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Abstract

This work revisits zero-knowledge proofs in the discrete logarithm setting. First, we identify and
carve out basic techniques (partly being used implicitly before) to optimise proofs in this setting.
In particular, the linear combination of protocols is a useful tool to obtain zero-knowledge and/or
reduce communication. With these techniques, we are able to devise zero-knowledge variants of the
logarithmic communication arguments by Bootle et al. (EUROCRYPT ’16) and Bünz et al. (S&P
’18) thereby introducing almost no overhead. We then construct a conceptually simple commit-
and-prove argument for satisfiability of a set of quadratic equations. Unlike previous work, we are
not restricted to rank 1 constraint systems (R1CS). This is, to the best of our knowledge, the first
work demonstrating that general quadratic constraints, not just R1CS, are a natural relation in the
dlog (or ideal linear commitment) setting. This enables new possibilities for optimisation, as, e.g.,
any degree n2 polynomial f(X) can now be “evaluated” with at most 2n quadratic constraints.

Additionally, we take a closer look at quantitative measures, e.g. the efficiency of an extrac-
tor. For this, we formalise short-circuit extraction, which allows us to give tighter bounds on the
efficiency of an extractor.

1 Introduction
Zero-knowledge arguments (of knowledge) (ZKAoK) allow a party P, the prover, to convince another
party V, the verifier, of the truth of a statement (and knowledge of a witness) without revealing any
other information. For example, one may prove knowledge of a valid signature on some message, with-
out revealing the signature. The ability to ensure correctness without compromising privacy makes
zero-knowledge arguments a powerful tool, which is ubiquitous in theory and application of cryp-
tography. Since the first practical construction of succinct non-interactive arguments of knowledge
(SNARK) [25], and their application to Blockchain and related areas, research in theory and applica-
tions of efficient ZKAoKs has progressed significantly, see the works [2, 8, 13, 17, 21, 24, 25, 26, 46]
to name a few.

In this paper, we revisit a line of works [13, 16, 28] in the setting of groups of prime order. From an
abstract point of view, in terms of [33], one part of our work is in the world of ideal linear commitments
(ILC). That is, our verifier can do “matrix-vector queries” on a committed value w, e.g. request an
opening for a matrix-vector product Γw. A priori, this is more powerful than other settings like PCP
or IOP, where the verifier’s queries are restricted to point or inner-product queries[33]. Nonetheless,
the ILC-arguments in [13, 16, 28] only work for the language R1CS “natively”, which is also covered
by more restricted verifiers. We show that with ILC, one can directly handle systems of quadratic
equations, of which R1CS is a special case.

However, another part of this work treats proofs of knowledge of preimages of group homomor-
phisms. For example, one can prove knowledge of the decryption of an ElGamal ciphertext like this.
This does not fit into the ILC setting, hence we do not use the ILC abstractions.
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1.1 Basic techniques
We identify and present basic design principles which underly most existing works on efficient zero-
knowledge arguments in the group setting.

In the following, we use implicit representation for group elements, see Section 2. Let us recall (a
slight variant of) the standard Σ-Protocol (Σstd) for proving knowledge of a preimage w for [A]w = [t]
for [A] ∈ Gm×n. This proof covers a large class of statements, including dlog relations, knowing the
opening of a commitment, etc. The protocol works as follows:

• Prover: Pick r ← Fnp , let [a] := [A]r, send [a].
• Verifier: Pick and send x = (x1, x2)← F2

p (with x2 6= 0).
• Prover: Send z := x1w + x2r.
• Verifier: Accept iff [A]z = x1[t] + x2[a].

Intuitively, this is zero-knowledge since r completely masks w in z = x1w + x2r (since x2 6= 0),
and finding r from [a] is hard. It is extractable, since two linearly independent challenges x1,x2

with answers z1, z2 (for fixed [a]) allow to reconstruct w, r. But Protocol Σstd is not particularly
communication-efficient, as it sends the full masked witness z ∈ Fnp as well as [a] ∈ Gm. Using
probabilistic verification, one can often improve this.

1.1.1 Probabilistic verification.

The underpinning of efficient arguments of knowledge (without zero-knowledge) is probabilistic ver-
ification of the claim. For instance, instead of verifying [A]w = [t] directly, the verifier could send
a random y ← Fp. Both parties compute y = (yi)i ∈ Fmp and prove (resp. verify) [Â]w = [t̂] for
[Â] = y⊤[A] ∈ G1×n and [t̂] = y⊤[t] ∈ G instead. This would result in a communication complexity
which is independent of m as [â] = [Â]r ∈ G.

Not all probabilistic verifications are alike. To work well with zero-knowledge, we need “suitable”
verification procedures, so that techniques to attain zero-knowledge can be applied. This essentially
means that the verification should be linear, i.e. all tested equations should be linear. (Abstract groups
only allow linear operations anyway.)

We define so-called testing distributions which are distributions over Fnp , yielding “random linear
test maps”. Given enough independent test maps and images, one can recover the “tested object”.
This allows to extract knowledge. Our definitions are tailored to our setting. See [48] for a possible
generalisation.

P V

[a]
−−−−−−−−−→

x1←−−−−−−−−−
x1w−−−−−−−−−→

⊕

P V

[a]
−−−−−−−−−→

x2←−−−−−−−−−
x2r−−−−−−−−−→

=

P V

[a]
−−−−−−−−−→

x1, x2←−−−−−−−−−
x1w + x2r−−−−−−−−−→

Figure 1: Linear Combination of Protocols. Left: The trivial proof of knowledge: Send the witness.
Middle: Send a random statement. Then send the witness. Grayed out: Terms for linear combination.
Right: The linear combination with verifier’s randomness.

1.1.2 Linear combinations of protocols.

A core insight for achieving zero-knowledge (and reducing communication) in our setting efficiently is
that protocols can often be linearly combined, see Fig. 1 for an illustration. This exploits the linearity
of the computations and checks of verifier and prover in each round. By running an “umasked non-
zero-knowledge argument” (Fig. 1, left) and linearly combining it with an argument for a “masking
randomness” (middle), one can achieve zero-knowledge (right). All of our zero-knowledge compilations
rely on this strategy. We typically consider random linear combinations of protocols, where the verifier
picks the randomness (x1, x2 in Fig. 1), as this often achieves extractability. In fact, this kind of linear
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combination recovers the batch proofs of [44], see Appendix B. Non-randomised linear combinations
are also used, e.g. Protocols 4.1 and 3.14 or [16].

1.1.3 Uniform(-or-unique) responses.

In our setting, for simulation it is typically enough to ensure that the prover’s messages are distributed
uniformly at random. More concretely, the responses should be either uniformly distributed (condi-
tioned on all later messages, not previous messages), such as z in Protocol Σstd. Or they should be
uniquely determined and efficiently computable from the challenges and all later messages, such as
[a] in Protocol Σstd. This allows to construct a trivial simulator, which constructs the transcript in
reverse: Starting with the final messages, and working its way towards the beginning, the simulator
picks the uniformly distributed messages itself, and then computes the uniquely determined ones. All
simulators in this paper work like this.

