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Abstract. In this paper, we study the results of the recently proposed
exchange attack in an adaptive setting. As expected, it leads to present
a better 6-round key-independent distinguisher in terms of data and
computational complexities. More specifically, our 6-round adaptive dis-
tinguisher requires 283 chosen plaintexts and 283 adaptively chosen ci-
phertexts and has a computational cost of 283 encryption.
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1 Introduction

In 2000, Rijndael block cipher is accepted as AES (Advance Encryption Stan-
dard) by NIST. AES is provably resistant against differential and linear crypt-
analysis. During the last 20 years, among to large amount researches [15, 4, 14,
9, 7, 6, 10]), there is only the biclique attack [5] which can break AES faster than
exhaustive search. Up to now, the best known key recovery attack in secret key
model can break 7-round of AES.

Integral and impossible differential distinguishers on 4-round AES, in secret
key model, were best distinguishers (in term of reaching highest rounds) for sev-
eral years. Recently, since 2016, new developments has been presented for round-
reduced AES. These developments showed several basic and unexplored prop-
erties for round-reduced AES. First 5-round distinguishers have been appeared
in several studies[17, 12, 16, 3, 11, 1, 2]. Some of these 5-round distinguishers have
gained more attentions since they can be extended to 6-round distinguishers.

1.1 Overview of 6-round distinguishers on AES

At Asiacrypt 2017, the authors of [16] presented the first 6-round secret-key dis-
tinguishers for AES which requires 2122.8 adaptive chosen plaintexts/ciphertexts
and a computational cost of 2121.8 XORs. The authors introduced a new deter-
ministic 4-round property in AES, which states that sets of pairs of plaintexts
that are equivalent by exchange of any subset of diagonals encrypts to a set of
pairs of ciphertexts after four rounds that all have a difference of zero in exactly
the same columns before the final linear layer.
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Then, Bardeh and Rønjom [2] presented a new technique called exchange
attack. They showed that 6-round of AES is biased when the plaintexts are cho-
sen from a certain set (exchange equivalence sets). Their 6-round distinguisher
requires 288.2 chosen plaintexts and a computational cost of 288.2 encryption.

Later, Bao, Guo and List [1] presented a 6-round distinguisher requires 289.43

chosen plaintexts and a computational cost of 296.52 look-ups into memory. The
authors extended a known integral distinguisher to the exception distinguisher.

1.2 Our Contribution

We investigate the results of exchange attack in an adaptive setting. As results,
we present a 5-round adaptive chosen ciphertext distinguisher which it’s data
complexity is higher than the best current adaptive chosen ciphertext distin-
guisher. However, it can be extended to a 6-round adaptive chosen ciphertext
distinguisher which requires 283 chosen plaintexts and 283 adaptive chosen ci-
phertexts, which is as far as we know a new record.

1.3 Overview of This Paper and Main Results

In Section 2 we briefly describe the exchange attack and it’s results on reduced-
round of AES. In section 3 we present a key independent 5-round ACC distin-
guisher. In section 4 we introduce an efficient 6-round key-independent ACC
distinguisher. The currently best secret-key distinguishers for 5- and 6-round
AES are given in Table 1. We adopt that data complexity is measured in a min-
imum number of chosen plaintexts/ciphertexts CP/CC or adaptively chosen
plaintexts/ciphertexts ACP/ACC. Time complexity is measured in equivalent
number of AES encryptions (E), memory accesses (M) and/or XOR operations
(XOR) - adopting that 20M ≈ 1 round of AES.

Table 1: Secret-Key Distinguishers for AES
Property Rounds Data Cost Ref.

