have access
to the same function. In the ideal-PUF model we envision, we just assume that
an hardware token acting as an ideal-PUF can be attached to a proof and sent
from a party to another (specifically, from the prover to the verifier). We observe
that our unconditional NIWI proof system in the NPRO can be turned in an
unconditional NIWI proof system in the ideal-PUF model.

Work Efficiency Soundness? CRS? PV? Uncondititonal?? PoK?

NIZKPoK of
[GOS06b] NP-reductions Stat Yes Yes No Stat

NIZKPoK of
[GS08] Efficient Stat Yes Yes No Stat

NIZKPoK of
[GS08]

with CRS
set to RO(1λ)

NP-reductions Stat No Yes No Stat

Transforms of
[Lin15,CPSV16] Efficient Comp Yes Yes No No

Transforms of[DFN06]
[VV09,CG15] Efficient Comp Yes No No No
Transforms of
[Pas03,Fis05] Efficient Comp No Yes Yes CS??

Transform of
FS

Very efficient Comp No Yes Yes CR
Our transform Efficient Stat No Yes Yes CR

Table 1. Stat denotes statistical and Comp computational. PV denotes public ver-
ifiability: a YES refers to standard NIKZP/NIZKA and a NO to designated ver-
ifier ones. CR denotes computational extractability with rewinding extractors and
CS denotes computational extractability with straight-line extractors. The ZK type
is omitted but is implicitly assumed to be (multi-theorem adaptive) computational
in the programmable RO model for works in which the corresponding entry CRS is
set to No and (multi-theorem adaptive) computational for the CRS model otherwise.
?: When referred to the transforms, a No means that the transform does not add
any additional computational assumption (beyond assuming the RO model) beyond
the ones of the underlying starting protocol (that could even be unconditional).
??: Note that the definition of online extractability of Fischlin implicitly assumes that
the adversary is possibly computationally unbounded but limited to a polynomial num-
ber of RO queries. Thus, according to our terminology, it is still an argument with
computational extractability.

6 Related Work

CRS-based NIZK proof and argument systems have been intensively studied in
the last 30 years in a sequel of works [BFM88,FLS90,RS92,BY96,Pas03,BCNP04,Ps05]
[GOS06b,AF07,GS08,Pas13,BFS16]. One of the initial motivations for CRS-
based NIZK proof was CCA-security [NY90,CS98,Sah99,CS03,Lin06]. In this
setting, the CRS is computed by the receiver, while the NIZK proofs are com-
puted by the sender of ciphertexts. Thus, for CCA-security the CRS model does
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not pose any issue. However, in e-voting the authority cannot compute the CRS
because it must compute proofs that show the correctness of the tally and thus
cannot be the same party that computes the CRS that thus has to be setup by
a trusted party.

An alternative to the CRS model is the RO model that does not solve the
issues of the CRS model but often leads to the design of more efficient protocols.
The RO methodology has been introduced in the groundbreaking work of Bellare
and Rogaway [BR93]. Canetti et al. [CGH98] show that the RO methodology is
unsound in general and several works [DNRS99,Bar01,GK03,BLV03,BDSG+13]
[GOSV14,KRR16] study the security of the FS methodology. The first rigorous
analysis of the FS transform (applied to the case of signature schemes) appeared
in Pointcheval and Stern [PS00]. Since the introduction of the FS transform
[FS87], a lot of works have investigated alternative transformations achieving
further properties or mitigating some issues of FS.

Pass [Pas03] and Fischlin [Fis05] introduce new transformations with straight-
line extractors to address some problems that arise when using the NIZK argu-
ment systems resulting from the FS transform in larger protocols [SG02]. The
NIZK systems resulting from the Pass’ and Fischlin’s transforms share the same
limitation of FS of being arguments, i.e., sound only against computationally
bounded adversaries. Furthermore, as in our case, Fischlin’s transform also re-
sults in a completeness error.

(Note that the definition of online extractability of Fischlin implicitly assumes
that the list of RO queries given to the extractor has polynomial size and thus
only withstands adversaries that are possibly computationally unbounded but
limited to a polynomial number of RO queries; according to our terminology, this
limitation brings to an argument system with computational extractability.6)

Damg̊ard et al. [DFN06] propose a new transformation for the standard
model but it results in NIZK argument systems that are only designated verifier,
rests on computational assumptions and has soundness limited to a logarithmic
number of theorems. Designated verifier NIZK proofs are sufficient for some
applications (e.g., non-malleable encryption [PsV06]) but not for others like e-
voting in which public verifiability is a wished property. The limitation on the
soundness of the Damg̊ard’s transformation has been improved in the works of
Ventre and Visconti [VV09] and Chaidos and Groth [CG15].

Lindell [Lin15] (see also the improvement of Ciampi et al. [CPSV16]) puts
forward a new transformation that requires both a non-programmable RO and a
CRS and has computational complexity only slightly higher than FS. The trans-
formations of Lindell and Ciampi et al. are based on computational assumptions
whereas ours does not require any unproven hypothesis.

6 Note that also the FS transform leads to statistically sound proof systems against
computationally unbounded provers constrained to a polynomial number of RO
queries. In this paper, we deem a non-interactive system in the RO a proof sys-
tem only if it enjoys statistical soundness against unbounded adversaries without
any limitation on the number of RO queries.
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Mittelbach and Venturi [MV16] investigate alternative classes of interactive
protocols where the FS transform does have standard-model instantiations but
their result yields NIZK argument systems and is based on strong assumptions
like indistinguishability obfuscation [GGH+13], and as such is far from being
practical. Moreover the result of Mittelbach and Venturi seems to apply only to
the weak FS transform in which the statement is not hashed along with the com-
mitment. The weak FS transform is known to be insecure in some applications
[BPW12]. In this work, we only consider the strong FS transform.

The work of Mittelbach and Venturi has been improved by Kalai et al.
[KRR16] that, building on [BLV03,DRV12], have shown how to transform any
public-coin interactive proof system into a two-round argument system using
strong computational assumptions. The latter work does not yield non-interactive
argument systems.

Sigma protocols, on which efficient NIZK arguments (and our NIZK proofs)
in the RO model are based, have been intensively studied [CP93,CDS94,FKI06]
[BR08,ABB+10,Mau15,GMO16]. Sigma protocols incorporate properties both
of interactive proof systems and proofs of knowledge systems [GMR89,BG93].
Faust et al. [FKMV12] and Bernhard et al. [BFW15] provide a careful study of
the definitions and security properties of the NIZK argument systems resulting
from the FS transform but they do not investigate the possibility of achieving
statistically sound proofs. Both works, as well as ours, make use of the general
forking lemma of Bellare and Neven [BN06] that extends the forking lemma
of Pointcheval and Stern [PS00]. We note that in our NIWI the RO can be
replaced by an ideal PUF. In the last decade, a lot of works study construc-
tions and applications of hardware-assisted cryptographic protocols and PUFs
[PRTG02,GCvD02,Kat07,HL08,GKR08,DORS08,AMS+09,BFSK11,OSVW13,RvD13].

Roadmap. In Appendix A we provide the necessary background and formal
definitions of all the primitives and concepts used in this work, including our
new framework of special one-way group homomorphic functions. Additional
definitions regarding extractability will be given in Appendix E. In Section 7
we present our main transform, in Appendix D we analyze its soundness and
in Appendices E-G zero-knowledge, extractability and additional properties. In
Appendix B we present several instantiations of special one-way group homo-
morphic functions.

7 Our Transform

7.1 Step I: From spec-prot to 3-Round Public-Coin HVZK in the
ROM

For the sake of exposition, we define our main transform as consisting of two
transforms. The first one transforms a spec-prot into a 3-round public-coin HVZK
protocol in the RO model.
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Specifically, Trans(c(·), k(·), q),m(·), f) converts a spec-prot SpecP SpecP =
(SpecP.Prove,SpecP.Verify) with challenges of length k(·) and commitments of
length c(·) for a (m(·), q)-SOWGHF f into a 3-round public-coin HVZK proof
system 3HVZK[c(·), k(·), q,m(·), p(·), f ] = (3HVZK[c(·), k(·), q,m(·), p(·), f ].Prove,
3HVZK[c(·), k(·), q,m(·), p(·), f ].Verify) with commitments of length c(λ) · p(λ),
space of bad commitments of cardinality 2λ+log(p(λ)), challenges of length k(λ) ·
p(λ). Moreover, 3HVZK is associated with a polynomial polyinp(·).

The algorithms of 3HVZK[c(·), k(·), q,m(·), p(·), f ] when run on an input x

with |x| 4= λ need oracle access to a function RO with domain {0, 1}polyinp(λ) and
co-domain {0, 1}c(λ), and guarantee soundness bounded by p(λ). We next define
our transform Trans[c(·), k(·), q,m(·), p(·), f ].