1.1.4 Kernels and redundancy.

Many interesting statements are non-linear. For example, for polynomial commitments [12], we want
to show that [c] ∈ Gm is a commitment to a polynomial f ∈ Fp[X] (of degree at most d − 1) and
f(x) = t, where x ∈ Fp is a random challenge. Naively, one commits to the coefficients of the
polynomial with monomial basis Xi for i = 0, . . . , n − 1. Suppose we have a (linear) protocol which
proves f(x) = t. We could hope that running a random linear combination as in Fig. 1 should give
us uniform-or-unique responses (and hence zero-knowledge). However, we are in a predicament: For
random g ∈ Fp[X], we have (f + g)(x) 6= f(x) and thus we have to let V know y = g(x) somehow.
To ensure the prover does not send arbitrary y, we have to rely on a proof again! But if this proof
leaks (too much) information,1 we cannot use it to randomise the response. We can escape by having
a way to randomise without changing the statement. In other words, we need some g with g(x) = 0
for all x ∈ Fp. Clearly, that means g = 0, and there’s nothing random anymore! Another dead end.

One solution is to add redundancy, which does not “influence” soundness: Here, we artificially
create a non-trivial kernel of the “evaluate at x”-map. We can do so by representing f(X) as

∑
i(αi+

βi)X
i and commit to all αi and βi. Now we can mask with g(X) where αi ← Fp and βi = −αi. Thus,

we successfully injected randomness into the response. Generally, adding just enough redundancy to
achieve uniformly random responses is our goal.

1.1.5 Composition of arguments systems.

For completeness, we recall that, by committing to (intermediate) results, and sharing these commit-
ments in multiple argument systems, one can combine the most efficient arguments for each task.
Example 1.1. In our logarithmic communication zero-knowledge inner product argument IPAalmZK
for ∃x,y : 〈x,y〉 = t, we randomise as 〈x+ r,y + s〉 = t so that 〈r,y〉 = 〈r, s〉 = 〈x, s〉 = 0 with
only logarithmically many (specially chosen) random components in r, s. This is an application of
the “redundancy/kernel” technique. The “uniform-or-unique” guideline ensures that it is enough that
each response is random. Hence a logarithmic number of (well-chosen) random components in r, s
does suffice.

On the other hand, our logarithmic communication linear map preimage argument LMPAZK for
∃w : [A]w = [t] uses a linear combination of a non-zero-knowledge argument for [A], plus a similar
argument for a different [A] and [t] (of the same size). Finally, for our logarithmic communication
shuffle argument Πshuffle (Appendix C), we compose QESAZK (our quadratic equation argument) and
LMPAZK by sharing a commitment to the witness.

1.2 Contribution
To the best of our knowledge, there is no work which presents these techniques, in particular lin-
ear combination of protocols, as unifying guidelines. Implicitly, these techniques are used in many

1If it only leaks a little bit, then a linear combination with many gi may work.
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works [12, 13, 16, 28, 44]. We follow the above guidelines for constructing and explaining our zero-
knowledge arguments.

1.2.1 Linear map preimage argument (LMPA).

We give in two steps an argument for ∃w : [A]w = [t] for [A] ∈ Gm×n with communication O(log(n)).
The idea is to first use batch verification. Essentially, LMPAbatch multiplies the equation with a random
vector y ∈ Fmp from the left to obtain [Â] = y⊤[A] ∈ G1×n and [t̂] = y⊤[t] ∈ G. Thus, communication
is independent of m. Now, we prove ∃w : [Â]w = [t̂] using LMPAZK. Protocol LMPAZK is derived
from [13]. It is enhanced with zero-knowledge at the cost of constant communication overhead and
logarithmic computational overhead (in n).

1.2.2 Quadratic equation commit-and-prove.

First of all, we derive a (almost) zero-knowledge inner product argument IPAalmZK from [13, 16],
again with constant communication and logarithmic computational overhead compared to [13, 16].
From IPAalmZK we obtain an argument for proving ∃w : ∀i : 〈w,Γiw〉 = 0, where Γi ∈ Fn×np and w is
committed to. For efficiency, we carry out a batch proof, i.e. we prove 〈w,Γw〉 with Γ :=

∑
i riΓi for

random ri ∈ Fp. The resulting argument, QESAZK for short, is “adaptive commit-and-prove”, i.e. the
statement Γi may be chosen after the commitment to w.

The commit-and-prove system QESAZK is conceptually simple and can be efficiently combined
with other arguments. We leave as an open question whether its strategies can be adapted by linear
IOPs or whether they are unique to ILC.

1.2.3 Sets of quadratic equations.

Being able to prove arbitrary quadratic equations instead of R1CS equations, i.e. equations (
∑
aixi)(

∑
bixi)+∑

cixi = 0, gives much flexibility. To the best of our knowledge, expressing the quadratic equation
〈x,x〉 =

∑
x2i = t as R1CS requires n equations: yi = x2i (i = 1, . . . , n − 1) and x2n = t −

∑
i yi,

where yi are additionally introduced variables. Requiring n equations is surprising for [13, 16] which
build on an inner product argument. Obviously, QESAZK needs one (quadratic) equation to express
〈x,x〉 = t.

Using general quadratic equations, one can evaluate any (univariate) polynomial f(X) =
∑d2−1

i=0 aiX
i

of degree d2 − 1 with 2d equations and intermediate variables. Concretely, let yi = xi = yi−1x,
zi = xdi = z1zi−1, for i = 2, . . . d− 1 and z1 = yd−1x and z0 = 1. Then f(x) =

∑d
i,j=0 ai+jdyizj . Using

this, one can speed up “table lookups”, which are typically encoded as polynomial evaluation. We are
compelled to note that using composition of protocols, more efficient (batch) subproofs for polynomial
evaluation may be possible.

For S(N)ARK-friendly cryptography [36], supporting quadratic equations is very useful. Matrix-
vector multipliciations are efficient even when both matrix and vector are secret. “Embedding” an
elliptic curve (see Jubjub [47]), is also more efficient than for R1CS. For general point addition in a
(twisted) Edwards curve, we need 5 instead of 8 constraints per bit.

1.2.4 Correctness of a shuffle.

By instantiating the shuffle proof of Bayer and Groth [5] with LMPAZK and QESAZK as subprotocols,
we obtain an argument Πshuffle for correctness of a shuffle (of ElGamal ciphertexts). To the best of our
knowledge,a this is the first efficient argument with proof size O(log(N)). Our computational efficiency
is comparable to [5], which has proof size O(

√
N). More concretely, we (very roughly) estimate at

worst twice the computation.
aAddendum: We note that (concretely less efficient) shuffles of commitments are present in [16], and we have been

informed of an improvement similar to ours, see Remark C.1 or [3]. Our protocol works in the setting of [5] with ElGamal
ciphertexts.
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1.2.5 Knowledge errors, tightness and short-circuit extraction.