Integral 5 2128 CP 2129.6 XORs [17]
Expectation of TD 5 265 CP 270.2 M [1]
Expectation of TD 5 248.96 CP 246 E [11]
Exchange Attack 5 235.5 CP + 239 ACC 235.5 E Sect. 3

Multiple-8 5 232 CP 235.6 M [13]
Exchange Attack 5 230 CP 230E [2]
Zero difference 5 212.2 CP + 227.2 ACC 226.2 XOR [3]
Zero difference 5 226.8 ACC 225.8 XOR [16]

Zero difference 6 2122.8 ACC 2121.8 XOR [16]
Expectation of TD 6 289.43 CP 296.52 M [1]
Exchange Attack 6 288.2 CP 288.2E [2]

Exchange Attack 6 283 CP + 283 ACC 283 E Sect. 4
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2 Preliminaries

The Advanced Encryption Standard (AES)[8] is the most widely adopted block
cipher in the world today and is a critical component in protecting information
in both commercial and high-assurance communication. The AES internal state
is typically represented by a 4 by 4 matrix in F4×4

28 . The matrix representation is
for the most part purely representational as the actual properties of the matrix
(e.g. rank, order etc.) are not actually exploited for anything. One full round
of AES consists of SubBytes (SB), ShiftRows (SR), MixColumns (MC) and
AddKey (AK). The SB-layer applies a fixed permutation over F28 independently
to each byte of the state, the SR-layer cyclically shifts the i-th row by i positions,
while the MC-layer applies a fixed linear transformation to each column. The
key addition adds a secret round-dependent value to the state. One full round
is composed as R = AK ◦MC ◦ SR ◦ SB. We follow standard convention and
simplify notation by writing Rt(x) to mean t rounds of AES where each round
key is fixed to some random value.

We recall the exchange attack presented in [2]. Here, we recall the basic defini-
tions and Theorems presented in the exchange attack to use them for presenting
our results.

Definition 1. [2] For a vector v ∈ F4
2 and a pair of states α, β ∈ F4×4

28 define

the column exchange difference ∆v
def
= ∆α,β

v ∈ F4×4
28 where the i-th column is

defined by

(∆v)i = (αi ⊕ βi)vi

where αi and βi are the i-th columns of α and β.

A pair of states define a set of 2wtc(α⊕β) possible column exchange differences
where wtc(x) denotes the number of non-zero columns of x. We can now de-
fine three related operators that exchange diagonal, column and mixed values
between a pair of AES states.

Definition 2 (Column exchange). [2] For a vector v ∈ F4
2 and a pair of

states α, β ∈ F4×4
28 , define column exchange according to v as

ρvc (α, β) = α⊕∆v.

It is easy to see that the pair of states (ρvc (α, β), ρvc (β, α)) = (α ⊕∆v, β ⊕∆v)
are formed by exchanging individual columns between α and β according to the
binary coefficients of v. Thus, for any v it is easy to see that

α⊕ β = ρvc (α, β)⊕ ρvc (β, α).

Definition 3 (Diagonal exchange). [2] For a vector v ∈ F4
2 and a pair of

states α, β ∈ F4×4
28 , define diagonal exchange according to v as

ρvd(α, β) = α⊕ SR−1(∆SR(α)),SR(β)
v ).
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The new pair (ρvd(α, β), ρvd(β, α)) is formed by exchanging individual diagonals
between α and β according to the binary coefficients of v. The relationship
between exchange of diagonals and exchange of columns is intuitively straight-
forward.

Lemma 1. [2] From the definition of ρvd and ρvc it follows that

R(ρvd(α, β)) = ρvc (R(α), R(β)).

Definition 4 (Mixed exchange). [2] For a vector v ∈ F4
2 and a pair of states

α, β ∈ F4×4
28 define mixed exchange according to v as

ρvm(α, β) = a⊕ L(∆L−1(α),L−1(β)
v )

where L = MC ◦ SR.

Lemma 2. [2] From the definition of ρvc and ρvm it follows that

R(ρvc (α, β)) = ρvm(R(α), R(β)).

Lemma 3. [2] For two random states α, β and some non-zero vector v ∈ F4
2,

we have that

R2(ρvd(α, β)) = ρvm(R2(α), R2(β)).

To indicate the zero column(s) of a state x ∈ F4×4
28 , we define ν(x) which

denotes the binary indicator vector which is 0 in position i if the i-th column
of x is zero and 1 otherwise. We also are interested to know the zero column of
a state after/before the first and last linear layer so we define, L = SR ◦MC,
νm(x) = v(L−1(x)) and νd(x) = v(SR(x)). For a subset I ⊂ {0, 1, 2, 3}, we write
vI ∈ F4

2 to mean the indicator vector which has value vIi = 1 if i ∈ I and 0
otherwise.

