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Abstract. In previous work, Boemer et al. introduced nGraph-HE, an
extension to the Intel nGraph deep learning (DL) compiler, that en-
ables data scientists to deploy models with popular frameworks such
as TensorFlow and PyTorch with minimal code changes. However, the
class of supported models was limited to relatively shallow networks
with polynomial activations. Here, we introduce nGraph-HE2, which
extends nGraph-HE to enable privacy-preserving inference on standard,
pre-trained models using their native activation functions and number
fields (typically real numbers). The proposed framework leverages the
CKKS scheme, whose support for real numbers is friendly to data sci-
ence, and a client-aided model using a two-party approach to compute
activation functions.

We first present CKKS-specific optimizations, enabling a 3x-88x runtime
speedup for scalar encoding, and doubling the throughput through a
novel use of CKKS plaintext packing into complex numbers. Second, we
optimize ciphertext-plaintext addition and multiplication, yielding 2.6x-
4.2x runtime speedup. Third, we exploit two graph-level optimizations:
lazy rescaling and depth-aware encoding, which allow us to significantly
improve performance.

Together, these optimizations enable state-of-the-art throughput of 1,998
images/s on the CryptoNets network. Using the client-aided model, we
also present homomorphic evaluation of (to our knowledge) the largest
network to date, namely, pre-trained MobileNetV2 models on the Ima-
geNet dataset, with 60.4%/82.7% top-1/top-5 accuracy and an amortized
runtime of 381 ms/image. 1
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1 Introduction

The proliferation of machine learning inference as a service raises privacy questions
and concerns. For example, a data owner may be concerned about allowing an
external party access to her data.

Homomorphic encryption (HE) is an elegant cryptographic technology which
can solve the data owner’s concern about data exposure. HE is a form of en-
cryption with the ability to perform computation on encrypted data, without
ever decrypting it. In particular, HE allows for a data owner to encrypt her data,
send it to the model owner to perform inference, and then receive the encrypted
inference result. The data owner accesses the result of the inference by decrypting
the response from the server.

The class of HE schemes known as leveled HE schemes or somewhat HE
(SHE) schemes supports a limited number of additions and multiplications. As
such, these schemes are attractive solutions to the DL based inference, whose
core workload is multiplications and additions in the form of convolutions and
generalized matrix multiplications (GEMM). One challenge in enabling HE for
DL using SHE schemes is that we cannot compute non-linear functions, common
in deep neural networks activations.

Another challenge in enabling HE for DL is the lack of support in existing
frameworks. While popular DL frameworks such as TensorFlow [2] and Py-
Torch [35] have greatly simplified the development of novel DL methods, they do
not support HE. Meanwhile, existing HE libraries such as Microsoft SEAL [39],
HElib [25], and Palisade [37] are typically written at a level far lower than the
primitive operations of DL. As a result, implementing DL models in HE libraries
requires a significant engineering overhead.

nGraph-HE [6] introduced the first industry-class, open-source DL graph
compiler which supports the execution of DL models through popular frameworks
such as TensorFlow, MXNet, and PyTorch. Graph compilers represent DL models
using a graph-based intermediate representation (IR), upon which hardware-
dependent and hardware-agnostic graph optimizations are performed. By treating
HE as a virtual hardware target, nGraph-HE takes advantage of the graph
compiler toolchain to create a framework for DL with HE. nGraph-HE uses
Microsoft SEAL [39] for the underlying HE evaluation (with a framework for
additional HE schemes), and nGraph [16] for the graph compiler IR. nGraph-HE
enabled data scientists to use familiar DL frameworks; however, nGraph-HE
supported only a limited class of models, restricted to polynomial activations.

In this work, we present nGraph-HE22, which introduces a number of op-
timizations in the graph compiler and the HE library. nGraph-HE2 utilizes a
client-aided model, i.e. a hybrid approach using two-party computation, to execute
a much wider class of pre-trained deep neural networks including non-polynomial
activations with a focus on maximizing throughput. Our optimizations focus on
inference on encrypted data with a plaintext model. We use batch-axis packing

2 nGraph-HE2 is available under the Apache 2.0 license at https://ngra.ph/he.
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(Section 2.3) to enable a simple implementation of the Reshape operation and
significantly increase throughput.

This setting is friendly to data scientists. It supports standard DL mod-
els,including non-polynomial activations. Since we do not rely on HE-specific
training models, the training phase is HE-independent. Thus, data scientists can
perform HE inference on standard DL models without cryptographic expertise.

A challenge specific to this data-scientist-friendly setting is that neural net-
works typically contain operations not suitable to all HE schemes, particularly
in the activation functions. For instance, computing ReLU or MaxPool requires
the comparison operator, which is not supported in the CKKS HE scheme. To
this end, we use a protocol in which the server interacts with a client to perform
non-polynomial operations such as ReLU (Section 4.1). Nevertheless, the CKKS
scheme has several advantages, including support for floating-point numbers,
plaintext packing, and faster runtime.

We present three main contributions. First, we describe optimizations to the
CKKS encoding operations in SEAL (Section 3.1). We demonstrate a 3x-88x
improvement in scalar encoding, and introduce complex packing, an optimization
which doubles the inference throughput in networks without ciphertext-ciphertext
multiplication (Section 3.1). Second, we introduce optimizations to ciphertext-
plaintext addition, and ciphertext-plaintext multiplication, which apply in the
batch-axis plaintext packing setting (Section 3.2). Third, we exploit two graph-
level optimizations (Section 3.3). The first graph-level optimization, lazy rescaling,
improves the runtime of higher-level operations such as Dot and Convolution3

by delaying, hence minimizing the runtime spent on, the expensive rescaling
operation. The second graph-level optimization, depth-aware encoding, minimizes
the memory usage of the encoded model by encoding at the appropriate coefficient
modulus level. Our just-in-time encoding implementation of depth-aware encoding
encodes the values as late as possible.

We evaluate our contributions on both small, single-operation tests (Sec-
tion 4.2), and on larger neural networks (Section 4.3). In particular, we demon-
strate state-of-the-art performance on the CryptoNets network (Section 4.3),
with a throughput of 1,998 images/s. Our contributions also enable the first, to
our knowledge, homomorphic evaluation of a network on the ImageNet dataset,
MobileNetV2, with 60.4%/82.7% top-1/top-5 accuracy and amortized runtime of
381 ms/image (Section 4.3). This is the first work showing the privacy-preserving
execution of a full production-level deep neural network.

2 Background

2.1 Homomorphic Encryption

Homomorphic encryption (HE) enables computations to be carried out on en-
crypted data. We will focus on the FV scheme (sometimes referred to as BFV)

3 Dot is a generalized dot product operation and Convolution is a batched convolution
operation; see https://www.ngraph.ai/documentation/ops for more information.
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[9, 22], as implemented in SEAL version 3.3 [39], with the CKKS optimiza-
tions [12, 13] and the relinearization technique with the special prime [11]. This
is a somewhat HE (SHE) scheme, meaning that it supports a limited (and
pre-determined) number of additions and multiplications. In contrast, fully ho-
momorphic encryption (FHE) schemes support an unlimited number of additions
and multiplications, typically by modifying an SHE scheme with an expensive
bootstrapping step.