Construction 1 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with
challenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF
f . Note that according to our formulation, SpecP is induced by f , k(·), m(·) and
q. Our transform Trans(c(·), k(·), q,m(·), p(·), f) is a polynomial-time algorithm
that takes as input the description of f (and thus implicitly SpecP), the descrip-
tion of functions c(·), k(·), q,m(·) and p(·) and outputs a pair
(polyinp(·), 3HVZK[c(·), k(·), q,m(·), p(·), f ]) that consists of the description of a
polynomial and the description of a proof system computed as follows.

Compute polyinp(·) = λ+ log(p(·)), and set
3HVZK[c(·), k(·), q,m(·), p(·), f ] = (3HVZK[c(·), k(·), q,m(·), p(·), f ].Prove,
3HVZK[c(·), k(·), q,m(·), p(·), f ].Verify) according to the description of the fol-
lowing two algorithms that are algorithms with oracle access to a function RO
with domain {0, 1}polyinp(λ) and co-domain {0, 1}c(λ).

In the following we denote by SpecP.Prove(y, (x, trap), f−1(ai), ei) the output
of SpecP.Prove when executed with theorem z, witness (y, trap), first message
computed with randomness f−1(ai) (where the inverse is computed with trap-
door trap) and after having received as challenge ei from the verifier. Note that
the prover of a spec-prot computes its first message as f(r) where r is the chosen
randomness, thus the first message corresponds to f(f−1(ai)) = ai.

3HVZK.Prove, with inputs x, y and the trapdoor trap and 3HVZK.Verify, with
input y, performs the following three rounds of communication.

15



– [Round 1] 3HVZK.Prove(y, (x, trap))→ 3HVZK.Verify(y).
For each i ∈ [p(λ)], do
∗ Send ai ← RO(y||i) to 3HVZK.Verify.

• endFor
– [Round 2] 3HVZK.Verify(y)→ 3HVZK.Prove(y, (x, trap)).

For each i ∈ [p(λ)], do
∗ ei ← {0, 1}k(λ)
∗ Send ei to 3HVZK.Prove.

• endFor
– [Round 3] 3HVZK.Prove(y, (x, trap))→ 3HVZK.Verify(y).

For each i ∈ [p(λ)], do
∗ If ai /∈ Range(f) do
· πi ← Prove(y, trap).
· Send zi = (⊥, πi) to 3HVZK.Verify.

∗ endIf
∗ else
· Send zi ← SpecP.Prove(y, (x, trap), f−1(ai), ei) to 3HVZK.Verify.

∗ endElse
• endFor.

– [Acceptance condition] 3HVZK.Verify(y)→ {0, 1}.
For each i ∈ [p(λ)], do
∗ If ai 6= RO(y, i) then return 0.

∗ If zi = (⊥, πi) do
· If Verify(y, πi) = 1 then return 0.

∗ endIf
∗ else
· If SpecP.Verify(y, ai, ei, zi) = 0 then return 0.

∗ endElse
∗ return 1.

• endFor.

7.2 Step II: Composing with the FS Transform

Trans(c(·), k(·), q,m(·)p(·), f) converts a spec-prot SpecP = (SpecP.Prove,SpecP.Verify)
with space of bad commitments of cardinality ≤ 2b(·), commitments of length
c(·), challenges of length k(·) into a proof system in the RO model 3HVZK[c(·), k(·), q,m(·), p(·), f ] =
(3HVZK[c(·), k(·), q,m(·), p(·), f ].Prove,
3HVZK[c(·), k(·), q,m(·), p(·), f ].Verify) with commitments of length c(λ) · p(λ),
space of bad commitments of cardinality 2λ+log(p(λ)) and challenges of length
k(λ) · p(λ). The protocol is associated with a polynomial polyinp(·) that dictates
the domain of the RO.

By appropriately setting the parameter p(·) and applying the FS transform
to 3HVZK we can obtain a NIZK proof system with negligible soundness error
(precisely, p(·) and the soundness error will be related). We now show our main
transform that uses the previous one and the FS transform to achieve our goal.
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Construction 2 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with
challenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF
f . Note that according to our formulation, SpecP is induced by f , k(·), m(·) and
q. Our main transform Transmain(c(·), k(·), q,m(·), δ(·), f) is a polynomial-time
algorithm that takes as input the description of f (and thus implicitly SpecP),
the description of functions c(·), k(·), q,m(·) and a negligible function δ(·) and
outputs a pair
(polyinp(·), polyout(·),NIZK[c(·), k(·), q,m(·), δ(·), f ]) that consists of the descrip-
tion of two polynomials (polyinp(·), polyout(·)) and the description of a NIZKPoK
proof system computed as follows.

Firstly, compute a polynomial p(·) satisfying the equation

22·λ+log(p(λ)) ·
(

1

q
+ (1− 1

q
) · 1

k(λ)

)p(λ)
≤ δ(λ). (1)

We will show in Theorem 10 that it is always possible to find such a polyno-
mial.7

Then, apply the transform Trans(c(·), k(·), q,m(·)p(·), f) of construction 1 to
obtain a 3-round public-coin HVZK proof system in the RO model
3HVZK[c(·), k(·), q,m(·), p(·), f ] and a polynomial poly′inp(·). Set polyinp(·) (resp.

polyout(·)) to the maximum between poly′inp(·) and the length of the commitments
of 3HVZK (resp. maximum between the length of the commitments and the
length of the challenges of 3HVZK).

(In the following we assume that, e.g., if 3HVZK was expecting an RO with
domain {0, 1}m(λ) and we execute with an RO with domain {0, 1}n(λ), for n(λ) >
m(λ), the protocol 3HVZK is slightly modified to use the truncation of the output
of the RO; similarly for the co-domain. Thus, the previous setting serves to
guarantee that the RO has domain and co-domain enough large to be used
both for the transform Trans (that uses domain {0, 1}λ+log((p(λ)) and co-domain
c(λ)) and the FS transform that uses domain {0, 1}λ+c(λ)·p(λ) and co-domain
{0, 1}c(λ)×p(λ)).

Then it applies the FS transform to 3HVZK to get a NIZKPoK proof sys-
tem NIZK = (NIZK.Prove,NIZK.Verify) that uses an RO with domain (resp.
co-domain) strings of length polyinp(·) (resp. polyout(·)).

Note that our main transform Transmain can be viewed as the composition of
Trans with the FS transform.

Remark 1 By defining Transmain to be the composition of the two transforms
(i.e., Trans and the FS transform), for simplicity we skipped a detail. Namely, the
proof system 3HVZK on which we apply the FS transform is a protocol for the
RO model and thus care has to be taken in avoiding that the added RO queries
are in the set of possible RO queries of the original protocol. This issue can be
sorted out by letting the RO in the original protocol and in the FS-transformed

7 Specifically, it does not hold for all negligible functions but does hold for functions
like 2−c·λ for some constant c > 0.
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protocol to query the RO on different prefixes, e.g., 0 and 1; that is, each query
x of 3HVZK (resp. each new query added by the FS transform) will invoke the
RO on input (0||x) (resp. (1||x)).

Next, we define the instantiation of a NIZKPoK resulting from our transform
with a concrete hash function.

Construction 3 [H-instantiation of our transform] Let SpecP = (SpecP.Prove,SpecP.Verify)
be a spec-prot with challenges of length k(·) and commitments of length c(·) for a
(m(·), q)-SOWGHF f . Note that according to our formulation, SpecP is induced
by f , k(·), m(·) and q.

Let (polyinp(·), polyout(·),NIZK[3HVZK, c(·), k(·), q,m(·), δ(·)]) =
Trans(3HVZK, c(·), k(·), q,m(·), δ(·)) be the NIZKPoK system resulting from the
transform of Construction 1. Let H(·) be any function with domain {0, 1}? and
co-domain {0, 1}m for some integer m > 0.

We denote by Trans
H(·),m
main (3HVZK, c(·), k(·), q,m(·), δ(·)) be the NIZKPoK

system resulting from the transform of Construction 1 changed as follows. (In
the following we assume for simplicity that polyout(λ) divides m. It is straight-
forward to remove the constraint.) When the prover (resp. verifier) needs to
access the oracle RO(·) on an input y ∈ {0, 1}polyinp(λ), the function H(·) is in-
voked on inputs H(11||0||y), . . . ,H(1polyout(λ)/m||0||y) to get respective outputs
e1, . . . , epolyout(λ)/m and the concatenation of the ei’s as the oracle’s answer is
returned to the prover (resp. verifier).

With a slight abuse of notation, we call the output of TransH(·),m the instantia-
tion of the proof system with function H(·).
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Supplementary Material

A Definitions and Building Blocks

Notation. We use N to denote the set of all natural numbers. For any natural
number m, we let Um stand for the uniform distribution over binary strings of
length m. A negligible function negl(λ) is a function that is smaller than the
inverse of any polynomial in λ (starting from a certain point). We denote by [n]
the set of numbers {1, . . . , n}, by |x| the bit length of x ∈ {0, 1}? and by x||y
the concatenation of any two strings x and y in {0, 1}?. For any integer m > 0,
we denote by Um the uniform distribution over {0, 1}m.