From a quantitative perspective, our notion of testing distributions2 and their soundness errors, are
useful to separate study of knowledge errors and extraction in the setting of special soundness. Testing
distributions have associated soundness errors, which (up to technical difficulties we state as open
problems) translate to knowledge errors of the protocol. Explicit knowledge errors achieve tunable
levels of soundness, e.g. 2−120 instead of 2−256, which impacts runtime positively.

Short-circuit extraction. We give a definition of short-circuit extraction. This treats extraction
assertions such as “Ext either finds a witness or it solves a hard problem”. It formalises the (common)
behaviour of an extractor to either find a witness with few transcripts, or solve the hard problem
(e.g. equivocating a commitment). Without distinguishing these cases, the bounds on the necessary
number of transcripts for extraction is much higher. For example, we show that the extractor for the
LMPAZK and IPAalmZK (and also [13, 16]) needs a tree of transcripts of size O(log(n)n) in the worst
case. For QESAZK, extracting a proof for N quadratic equations in n variables requires O(log(n)nN)
transcripts.3 The extractor in [16] needs O(n3N) transcripts, which for n,N ≈ 220 implies a security
loss of ≈ 280 instead of ≈ 245.

In Appendix D, we give a conjectured relation between communication efficiency and extraction
efficiency, which implies that extraction from O( n

log(n)) transcripts would be optimal. We also elaborate
on a loophole in above security estimates, namely how to efficiently obtain the transcripts.

1.2.6 Dual testing distributions.

Dual testing distributions are a technical tool which allow us to sample a “new” commitment key from
a given one, such that knowledge (e.g. commitment opening) cannot be transferred. This turns out
to be more communication efficient than letting the verifier send a new commitment key. To the best
of our knowledge, this is a new technique.

1.2.7 Efficiency and comparison to [16].

In Table 1, we compare our argument systems with related work in the group setting. In Table 2,
we give precise efficiency measures for LMPAZK and QESAZK. In any case, n = |w| is the size of the
witness w ∈ Fnp . Since it is statement dependent, we ignore that QE is more powerful than R1CS,
possibly allowing smaller witness size (as seen in the example 〈x,x〉 = t above). Since statement size
N is typically a small mulitple of witness size, we ignore its influence. In Table 2, we omit the veri-
fier’s computation, since after optimisations [16], both are almost identical.4 Generally, optimisations
applicable to [16] are applicable to our protocols as well. For the prover, we do not optimise (e.g.
we use no multi-exponentiations), and are not aware of non-generic optimisation. Although QESAZK
covers general quadratic equations, it compares favorably to Bulletproofs [16] which only cover R1CS.
In Section 5, we compare our implementations of (aggregate) range proofs.

1.2.8 Comparison with other proof systems.

It is hard to make a fair comparison of proof systems. There are many relevant parameters, such as
setup, assumptions, quantum resistance, native languages, etc. beyond mere proof size and perfor-
mance. See Section 1.3 for a high-level discussion. To draw (non-trivial) conclusions from comparisons
on an implementation level, one should compare fully optimised implementations. Thus, we restrict
ourselves to a comparison with Bulletproofs (which we reimplemented with the same optimisation level
as our proof systems). For somewhat concrete numbers regarding (implementation) performance, as
well as other factors relevant to the comparison of proof systems, we refer to [8, Figure 2]. Our proof
systems are similar enough to Bulletproofs for these comparisons to still hold.

2We concede that the notion of “testing distribution” is too narrow, one should work with more general definitions.
3The average number of necessary transcripts could be as low as O(n).
4For completness are 4n resp. 6n exponentiations for QESAZK resp. [16]. The verifier in LMPAZK needs ≈ mn group

exponentiations.
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Setup Ass. Moves Comm. Comp. P Comp. V Nat. R

SNARG [25] 7 KoE 1 O(1) O(n) ≤ |w| R1CS
Bulletproofs[16] 3 dlog O(log(n)) O(log(n)) O(n) |w| R1CS

This work 3 dlog O(log(n)) O(log(n)) O(n) |w| QE

Table 1: Setup: Is a common random string sufficient? Ass(umption): Underlying security
assumption. Knowledge of exponents (KoE); Hardness of dlogs. Moves: The number of messages
sent. Comm(unication): The number of group elements sent. Comp: Computation of P resp. V
in number of exponentiations. Nat(ive) R: “Native” relation proven.

Comm. G Comm. Fp Comp. P R

LMPAZK ≈ 2km logk(n) 2km ≈ (k + 2)mn LMP
QESAZK(k = 2) 2dlog(n+ 2)e+ 3 2 ≈ 8n QE
Bulletproofs[16] 2dlog(n)e+ 8 5 ≈ 12n R1CS

Table 2: Detailed comparisons in terms of group operations. By “≈” we denote upper bounds
up to logarithmic (or constant) additive terms, i.e. ≈ f is f + O(log(f)). Note that k is a tunable
parameter but k = 2 is the sweet spot. We assume all random exponents are full sized and do not
count multi-exponentiations.

1.2.9 Implementation.

In Section 5, we compare our implementations of (aggregate) range proofs. The theoretical prediction
of 0.75× prover runtime compared to [16] is close to measurements, which suggest 0.7×. Using 140bit
exponents, we experimentally attain ≈ 0.63× compared to [16] on the same platform. As an important
remark, we compare the dedicated range proofs of [16] with our generic instantiation of QESAZK.

1.3 Related work
Due to space constraints, we only elaborate on the most important concepts and related work. We
refer to [33] for an overview and a general taxonomy.

The dlog setting and ILC. Very closely related works are [12, 13, 16, 28], which are efficient
proofs in the dlog setting. Many zero-knowledge proofs in the group setting are instantiations of [19,
40]. The possibilities of our setting, namely ability to apply linear transformations to a committed
witness has been abstracted in the ideal linear commitment model [14]. (Our techniques for QESAZK
are amenable to ILC.)

Knowledge assumptions. Another line of work [11, 21, 25, 29, 30, 39] gives non-interactive ar-
guments using knowledge of exponent assumptions. They attain constant size proofs for arithmetic
circuits and sublinear verification costs. However, they require a trusted setup.