More concretely, if ct1 and ct2 are encryptions of m1 and m2, respectively,
then

Dec(ct1 + ct2) ≈ m1 +m2, Dec(ct1 · ct2) ≈ m1 ·m2 (1)

The imprecision in the arithmetic is due to noise introduced during the compu-
tation, and can be controlled by setting encryption parameters appropriately.
CKKS also offers ciphertext-plaintext operations, which are typically faster than
ciphertext-ciphertext operations in Equation 1. That is, if pt1 is an encoding of
m1, then

Dec(pt1 + ct2) ≈ m1 +m2, Dec(pt1 · ct2) ≈ m1 ·m2

2.2 Mathematical Background

Many homomorphic encryption schemes, including CKKS, are based on the ring
learning with error (RLWE) problem. A full description of the CKKS scheme and
the RLWE problem is outside the scope of this paper. Instead, we provide a brief
introduction to the CKKS scheme and refer the reader to [13, 33] for additional
details.

Let ΦM (X) be the Mth cyclotomic polynomial of degree N = φ(M). The
plaintext space is the ringR = Z[X]/(ΦM (X)). We always take to be deg(ΦM (X))
a power of two, typically 2,048 or 4,096. This is for both performance and security
reasons.

Rescaling In most HE schemes, a message is encrypted by adding noise. This
noise grows with each homomorphic operation, especially multiplication. To
manage this noise growth, CKKS introduces a rescaling operation which lowers
the noise, and is typically performed after every multiplication.

We can only perform a (predetermined) limited number of such rescaling
operations; therefore we can perform a (predetermined) number of multiplications.
We let L be this number. Each multiplication represents a ‘level’ in our ciphertext
space, and a rescaling operation lowers the level. To implement this, we have a
‘layered’ ciphertext space, where each layer has a different ciphertext modulus.
We construct this space as follows. Let p1, . . . , pL be primes, and let psp be a

‘special prime.’ The ciphertext modulus is qL =
∏L
i=1 pi, yielding ciphertext

space RqL = R/(qLR). Ciphertexts in the CKKS scheme are typically pairs
of polynomials, i.e., ct ∈ R2

qL . The relinearization step (also referred to as the
key-switching step) is performed using the raise-the-modulus idea from [23] and
the special modulus psp.

4



Encryption is performed using the special prime; this means a fresh ciphertext
will be modulo qL · psp. We immediately perform a scale operation to reduce the
level to that of qL, so that the encryption algorithm’s final output is an element
of RqL .

The rescaling algorithm is the homomorphic equivalent to the removing
inaccurate LSBs as a rounding step in approximate arithmetic. More formally,
we bring a ciphertext ct from level ` to `′ by computing

ct′ ←
⌊
ct
q`
q′`

⌉
(2)

where q` =
∏`
i=1 pi. Typically, rescaling is performed with `′ = `− 1 after each

multiplication to minimize noise growth. As such, the encryption parameter L
is typically set to be at least Lf , i.e. L ≥ Lf , the multiplicative depth of the
function to compute.

Double-CRT Representation To enable fast modular arithmetic modulo large
integers, SEAL uses the residue number system (RNS) to represent the integers.

To use this, we choose the factors qi in q` =
∏`
i=1 pi to be pairwise coprime,

roughly of the same size and 64-bit unsigned integers (they are typically chosen to
be of size 30-60 bits). Then, using the Chinese remainder theorem, we can write an
element x in its RNS representation (also referred to as the CRT representation.)
(x (mod qi))i. Each operation on x can be implemented by applying the operation
on each element xi. In particular, addition and multiplication of two numbers
in RNS form are performed element-wise in O(L) time, rather than O(L logL)
time for multiplication, as would be required in a naive representation.

SEAL also implements the number-theoretic transform (NTT) for fast polyno-
mial multiplication. Together, the CRT and NTT representation is known as the
‘double-CRT’ form. However, the NTT representation is incompatible with the
rescaling operation. SEAL’s rescaling operation requires performing an NTT−1,
the rescaling operation (2), then an NTT. The NTT and its inverse are relatively
expensive computations, hence we will describe optimizations for avoiding them
where possible (Section 3.3). A full description of the NTT is beyond the scope
of this paper; see for example [32] for a cryptographer’s perspective of the NTT.

Plaintext Packing An extremely useful feature of the CKKS scheme is plaintext
packing, also referred to as batching. This allows us to “pack” N/2 complex scalar
values into one plaintext or ciphertext, where N is the cyclotomic polynomial
degree. It works by defining an encoding map CN/2 → R, where R is the plaintext
space. An operation (addition or multiplication) performed on an element in R
corresponds to the same operation performed on N/2 elements in CN/2. The
number N/2 elements in the packing is also known as the number of slots in the
plaintext.

Let P = R refer to the plaintext space, and C = R∗qL refer to the ciphertext
space.

5



2.3 HE for Deep Learning

The ability of HE to perform addition and multiplication makes it attractive to DL,
whose core workloads are multiplication and addition in the form of convolutions
and GEMM operations. However, neural networks commonly contain operations
not suitable to all HE schemes, particularly in the activation functions. For
instance, computing ReLU or MaxPool requires the comparison operator, which
is not supported in all SHE schemes. At a high level, therefore, there are two
broad approaches to enabling homomorphic evaluation of a given DL model:

1. HE-friendly networks: Modify the network to be HE-friendly, and re-train.
2. Pre-trained networks: Modify the HE scheme or protocol to accommodate

the network as is, ideally with no retraining.

HE-friendly Networks In this setting, we assume (and require) that the data
scientist has access to the entire DL workflow, including training. Here, the
network is re-trained with polynomial activations, and max-pooling is typically
replace with average pooling. Low-degree polynomials may be used, as high-degree
polynomials result in prohibitively large encryption parameters due to the large
multiplicative depth. The CryptoNets network [24] is the seminal HE-friendly
network, using the f(x) = x2 activation function to achieve ≈99% accuracy on
the MNIST [30] handwritten digits dataset. However, on larger datasets, the
accuracy of HE-friendly networks suffers. CHET [18] adopts a similar approach
on the CIFAR10 [29] dataset, instead using activation functions f(x) = ax2 + bx,
with a, b,∈ R. This approach results in 81.5% accuracy, down from 84% accuracy
in the original model with ReLU activations. Hesamifard et al. [26] see a similar
drop-off in accuracy from 94.2% to 91.5% on the CIFAR10 dataset. Depending
on the use case, such a drop in accuracy may not be acceptable.

From a practical viewpoint, HE-friendly networks tend to be more difficult
to train than their native counterparts. In particular, polynomial activations
are unbounded and grow more quickly than standard activation functions such
as ReLU or sigmoid, resulting in numerical overflow during training. Possible
workarounds include weight and activation initialization and gradient clipping.

Sparsification methods, such as in SEALion [21] and Faster CryptoNets [15]
improve latency by reducing the number of homomorphic additions or multipli-
cations. This is an optimization mostly independent of HE.