When we invoke a function with domain {0, 1}s on input a string of length
shorter than s, we implicitly mean that the input is padded with a sufficient
number of 0’s.

We let PPT stand for probabilistic polynomial time and EPT for expected
polynomial time. Unless otherwise specified, all our adversaries are modelled as
non-uniform PPT algorithms. For a probabilistic algorithm A, A(x) denotes the
probability distribution of the output of A when run with x as input. We use
A(x; r) instead to denote the output of A when run on input x and coin tosses
r.

A polynomial-time relation R is a relation for which membership of (x,w) in
R can be decided in time polynomial in |x|. If (x,w) ∈ R then we say that w
is a witness for instance x. A polynomial-time relation R is naturally associated
with the NP language LR defined as LR = {x | ∃w : (x,w) ∈ R}. Similarly,
an NP language is naturally associated with a polynomial-time relation. Follow-
ing [GMY06], we define L̂R to be the input language that includes both LR and
all well formed instances that do not have a witness. It follows that LR ⊆ L̂R
and membership in L̂R can be tested in polynomial time. Given an NP language
L, for any natural number k > 0, we denote by Lk the language L ∩ {0, 1}≤k.

Given two interactive machinesM0 andM1, we denote by 〈M0(x0),M1(x1)〉(x)
the output of M1 when running on input x1 and interacting with M0 running
on input x0 and common input x and by viewA〈A(xA), B(xB)〉(x) the view of A
during the interaction with B when both are executed on common input x and
A (resp. B) is executed on input xA (resp. xB).

A.1 3-Round Public-Coin HVZK

In this section, we recall notions related to interactive proof systems.

Definition 1 [Interactive proof system [BM88,GMR89]] A pair (P,V) of PPT
interactive machines is a interactive proof system for polynomial-time relation
R associated with a language L if the following properties of completeness,
soundness and high min-entropy of commitment hold:

– Completeness. For every (x,w) ∈ R, it holds that:

Prob[〈P(w),V〉(x) = 1] = 1.
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– Soundness. For every non-uniform (possibly computationally unbounded)

machine P? 4= {P?λ}λ, it holds that for every polynomial p(·), there exists a
constant n such that for every λ ≥ n, for every x /∈ L, x ∈ {0, 1}≤λ, it holds
that:

Prob[〈P?λ,V〉(x) = 1] ≤ 1/p(λ).

– High min-entropy of commitment [AABN02,AABN08,FKMV12]. Consider
a pair (x,w) ∈ R and let λ = |x|. Denote with Coins(λ) the set of coins
used by P and consider the set A(x,w) = {P(x,w; ρ) : ρ← Coins(λ)} of all
possible commitments associated to w. The min-entropy function associated
to (P,V) is defined as ε(λ) = minx,w(− log2 µ(x,w)), where the minimum is
taken over all possible (x,w) ∈ R with |x| = λ and µ(x,w) is the maximum
probability that a commitment takes on a particular value, i.e., µ(x,w) =
maxα∈A(x,w)(Pr[P(x,w; ρ) = α : ρ← Coins(λ))].
We require that ε(λ) ∈ ω(log(λ)), i.e., it is super-logarithmic in λ.

Note that the high min-entropy of commitment condition is non-standard in the
definitions of interactive proof systems but as it will be needed in our work, we
prefer to subsume it in our definition. It will be only necessary to prove the ZK
of the NIZK systems resulting from our transform.

The soundness can be weakened to s(·)-soundness as follows.

Definition 2 [s(·)-soundness] Let s(·) be a function. An interactive proof sys-
tem (P,V) for polynomial-time relation R associated with a language L satisfies
s(·)-soundness if the following holds. For every non-uniform (possibly computa-

tionally unbounded) machine P? 4= {P?λ}λ, it holds that there exists a constant
n such that for every λ ≥ n, for every x /∈ L ∩ {0, 1}λ≤λ, it holds that:

Prob[〈P?λ,V〉(x) = 1] ≤ 1/s(λ).

Definition 3 [Space of bad commitments] Let 3HVZK = (P,V) be a interactive
proof system for a polynomial-time relation R associated with a language L.
Given an x /∈ L, we denote by “space of bad commitments” Sx for x of a 3-
round public-coin proof system the set of all commitments a such that there
exist e, z such that V(x, a, e, z) is accepted by the verifier. With a slight abuse of
notation, we say that the space of bad commitments S of 3HVZK has cardinality
≤ N if for all x /∈ L, the cardinality of Sx is ≤ N .

Definition 4 [Computational and statistical honest verifier zero-knowledge] A
proof system for a polynomial-time relation R consisting of a pair (P,V) of PPT
interactive machines is called a computational (resp. statistical) honest verifier
zero-knowledge (HVZK, in short) if it satisfies the following computational (resp.
statistical) honest verifier zero-knowledge property.

– Computational Honest Verifier Zero-Knowledge: There exists a PPT al-
gorithm Sim (called the simulator for V) such that or for every sequence
{(xλ, wλ)}λ>0 such that for every λ > 0, (xλ, wλ) ∈ R, for every polynomial
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p(·), there exists a number n > 0 such that for every λ ≥ n, no non-uniform
PPT distinguisher algorithm can distinguish the following two sequences of
random variables with advantage > 1/p(λ):
• {viewV〈P(wλ;Um),V〉(xλ)}λ≥n. (Wherem is the number of random coins
P uses).

• {Sim(xλ)}λ≥n.

Statistical Honest Verifier Zero-Knowledge: This is identical to computational
honest verifier zero-knowledge except that it is quantified for every non-uniform
(possibly computationally unbounded) distinguisher algorithms.

Definition 5 [Witness indistinguishable proof system] A proof system for a
polynomial-time relation R consisting of a pair (P,V) of PPT interactive ma-
chines is called witness indistinguishable (WI, in short) if it satisfies the following
property.

– Witness indistinguishability (WI, in short): Let L be the language associated
with R.

For every non-uniform PPT verifier V? 4= {V?λ}λ, for every two sequences
{(xλ, w1

λ)}λ>0 , {(xλ, w2
λ)}λ>0 such that for every λ, xλ ∈ Lλ, (xλ, w1

λ) ∈ R
and (xλ, w

2
λ) ∈ R, for every polynomial p(·), there exists a number n > 0

such that for every λ ≥ n, no non-uniform PPT distinguisher algorithm can
distinguish the following two sequences of random variables with advantage
more than 1/p(λ):
• {viewV?λ〈P(w1

λ;Um),V?λ〉(xλ)}λ≥n.

• {viewV?λ〈P(w2
λ;Um),V?λ〉(xλ)}λ≥n.

(Where m is the number of random coins P uses).

The main results of this paper will concern interactive proof systems (P,V)
with at least three rounds of interaction with P sending the first message and
with V’s only message consisting solely of coin tosses. These pairs are called
public-coin protocols [BM88] and have been object of intensive studies.

For simplicity and for not overburdening the presentation, we will focus on the
special case of protocols executing in exactly three rounds, but we will later show
how our results can be generalized further. Therefore, unless otherwise specified,
whenever we say a proof system, we mean a three-round public-coin interactive
proof system. This class includes Σ-protocols [CDS94], that are widely used in
practice, have been designed for all useful languages and, moreover, they are easy
to work with as already shown in transforms [DG03,MP03,YZ07,OPV10,Lin15,CPSV16].

We usually denote the transcript of an execution of a proof system (P,V) by
a triple of messages (a, c, z), where a and z are sent by P and c, the challenge,
is V’s only message. We say that a transcript is accepting if V outputs 1.

Definition 6 [Proof system] A proof system (P,V) is aΣ-protocol for polynomial-
time relation R if it enjoys the following properties:

– Completeness. For every (x,w) ∈ R, it holds that

Prob[〈P(w),V〉(x) = 1] = 1.
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– Special Soundness. There exists a PPT algorithm Extract that, on input x
and any pair of accepting conversations for x, (a, c, z), (a, c′, z′), where e 6= e′,
outputs w such that (x,w) ∈ R.

– Special Honest Verifier Zero Knowledge (SHVZK). There exists a PPT sim-
ulator algorithm Sim that, on input an instance x ∈ L and a challenge c,
outputs (a, z) such that (a, c, z) has the same distribution of transcripts ob-
tained when V sends c as challenge and P runs on common input x and any
private input w such that (x,w) ∈ R.

We also stress that SHVZK as defined above corresponds to the notion of Perfect
SHVZK as distinct from Computational SHVZK. This latter notion has also been
studied in the literature in the context of Σ-protocols [GMY06] but it will not
be considered in this paper.

SHVZK is a weaker requirement than Zero Knowledge; nonetheless, it implies
non-trivial security against adversarial verifiers.