PCPs, IOPs, MPC-in-the-head. Techniques, such as probabilistically checkable proofs (PCP),
MPC-in-the-head [35], interactive oracle proofs (IOP) and more, construct efficient zero-knowledge
proofs without relying on public key primitives. The possible performance gain (and quantum re-
sistance) is interesting from a practical point of view. There is much progress on improving these
techniques [2, 8, 17, 24, 46], which until recently suffered from relatively large proof size or unac-
ceptable constants. In [8], Ben-Sasson et al. present a logarithmic communication IOP for R1CS.
Still according to [8], proof sizes for R1CS statements of size N = 106 are about 130kb whereas our
proofs, like Bulletproofs, stay well below 2kb. For combining proofs in the “symmetric key” setting
with efficient proofs for “public key” algebraic statements, [1] can be used. Our proofs can be directly
combined with algebraic statements over the same group G.
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2 Preliminaries
For a set S and probability distribution χ on S we write s ← χ for drawing s according to χ. We
write s ← S for a uniformly random element. We also write y ← A(x; r) for running an algorithm
A with randomness r and y ← A(x) for running A with (uniformly) random r ← R (where R is
the randomness space). We let κ denote the security parameter and note that almost all objects are
implicitly parameterised by it. By negl we denote some (fixed) negligible function, i.e. a function
with limκ→∞ κ

cnegl(κ) = 0 for any c ∈ N. We assume we can sample uniformly random from any
{1, . . . , n}. The number p ∈ N will always denote a prime, Fp := Z/pZ, and G is a (cyclic abelian)
group of order p. We use additive implicit notation for G as introduced in [23]. That is, we write
[1] for some (fixed public) generator associated with G and [x] := x[1]. We extend this notation to
vectors and matrices, i.e. for compatible A,B,C over Fp, we write A[B]C = [ABC]. Matrices are
bold, e.g. [a], components not, e.g. [ai]. By ei we denote the i-th standard basis vector. We write
diag(M1, . . . ,Mn) for a block-diagonal matrix. By idn we denote the n× n identity matrix.

2.1 Matrix kernel assumptions and Pedersen commitments
Instead of discrete logarithm assumptions, the generalisation of hard (matrix) kernel assumptions [41],
but for right-kernels, better suits our needs.
Definition 2.1. Let G← GrpGen(1κ) be a group generator (we let [1] and p be implicitly given by G).
Let Dm,n be a (efficiently samplable) distribution over Gm×n (where m and n may depend on κ). We
say Dm,n has a hard kernel assumption if for all efficient adversaries A, we have

P(G← GrpGen(1κ); [A]← Dm,n;x←A(1κ,G, [A]) : [A]x = 0 ∧ x 6= 0) ≤ negl(κ)

For simplicity, we will often only implicitly refer to Dm,n and just say [A] has hard kernel assump-
tion. Note that kernel assumptions generalise discrete log assumptions: Finding a non-trivial kernel
element of [h, 1] ∈ G2 immediately yields the discrete logarithm h of [h].

If Dm,n is a matrix distribution with hard kernel assumption, then [A] ← Dm,n is a (Pedersen)
commitment key ck. Commit to x ∈ Fnp via Comck(x) = [c] ∈ Gm. Breaking the binding property of
the commitment is equivalent to finding non-trivial elements in ker([A]). The common case will be
[g] ∈ G1×(n+1) drawn uniformly as commitment key ck. Breaking the hard kernel assumption for [g]
is tightly equivalent to breaking the dlog assumption in G. Write x = (rw,w) with rw ∈ Fp, w ∈ Fnp .
If rw ← Fp is drawn uniformly, it is evident that [c] = [g]x perfectly hides w, i.e. [c] is uniformly
distributed in G.
Remark 2.2. It would be convenient to consider hard kernel assumptions with prior knowledge V ≤ Fnp ,
where the subvector space V is some (leaked) knowledge about ker([B]) for [B]← Dm,n. The reason
being that we construct matrices [B] from [A] (where [A] has a standard hard kernel assumption) in
such a way that some kernel elements are known, e.g. because [B] has some zero columns. However,
to keep the overhead low, we deal with these cases explicitly.

2.2 Interactive arguments, extractability and zero-knowledge
Our setting will be the common reference string model, i.e. there is some CRS crs, typically a commit-
ment key, set up by a trusted party. In the following R denotes a binary relation for which (st,w) ∈ R

is efficiently decidable. We call st the statement and w the witness. (R does depend on crs, i.e.
actually we consider (crs, st,w) tuples, but we suppress this.) The (NP-)language L defined by R is
the language of statements in R, i.e. L = {st | ∃w : (st,w) ∈ R}.
Definition 2.3. An (interactive) argument system for a relation R is a protocol between two
parties, a prover P and a verifier V. We use the name (interactive) proof system interchangably.5

The transcript of the interaction of P and V on inputs x and y is denoted 〈P(x),V(y)〉 where both
parties have a final “output” message. We write b = 〈P(x),V(y)〉, for the bit b indicating whether
an (honest) verifier accepts the argument, where b = 1 means accept.

5More precise usage would only use the term proof and proof system if soundness against unbounded adversaries is
guaranteed.
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Definition 2.4 (Completeness). An interactive argument system for (st,w) ∈ R is (computationally)
complete if for all efficient adversaries A, we have

P(crs← GenCRS(1κ); (st,w)←A(crs) : (st,w) 6∈ R or 〈P(st,w),V(st)〉 = 1) ≤ 1− negl(κ)

for a negligible function negl. It is perfectly complete if negl = 0.
In Appendix D, we give a definition of witness-extended emulation [13, 31] with extraction error

(i.e. knowledge error). It turns out that preserving a good extraction error over multiple rounds is
non-trivial. See Sections 2.3 and 2.4.
Definition 2.5 (Public coin). An interactive argument system for R is public coin if all of the
verifier’s challenges are independent of any other messages or state (essentially V makes his random
coins public). Furthermore, V’s verdict is a function Verify(tr) of the transcript.
Definition 2.6. Let (P,V) be an interactive argument system for R. We call (P,V) (ε-statistical)
honest-verifier zero-knowledge (HVZK), if there exists an expected polynomial-time simulator
Sim such that for all expected polynomial-time A the probabiliy distributions of (crs, tr, state), where

• crs← GenCRS(1κ); (st, w)←A(crs); tr← 〈P(st, w),V(st)〉
• crs← GenCRS(1κ); (st, w)←A(crs); tr← Sim(st, ρ);

are indistinguishable (have statistical distance at most ε), assuming tr := ⊥ if (st, w) 6∈ R.
Remark 2.7. We focus on HVZK, not special HVZK, The latter states that even if the adversary
chooses statement, witness and the verifier’s randomness (ρ in Definition 2.6), the special simulator
will “succeed”. Our security proofs make use of honest challenges. Different (more complex) security
proofs may be possible.

2.2.1 Full-fledged zero-knowledge.

To obtain security against dishonest verifiers, i.e. full-fledged zero-knowledge, simple transformations
exist [18, 20, 27, 37] for public coin HVZK arguments. The most straightforward one is to use an
equivocable coin toss between prover and verifier to generate the challenge.