Pre-trained Networks In this setting, we assume a network has been trained,
and no modifications are possible. This setting results in independent training and
inference tasks. In particular, data scientists need not be familiar with HE to train
privacy-preserving models. Additionally, this setting preserves the accuracy of
the existing models, which tend to be higher than models built with HE-friendly
constraints. Two solutions to the pre-trained network setting are FHE schemes
and hybrid schemes.

FHE schemes. FHE schemes enable an unlimited number of additions and
multiplications, allowing for arbitrary-precision polynomial approximations of
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non-polynomial activations. However, due to the expensive bootstrapping step
used to cope with increasing the computational depth, this approach is typically
much slower than alternatives. Some FHE schemes, such as TFHE [14] operate
on boolean circuits which support low-depth circuits for exact computation of
ReLU. However, performance on arithmetic circuits, such as GEMM operations,
suffers.

Wang, et al. [42] propose using Intel Software Guard Extensions (SGX) to
implement a bootstrapping procedure in a trusted execution environment (TEE).
In effect, this approach turns a SHE scheme to a FHE scheme with a lower
performance penalty than FHE bootstrapping. However, it loosens the security
model, as the TEE must be trusted.

Hybrid schemes. Hybrid schemes combine privacy-preserving primitives, such
as HE and multi-party computation (MPC). In MPC, several parties follow a
communication protocol to jointly perform the computation. MPC techniques,
such as garbled circuits (GCs), typically support a broader range of operations
than HE, while introducing a communication cost between the parties. Hybrid
HE-MPC schemes therefore provide an elegant solution to the pre-trained network
setting by using MPC to perform non-polynomial activations, and HE to perform
the FC and Convolution layers.

This approach has two important benefits. First, it enables exact computation,
mitigating the performance drop-off in HE-friendly networks. Second, it enables
smaller encryption parameters. The HE-MPC interface involves refreshing the
ciphertext at each non-polynomial activation, i.e. resetting the noise budget and
coefficient modulus to the highest level L. This resetting reduces the effective
multiplicative depth of the computation to the number of multiplications between
non-polynomial activations. As a result, L is quite small, even for large networks.
For instance, L = 3 suffices for the MobileNetV2 network [38] (Section 4.3).
Smaller L also enables choice of smaller polynomial modulus degree, which
greatly reduces the runtime (see Appendix A.4) and memory usage.

Several hybrid schemes have been developed. Chimera [7] is a hybrid HE-
HE scheme which performs ReLU in TFHE, and affine transformations in an
arithmetic-circuit HE scheme such as FV or CKKS. However, the translation
between TFHE and FV/CKKS is potentially expensive. MiniONN [31] is a hybrid
HE-MPC scheme which uses an additive HE scheme to generate multiplication
triples, which are used in an MPC-based evaluation of the network. Gazelle [27]
uses HE to perform the polynomial functions and GCs to perform the non-
polynomial activations.

Other schemes. A third solution to the pre-trained network setting is pure
MPC schemes. ABY [19] supports switching between arithmetic, boolean, and
Yao’s GCs. ABY3 [34] increases the performance of ABY by introducing a
third party. SecureNN [41] likewise increases performance at the cost of a third
party. Some two-party MPC schemes also have shortcomings, such as requiring
binarizing the network [1]. Our work, in contrast, supports full-precision networks
using standard data types.
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Challenges in deploying DL on HE
Software Frameworks. One difficulty in enabling HE for DL is the lack

of support in existing frameworks. While popular DL frameworks such as Ten-
sorFlow [2] and PyTorch [35] have greatly simplified the development of novel
DL methods, they do not support HE. Existing HE libraries such as Microsoft
SEAL [39], HElib [25], and Palisade [37] are typically written at a low level.
As such, implementing DL models requires a significant engineering overhead.
nGraph-HE [6] introduces a DL graph compiler which supports execution of DL
models through popular frameworks such as TensorFlow, MXNet, and PyTorch.

Performance Considerations. One of the primary shortcomings of HE
is the large computational and memory overhead compared to unencrypted
computation, which can be several orders of magnitude. The choice of encryption
parameters, N and the coefficient moduli qi, has a large impact on this overhead,
as well as the security level (see Appendix A.4). As such, parameter selection,
which remains a largely hand-tuned process, is vital for performance.

Mapping to DL Functions. Another difficulty in enabling HE for DL is
the mapping from HE operations to DL operations. While HE addition and
multiplication map naturally to plaintext addition and multiplication, there are
various choices for plaintext packing (see Section 2.2). Both CryptoNets [24] and
nGraph-HE [6] use plaintext packing along the batch axis (batch-axis packing)
to store a 4D tensor of shape (S,C,H,W ) (batch size, channels, height, width)
as a 3D tensor of shape (C,H,W ), with each ciphertext packing S values. Each
model weight is stored as a plaintext with the same value in each slot (encoded
using scalar encoding, see Section 3.1). Since HE addition and multiplication are
performed element-wise on each slot, this enables inference on up to S data items
simultaneously, where the runtime for one data item is the same as for S data
items (for S ≤ N/2, the slot count). As a result, this use of plaintext packing
greatly increases throughput for a given latency.

Other approaches such as Gazelle [27] and LoLa [10] use inter-axis packing,
a choice of plaintext packing which encrypts multiple scalars from the same
inference data item or weight matrix to the same ciphertext. Inter-axis packing
optimizes inference on one data item at a time, with latency scaling linearly
with the batch size. However, DL workloads on inter-axis packing often use
HE rotations, which are relatively expensive (see Appendix A.4). The optimal
packing approach depends on the workload, and can be determined by graph
compilers. nGraph-HE2 uses batch-axis packing.

2.4 Graph Compilers

Graph compilers represent DL models with a graph-based intermediate repre-
sentation (IR). The primary advantage to a graph-based IR is the enabling of
graph-based optimizations, which can be either hardware agnostic or hardware
dependent. Intel nGraph [16] is a DL graph compiler which optimizes the inference
graph for several hardware targets. A second advantage to graph-based IR is the
ability to represent models from different DL frameworks in a common IR; thus,
the graph-based optimizations are framework-agnostic. nGraph-HE [6] introduces
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the first DL framework for HE. nGraph-HE treats HE as a virtual hardware
target and uses Microsoft SEAL [39] for the underlying HE evaluation, as well
as a simple structure for adding other HE libraries. In addition to graph-based
optimizations, nGraph-HE provides run-time based optimizations based on the
values of the plaintext model.

CHET [18] is another graph-based compiler for HE. It uses inter-axis packing
to optimize the layout of each tensor, as opposed to using batch-axis packing
for every tensor, as in nGraph-HE. SEALion [21] uses a graph compiler for
automatic parameter selection, while lacking packing and value-based runtime
optimizations.

3 Contributions

We introduce the following contributions, which apply in the batch-axis packing
setting:

– CKKS encoding optimizations;
– CKKS arithmetic optimizations;
– graph-level optimizations.