Theorem 1. [2] Let I, J,K ⊂ {0, 1, 2, 3} and α, β ∈ F4×4
28 be two random states.

Then the probability that a set of diagonals J are exchanged, given that a set of
columns I are exchanged when the difference α⊕ β is zero in columns indicated
by K, i.e.

Pr((ρv
J

d (α, β), ρv
J

d (β, α)) = (ρv
I

c (α, β), ρv
I

c (β, α)))

is given by

p(|I|, |J |, |K|) = (2−8)4(|I|+|J|)−|K||J|−2|I|·|J|.

Theorem 2. [2] Let α, β ∈ F4×4
28 denote two plaintexts equal in |K| diagonals

indicated by K ⊂ {0, 1, 2, 3} and assume 0 < wt(ν(R5(α) ⊕ R5(β))) < 4. Then
for a non-trivial choice of I ⊂ {0, 1, 2, 3} \K the relation

νm(R5(α)⊕R5(β))) = νm(R5(ρv
I

d (α, β))⊕R5(ρv
I

d (β, α)))

holds with probability

p5(|I|, |K|) =

3∑
d=1

(
4

d

)
p(|I|, d, |K|)
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We remark that the result of previous Theorem works as well in decryption
direction by applying an appropriate exchange operation considering the corre-
sponding linear layer.

3 5-round ACC distinguisher

In this section we show how to one can use the result of Theorem 2 in an adaptive
setting.

Theorem 3. Let p0, p1 ∈ F4×4
28 denote two plaintexts and assume 0 < wt(νd(p

0⊕
p1)) < 4. Then for a non-trivial choice of I ⊂ {0, 1, 2, 3} the relation

νd(p
0 ⊕ p1) = νd(R

−5(ρv
I

m (R5(p0), R5(p1))⊕R−5(ρv
I

m (R5(p1), R5(p0)))

holds with probability

p5(|I|, 0) =

3∑
d=1

(
4

d

)
p(|I|, d, 0)

Since ciphertexts are random, we consider only the case |K| = 0 in Theorem 3.
We can set up a 5-round distinguisher based on the result of Theorem 3. The
idea is to generate a new plaintext pair adaptively such that:

νd(p
0 ⊕ p1) = νd(R

−5(ρv
I

m (R5(p0), R5(p1))⊕R−5(ρv
I

m (R5(p1), R5(p0)))

= νd(p
′0 ⊕ p′1)

Let wt(νd(p
0 ⊕ p1)) = d, then if p5(|I|, 0) is higher than 2−32·(4−d), the proba-

bility of this event at random, we can distinguish 5-round AES from a random
permutation. If we set d = 2, (i.e. the difference of the plaintexts is zero in two
diagonals, and |I| = 1 then we get that p5(|I|, 0) = 2−46 while it is 2−64 for
random case.

Now, to set up a 5-round distinguisher, adversary prepares 223.5 plaintexts
where bytes in the first two diagonals take random values and other diagonals
take a random constant. Then he can generate 246 pairs and at least one of them
verify the upper trail of Figure 1. Then he applys the Mixed exchange operator
to all ciphertext pairs and decrypt new ciphertext pairs. So he expects to observe
a new plaintext pair such that

νd(p
i ⊕ pj) = νd(p

′i ⊕ p′j)
= (1, 1, 0, 0)

Thus adversary can distinguish 5-round AES from a random permutation using
223.5 chosen plaintexts and 2 · 246 = 247 adaptively chosen ciphertexts. The data
complexity can be reduced by adding a certain condition on the ciphertext pairs.
Suppose that after 3-round encryption, the k-th diagonal in the difference of
states, R3(pi)⊕ R3(pj), is zero then adversary can filter ciphertext pairs which
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Fig. 1: 5-round exchange trail

have a zero column in their difference before last linear layer. So the probability of
exchange trail is 2−46−24 = 2−70. Now adversary prepares 235.5 plaintexts where
the first two diagonals take 235.5 random values, and the remaining diagonals
are fixed to a constant. Thus he can construct 270 ciphertext pairs and filter
the ciphertext pairs such that only 270−32 = 238 of them are remained. For each
of remaining pairs, he decrypts the new ciphertext pair formed by applying the

mixed exchange operation on them, ρv
I

m and estimates one of new generated
plaintext pair is differ in the first two diagonals. Hence, he can distinguish 5-
round AES from a random permutation using 235.5 chosen plaintexts and 2·238 =
239 adaptively chosen ciphertexts.