2.2.2 The Fiat–Shamir heuristic.

In the random-oracle model (ROM), public coin arguments can be converted to non-interactive argu-
ments by computing the (verifier’s) challenges as the hash of the transcript (and relevant “context”)
up to that point. The statement of the argument should be part of the “context” [10].

2.3 Testing distributions
Intuitively, testing distributions are a special form of probabilistic verification where one can efficiently
recover the “tested” value given enough “tests”. Thus, they are used to recover the witness in proofs
of knowledge. We only define testing distributions over Fmp .

Example 2.8. To test if a vector [c] ∈ Gm is [0], test if x⊤[c] ?
= [0] for random x ∈ Fmp . The soundness

error is 1/p.
Definition 2.9 (Subdistribution). Let χ be a distribution on Fmp . We call a distribution ψ on Fmp a
subdistribution of χ weight ε if

• there exists a subdensity ρψ : Fmp → [0, 1]. (It is important that ρψ(x) ≤ 1.)
• ε =

∑
x∈Fn

p
ρψ(x)χ(x), and

• ψ has probability ψ(x) = 1
ερψ(x) to pick x. (That is, ψ has density 1

ερψ w.r.t. χ.)

The definition of a subdistribution is constructed to deal with adversaries. As a concrete example
consider extraction by rewinding: It may happen that the adversary does not correctly answer a
challenge. Thus, the challenges which are answered are a subset, or more generally a subdistribution.
An adversary with success probability ε must succeed on a subdistribution of weight ε.
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Definition 2.10. A testing distribution χm for Fmp with soundness δsnd(κ) is a distribution over Fmp
with following property: For all subdistributions ψ of χm with weight ε ≥ δsnd := δsnd(χm), we have

P(xi ← ψ,X = (x1, . . . ,xn) : det(X) = 0) ≤ 1
εδsnd.

We write δsnd(χm) for some (fixed) soundness error of χm.
Note that det(X) 6= 0, is equivalent to all xi being linearly independent, and to

⋂m
i=1 ker(x⊤i ) =

{0}. These interpretations allow to generalise in different directions. For more about testing distribu-
tions, see Appendix E. Typically, we want that δsnd(χ) is very small, e.g. 2−100 in practice.

Our examples need a slight generalisation of the lemma of Schwartz–Zippel.

Lemma 2.11 (Schwartz–Zippel). Let f ∈ Fp[X1, . . . , Xn] be a non-zero polynomial of (total) degree
d. Let χ be a distribution on Fp. Let p∞(χ) := supx∈Fp

χ(x), where χ(x) := P(x = y | x ← χ).
Then P(f(x) = 0) ≤ dp∞(χ) for x ← χn (i.e. xi ← χ). Moreoever, since p∞(ψ) ≤ 1

εp∞(χ) for any
subdistribution ψ of weight ε, we get Px←ψn(f(x) = 0) ≤ dp∞(χ)

ε .

Proof. We follow the standard proof. For n = 1 this is easy: Consider f 6= 0. Then f has at most d
zeroes y1, . . . , yn. From χ({y1, . . . , yn}) =

∑d
i=1 χ(yi) ≤ dp∞(χ), where χ(S) := P(x← χ : x ∈ S), the

claim follows
For degree n, write f as f(X1, . . . , Xn) =

∑d
i=0X

i
1gi(X2, . . . , Xn). Note that deg(gi) ≤ d− i. Let

j be maximal with gj 6= 0. The probability that we obtain 0 after a random evaluation at x ← χn

is smaller (by union bound) than the probability that gj(x2, . . . , xn) = 0 plus the probability that
f(X1, x2, . . . , xn) evaluated at x1 is 0. Writing η := p∞(χ), we find by induction hypothesis that
P(f(x) = 0) ≤ (d− j)η + jη = dη, as claimed.

Example 2.12 (Polynomial testing). The distribution induced by x = (x0, . . . , xm−1), where x ← Fp,
is a testing distribution. This follows from the fact that X is a Vandermonde matrix, hence invertible
except if the same x was chosen twice. It is easy to see that δsnd(χ) ≤ m

p .
Example 2.13. For the special case m = 2, and testing distribution with x = (α, 1) where α ← S for
some S ⊆ Fp we write χ(β) and α← χ(β). If S ⊆ F×p , i.e. α 6= 0, we write χ(β ̸=0).
Example 2.14 (Random testing). The uniform distribution over Fmp is a testing distribution. The
Lemma of Schwartz–Zippel immediately yields δsnd(χ) ≤ m

p . Moreover, one can resort to a set S of
“small exponents”, i.e. draw from S = {0, . . . , ℓ− 1} and still have soundness δsnd(χ) ≤ m

ℓ .
Example 2.15 (Pseudo-random testing). The verifier can replace truly random choices, e.g. x ← Fmp
as above, by pseudorandom choices, e.g. x ← PRG(s) for s ← {0, 1}κ. This allows the verifier to
compress such challenges to a random seed s.

It is heuristically plausible, that any non-pathological PRG has distribution with soundness error
(negligibly close) to that of the respective uniform distributions. In fact, for a PRG which is secure
against non-uniform adversaries, this is easy to see. However, this is a strong assumption and there
are distributions χ which are pseudorandom (under plausible assumptions), but where the soundness
error δsnd(χ) is large, e.g. greater than 1

2 . This motivates some computational notion of soundness
error, which is discussed in Appendix E.

Note that soundness of testing distributions is a combinatorial property. No pseudorandomness
property is required, as illustrated by Example 2.12. Thus, there may be better options to use “small
exponents” than (pseudo)random testing.

2.3.1 Dual testing distributions.

Testing distributions are essentially a stronger (and simplified) form of the general concept of proba-
bilistic verification with efficient extraction. They allow to test if an element in Fnp is 0. By dualising,
we find another concept, for which an intuitive description seems harder. Instead of a distribution
on x⊤ ∈ F1×m

p satisfying with high probability
⋂m
i=1 ker(x⊤) = {0}, we consider a distribution on

M ∈ Fm×m−1p , satisfying with high probability
⋂m
i=1 im(M) = {0}, In a sense, M guarantees that for
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any 0 6= z ∈ Fmp , z 6∈ im(M) with high probability. Hence, we can use it to enforce z = 0, instead of
testing for it.

More concretely, we use this to ensure that for a Pedersen commitment [c] = [G|H](wz ) the
adversary must have z = 0. We do so by constructing [H] as [H] := [Q]M . Intuitively, knowledge of
some [c′] = [G|Q](wy ) cannot be transferred to [G|H] because we must have z = My, i.e. z ∈ im(M),
which is unlikely (except for z = 0 or if A breaks the binding property). Thus, we can provably
“zero” a part of a commitment without an (expensive) argument. Generally, this allows to derive
“fresh” commitment keys. Using this is more communication efficient than picking and sending a
fresh [H]← Gm.