The CKKS encoding optimizations include faster scalar encoding, and complex
packing, which doubles the throughput by taking advantage of the complex
components of the plaintext encoding map. Our arithmetic optimizations apply
to ciphertext-plaintext addition, and ciphertext-plaintext multiplication. The
graph-level optimizations include lazy rescaling and depth-aware encoding, which
reduce the runtime spent rescaling and encoding, respectively.

3.1 CKKS Encoding Optimizations

Scalar Encoding Plaintext packing enables the encoding of N/2 complex
scalars into a single plaintext. For more efficient addition and multiplication,
SEAL stores each plaintext in double-CRT form (performing an NTT on the
polynomial, and storing each coefficient in RNS form with respect to the pi). At
the top level, (with L coefficient moduli), encoding requires O(LN) memory and
O(LN logN) runtime. Algorithm 1 shows the pseudocode for general encoding,
including the NTT.

SEAL additionally provides an optimized encoding algorithm in the setting
where the N/2 scalars are the same real-valued number. This setting yields a
simplified DFT−1 and NTT, resulting in an implementation requiring O(LN)
runtime and memory. Both of SEAL’s encoding implementations are general,
that is they allow arbitrary operations on the resulting plaintext.

Here, we optimize for the more restrictive case in which N/2 identical real-
valued scalars are stored in the plaintext, for the entire lifetime of the plaintext.
Our use of batch-axis packing (see Section 3.1) maintains this property on the
plaintexts, since they are used only for plaintext addition and multiplication.
Other plaintext packing schemes, such as inter-axis packing (see Section 2.3),
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Algorithm 1 General CKKS Encoding

1: function EncodeVector(c ∈ CN/2, q ∈ Z, s ∈ R)
2: p ∈ CN

3: p[0 : N/2]← c
4: p[N/2 + 1 : N ]← c∗

5: p← DFT−1(p · s)
6: p← [p]q
7: p← NegacyclicNTT(p)
8: end function

however, do not maintain this property. Thus, scalar encoding applies only in
specific use-cases, including batch-axis packing.

Our optimization takes advantage of the fact that the general CKKS encoding
algorithm of N/2 identical real-valued scalars will result in a plaintext with N
identical values across the slots. See Appendix A.3 for the proof of this property.
So, rather than store N copies of the same scalar, we modify the plaintext to
store just a single copy. This improves the memory usage and runtime each by a
factor of N , yielding O(L) runtime and memory usage. Algorithm 2 shows the
pseudocode for the scalar-optimized encoding algorithm.

Algorithm 2 CKKS Scalar encoding of c with respect to modulus q at scale s

1: function EncodeReal(c ∈ R, q ∈ Z, s ∈ R)
2: y ∈ R
3: y ← [s · c]q
4: return y
5: end function

Note, SEAL implements a variant of Algorithm 2 for scalar encoding; however
it computes y ∈ RN , with yi ← [s · c]q ∀i, requiring memory and runtime O(LN).
For comparison, Algorithm 2 avoids the expensive copy of size N , decreasing the
runtime compared to SEAL’s implementation.

Complex packing We introduce complex packing, an optimization which dou-
bles the inference throughput in cases without ciphertext-ciphertext multiplica-
tion. One of the primary ways to combat the large runtime and memory overhead
of HE is to use plaintext packing in the CKKS encoding mapping CN/2 → R
(Section 2.2). Neural network models, however, typically operate on real numbers.
As such, packing real-valued model weights or data values utilizes at most half
of the available computation. Complex packing, on the other hand, utilizes the
entire computational capacity of plaintext packing.

For simplicity, let N = 4, so each plaintext and ciphertext encodes two
complex scalars. Given scalars a, b, c, d, f, g, h, k ∈ R, let:
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– REnc(a, b) = p(a, b) represent the plaintext encoding with a in the first slot
and b in the second slot.

– CEnc(a, b, c, d) = p(a+ bi, c+ di) encode a+ bi in the first slot, and c+ di
in the second slot.

– RDec(p(a, b)) = (a, b)
– CDec(p(a+ bi, c+ di)) = (a, b, c, d)

Let real packing refer to the REnc/RDec representation, and complex packing
refer to the CEnc/CDec representation. Then, let

p(a+ bi, c+ di)
p(f + gi, h+ ki)

±→ p(a± f + (b± g)i, c± h+ (d± k)i)
×→ p(af − bg + (ag + bf)i, ch− dk + (ck + dh)i)

represent element-wise (real) addition/subtraction and multiplication, respec-
tively. Note, a given implementation of a plaintext may not represent the plaintext
slots internally as complex numbers. SEAL, for instance, uses 64-bit unsigned
integers. Instead, our presentation serves to illustrate the concept, which is inde-
pendent of the HE library’s specific implementation. Though we only consider
plaintexts here, the same logic also holds for ciphertexts.

Now, we consider the following element-wise computations:

– Add/Subtract:

(a, b, c, d)± (f, g, h, k) = (a± f, b± g, c± h, d± k)

= CDec(CEnc(a, b, c, d)± CEnc(f, g, h, k))

– Broadcast-Multiply:

(a, b, c, d)× f = (af, bf, cf, df)

= CDec(CEnc(a, b, c, d)× CEnc(f, 0, f, 0))

– Multiply:

(a, b, c, d)× (f, g, h, k) = (af, bg, ch, dk))

6= CDec(CEnc(a, b, c, d)× CEnc(f, g, h, k))

So, we observe each operation except Multiply4 can be represented using complex
packing. Furthermore, we can compose any number of Add, Subtract, and
Broadcast-Multiply, operations represented using complex packing. Note, real
packing supports these operations, as well as Multiply. However, real packing
requires twice the number of slots, i.e. two plaintexts, or doubling N .

4 due to the cross-terms in (a + bi)× (f + gi) = af − bg + (ag + bf)i 6= af + bgi. Note,
it is an open problem to compute and add the correction term bg + (bg − ag − bf)i.
This is non-trivial because in this setting a, b are encrypted, and we can only use
complex multiplication to compute the cross-term.
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These properties easily generalize to larger N . In essence, complex packing
can perform the same computation (as long as it does not include a ciphertext-
ciphertext Multiply operation) as the real packing representation on twice as
many slots.

Now, following nGraph-HE, nGraph-HE2 uses batch-axis plaintext packing
(Section 2.3) during inference to store a 4D inference tensor of shape (S,C,H,W )
(batch size, channels, height, width) a 3D tensor of shape (C,H,W ), with each
ciphertext packing S values. Each model weight is stored as a plaintext with the
same value in each slot (encoded using scalar encoding, see Section 3.1). Hence,
in a neural network, the FC and Convolution layers consist of only Add, Subtract,
and Broadcast-Multiply operations, suitable for complex packing. Polynomial
activations such as f(x) = x2, in contrast, are not suited for complex packing since
they require ciphertext-ciphertext multiplications. However, ciphertext-ciphertext
multiplications are absent in many neural networks with ReLU activations. For
these networks, complex packing doubles the throughput.

Kim and Song [28] also propose complex packing, by modifying the underlying
HE scheme. Bergamaschi et al. [4] use a similar complex packing idea to train
logistic models in a genome-wide association study (GWAS), with limited speedup
due to the requirement of additional conjugation operations. Our use of complex
packing, on the other hand, applies to neural network inference, and nearly
doubles the throughput.