Theorem 1 [[CDS94]] Let Π be a proof system that enjoys completeness and
SHVZK for relation R. Then Π is Perfect WI.

In a Σ-protocol security for P is unconditional. The following result implies
instead that the challenge length acts as a security parameter for V.

Theorem 2 Let Π be a proof system for polynomial-time relation R that is
special sound.

Then Π is a proof of knowledge with knowledge error negligible in the chal-
lenge length.

Proof. Based on [Dam10].

The following theorem says that the challenge length can be increased by simple
parallel repetition.

Theorem 3 [CDS94,Dam10] Let Π be a Σ-protocol for polynomial-time re-
lation R with challenge length l. The k-wise parallel composition of Π is a
Σ-protocol for R with challenge length k · l.

3-Round Public-Coin HVZK in the RO model In the first step of our
transform we convert a 3-round public-coin HVZK protocol into a 3-round
public-coin HVZK protocol in the (programmable) RO model.

Definition 7 [3-round public-coin HVZK protocol in the RO model] A 3-round
public-coin HVZK protocol in the programmable RO model is a 3-round public-
coin HVZK protocol in which the prover and verifiers have both access to the
RO and the ZK property (whether statistical or computational) is changed as
follows. The simulator has access to a RO and is given the ability of programming
the RO at any point of its choice. The distinguisher against the ZK property is
given access to the RO modified by the simulator.
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The following definition is the analogous one for proof systems (in the standard
model). It is almost identical except that both parties have access to the RO.
Observe that in this case it might happen (as it is the case in Trans of construction
1) that the commitments have length n(λ) but they are computed as output of
a RO with domain consisting of strings of length m(λ) << n(λ). Moreover, the
protocol may allow the verifier to check how the commitment is computed by
the RO, and thus the space of bad commitments is dictated by the RO.

Definition 8 [Space of bad commitments for a proof system in the RO model]
Let 3HVZK = (P,V) be a 3-round public-coin proof system in the RO model
for a polynomial-time relation R associated with a language L. Given an x /∈ L,
we denote by “space of bad commitments” Sx for x of a 3-round public-coin
proof system the set of all commitments a such that there exist e, z such that
VRO(·)(x, a, e, z) is accepted by the verifier. With a slight abuse of notation, we
say that the space of bad commitments S of 3HVZK has cardinality ≤ N if for
all x /∈ L, the cardinality of Sx is ≤ N .

Definition 9 [High min-entropy of commitment for proof system in the RO
model] The high min-entropy of commitment property for a proof system in the
RO model is stated identically to the analogous property for proof systems (in
the standard model) except that the probability is also taken over the choices of
the RO and the prover is given access to the RO.

A.2 Special Functions and Special Protocols

We now define the class of protocols which our transform can be applied to.

Definition 10 [One-way homomorphic function] Consider two groups (G, ·),
(H, ∗). A function f : G← H is a one-way homomorphic function if f is a OWF
and for each x1, x2 ∈ G, f(x1 · x2) = f(x1) ∗ f(x2).

In the following we consider family of groups G = {Gλ} parameterized by the
security parameter and functions acting on them. So, f will be a family of func-
tions indexed by the security parameter, though for simplicity we will often write
f(Gλ) to refer to the set of all elements y such that there exists x ∈ Gλ, f(x) = y.

Definition 11 [Special one-way homomorphic function (SOWGHF)] Consider
two family of groups (G = {Gλ}λ, ·), (H = {Hλ}, ∗). A function f : G →
H is a special one-way homomorphic function (SOWGHF) if f is a one-way
homomorphic function and the following additional requirements hold.

1. Efficient representability. There is a polynomial m(·) (resp. n(·)) such that
for each λ, Hλ (resp. Gλ) can be described by m(λ) (resp. n(λ)) bits and
the group operations · and ∗ can be performed in polynomial-time.
With slight abuse of notation, we call the set {0, 1}m(λ) the co-domain of f
and we distinguish it from the range of f in the following way. An element
y ∈ {0, 1}m(λ) is said to belong to the range of f and thus to H, in symbols
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f ∈ Range(f), if there exists x ∈ G such that f(x) = y. So, a string y can
belong to the co-domain of f but not to the range of f . Likewise, we call
{0, 1}n(λ) the domain of f and we distinguish it from G whose elements can
be represented by n(λ) bits.

2. Trapdoor invertibility. f is a trapdoor OWF, that is there is a trapdoor trap
and an efficient algorithm that with the help of trap can invert any string
y ∈ Range(f(Gλ)) for any value of the security parameter.

3. Membership decidability. The trapdoor for the function also allows to effi-
ciently decide whether a string y ∈ {0, 1}m(λ) is in the range of f(Gλ) for
any value of the security parameter.

4. Co-membership decidability. The language of all strings y /∈ Range(f), y ∈
{0, 1}m(λ) is in co-NP and using the trapdoor trap for f it is possible to com-
pute, for any y ∈ {0, 1}m(λ), a witness for the fact that y /∈ Range(f(Gλ)).
That is, there is an algorithm Prove that on input a string y ∈ {0, 1}m(λ) and
a trapdoor trap for f computing a proof π and an algorithm Verify that on
input y ∈ {0, 1}m(λ) and a proof π accepts if and only if y /∈ Range(f(Gλ)).
Furthermore, there is a PPT simulator Simf that, with input the security
parameter, outputs a pair (a, π) that is distributed identically to (a′, π′)
where a′i is selected at random in the space of strings y ∈ {0, 1}m(λ), y /∈
Range(f) and π′ ← Provef (y, trap).

5. Quasi-compactness. There is a constant q > 1 such that the probability p
that a random element in {0, 1}m(λ) falls outside the range of f(Gλ) is 1

q up

to a factor ≤ ±2−c·λ for some constant c > 0. It is also possible to efficiently
sample a binary variable that equals 0 with probability p, up to a negligible
error in λ.

We say that f is a (m(·), q)-SOWGHF if f is a OWGHF and the functions in
the first and last conditions are fixed, resp., to m(·) and q.

Definition 12 [Special relation for a SOWGHF] Let f be a SOWGHF. Let
Rf (y, (x, trap)) be the polynomial-time relation that holds if and only if x ∈ Gλ,
y ∈ {0, 1}m(λ) for some λ and y = f(x) (i.e., the relation holds if and only if y
is in the range of f). Rf is called the special relation for f .

By abstracting several known protocols in the literature, Maurer presents
a sigma protocol for proving that an element y ∈ Range(f) for a one-way ho-
momorphic function f . A special protocol (spec-prot) has the same pattern as
in Maurer but it is associated with a SOWGHF (a strengthening of a one-way
homomorphic group function).

Definition 13 [Special protocol (spec-prot)] Let (G, ·) and (H, ∗) be two family
of groups and f : G ← H be a SOWGHF with associated trapdoor trap. Let
Rf be the special relation for f . Let C = {Cλ}λ with each Cλ set of integers of
the same bit length. A spec-prot for f with challenge space C is the following
Σ-protocol for Rf .

– The prover knows x, y and trap and the verifier knows y.
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– In the first round, the prover select a random element r in Gλ and sends the
commitment a = f(r) to the verifier.

– In the second round, The verifier sends back a number e selected at random
in Cλ.

– The prover sends the answer z = r · xe to the verifier.
– The verifier accepts if and only if f(z) = a ∗ ye.

We say that SpecP is a spec-prot if it is a spec-prot for some SOWGHF.

Note that, given a SOWGHF and a challenge space C, a spec-prot for f with
challenge space C is completely determined and that such protocol is for the
polynomial-time relationRf . In our work, we will often implicitly set as challenge
space the set of all strings of some length k(λ) and we will interpret such strings
as integers when used as powers of group elements.

Thus, the following theorem follows straightforward from the results of Mau-
rer [Mau15].

Theorem 4 Let f be a SOWGHF, and SpecP a spec-prot for f . Then, SpecP
is a Σ-protocol for Rf .

A.3 NIZKA/NIZKP in the RO model

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x
the statement and w the witness. Let L be the language consisting of statements
in R.

Definition 14 [NIZKA] A non-interactive zero-knowledge argument system (NIZKA,
in short) NIZK in the programmable RO model (see [BR93,FS87,FKMV12,BFW15])
for a relation R consists of the following PPT algorithms with access to an or-
acle RO drawn uniformly at random from a space ROSp(λ) of functions with
domain {0, 1}polyinp(λ) and co-domain {0, 1}polyout(λ), for some polynomials polyinp
and polyout that are part of the specification of the system:

– ProveRO(·)(x,w): this is a PPT algorithm that takes as input a statement x
and a witness w for x, and with oracle access to O produces a proof π.

– VerifyRO(·)(x, π): this is a deterministic polynomial-time algorithm that takes
as input a statement x and a proof π, and with oracle access to O outputs
1 if the proof is accepted and 0 otherwise.

We call NIZK a non-interactive zero-knowledge argument system for R if it
has the properties described below.