4 6-round ACC distinguisher

In this section we present a 6-round key-independent distinguisher for AES in an
adaptive setting. We extent the 5-round distinguisher to 6-round one by adding
one round at beginning of it. Now, the idea of setting up a distinguisher is as
follows. Suppose a plaintext pair, which differ in only a diagonal, verifies the
upper trail in Figure 2. Then we generate two new ciphertexts by

(c′0, c′1) = (ρv
I

m (R6(p1), R6(p0)), ρv
I

m (R6(p0), R6(p1)))

and decrypt them. Then according to Theorem 3, we have that

wt(νd(R(p0)⊕R(p1))) =wt(νd(R
−5(c′0)⊕R−5(c′1)))

=1

with probability 2−46. Also we are interested in the following condition:

wt(νd(p
0 ⊕ p1)) =wt(νd(R

−6(c′0)⊕R−6(c′1)))

=wt(νd(p
′0 ⊕ p′1))

=1

This condition happens with probability 2−22 · 2−22 (2−22 for each pair). So, in
total, with probability (2−22)2 · 2−46 = 2−90 we expect that we have two new
plaintexts, p′0 and p′1, such that they differ in only one diagonal. For a random
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Fig. 2: 6-round exchange trail

permutation, the probability that two plaintexts differ in only one diagonal is
4 · 2−96 = 2−94. Now, we prepare a structure of 232 plaintexts where the first
diagonal takes all possible 232 values, and the remaining diagonals are fixed to
some constants. Thus we can construct 263 plaintext pairs and thus we will need
to encrypt 290−63 = 227 structures. Hence, we can distinguish 6-round AES from
a random permutation using 232+27 = 259 chosen plaintexts and 2 · 290 = 291

adaptively chosen ciphertexts. Similar to the 5-round distinguisher, the data
complexity can be reduced by adding a certain condition on the ciphertext pairs.
Suppose that after 4-round encryption, the k-th diagonal in state difference is
zero. Then we can decrypt ciphertext pairs which the k-th column of L−1(ci⊕cj)
is zero. So the total probability changes to (2−22)2 · 2−46 · 2−24 = 2−114. The
structure of plaintexts can take 232 values, and so we can construct 263 pairs. Now
we need to encrypt 2114−63 = 251 structures and filter the ciphertext pairs such
that only 2114−32 = 282 of them are remained. For each of remaining pairs we
decrypt the new pair formed by applying the mixed exchange operation on them,

ρv
I

m . Now, we expect that there is a new plaintext pair which differ in a diagonal
and thus we can distinguish 6-round AES from a random permutation using
232+51 = 283 chosen plaintexts and 2 · 282 = 283 adaptive chosen ciphertexts.
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6 Conclusion

In this paper we have investigated the results of exchange attack in an adaptive
setting. So, we improve the current best 6-round key-independent distinguisher.
Our proposed distinguisher requires 283 chosen plaintexts and 283 adaptively
chosen ciphertexts and has a computational cost of 283 encryption.
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Input: Ask for 251 structures each structure has 232 plaintexts
Result: 1 for an AES permutation, -1 otherwise.
for each structure do // 251 times on average

C ← {}
T = {} ; // empty hash table containing unordered sets(e.g.

unordered multisets )

Ask for a structure P of 232 plaintexts pi where bytes in diagonal 0 take all
values.
C ← C ∪ {ci}
z ← |L−1(ci)k| // |L−1(ci)k| is a integer value of k’th column

T [z]← T [z] ∪ {i}
for each ci in C do

for a ∈ T [|ci|] do // 231 pairs are remained

j ← T [|ci|][a]

c′i = ρv
I

m (ci, cj), c′j = ρv
I

m (cj , ci) for a fixed I with |I| = 1
Ask for decryption of c′i and c′j

if wt(νd(p′i ⊕ p′j)) equals 1 then
return 1.

end

end

end

end
return −1

Algorithm 1: Pseudo-code for 6-round acc distinguisher.
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