3.2 CKKS Arithmetic Optimizations

We introduce optimizations to ciphertext-plaintext addition and multiplication in
CKKS, which apply in the special case of batch-axis packing. A further ciphertext-
plaintext multiplication optimization applies when the coefficient modulus is less
than 32 bits.

Ciphertext-plaintext Addition Ciphertext-plaintext addition in RNS form
requires element-wise addition of two polynomials in which each sum is reduced
with respect to the coefficient modulus p`. With our scalar encoding approach,
we instead perform summation of the same scalar with each element of a poly-
nomial. Algorithm 3 shows the ciphertext-plaintext vector algorithm, compared
to Algorithm 4, which shows the optimized ciphertext-plaintext scalar addition
algorithm. Both implementations require O(LN) memory and runtime, however
Algorithm 4 is more cache-friendly.

Note that the same optimization works for ciphertext-plaintext subtraction,
and we expect similar improvements.

Ciphertext-plaintext Multiplication Ciphertext-plaintext multiplication in
RNS form requires element-wise multiplication of two polynomials in which each
product is reduced with respect to the coefficient modulus ql. The modulus
reduction is performed with Barrett reduction [3]. We present two optimizations.
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Algorithm 3 Ciphertext-Plaintext Vector Addition

1: function Add Cipher-Plain Vector(ct ∈ C, pt ∈ P)
2: for ` = 1 to L do
3: for n = 1 to N do
4: ct[`][n]← (ct[`][n] + pt[`][n]) mod p`
5: end for
6: end for
7: end function

Algorithm 4 Ciphertext-Plaintext Scalar Addition

1: function Add Cipher-Plain Scalar(ct ∈ C, pt ∈ P)
2: for ` = 1 to L do
3: tmp← pt[`]
4: for n = 1 to N do
5: ct[`][n]← (ct[`][n] + tmp) mod p`
6: end for
7: end for
8: end function

First, our scalar encoding allows us to perform multiplication between a scalar
and each element of the polynomial, rather than between two polynomials. This
is the same optimization as in ciphertext-plaintext addition.

Second, we provide an optimization for the case in which the coefficient modu-
lus is 32 bits, rather than 64 bits. The benefit arises from a simpler implementation
of Barrett reduction which requires fewer additions and multiplications. In SEAL,
ciphertext and plaintext elements are stored at 64-bit unsigned integers, with a
maximum modulus of 62 bits [39]. As a result, performing the multiplication may
overflow to 128 bits. Then, performing Barrett reduction requires 5 multiplica-
tions, 6 additions, and 2 subtractions (including the conditional subtraction). See
Algorithm 5 for the pseudocode, which closely follows SEAL’s implementation5.
We store an unsigned 128-bit number z as two unsigned 64-bit numbers with
z[0] containing the 64 low bits and z[1] containing the 64 high bits. The add64
function will return the carry bits of the addition.

In the case where q is a 32-bit modulus, the Barrett reduction becomes much
simpler, requiring just 2 multiplications and 2 subtractions (including the con-
ditional subtraction). Algorithm 6 shows the pseudocode for the more efficient
Barrett reduction, which closely follows SEAL’s implementation6. Algorithm 7
shows the general, 64-bit modulus implementation of ciphertext-plaintext multi-
plication. Note, SEAL uses Barrett64 reduction for rescaling, whereas we use it
for optimized ciphertext-plaintext multiplication.

5 https://github.com/microsoft/SEAL/blob/3.3.0/native/src/seal/util/
uintarithsmallmod.h#L146-L187

6 https://github.com/microsoft/SEAL/blob/3.3.0/native/src/seal/util/
uintarithsmallmod.h#L189-L217
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Algorithm 5 BarrettReduction128

1: function BarrettReduction128(128-bit number z, 64-bit modulus q, 128-bit
Barrett ratio r)

2: uint64 tmp1, tmp2[2], tmp3, carry
3: carry ← mult hw64(z[0], r[0]) . Multiply low bits
4: tmp2← z[0] ∗ r[1]
5: . Compute high bits of z[0] ∗ r
6: tmp3← tmp2[1] + add64(tmp2[0], carry,&tmp1)
7: tmp2← z[1] ∗ r[0]
8: carry ← tmp2[1] + add64(tmp1, tmp2[0],&tmp1)
9: tmp1← z[1] ∗ r[1] + tmp3 + carry . Compute [z ∗ r]2128

10: tmp3← z[0]− tmp1 ∗ q . Barrett subtraction
11: if tmp3 ≥ q then . Conditional Barrett subtraction
12: result← tmp3− q
13: else
14: result← tmp3
15: end if
16: return result
17: end function

Algorithm 8 shows the optimized 32-bit modulus implementation of multi-
plication with a scalar plaintext. Note, the plaintext pt contains only L entries,
rather than N · L entries. Algorithm 7 and Algorithm 8 both require O(LN)
runtime; however, Algorithm 8 is more cache-friendly.

Algorithm 6 BarrettReduction64

1: function BarrettReduction64(64-bit number z, 32-bit modulus q, 64-bit Barrett
ratio r)

2: uint64 carry
3: carry ← mult hw64(z, r) . Compute [z · q]264
4: carry ← z − carry ∗ q . Barrett subtraction
5: if carry ≥ q then . Conditional Barrett subtraction
6: result← carry − q
7: else
8: result← carry
9: end if

10: return result
11: end function

3.3 Graph-level Optimizations

In addition to the above low-level CKKS optimizations, we present two graph-level
optimizations.
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Algorithm 7 Ciphertext-Plaintext 64-bit Multiplication

1: function Multiply Cipher-Plain 64-bit(ct ∈ C, pt ∈ ZL×N , 128-bit Barrett
ratio r)

2: for ` = 1 to L do
3: for n = 1 to N do
4: uint64 z[2];
5: z ← ct[`][n] ∗ pt[`][n] . Perform multiplication
6: ct[`][n]← BarrettReduction128(z, q`, r)
7: end for
8: end for
9: end function

Algorithm 8 Ciphertext-Plaintext Scalar 32-bit Multiplication

1: function Multiply Cipher-Plain 32-bit(ct ∈ C, pt ∈ ZL, 64bit Barrett ratio r)
2: for ` = 1 to L do
3: tmp← pt[`]
4: for n = 1 to N do
5: uint64 z;
6: z ← ct[`][n] ∗ tmp . Perform multiplication
7: ct[`][n]← BarrettReduction64(z, q`, r)
8: end for
9: end for

10: end function

Lazy Rescaling Rescaling in CKKS can be thought of as a procedure which
homomorphically removes the inaccurate LSBs in the (encrypted) message. See
Section 2.2 for a longer description, or [13] for full details. Due to the NTT and
NTT−1, rescaling is ≈9x more expensive than ciphertext-plaintext multiplication
in SEAL (see Appendix A.4). The naive rescaling approach rescales after every
multiplication. Lazy rescaling, on the other hand, minimizes the number of
rescaling operations by:

– rescaling only after a Fully-Connected (FC) or Convolution layer, rather than
after every multiplication therein;

– skipping rescaling if there are no subsequent multiplications before the
ciphertext is decrypted.