– Statistical Completeness. An argument system is statistically complete if an
honest prover with a valid witness can convince an honest verifier with over-
whelming probability over the choices of the RO. Formally we have that for
every (x,w) ∈ R, such that |x| = λ it holds that:

Pr[RO ← ROSp(λ); π ← ProveRO(·)(x,w) : VerifyRO(·)(x, π) = 1] ∈ 1−negl(λ).

32



– Computational Soundness. A non-interactive argument system is computa-
tional sound if it is infeasible to convince an honest verifier when the state-
ment is false. More formally, for all non-uniform PPT adversaries A we have:

Pr[RO ← ROSp(λ); (x, π)← ARO(1λ) : VerifyRO(·)(x, π) = 1 ∧ x /∈ L ∧ |x| = λ] ∈ negl(|x|) .

– (Adaptive Multi-theorem) Computational zero-knowledge [FKMV12,BFW15].
A non-interactive argument system is computational zero-knowledge if the
proofs do not reveal any information about the witnesses to a bounded adver-
sary. We say a non-interactive argument NIZK is (adaptive multi-theorem)
computational zero-knowledge if there exists a PPT stateful simulator Sim =
(Sim.RO,Sim) that without access to the witness can simulate proofs hav-
ing in addition the capability of programming the oracle RO at any point,

i.e, for any x and y it is able to set RO(x)
4
= y. Precisely, there exists a

PPT stateful simulator Sim = (Sim.RO,Sim) such that for all non-uniform
PPT adversaries A with access to an oracle RO, we have that the following
quantity is negligible in λ:

|Pr[RO ← ROSp(λ) : ARO(·),ProveRO(·)
2 (·,·)(1λ) = 1]−

Pr[RO ← ROSp(λ) : ASim.RO(·),Sim2(·,·)(1λ) = 1]| ,

where Prove
RO(·)
2 (x,w)

4
= ProveRO(·)(x,w) for (x,w) ∈ R, Sim2(x,w)

4
=

Sim(x) for (x,w) ∈ R, the latter oracles output ⊥ for (x,w) /∈ R and Sim.RO
simulates the oracle O possibly modifying it at an arbitrary number of points.

Definition 15 [NIZKP] A non-interactive zero-knowledge proof system (NIZKP,
in short) NIZK in the programmable RO model for a relation R is identical to
a NIZKAoK except that the computational soundness is replaced by statistical
soundness as follows.

Statistical Soundness. A non-interactive proof system is statistically sound if it
is infeasible to convince an honest verifier when the statement is false. More
formally, for all non-uniform adversaries A we have:

Pr[RO ← ROSp(λ); (x, π)← ARO(·)(1λ) : VerifyRO(·)(x, π) = 1 ∧ x /∈ L ∧ |x| = λ] ∈ negl(λ) .

If in the above definition we quantify over non-uniform PPT adversaries running
in time bounded by s(λ), we talk about statistical s(·)-soundness.

Note that in our formulation both of interactive systems and non-interactive
ones, sometimes the security parameter λ is defined implicitly as |x|.

B Instantiations of SOWGHFs

In this section, we provide several examples of SOWGHFs.
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Square function modulo a Blum integer. Let N = p · q be a Blum integer and
let |N | equal the security parameter λ.8 Consider the groups G = H = Z?N
with multiplication modulo N as group operation for both and the function

f : G → H, f(x)
4
= x2 mod N and let its domain and co-domain (cf. Def. 11)

be the set of binary strings representing integers in ZN .

The function f is homomorphic since f(x ·y) = x2 ·y2 mod N = f(x) ·f(x) ·
f(y) mod N = f(x) · f(y) and is conjectured to be a one-way function [Gol01].

We now verify that f satisfies the other properties of a SOWGHF under
appropriate computational assumptions.

1. Efficient representability. The group operations can be represented efficiently
and the group elements can be represented by |N | = λ bits. Thus we assume
that the integers in ZN can be represented in the set {0, 1}λ.

2. Trapdoor invertibility. The trapdoor trap for f is the factorization (p, q) of N .
Given trap it is possible to compute yp = y mod p, yq = y mod q, compute
one of their square roots and output one square root of y computed via the
Chinese remainder theorem.

3. Membership decidability. The above trapdoor also allows to efficiently de-
cide whether a string y ∈ ZN is in the range of f . This follows from the
observation that a number y is a quadratic residue modulo N if and only
both y mod p and y mod q are quadratic residues and the latter can be
efficiently checked.

4. Co-membership decidability. As N is a Blum integer, −1 is a quadratic non-
residue modulo N and thus −y is quadratic residue modulo N if and only
if y is a quadratic non-residue modulo N . Thus, there exists a witness for
proving that a number y is not a quadratic residue modulo N . Specifically,
the algorithm Provef for f with input y and the trapdoor trap outputs one
square root of −y as proof π; and it is easy to see that such proof can be
efficiently computed using trap.

The simulator Simf for f works as follows. The simulator Simf picks a ran-
dom number r ← ZN and output (−r2 mod N, r). It is easy to see that the
output of the simulator has the same distribution of the of a pair (a′, π′)
where a′i is a random non-quadratic residue modulo N and π′ is computed
as before using Provef with input ai and trap.

5. Quasi-compactness. From the previous observations it is easy to see that an
integer selected at random in Z?N is a quadratic non-residue with probability
3
4 and an integer selected at random in ZN is not in Z?N with negligible
probability. Thus, f satisfies quasi-compactness with parameter ≈ 3

4 . It is
also easy to efficiently sample, up to a negligible error, a random binary
variable that equals 0 with the probability that a random integer in ZN is a
quadratic residue modulo N .

8 Formally, we should define a family of moduli indexed by the security parameter. In
the following of this section, we skip these details.

34



RSA function squared. A NIZKP for proving membership to the range of the
following function can be employed to prove that an RSA “encryption” decrypts
to the square of some message.

Let N = p·q be a Blum integer, let |N | equal the security parameter λ and let
e be co-prime with φ(N). Consider the groups G = H = Z?N with multiplication

modulo N as group operation for both and the function f : G→ H, f(x)
4
= x2·e

mod N and let its domain and co-domain be the set of binary strings representing
integers in ZN .

The function f is homomorphic since f(x · y) = x2·e · y2·e mod N = f(x) ·
f(x) · f(y) mod N = f(x) · f(y). The one-wayness of f can be reduced to the
one-wayness of the RSA function [RSA78].

We now verify that f satisfies the other properties of a SOWGHF under
appropriate computational assumptions.

1. Efficient representability. The group operations can be represented efficiently
and the group elements can be represented by |N | = λ bits.

2. Trapdoor invertibility. The trapdoor trap for f is the factorization (p, q) of
N . Given trap it is possible to perform the following steps. Compute the
inverse d of e modulo φ(N). Compute z = ye = x2 and then compute yp = z
mod p, yq = z mod q, compute one of their square roots and output one
square root x′of z computed via the Chinese remainder theorem.

3. Membership decidability. The above trapdoor also allows to efficiently de-
cide whether a string y ∈ ZN is in the range of f . This follows from the
observation that a number y is a quadratic residue modulo N if and only
both y mod p and y mod q are quadratic residues and the latter can be
efficiently checked.

4. Co-membership decidability. As the function f ′(x)
4
= xe mod N is a permu-

tation, it is easy to see that the property follows from the analogous property
for the function square root modulo a Blum integer.

5. Quasi-compactness. As the function f ′(x)
4
= xe mod N is a permutation, it

is easy to see that f satisfies quasi-compactness.

Trapdoor one-way homomorphic permutations. It is easy to verify that many
natural trapdoor one-way permutations f : G→ H that are homomorphic (e.g.,
the RSA permutation) are also a SOWGHF.

In fact, when the function is a permutation the properties of membership and
co-membership decidability and quasi-compactness are trivially verified. Pre-
cisely, this holds when the elements of H can be represented by m(λ) bits in a
compact way, i.e., when all except a negligible fraction of the elements of {0, 1}λ
do represent elements of H; for instance, the RSA function has this property.

When f is a permutation, there is no advantage in using our transform to
prove that an element y is not in the range of f because in this case the soundness
is trivially satisfied and the knowledge extraction property is also guaranteed by
the FS transform with the same guarantees and at a lower cost.

Nevertheless, one might consider statements like ∃x1, x2, x3 such that ((y1 =
f1(x1)∧y2 = f2(x2))∨y3 = f3(x3)), where one or more of the functions f1, f2, f3
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are permutations and at least one is not a permutation and all the functions
satisfy our requirements. Following Cramer et al. [CDS94], our transform can be
likewise extended to support such compound statements.

C ZK

Lemma 5 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with chal-
lenges of length k(·) and commitments of length c(·) for a polynomial c(·) and
for a (m(·), q)-SOWGHF f . Note that according to our formulation, SpecP is
induced by f , k(·), m(·) and q.