Morally, dual testing enforces z = 0, while “normal” testing verifies z = 0.
Definition 2.16. An (arbitrary) dual testing distribution χ∨m is a distribution on Fm×(m−1)p . The
soundess error δsnd(χ∨m) is defined as before, but using P(∩mi=1 im(Mi) 6= {0}).

Let χm be a testing distribution on Fmp such that x ← χm always has x1 = 1. Then χ∨m defined
as follows is a dual testing distribution: To pick M ← χ∨m, pick x⊤ = (1,x′)⊤ ← χm and let
M := Mx :=

(
x′

− idm−1

)
. By construction ker(x⊤) = im(Mx), and consequently δsnd(χ∨) = δsnd(χm).

Note that by construction, Mx is the (parity) check matrix for the linear code with generator x.
In particular, x⊤Mx = 0. For simplicity, we only consider dual testing distributions associated to
some testing distribution.

2.4 Special soundness
In the main body, we only consider special soundness and give extractors which produce a witness
given a suitable tree of accepting transcripts, see also [13].
Definition 2.17 (µ-special soundness (over Fp)). Let (GenCRS,P,V) be a public coin argument system
for R. Suppose the verifier sends n challenges and µ = (µ0, . . . , µn−1) ∈ Nn. Furthermore, suppose the
challenges are vectors in Fni

p . Then the protocol is µ-special sound if there exists an extractor Ext such
that given any good µ-tree treeµ of transcripts, Ext(st, treeµ) returns a witness w with (st,w) ∈ R. A
µ-tree of transcripts is a (directed) tree where nodes of depth i have µi children, with edges labelled
with the i-th challenge, and nodes labelled with the prover’s i-th answer, and every path along the
tree constitutes an accepting transcript. We call a µ-tree good if for every node, all its challenges (i.e.
outgoing edges) are in general position.6

Caution 2.18. The choice of general position instead of just linear independence may not generalise
well.7

Given a TreeFind algorithm, which produces good µ-trees (with oracle access to a successful prover),
and an extractor as above, one obtains witness extended emulation by plugging the tree into the
extractor. To be able to speak about the security of the resulting protocol, one needs success and
runtime guarantees of TreeFind. We do not deal with this here as it is a separate issue. See [13] for a
TreeFinder and [48] for further generalisations, more details are in Appendix D.

2.4.1 Short-circuit extraction.

In this section, we assume TreeFind produces the tree’s nodes and leaves on demand, and Ext queries
TreeFind as an oracle, and traverses the tree in depth-first order. Moreover, we are in a situation
where Ext either extracts a witness for some statement, or a solution to a (supposedly) hard problem,
or both. Concretely, we have statements like “we extract w such that either [g]w = [c] is a valid
commitment opening, or [g]w = [0] breaks the hard kernel assumption for [g].”

6Vectors x1, . . . ,xN ∈ Fn
p are in general position if any n of them are linearly independent. E.g. in the case n = 1,

this is equivalent to all x’s being different (and non-zero).
7We (only) need this in Lemma 3.10 (3), and (implicitly) its descendants, namely all of Section 4, because we use it

to guarantee that the partial commitments [uℓ] are all extractable. However, we only (state and) prove Lemma 3.10 for
special challenges where general position has strong implications. We fear that the proof, as is, may not work in general,
and additional properties are required for (generalised) testing distributions. Since we believe the instance of Lemma 3.10
to be optimal, c.f. Remark 3.11, and since this only affects extraction of [uℓ], not the overall proof-of-knowledge property,
we opt to keep this “bad definition” for now. Those who whish to use the Definition 2.17, be warned.
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Definition 2.19. Consider the situation in Definition 2.17. Suppose R is OR(R1,R2), i.e. R =
{((st1, st2), (w1,w2)) | (sti,wi) ∈ Ri for i = 1 or i = 2}.

Suppose there is some µ′ ≤ µ (i.e. µ′i ≤ µi for all i) such that extractor Ext has following property.
For any good µ-tree treeµ, Ext(st, treeµ) we have either:

• Ext finishes after exploring a µ′-subtree of treeµ and returns a witness for st1. We call this
quick-extraction.

• If in layer ℓ of the tree, Ext must explore more than µ′ℓ children of some node, then after exploring
all µℓ children, Ext returns a witness for st2 (and perhaps st1). (That is, Ext short-circuits in
layer ℓ.)

We say that such an Ext has short-circuit extraction with µ′ ≤ µ for finding a witness to st1 or to
st2. (Note that order of the statements matters!)

Our definition is ad-hoc and tailored to our needs. We leave a solid definition and precise treatment
of short-circuit extraction for future work.

Corollary 2.20. If Ext as in Definition 2.19 traverses a good tree treeµ in depth-first order, we have
following “runtime” guarantees: Let µ′ = (µ′0, . . . , µ

′
n−1) ≤ (µ0, . . . , µn−1) = µ. In case of quick-

extraction, at most
∏n−1
i=0 µ

′
i leaves are explored. In case of short-circuit extraction, at most s0 + 1

leaves are explored, where s0 =
∑n−1

i=0 (µi − 1)
∏n−1
j=i+1 µ

′
j. In particular, s0 ≤ (

∑n−1
i=0 µi)(

∏n−1
i=0 µ

′
i).

Proof. Let ti denote the maximal number of leaves necessary to ensure a µ|i-subtree, where µ|i =
(µi, . . . , µn−1), is extractable. We find tn−1 = µn−1. Recursively, we find ti = (µi−1)

∏n−1
j=i+1 µ

′
j+ti−1,

which yields our formula. (Note that si = ti − 1 is the maximum number of leaves, such that one
additional leaf guarantees extraction.)

We argue as follows: In the worst case, layer i short-circuits. If that happens, we have to extract
all µi nodes. A subtree (in layer i + 1) quick-extracts after exploring

∏n−1
j=i+1 µ

′
j leaves. In case of

failure, the subtree must short-circuit, requiring at most ti+1 nodes. In the worst case, the first µi− 1
nodes in layer i quick-extract, and the last node, i.e. the µi-th node, again short-circuits. Thus, we
again pay the costs8 for a short-circuit extraction, now in layer i+1, which is bounded by ti+1. Hence,
at most ti+1 nodes are explored. The claim follows.

We note that since the tree treeµ is randomised (or Ext might explore children in random order),
the above worst-case analysis is very conservative.

3 HVZK arguments for [A]w = [t]

Let ck := [g] = [g0, g] ← G1×n+1 be a Pedersen commitment key, where [g0] ∈ G and [g] ∈ Gn.
Define Comg(w; r) := [g0]r + [g]w for r ∈ Fp, w ∈ Fnp . In the whole section, we work with matrices
[A] ∈ Gm×n, and vectors w ∈ Fnp and [t] ∈ Gm. The dimensions are as above, unless otherwise
specified. Our witness relation R is st = ([A], [t]) and w = w such that (st,w) ∈ R if and only if
[A]w = [t].