Since FC and Convolution layers each contain several multiplications per out-
put element, the first optimization reduces the number of rescaling operations
performed by a factor of the inner dimension (for FC layers) or window size (for
Convolution layers).

The second optimization ensures rescaling happens only when reducing the
message scale is necessary. In particular, addition is allowed post-multiplication,
pre-rescaling. In the case where the last two layers of a network (or before a
ReLU activation in a hybrid MPC-HE scheme, see Section 2.3) are FC-Add,
Convolution-Add or Multiply-Add, this ensures the rescaling is omitted entirely.
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Note, for a choice of parameters with L = Lf , where Lf is the multiplicative
depth of the function, this optimization is equivalent to skipping rescaling to level
0. Table 1 shows an example where the second optimization results in a skipped
rescaling. Note, lazy rescaling applies ‘Use rescaling sparingly’ from [5], to neural
network inference instead of a genome-wide association study (GWAS). The
GWAS setting has a closed-form semi-parallel logistic regression model, whereas
our setting involves long sequences of linear and non-linear operations on tensors,
e.g. convolutions, and pooling operations.

Table 1: Benefit of lazy rescaling at level 0. Lazy rescaling skips the rescaling,
whereas naive rescaling performs an unnecessary rescaling.

Operation
Number of rescalings

Naive Rescaling Lazy Rescaling

Constant L− 1 L− 1
Multiply L L− 1
Add L L− 1

Depth-aware Encoding The runtime complexity and memory usage of encod-
ing a scalar at level ` in SEAL are both O(N`) (see Section 3.1). Throughout the
execution of HE operations, the level ` decreases due to the rescaling operation
(see Section 2.2). When multiplying or adding a ciphertext ct at level ` < L with
a plaintext pt, it is therefore advantageous to encode pt at level ` rather than
level L, as noted by the ‘Harnessing the CRT ladder’ technique in [5]. This will
reduce both the runtime and memory usage of the encoding step. In practice,
this implementation can have two forms:

1. Compile-time encoding. An optimization pass through the computation graph
can identify the level at which each plaintext is encoded. This compilation
step requires a larger initial memory overhead, for the benefit of increased
runtime.

2. Lazy encoding. In this implementation, the plaintext model weights are stored
in native scalar (i.e. floating-point) format, and encoding is delayed until
immediately preceding multiplication or addition with a ciphertext ct. The
level ` at which to encode the model weight is determined by observing the
level of ct.

If encoding is expensive compared to addition/multiplication (as in SEAL, see
Appendix A.4), compile-time encoding yields the fastest runtime. However, due
to the choice batch-axis packing, nGraph-HE2’s scalar encoding (Section 3.1) is
significantly cheaper than addition/multiplication, requiring runtime and memory
O(`), compared to O(`N logN) runtime and O(`N) memory usage of general
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encoding. Hence, performing lazy encoding at runtime results in little slowdown,
and allows for a simpler implementation.

Here, we introduced CKKS-specific optimizations to scalar encoding, ciphertext-
plaintext addition, and ciphertext-plaintext multiplication in the batch-axis pack-
ing case. We also introduced graph-level optimizations of complex packing and
depth-aware encoding.

4 Evaluation

We evaluate our optimizations on small, single-operation tests (Section 4.2), as
well as on larger neural networks (Section 4.3). All results are computed on
Intel Xeon R© Platinum 8180 2.5GHz systems with 376GB of RAM and 112 cores,
running Ubuntu 16.04. The localhost bandwidth is 46.2 Gbit/s, and the local area
network (LAN) bandwidth is 9.4 Gbit/s. We use GCC 7.4 with -O2 optimization.

4.1 Client-aided Model

To mitigate the classification accuracy degradation of HE-friendly networks
(Section 2.3), we implement a simple two-party computation approach. Specifically,
evaluate a non-polynomial function f on a ciphertext ct, the server sends ct to
the client, which decrypts Dec(ct) → pt, computes f(pt) , and sends a fresh
encryption of the result, Enc(f(pt)) to the server. This approach accomplishes
two tasks: first, it enables the computation of non-polynomial functions; second,
it refreshes the ciphertext, i.e. resets the noise budget and coefficient modulus
to the highest level L. However, this approach can leak information about the
model to the client, as it provides the pre-activation values pt to the client, as
well as the activation function itself. One possible improvement is performing
the non-polynomial function using additive masking and garbled circuits, as in
Gazelle [27]. Another approach is to perform the decryption, non-polynomial
activation, and encryption in a trusted execution environment (TEE) attested
to the user, such as Intel’s Software Guard Extensions (SGX) [40]. For instance,
Wang et. al [42] use Intel’s SGX for bootstrapping only, though this approach is
easily adapted to perform the non-polynomial activation as well.

Our client-aided approach, therefore, represents a placeholder for more secure
implementations in future work. Since the client-aided model refreshes ciphertexts
at each non-polynomial layer, the effective multiplicative depth is reduced to the
multiplicative depth between non-polynomial layers. This enables the computation
of arbitrarily-deep neural networks with much smaller encryption parameters,
and therefore much faster runtimes.

4.2 Low-level Operations

Scalar Encoding We implement the scalar encoding optimization from Sec-
tion 3.1. Table 2 shows the speedup of several parameter choices, each satisfying
λ = 128-bit security. As expected, the memory improvement is a factor of N .
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The runtime improvement of scalar encoding increases with N , due to the O(L)
runtime, compared to O(LN logN) in the general encoding.

Table 2: Runtime and memory usage when encoding a scalar, with and without
optimization (Opt.). Runtimes are averaged across 1000 trials.

N L Opt.
Memory Runtime

Usage (bytes) Improv. Time (ns) Speedup

212 1 7 32,768 605
212 1 3 8 4,096 177 3.4

213 3 7 196,608 2,951
213 3 3 24 8,192 202 14.6

214 8 7 1,048,576 38,938
214 8 3 64 16,384 443 87.9

Ciphertext-plaintext Addition We implement the scalar addition optimiza-
tion from Section 3.2. Table 3 shows a speedup of 2.6x-4.2x, with more speedup
for larger encryption parameters. Algorithm 3 and Algorithm 4 both have O(LN)
runtime complexity. The primary source of speedup, therefore, is due to the fact
that one of the two operands, the scalar, is kept into the processor registers, and
the other operand does not have to compete for its placement and retrieval from
the cache memory.

Table 3: Runtime improvement in ciphertext-plaintext scalar addition. Parameter
choices satisfy λ = 128-bit security. Runtimes are averaged across 1000 trials.

N L
Runtime (µs)

General Scalar Speedup

212 1 2.3 0.9 2.6
213 3 12.6 4.5 2.8
214 8 124.5 30.0 4.2

Ciphertext-plaintext Multiplication We implement the scalar multiplication
optimization from Section 3.2. Table 4 shows a speedup of 2.6x for different
parameter choices. Notably, the parameters uses 30-bit coefficient moduli, so our
Barrett reduction optimization applies.
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Table 4: Runtime improvement in ciphertext-plaintext scalar multiplication.
Parameter choices satisfy λ = 128-bit security. Runtimes are averaged across
1000 trials.