Let (polyinp(·), 3HVZK[c(·), k(·), q,m(·), p(·), f ]) be the output of transform
Trans(c(·), k(·), q,m(·), p(·), f). Then, 3HVZK is a 3-round public-coin proof sys-
tem in the RO model satisfying HVZK and has high min-entropy of commitment.

Proof. Since the commitment of 3HVZK are computed as output of a RO with
range c(λ) and c(·) is polynomial in λ, the high min-entropy of commitment
property holds.

Let Simf the simulator for f guaranteed by Def. 11 and let SimSpecP be the
HVZK simulator guaranteed by Theorem 4. We now show a simulator Sim for
the HVZK of 3HVZK.

Let X be a biased binary random variable that equals 0 with probability 1
q

(and thus 1 with probability 1− 1
q ) guaranteed by Def. 11. (In the following, we

skip the negligible error in sampling that can occur in sampling from X.)
The simulator will keep a random table T representing the points in which

it programs the RO. For each i ∈ [p(λ)], Sim does the following.

– Sim draws a coin b← X.
– Case b = 0. If b = 0 then Sim uses SimSpecP to compute (ai, ei, zi) and sets
T [x||i] = ai.

– Case b = 0. If b = 1 then Sim does the following.
• Draw a string ei at random in {0, 1}k(λ) and uses Simf to compute (a, π).
• Set ai = a and zi = (⊥, π).
• Set T [x||i] = ai.

Finally, the simulator outputs ((a1, . . . , ap(λ)), (e1, . . . , ep(λ)), (z1, . . . , zp(λ))) as
simulated transcript and sets the RO accordingly to the table T .

We now argue that output of the simulator is statistically indistinguishable
from the transcript of an execution with a real prover. In an honest transcript,
each triple (a′i, e

′
i, z
′
i) has probability 1

q to be such that a′i /∈ Range(f) and con-
ditioned on this event, by construction of Trans and by hypothesis on Simf , the
triple (a′i, e

′
i, z
′
i) is perfectly indistinguishable from one computed by Simf .

By hypothesis on X, for each i ∈ [p(λ)], a triple (ai, ei, zi) output by the
simulator has probability 1

q of being such that ai /∈ Range(f). Then, for each

i ∈ [p(λ)], the distribution of the triples (ai, ei, zi) output by the simulator
such that ai /∈ Range(f) is identically distributed to the analogous triples in a
transcript with a real prover.
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In an honest transcript, each triple (a′i, e
′
i, z
′
i) has probability 1 − 1

q to be

such that a′i ∈ Range(f) and conditioned on this event, by construction of Trans
and by hypothesis on SimSpecP, the triple (a′i, e

′
i, z
′
i) is perfectly indistinguishable

from one computed by SimSpecP.
By hypothesis on X, for each i ∈ [p(λ)], a triple (ai, ei, zi) output by the

simulator has probability 1 − 1
q of being such that ai ∈ Range(f). Then, for

each i ∈ [p(λ)], the distribution of the triples (ai, ei, zi) output by the simulator
such that ai ∈ Range(f) is identically distributed to the analogous triples in a
transcript with a real prover.

Therefore, it is easy to see that the distribution of the transcript output by
the simulator is identically distributed to a transcript in an execution with a
real prover and that the table T is also randomly distributed. So, the theorem
follows.

Lemma 6 Let 3HVZK = (P,V) be a 3-round public-coin computational HVZK
proof system in the RO model for polynomial-time relation R having commit-
ments of length c(·), challenges of length k(·). Let NIZK = (NIZK.Prove,NIZK.Verify)
be the NIZKP resulting from the FS transform on 3HVZK.

Then, NIZK satisfies (adaptive multi-theorem) computational zero-knowledge.

Proof (Sketch). The proof is only slightly different from the ones of [FKMV12,BFW15]
for the FS transform and as such we sketch it.

We have to show that there exists a simulator Sim = (SIM.RO,Sim) that
satisfies the computational zero-knowledge required in Definition 14. As for the
FS case, Sim can invoke the simulator for 3HVZK. In particular, Sim works as
follows.

– To answer query α to Sim.RO, the simulator samples a lookup table T kept
in its internal state (recall that Sim.RO and Sim are stateful algorithms
communicating through an internal state). It checks whether T (α) is already
defined. If this is the case, it returns the previously assigned value; otherwise
it returns and sets a fresh random value (of the appropriate length).

– To answer query x to Sim, the simulator computes what follows. The simu-
lator sets λ = |x| and then the simulator does the following.

– Call the simulator of 3HVZK on input x to obtain (a, e, z).
– If T happens to be already defined on (x||a), then abort else set T (x||a) to

be a random string in {0, 1}k(λ).

Consider the following hybrid experiments. H2 is identical to the real experiment
except that the prover, as the NIZKP simulator, keeps the table T and returns
failure and aborts when queried on an already defined input x.

The crucial observation is that, as 3HVZK satisfies high min-entropy of com-
mitment (cf. Definition 1), the probability of failure in each of the queries to
the prover is upper-bounded by Q(λ) · 2−ε(λ), where Q(·) is the total number
of queries to RO at any stage and ε(λ) is the min-entropy of commitment,
and thus, by assumption on ε(·), is negligible in λ. As the number of steps of
the adversary is bounded by a polynomial in λ, the number of queries are also
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bounded by a polynomial and thus the overall probability of failure is bounded
by a negligible function in λ. Therefore, in H2 the event of failure occurs with
negligible probability and thus H2 is statistically indistinguishable from the real
experiment.

Assuming that the simulated transcript (a, e, z) for x ∈ L is computationally
indistinguishable (to non-uniform PPT adversaries) from real proofs for (x,w) ∈
R, by a standard hybrid argument, it can be seen that the distribution of the
query answers in the simulated experiment is computationally indistinguishable
from the ones in H2.

Therefore, no non-uniform PPT adversary has non-negligible advantage in
distinguishing the two experiments of (adaptive multi-theorem) computational
zero-knowledge.

Remark 2 The same comment or Remark 1 about composing the RO applies
to the previous simulation but for simplicity we skipped such details.

Combining Lemmata 8 and 6 we have the following theorem.

Theorem 7 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with chal-
lenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF f .
Note that according to our formulation, SpecP is induced by f , k(·), m(·) and q.

Let δ(·) be a negligible function and let (polyinp(·), polyout(·),NIZK[c(·), k(·), q,m(·), δ(·), f ])
be the output of transform Transmain(c(·), k(·), q,m(·), δ(·), f).

Then, NIZK satisfies (adaptive multi-theorem) computational zero-knowledge.

D Soundness

In this section we analyze the soundness of the NIZK systems obtained through
our transform and in the Appendices C-G we study the other security properties.

Lemma 8 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with chal-
lenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF f .
Note that according to our formulation, SpecP is induced by f , k(·), m(·) and q.

Let (polyinp(·), 3HVZK[c(·), k(·), q,m(·), p(·), f ]) be the output of transform
Trans(c(·), k(·), q,m(·), p(·), f). Then, 3HVZK is a 3-round public-coin proof sys-
tem in the RO model with commitments of length c(λ)·p(λ), challenges of length
k(λ)·p(λ), space of bad commitments of cardinality ≤ 2λ+log(p(λ)) and soundness

error s(λ) =
(

1
q + (1− 1

q ) · 1
k(λ)

)p(λ)
, up to a negligible factor.

Proof. It is easy to check that 3HVZK is a 3-round and public-coin protocol in
the RO model and that satisfies perfect completeness and the claim about the
length of the commitments and challenges.

Since, for each i ∈ [p(λ)], the verifier of 3HVZK rejects if ai 6= RO(x, i), it is
easy to verify the claim on the cardinality of the space of bad commitments.

Let x ∈ {0, 1}λ, x /∈ Rf (cf. Def. 12). The verifier accepts a transcript
((a1, . . . , ap(λ)), (e1, . . . , ep(λ)), (z1, . . . , zp(λ))) if and only if for each i ∈ [p(λ)]
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one of the following two events (i.1) or (i.2) occurs. Event (i.1) occurs if and
only if the prover claims that ai falls outside the range of f and the proof for
such claim is accepted. Event (i.2) occurs if and only if event (i.1) does not
happen and the transcript (ai, ei, zi) is accepted by the verifier of SpecP.

For each i ∈ [p(λ)], the probability that (i.1) occurs is, by the hypothesis
of quasi-compactness of f (cf. Def. 11), 1

q and, by the fact that SpecP is a Σ-

protocol (cf. Thm. 4) and the fact that the soundness error of a Σ-protocol is
1

k(λ) , the probability that (i.2) occurs is, (1− 1
q ) · 1

k(λ) .

Therefore, for each i ∈ [p(λ)], the probability that (i.1) or (i.2) occurs equals
1
q + (1 − 1

q ) · 1
k(λ) up to a negligible factor (cf. the quasi-compactness property

of Def. 11).