3.1 Intuition
In this section, we devise communication efficient public-coin HVZK arguments for knowledge of a
preimage of a linear map, i.e. ∃w : [A]w = [t]. We follow two principles: “Use probabilistic (batch)
verification to check many things at once” and “If messages are too long, replace them by a shorter
proof (of knowledge).” For this, we use shrinking commitments, to keep the messages small.

Our strategy is as follows: First, we recall the well-known general HVZK protocol [19, 40] for
proving ∃w : [A]w = [t] where [A] ∈ Gm×n. Then, we show how to apply batch verification to reduce
the argument for ([A], [t]) to another an argument for some ([B], [u]) with [B] ∈ G2×n. This makes
communication independent of the number m of rows of [A]. After this, we revisit the arguments
from [13] which recursively batch statement and witness, i.e. they reduce the number n of columns of

8Since µ′ ≤ µ, short-circuit extraction is never cheaper.
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[A]. Unlike [13, 16], we need a zero-knowledge version of these arguments. We provide a very efficient
conversion with constant communication and logarithmic computational overhead. Taken together,
we can prove knowledge of w in communication O(log(n)) now.

3.2 Step 0: A standard Σ-protocol for [A]w = [t]

Here, we recall the prototypical Σ-protocol in a group setting [19, 40].
Protocol 3.1 (Σstd). The following is a protocol to prove ∃w : [t] = [A]w, using testing distribution
χ(β) for challenges, c.f. Example 2.13. Common input is ([A], [t]) ∈ Gm×n×Gn. The prover’s witness
is some w ∈ Fnp .

• P→ V: Pick r ← Fnp and compute [a] = [A]r. Send [a] ∈ Gm.
• V → P: Pick β ← χ(β). Send β ∈ Fp.
• P→ V: Compute z = βw + r. Sends z ∈ Fnp .
• V: Check [A]z

?
= β[t] + [a]. (Accept/reject if true/false.)

It is straightforward to show that any (x1, x2)← χ2 can be used instead of χ(β), as long as x2 6= 0,
so that x1w + x2r is uniformly distributed, c.f. Section 1.1.

Lemma 3.2. Protocol Σstd is a HVZK-PoK for ∃w : [t] = [A]w. It is perfectly complete, has perfect
HVZK and is 2-special sound.

Proof. Completeness: is straightforward to verify.
Extraction: We are given two accepting transcripts ([a], β, z), and ([a], β′, z′) with β − β′ 6= 0.

Due to the final check of the verifier, we obtain 1
β−β′ [A](z−z′) = [t]. Consequently, w := 1

β−β′ (z−z′)
is a witness.

HVZK: Pick β ← χ(β) and z ← Fmp . Then [a] := [A]z − β[t] is uniquely defined. Since the
distribution of β and z is as in an honest execution, this yields a perfect simulation.

Now, we improve communication efficiency. We do this in two steps. First, we make the com-
munication independent of the number m of equations, using batch-verification. Then we make it
logarithmic in the size n of the witness, using techniques from [13, 16]. We apply all techniques
mentioned in the introduction, using shrinking commitments to keep messages small. Composition of
proof systems is implicit due the following remark.
Remark 3.3. AND-proofs for statements of the form ∃w : [A]w = [t] are trivial. Namely, to prove
∃w : [A1]w = [t1]∧ [A2]w = [t2], it suffices to define [A] =

[
A1
A2

]
and [t] =

[
t1
t2

]
and prove ∃w : [A]w =

[t]. This AND-compilation technique will be used without explicit mention. Evidently, many trivial
optimisations are possible, e.g. removing duplicate rows.

3.3 Step 1: Batching all equations together
In this step, we devise a HVZK-AoK for ∃w : [A]w = [t], where P’s communication is independent
of m, the “number of equations”. Thus, we have to shrink the message [a] ∈ Gm somehow. We would
like to batch all m linear equations (given by [A]) into a single linear equation, i.e. replace [A] by a
random linear combination of its rows. We do not know whether this is sound or not, c.f. Question 3.7.
Nevertheless, if P has explicitly committed to the witness w (or [a]), the statement — excluding the
commitment — can be batched, as P cannot change his mind anymore.

Note that the value [t] is in general not a commitment, since the adversary may supply (parts of)
[A] in the soundness experiment. Thus, he may know dlogs and generate preimages of [t] freely. By
adding a commitment to w, we get around this problem.

By using a shrinking commitment to w, we ensure that the communication is small. Now the
verifier can send batching randomness, and a HVZK-AoK for the batched statement is carried out.
We directly apply AND-compilation in the protocol. We use general testing distributions, but the
reader may want to imagine the familiar setting of polynomial testing with x = (x0, . . . , xm) first.
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Protocol 3.4 (Protocol LMPAbatch). The following is a protocol to prove ∃w : [t] = [A]w. Let χm and
χ(β) be testing distributions. Common input is ([A], [t]) ∈ Gm×n ×Gm. The prover’s witness is some
w ∈ Fnp .

• P→ V: Pick rw ← Fp, and compute [cw] = [g0]rw + [g]⊤w = Com(w; rw). Send [cw].
• V → P: Pick x← χm. Send x.

Let [Â] = x⊤[A] ∈ G1×n and [t̂] = x⊤[t] ∈ G be the batched statement (for both P and V). Let

[B] :=

[
g0 g

0 Â

]
and let ∃(w, rw) : [B]

(
rw
w

)
=

[
cw
t̂

]
=: [u] be the new (AND-type) statement.

• P↔ V: Engage in Protocol Σstd for ∃( rww ) : [B]( rww ) = [u].

In words, Protocol LMPAbatch batches [A] to [Â], and carries out an AND-proof for opening the
commitment [cw] and that the content w of [cw] is preimage of [t̂] under [Â]. This is proven via a
subprotocol call to Protocol Σstd.

Lemma 3.5. Protocol LMPAbatch is a 5-move HVZK-AoK for ∃w : [t] = [A]w with (m, 2)-special
soundness for finding a witness or a non-trivial kernel element for [g]. It has (1, 2) short-circuit
extraction.

Proof. Completeness: It is straightforward to see that completeness holds.
Zero-knowledge: The simulator picks β,x according to the distributions. The simulator proceeds

in two steps. First, simulate the Protocol Σstd, i.e. the final three rounds. Since those are now simulated
independently of [cw], we pick [cw]← G randomly. This gives a perfect HVZK simulation.

Extraction: Given a good (m, 2)-tree treeµ, we first extract the second layer (i.e. the subprotocol
Σstd). If not all of them yield the same (rw,w), we found a non-trivial kernel element for [g] and
are finished. To prove short-circuit extraction, we show that if this does not happen, w is a valid
witness. Now, for all xi, we have [Bi](

rw
w ) =

[ cw
t̂i

]
, where the subscript i denotes the matrices of the

i-th round. Then in particular,

x⊤i [A]w = [Âi]w = [t̂i] = x⊤i [t].