N L
Runtime (µs)

General Scalar Speedup

213 3 181.7 71.1 2.6
214 8 966.6 377.6 2.6

4.3 Neural Network Workloads

To evaluate our graph-level optimizations and complex packing, we evaluate two
neural networks: the standard CryptoNets [24] model, and MobileNetV2 [38]. To
the best of our knowledge, this is the largest network whose linear layers have
been homomorphically evaluated, as well as the first homomorphic evaluation of
a network on the ImageNet dataset.

CryptoNets The CryptoNets network [24] is the seminal HE-friendly DL model
for the MNIST handwritten digits dataset [30]. The architecture uses f(x) = x2

for the activations, and has a multiplicative depth of 5. See Appendix A.1 for
the full architecture. As in [24], we achieve 98.95% accuracy. Table 5 shows lazy
rescaling reduces the runtime of the CryptoNets network by ≈8x. Multi-threading
further improves the performance (see Appendix A.2).

Table 5: Impact of lazy rescaling on CryptoNets runtime using N = 213, L = 6,
with accuracy 98.95%.

Thread
Count

Lazy
Rescaling

Runtime

Amortized (ms) Total (s)

1 7 59.21 242.51± 3.69
1 3 7.23 29.62± 0.63

24 3 0.50 2.05± 0.11

In order to show the benefits of complex packing (Section 3.1), we implement
the client-aided model (Section 4.1). We train the CryptoNets network with ReLU
activations rather than x2 activations, and add bias terms. See Appendix A.1 for
the complete architecture. The use of ReLU activations effectively decreases the
multiplicative depth to 1, since the client-aided computation of ReLU refreshes
the ciphertexts. This lower multiplicative depth enables much smaller encryption
parameters, N = 211, L = 1, with a single 54-bit coefficient modulus.
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Table 6 shows the improvement due to complex packing. Complex packing
does not take advantage of our scalar encoding optimization (Section 3.1), slightly
increasing the runtime from the real packing case. Nevertheless, complex packing
roughly halves the amortized runtime by doubling the capacity.

The total runtime is much smaller than the runtime in Table 5, due to the use
of much smaller encryption parameters. The amortized runtime is also improved,
though less dramatically. Note, the communication overhead between the server
and client accounts for roughly 27% of the runtime in the LAN setting. Optimizing
the communication leaves room for future improvement.

Table 6: Impact of complex packing on CryptoNets with ReLU activations using
N = 211, L = 1, and 98.62% accuracy. Results are averaged over 10 trials. Amt.
times are amortized over the largest batch size supported.

Thread
Count

Complex
packing

Network
setting

Batch
size

Runtime

Amt. (ms) Total (s)

1 7 localhost 1,024 2.72 2.79± 0.06
1 3 localhost 2,048 1.44 2.94± 0.04

24 3 localhost 2,048 0.24 0.50± 0.04
24 3 LAN 2,048 0.34 0.69± 0.04

Table 7 shows the performance of nGraph-HE2 on the CryptoNets network
compared to existing methods. Lola and Gazelle optimize for latency at the cost
of reduced throughput. Other methods, such as CryptoNets, Faster CryptoNets,
and nGraph-HE adopt the same batch-axis packing as we do, thereby optimizing
for throughput. Our method achieves the highest throughput of 1,998 images/s
on the CryptoNets network. Furthermore, the client-aided model enables an
even higher throughput of 2,959 images/s. Notably, the latency of our approach
is much smaller than previous batch-axis packing approaches, and has similar
runtime as the latency-optimized LoLa, while achieving much larger throughput.

MobileNetV2 ImageNet [20] is a dataset used for image recognition, consisting
of colored images, ≈1.2 million for training, and 50,000 for validation, classified
into 1,000 categories. The images vary in size, though they are commonly rescaled
to shape 224× 224× 3. The large number of categories and large image resolu-
tion make ImageNet a much more difficult task than MNIST or CIFAR10 [29].
MobileNetV2 [38] is a lightweight network architecture which achieves high accu-
racy on ImageNet with a small number of parameters and multiply-accumulate
operations. MobileNets are parameterized by an expansion factor, which can be
used to reduce the model size, resulting in a faster runtime at the expense of
lower accuracy. The ReLU activations reduce the effective multiplicative depth,
enabling use of small encryption parameters, N = 212 and L = 3 coefficient
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Table 7: CryptoNets performance comparison, including accuracy (Acc.), latency
(Lat.), and throughput (Thput.). For hybrid protocols, latency is reported in the
LAN setting and communication (Comm.) includes only the interactive part of
the protocol.

Method Acc.
(%)

Lat.
(s)

Thput.
(im/s)

Protocol Comm.
(MB/im)

LoLa [10] 98.95 2.2 0.5 HE
FHE-DiNN100 [8] 96.35 1.65 0.6 HE
CryptoNets [24] 98.95 250 16.4 HE
Faster CryptoNets [15] 98.7 39.1 210 HE
nGraph-HE [6] 98.95 16.7 245 HE
CryptoNets 3.2 [10] 98.95 25.6 320 HE
nGraph-HE2 98.95 2.05 1,998 HE

Chameleon [36] 99 2.24 1.0 HE-MPC 5.1
MiniONN [31] 98.95 1.28 2.4 HE-MPC 44
Gazelle [27] 98.95 0.03 33.3 HE-MPC 0.5
nGraph-HE2-ReLU 98.62 0.69 2,959 HE-MPC 0.03

moduli at λ = 128-bit security. Furthermore, the lack of ciphertext-ciphertext
multiplications enables use of complex packing. We demonstrate nGraph-HE2 on
MobileNetV2 with expansion factor 0.35, and image ranging from size 96× 96 to
the full size, 224× 224.

Table 8 shows the results from MobileNetV2 inference on a variety of image
sizes. The large increase in runtime from the localhost setting to the LAN setting
is due to the communication overhead. The localhost setting therefore represents
a lower-bound to the timings possible in the LAN setting. Notably, the accuracy
degradation due to HE is ≈0.01%, less than 7 images in 50,000. Figure 1 shows
the increase in runtime with larger images sizes, and the significant latency
introduced by the LAN setting.

5 Conclusion and Future Work

Homomorphic encryption is a promising solution to preserving privacy of user data
during DL inference. Current DL solutions using HE induce significant slowdown
and memory overhead compared to performing inference on unencrypted data.
One potential solution to this overhead is the use of plaintext packing, which
enables storing multiple scalars in a single plaintext or ciphertext. The choice of
how to use plaintext packing typically either increases throughput, via batch-axis
plaintext packing, or reduces latency, via inter-axis plaintext packing.

In this work, we presented nGraph-HE2, which introduced several optimiza-
tions to SEAL’s implementation of the CKKS encryption scheme, for batch-axis
plaintext packing. Our optimizations result in a 3x-88x improvement in scalar
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Table 8: MobileNetV2 results on localhost and LAN settings using complex
packing, batch size 4096, 56 threads, and encryption parameters N = 212, L = 3
at λ = 128-bit security. Runtimes are averaged across 10 trials. Encrypting the
data reduces the top-1 accuracy by an average of 0.0136%, ≈7 images in 50,000.