As for all i ∈ [p(λ)] the events “(i.1) or (i.2)” are independent, the probability
that a verifier of 3HVZK accepts a transcript equals ( 1

q + (1 − 1
q ) · 1

k(λ) )
p(λ) up

to a negligible factor.

Lemma 9 Let 3HVZK = (P,V) be a three-round public-coin proof system in
the RO model for polynomial-time relation R having commitments of length
b(λ), space of bad commitments of cardinality ≤ 2b(λ), challenges of length k(λ)
and soundness error s(λ).

Let NIZK = (NIZK.Prove,NIZK.Verify) be the result of the FS transform
on 3HVZK and let {0, 1}polyinp(λ) (resp. {0, 1}polyout(λ)) be the domain (resp. co-
domain) of the RO in this transform. The polynomial polyinp(·) (resp. polyout(·)
may be arbitrary until the domain (resp. co-domain) is sufficiently large to con-
tain all strings of length c(λ) (resp. k(λ)).9

Then, NIZK satisfies perfect completeness and statistical soundness with
soundness error ≤ 2λ+b(λ) · s(λ).

Proof. Perfect completeness trivially holds (assuming implicitly that it holds for
3HVZK).

9 Recall that 3HVZK is a proof system in the RO model and thus it might need to
get input/output from the RO on strings longer than the ones needed for the FS
transform. For this reason we explicitly state that the RO may have different domain
and co-domain until they are sufficiently large to be used in the FS transform.
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Let us analyze the soundness error. Let ROSp(λ) be the space of all functions
with domain {0, 1}polyinp(λ) and co-domain {0, 1}polyout(λ).

PrRO←ROSp(λ)[∃ (x, π) x /∈ L ∧ x ∈ {0, 1}λ ∧ NIZK.Verify(x, π) = 1 ] =

(where e is computed as RO(a))

PrRO←ROSp(λ)[ ∃ (x, π = (a, z)) x /∈ L ∧ x ∈ {0, 1}λ ∧ V(a, e, z) = 1 ] ≤

(by the union bound and the fact that the probability is 0 when x /∈ {0, 1}λ, x /∈ L)∑
x∈{0,1}λ,x/∈L

PrRO←ROSp(λ)[ ∃ π = (a, z) ∧ V(a, e, z) = 1 ] =

(by the union bound)∑
x∈{0,1}λ,x/∈L

∑
a∈{0,1}c(λ)

PrRO←ROSp(λ)[∃ z V(a, e, z) = 1 ] =

(by definition of the set S of bad commitments of 3HVZK)∑
x∈{0,1}λ,x/∈L

∑
a∈S

PrRO←ROSp(λ)[∃ z V(a, e, z) = 1 ] =

(since, by assumption on 3HVZK, for all a ∈ S, the probability

that a random e ∈ {0, 1}k(λ) is s.t. ∃ z s.t. (a, e, z) is accepting for x, is ≤ s(λ))∑
x∈{0,1}λ,x/∈L

∑
a∈S

s(λ) ≤

(since S has cardinality 2b(λ))

2λ+b(λ) · s(λ)

(2)

as it was to prove.

Remark 3 For simplicity, we state the following theorem, as well as any other
theorem in the rest of the work, stating that it works for any negligible function
δ. As the proof shows, the theorem does not hold for all negligible functions, but
does apply to all “ nice” functions like 2−cλ for some constant c > 0.

Theorem 10 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with chal-
lenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF f .
Note that according to our formulation, SpecP is induced by f , k(·), m(·) and q.

Let δ(·) be a negligible function and let (polyinp(·), polyout(·),NIZK[c(·), k(·), q,m(·), δ(·), f ])
be the output of transform Transmain(c(·), k(·), q,m(·), δ(·), f). Then, NIZK sat-
isfies completeness and has soundness error bounded by δ(λ), up to a fixed
negligible factor.10 Moreover, Transmain is a PPT algorithm.

Proof. Transform Transmain consists of the composition of Trans and the FS trans-
form with polynomial p(λ) set to satisfy the equation

10 The negligible factor here is given by the quasi-compactness of Def 11.
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22·λ+log(p(λ)) ·
(

1

q
+

(
1− 1

q

)
· 1

k(λ)

)p(λ)
≤ δ(λ)

.

By Lemma 8, Transform Trans returns a proof system 3HVZK with soundness
error s(λ) bounded by ( 1

q +(1− 1
q ) · 1

k(λ) )
p(λ), up to a fixed negligible factor given

by the quasi-compactness of f , and space of bad commitments of cardinality 2b(λ)

bounded by 2λ+log(p(λ)). By Lemma 9, The FS transform applied to 3HVZK
returns a NIZKP NIZK with soundness error bounded by 2λ+b(λ) · s(λ). By the
setting of p(·), NIZK has thus soundness error bounded by δ(λ).

To prove that Transmain is a PPT algorithm, it is necessary to show that it is
possible to efficiently find a polynomial p(·) satisfying the previous equation. In
fact, since 1

k(λ) ≤
1
2 , q is a constant (cf. Def. 11), the soundness error of NIZK

is bounded by 22·λ+log(p(λ)) · ( 1
q′ )

p(λ), up to a fixed negligible factor, for some

constant q′ > 1 and thus it is easy to efficiently find a polynomial p(λ) satisfying
the equation (as stated in the remark this might not hold for all functions δ(·)
but it does hold, for instance, when δ(λ) = 2−λ). It is also easy to see that NIZK
satisfies completeness.

E Extractability

In this section, we define the notion of NIZK proof of knowledge system (NIZKPoK),
and prove that our transform converts a public-coin HVZK with special sound-
ness into a NIZKPoK system.

First, we recall a notion for interactive proof systems that will not be used
directly in our results but which the corresponding notion for non-interactive
systems will be inspired from.

Definition 16 [Proof of knowledge [GMR89,Dam10]] A pair (P,V) of PPT
interactive machines is called a proof of knowledge with knowledge error k(·) for
polynomial-time relation R if completeness and the following property (that is
a strengthening of soundness) hold.

– Knowledge Soundness: there exists a probabilistic oracle machine Extract,
called the extractor, such that for every interactive machine P? and for ev-
ery input x accepted by V when interacting with P? with probability ε(|x|) >
k(|x|), ExtractP

?

(x) outputs a witness w for x. Moreover, the expected num-
ber of steps performed by Extract is bounded by p(|x|)/(ε(|x|)− k(|x|))d, for
some polynomial p(·) and constant d.

Definition 17 [NIZKPoK] A non-interactive zero-knowledge proof of knowl-
edge system (NIZKPoK, in short) NIZK = (polyinp(·), polyout(·),NIZK.Prove,NIZK.Verify)
in the programmable RO model for a relation R is identical to a NIZKP except
that it additionally satisfies the following computational extractability property.
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– Computational extractability. Computational extractability with error ν(·) re-
quires the existence of a PPT knowledge extractor (Ext,ExtRO). Ext and
ExtRO are stateful and can communicate each other.

For all non-uniform PPT adversaries Adv running in time bounded by t(·),
Ext extracts w from a valid proof with overwhelming probability having
the possibility of simulating a RO to the adversary through the algorithm
ExtRO. The algorithm Ext has the possibility of rewinding the adversary
on the same random tape. More formally, NIZK satisfies computational ex-
tractability with error ν(·) if there exists a PPT extractor (Ext,ExtRO) such
that for all non-uniform PPT adversaries Adv the following holds. Let:

acc(λ) = Pr

[
r ← {0, 1}t(λ); (x, π)← AdvExtRO(·)(1λ; r) :

VerifyExtRO(·)(x, π) = 1 ∧ (x,w) ∈ R ∧ |x| = λ

]

ext(λ) = Pr

[
r ← {0, 1}t(λ); (x, π)← ExtAdv

ExtRO(·)(1λ;r); w← Ext(1λ, x, π) :

VerifyExtRO(·)(x, π) = 1 ∧ (x,w) ∈ R ∧ |x| = λ

]
Then, there exists a constant d ≥ 0 and a polynomial p(·) such that if
acc(λ) ≥ ν(λ), we have that ext(λ) ≥ 1

p(λ) · (acc(λ)− ν(λ))d.

For the proof of extractability of the NIZK systems resulting from our trans-
form, we make use of the following version of the forking lemma, which appeared
in Bellare and Neven [BN06] and generalizes the forking lemma of [PS00].

Lemma 11 [General forking lemma] Fix a polynomial Q(·) and a family of sets

{H}λ≥0 of size h(λ)
4
= |Hλ| ≥ Q(λ). Let P be a non-uniform PPT algorithm

that on input y, h1, . . . , hQ(|y|) returns a pair, the first element of which is an
integer in [Q(|y|)] and the second element of which we refer to as a side output
and runs in at most t(λ) steps, for some polynomial t(·), for all λ ≥ 0 and all
inputs y ∈ {0, 1}λ. Let IG(1λ) be a randomized algorithm that we call the input
generator that on input a security parameter 1λ outputs a string y ∈ {0, 1}λ.