MobileNetV2
Model

Unencrypted
Accuracy (%)

Encrypted
Accuracy (%)

Top-1 Top-5 Top-1 Top-5

0.35-96 42.370 67.106 42.356 (−0.014) 67.114 (+0.008)
0.35-128 50.032 74.382 49.982 (−0.050) 74.358 (−0.024)
0.35-160 56.202 79.730 56.184 (−0.018) 79.716 (−0.014)
0.35-192 58.582 81.252 58.586 (+0.004) 81.252 (−0.000)
0.35-224 60.384 82.750 60.394 (+0.010) 82.768 (+0.018)

MobileNetV2
Model

Runtime

Localhost LAN

Amortized (ms) Total (s) Amortized (ms) Total (s)

0.35-96 27 112± 5 71 292± 5
0.35-128 46 187± 4 116 475± 10
0.35-160 71 290± 7 197 807± 19
0.35-192 103 422± 23 278 1,141± 22
0.35-224 129 529± 18 381 1,559± 27

MobileNetV2
Model

Communication
(MB/image)

Memory (GB)

Client) Server

0.35-96 38.4 8.6 60.3
0.35-128 63.7 12.6 100.4
0.35-160 107.5 17.9 161.0
0.35-192 152.2 24.2 239.2
0.35-224 206.9 56.9 324.3

encoding, a 2.6x-4.2x speedup in ciphertext-plaintext scalar addition, and a 2.6x
speedup in ciphertext-plaintext multiplication.

We also introduced lazy rescaling, a CKKS-specific graph-based optimization
which reduces the latency by 8x on the CryptoNets network. Additionally, we
introduced complex packing, which doubles the throughput with minimal effect
on runtime.

Together, these optimizations enable state-of-the art throughput of 1,998
images/s for the CryptoNets network for the MNIST dataset. Furthermore, the
integration of our approach with nGraph-HE enables inference on pre-trained
DL models without modification. To demonstrate this capability, we presented
the first evaluation of MobileNetV2, the largest DL model with linear layers eval-
uated homomorphically, with 60.4%/82.7% top-1/top-5 accuracy, and amortized
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Fig. 1: Runtime vs. Image size of LAN and localhost MobileNetV2 models. Table 8
shows the corresponding accuracies.

runtime of 381 ms/image. To our knowledge, this is also the first evaluation of a
model with encrypted ImageNet data.

One avenue for future work involves performing non-polynomial activations
securely. In our approach, a client computes activations such as MaxPool and
ReLU by first decrypting, the computing the non-linearity in plaintext, then
encrypting the result. In the near future, we plan to add support for other
privacy-preserving primitives, e.g., Yao’s Garbled Circuit, to provide a provably
privacy-preserving solution. Other directions for future work include further
optimization of scalar encoding for complex numbers, and optimizing plaintext-
ciphertext addition and multiplication with Intel Advanced Vector Extensions
(AVX).
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A Appendix

A.1 Network Architectures

For each architecture, n indicates the batch size.

– CryptoNets, with activation Act(x) = x2.
1. Conv. [Input: n × 28 × 28; stride: 2; window: 5 × 5; filters: 5, output:
n× 845] + Act.

2. FC. [Input: n× 845; output: n× 100] + Act.
3. FC. [Input: n× 100; output: n× 10].

– CryptoNets-ReLU, with activation Act(x) = ReLU(x).
1. Conv with bias. [Input: n× 28× 28; stride: 2; window: 5× 5; filters: 5,

output: n× 845] + Act.
2. FC with bias. [Input: n× 845; output: n× 100] + Act.
3. FC with bias. [Input: n× 100; output: n× 10].

A.2 Parallel Scaling

nGraph-HE [6] uses OpenMP [17] to parallelize high-level operations such as
Dot and Convolution. As such, the runtime depends heavily on the number of
threads. For the CryptoNets network with N = 213, L = 6, Figure 2 shows the
latency decreases linearly with the number of threads up to thread count 16.
Best performance is achieved with 88 threads. However, the performance with 24
threads is just 9% slower (1.87s vs. 2.05s) than with 88 threads, representing a
better runtime-resource tradeoff. In general, the optimal number of threads will
depend on the network.

A.3 Scalar Encoding

Lemma 1. Refer to Algorithm 1 for the general CKKS encoding algorithm. If
the input vector c consists of the same real number r in each slot, then the output
plaintext p will contain the same real number in each slot.

Proof. We refer to the notation in Algorithm 1. Since c ∈ RN/2, c = c∗, and so
line 3 and line 4 yield p ← (r, r, . . . , r), the same value in every slot. Now, we
show

DFT−1(r, r, . . . , r) = (r, 0, 0, . . . , 0).

The DFT−1 can be represented by a matrix transformation W ∈ CN×N with

W =
(
wjk
)
0≤j,k≤N−1 for wjk = ω−jk

N where ω = e−2πi/N is a primitive N th root

of unity. In particular, the first row of W consists of all ones, and the sum of
every jth row for j 6= 0 is 0, since

N−1∑
k=0

ω−jk

N
=

1

N

(
ωj(1− ω−jN )

ωj − 1

)
= 0
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Fig. 2: Runtimes on CryptoNets network with different number of threads. Run-
times are averaged across 10 trials.

where the last equality uses that ω is a root of unity. Now, since p has all the
same values,

DFT−1 (r, . . . , r) =
(∑

i

pi/N, 0, . . . , 0
)

= (r, 0, . . . , 0).

Scaling by s yields (rs, 0, . . . , 0). The modulus reduction (line 6) yields ([rs]q, 0, . . . , 0).
Finally, the negacyclic NTT (line 7) can also be represented by a matrix trans-
formation in the finite field Z/qZ, the integers modulo q. As with the DFT−1

matrix, the first row is all ones, hence

NegacyclicNTT(([rs]q, 0, . . . , 0)) = [rs]q(1, 1, . . . , 1).

Thus, the CKKS encoding has the same scalar, [rs]q, in each slot.

A.4 SEAL Performance Test

Table 9 shows the runtimes from SEAL’s CKKS performance tests. The runtime
increases with N and L. In general, larger L supports more multiplications.
However, to maintain the same security level, N must be increased accordingly.
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Table 9: SEAL CKKS performance test. Parameters satisfy λ = 128-bit security.
Runtimes averaged across 1000 trials.

Operation
Runtime (µs)

N = 212

L = 2
N = 213

L = 4
N = 214

L = 8

Add 16 59 237
Multiply plain 58 234 936
Decrypt 54 214 883
Square 105 476 2,411
Multiply 155 709 3,482
Rescale 440 2,224 10,189
Encode 1,654 4,029 10,989
Encrypt 1,514 4,808 16,941
Relinearize 936 4,636 27,681
Decode 2,153 7,372 30,175
Rotate one step 1,098 5,294 30,338
Rotate random 4,683 25,270 158,905
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