The accepting probability of P , denoted by acc(λ), is defined as the proba-
bility that J ≥ 1 in the experiment y ← IG(1λ); h1, . . . , hQ(λ) ← H(λ); (J, s)←
P (y, h1, . . . , hQ(λ)). The forking algorithm ForkP associated to P is the proba-
bilistic algorithm that on input y proceeds as follows.

ForkP (y)
1. ρ← {0, 1}t(λ);
2. h1, . . . , hQ(|y|) ← H(|y|);
3. (I, s)← P (y, h1, . . . , hQ(|y|); ρ);
4. If I = 0 return (0,⊥,⊥);
5. h′I , . . . , h

′
Q(|y|) ← H(|y|);

6. (I ′, s′)← P (y, h1, . . . , hI−1, hI′ , . . . , hQ(|y|)′ ; ρ);
7. If I = I ′ ∧ (hI 6= hI′) return (1, s, s′);
8. else return (0,⊥,⊥);
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(The efficiency of the above algorithm is polynomially related to the efficiency
of P assuming an efficient way to sample elements from H.)

Let ext(λ) = Pr[b = 1 : y ← IG(λ); (b, s, s′) ← ForkP (y)], then ext(λ) ≥
acc(λ) · ( acc(λ)

Q(λ) −
1

h(λ) ).

We next prove the following theorem.

Theorem 12 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with chal-
lenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF f .
Note that according to our formulation, SpecP is induced by f , k(·), m(·) and q.

Let δ(·) be any negligible function and let (polyinp(·), polyout(·),NIZK[c(·), k(·), q,m(·), δ(·), f ])
be the output of transform Transmain(c(·), k(·), q,m(·), δ(·), f).

Then, there exists some negligible function ν(·) such that NIZK satisfies com-
putational extractability with error ν(·).

Proof. The proof follows the lines of the one of [FKMV12] except that ours does
not address simulation extractability and as such is simplified and does not need
the assumption of unique responses.

Let Adv be a non-uniform PPT adversary against the verifiability and let t(·)
be a function such that for all λ ≥ 0, the algorithm runs in at most t(λ) steps
on all inputs of length λ. We invoke the general forking lemma of Lemma 11.

In order to do so, we define program P (1λ, h1, . . . , ht(λ); ρ) as follows. P runs

internally Adv(1λ; ρt(λ))ExtRO(·) on a fresh random string ρ ← {0, 1}t(λ). Note
that t(·) is also an upper-bound on the number of RO queries of Adv.

P uses values (h1, . . . , ht(λ)) to simulate fresh answers of ExtRO. If Adv(1λ; ρ)ExtRO(·)

outputs (x?, (a?, z?)), P checks if it is a valid proof and outputs (J, x?, a?, z?),
where J > 0 is the index corresponding to the random oracle query (x?, a?). If
the proof is not valid, P rejects outputting (0,⊥). We say that P is successful
whenever J ≥ 1, and we denote with accf (λ) the corresponding probability (in
the following we distinguish the probabilities accf , extf of the forking lemma
from the probabilities acc, ext of the computational extractability for NIZK and
Adv). Given program P , we consider two related runs of P with same random
string ρ and different hash values, as specified by the forking algorithm ForkP of
Lemma 11.

Denote by (I, (x?, a?, z?)) ← P (y, h1, . . . , ht(|y|)) and (I ′, (x??, a??, z??)) ←
P (y, h1, . . . , hI−1, hI′ , . . . , ht(|y|)).

By the forking lemma we know that with probability extf (λ) ≥ accf (λ) ·
(accf (λ)/t(λ)− 1/2polyout(λ)) the forking algorithm will return indexes I, I ′ such
that I = I ′, I ≥ 1 and hI 6= hI′ . Since I = I ′, we must have x? = x??, a? =
a??, z? = z??. Moreover, we have that hI 6= HI′ .

Let ν(λ) = t(λ)

2polyout(λ)
. Assume now that accf (λ) ≥ ν(λ). Recall that extf (λ) ≥

(accf (λ)2/t(λ) − accf (λ)/2polyout(λ)). Since t(·) is polynomial while 2polyout(λ) is
exponentially large in the security parameter, ν(·) is a negligible function. Thus,
accf (λ)2/t(λ)−accf (λ)/2polyout(λ) = 1

t(λ) · (accf (λ)2−accf (λ) ·ν(λ)) that, by the

fact that accf (λ) ≥ ν(λ) and by algebraic manipulation,≥ 1
t(λ) ·(accf (λ)−ν(λ))2.
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Therefore extf (λ) ≥ 1
t(λ) · (accf (λ)− ν(λ))2.

Given that, the extractor Ext works as follows. The extractor invokes first the
forking algorithm ForkP to get the above values and then the extractor A guaran-
teed by the special soundness computing a witness w? = Ext(a?, hI , z

?, a??, hI′ , z
??)

such that (x?, w?) ∈ R.

Let p(·) be the polynomial used in the transform Transmain (recall that Transmain

computes p(·) based on δ(·) and p(λ) represents the number of parallel iterations
of the proof system to which the FS transform is applied).

Note that the extractor Ext might not work if the commitment a? = (a?1, . . . , a
?
p(λ))

is such that for each i ∈ [p(λ)], ai /∈ Range(f). In fact, in such case, the spe-
cial soundness cannot be invoked. However, by the checks ai = RO(x||i)’s,
by the fact that the output of the RO is uniformly distributed in the com-
mitment space, and by hypothesis on q (cf. Def. 11), the probability that for

each i ∈ [p(λ)], ai = RO(x||i) and ai /∈ Range(f) is ( 1
q

p(λ)
) ≤ 1 − 1

p′(λ) , for

some polynomial p′(·). Therefore, the probability ext of successful extraction is
≥ 1

p′(λ) · extf (λ) ≥ 1
p′(λ)·t(λ) · (accf (λ)− ν(λ))2, as it was to prove.

F Separating FS from Our Transform

The next conjecture strictly separates FS transform (that when applied to some
protocols only provides soundness breakable from adversaries running in Ω(2λ)
steps) from ours.

Conjecture 1 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with
challenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF
f . Note that according to our formulation, SpecP is induced by f , k(·), m(·) and
q.

Let δ(·) be a negligible function. There exists a function f(λ) ∈ o(2λ), an
integer m > 0 and an hash function H(·) with domain {0, 1}? and co-domain
{0, 1}m such that the following holds.

Let (polyinp(·), polyout(·),NIZK be the output of transform Trans
H(·),m(cot)
main (c(·), k(·), q,m(·), δ(·), f)

of construction 3.

Then NIZK′ is a NIZKPoK for Rf (cf. Def. 12) satisfying f(λ)-soundness.

G WI

As noted and proved by Yung and Zhao [YZ06], and Ciampi et al. [CPSV16], if
the original three-round public-coin HVZK proof system is witness indistinguish-
able, then the FS-transformed protocol is still witness indistinguishable, and the
proof of witness indistinguishability is RO-free. Same considerations hold for our
transform.

We first define the notion of non-interactive witness indistinguishable system.

44



Definition 18 [NIWI] A non-interactive witness indistinguishable proof system

(NIWI, in short) NIWI
4
= (polyinp, polyout,NIWI.Prove,NIWI.Verify) in the (non-

programmable) RO model for a relation R is identical to a NIZKPoK except
that the (adaptive multi-theorem) zero-knowledge property is replaced by the
following witness indistinguishability property.

– Witness indistinguishability (WI, in short): Let L be the language associated
with R.
For every function RO : {0, 1}polyinp(λ) → {0, 1}polyout(λ), every two sequences
{(xλ, w1

λ)}λ>0 , {(xλ, w2
λ)}λ>0 such that for every λ, xλ ∈ Lλ, (xλ, w1

λ) ∈ R
and (xλ, w

2
λ) ∈ R, for every polynomial p(·), there exists a number n > 0

such that for every λ ≥ n, no non-uniform PPT distinguisher algorithm can
distinguish the following two sequences of random variables with advantage
more than 1/p(λ):

• {NIWI.ProveRO(·)(xλ, w
1
λ;Um)}λ≥n.

• {NIWI.ProveRO(·)(xλ, w
2
λ;Um)}λ≥n.

(Where m is the number of random coins NIWI.Prove uses).

Corollary 13 Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with
challenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF
f . Note that according to our formulation, SpecP is induced by f , k(·), m(·) and
q.

Let δ(·) be a negligible function and let (polyinp(·), polyout(·),NIZK[c(·), k(·), q,m(·), δ(·), f ])
be the output of transform Transmain(c(·), k(·), q,m(·), δ(·), f).

Then, NIZK is a NIWI proof system in the (non-programmable) RO model
for Rf (cf. Def. 12).

Proof. The theorem follows from the proof of Theorem 10 and adapting the
results of Yung and Zhao [YZ06] from FS to our transform. We omit further
details.
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