Arranging the m linear equations into a vector, we find with X = (x1, . . . ,xn),

X⊤[A]w = X⊤[t] and hence [A]w = [t].

Since treeµ is good, X is invertible. Thus w is a valid witness.

Remark 3.6 (Commitment extending). When working with adversarial [A] (and [t]), one can not rely
on any hardness assumptions. Extending [A] to some [B] which has hardness (as in Protocol 3.4) is
one way to circumvent problems. For the sake of referencing, we call this commitment extending [A].
If [A] already contains a commitment submatrix, there is an obvious adaption of Protocol LMPAbatch.
More concretely, randomly sum together all rows but those in the submatrix into a single row, as done
before, and run the subprotocol on this statement instead.

Note that commitment extending [A] was not necessary for Protocol Σstd, where extraction is
unconditional. This raises following (to the best of our knowledge open) question.
Question 3.7. Is batch-verification without an (unbatched) commitment sound? That is, V initiates
LMPAbatch and sends x immediately. Then ∃w : [Â]w = [t̂] is proven. Since the statements are
adversarially chosen, this is essentially an information-theoretic question. Partial results show that
soundness holds at least in certain (very) special cases. The gist of this question recurs in different
guises, and culminates in the question whether many of the presented arguments (and many in the
literature) may in fact be proofs of knowledge.

3.4 Step 2: “Batching” the witness
In this section, we show how to “batch” the witness, i.e. proving ∃w : [A]w = [t] for [A] ∈ Gm×n with
communication sublinear in n. For the introduction, one may assume m = 1, e.g. [A] = [g]. (Using
LMPAbatch, we can reduce to m ≥ 2.)
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Remark 3.8. We can also reduce to m = 1 conceptually. Namely, let H := Gm. Then [A] and [t] can
be interpreted as [A] ∈ H1×n, [t] ∈ H, and [A]w = [t]. Using H means working over a vector space of
dimension m > 1. This is a relevant difference, but mostly affects zero-knowledge.9

3.4.1 The general idea.

We present the technique of [13], but in our situation and notation. For the motivation, let us ignore
zero-knowledge, and only construct an argument (of knowledge). We add zero-knowledge later.

Let k ∈ N be the size-reduction we want to achieve. Assume for simplicity that k|n, i.e. n/k ∈ N.10

We will reduce the equation [A]w = [t] to [Â]ŵ = [t̂], where [Â] ∈ Gm×n/k, ŵ ∈ Fn/kp , [t̂] ∈ Gm.
To do so, divide [A] and w into k equal blocks,11 obtaining vectors/matrices of vectors/matrices i.e.
[A] = [A1| . . . |Ak] ∈ (Gm×n/k)1×k with [Ai] ∈ Gm×n/k, and likewise w =

(
w1
...
wk

)
∈ (Gn/k)k. We want

to prove
k∑
i=1

[Ai]wi = [t].

Still, the techniques from Section 3.3 are not applicable, because [t] ∈ G (if m = 1). The trick of
[13] is to embed our problem into a different one which can be batch-verified. Namely, we exploit that
the scalar product is the sum of the diagonal entries (i.e. the trace) of the outer product:

A1...
Ak

(w1, . . . ,wk) =


A1w1 A1w2 . . . A1wk

A2w1 A2w2 . . . A2wk...
... . . .

Akw1 Akw2 . . . Akwk

 ∈ Gk×k (3.1)

Now we can send all terms [Ai]wj to the verifier. Our probabilistic test has to map both [A] and
w to a new (smaller) statement. We can do that by multiplying from the left by x ∈ Fkp and from the
right by y ∈ Fkp where x,y ← χk. Consequently, we obtain (from associativity)

x⊤


A1...
Ak

(w1, . . . ,wk)

y =

x⊤

A1...
Ak




︸ ︷︷ ︸
:=

∑
i xi[Ai] =: [Â]

((w1, . . . ,wk)y)︸ ︷︷ ︸
:=

∑
i yiwi=:[ŵ]

=
∑
i,j

xiyj [Ai]wj︸ ︷︷ ︸
=:[t̂]

The prover thus sends the (purported) [Aiwj ], denoted [ui,j ], and ŵ, the shrunk witness. The verifier
checks

∑
i[ui,i]

?
= [t] and [Â]ŵ

?
= [t̂] =

∑
i,j xiyj [ui,j ].

If each [Ai] satisfies a hard kernel assumption, the prover is committed to w1, . . . ,wk. It is not
hard to see that given enough (linearly independent) challenges, one can extract w (or find non-trivial
kernel elements.) We will show this for a more efficient special case. All in all, we reduced the
statement ([A], [t]) to ([Â], [t̂]) which is smaller by a factor of k. This can be applied recursively.

3.4.2 Refining the testing distribution.

It turns out, that by a good choice of testing distribution, we can reduce communication. Namely, we
can pick testing distributions with xiyj = zj−i for all i, j. Then it is sufficient for the verifier to know
the sum of the off-diagonals12 i.e. [uℓ] :=

∑
j−i=ℓ[Ai]wj for ℓ = ±1, . . . ,±k (and [u0] = [t]). This

follows from
∑

j−i=ℓ xiyj [Ai]wj = zℓ
∑

j−i=ℓ[Ai]wj . We denote the (purported)
∑

j−i=ℓ[Ai]wj , sent
by the prover, as [uℓ]. Note that [u0] = [t] need not be sent. From the testing distribution χ̃2k−1 we

9Drawing a random [b]← H needs a basis [hi] of H and sets [b] =
∑

ri[hi] for ri ← Fp.
10Pad [A] and the witness with zeroes if necessary. Note the technical “difficulties” that arise, Remark 2.2.
11It may be helpful to think of the vector space (Fn/k

p )k as Fn/k
p ⊗Fk

p.
12Any diagonal which is “parallel” to the diagonal (i.e. (Mi,j)j−i=ℓ for some ℓ) is called off-diagonal.
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require that z ← χ̃2k−1, belongs to a pair (x,y). We always implicitly consider (x,y, z) for χ̃2k−1, as
these values belong together.13

One testing distribution with this property comes from monomials Xi, e.g. x = (1, x, . . . , xk−1)
and y = (1, x−1, . . . , x−k+1).14 In this case, zℓ = x−ℓ.

For efficiency, picking x as above, but y = (xk−1, . . . , x, 1) is also interesting, since this preserves
small xi. In this case, zℓ = xk−1−ℓ.
Protocol 3.9 (LMPAnoZK). The following is a protocol to prove ∃w : [t] = [A]w. Let χ̃2k−1 be a testing
distributions with the properties described above. Common input is ([A], [t]) ∈ Gm×n × Gm. We
assume n = kd. The prover’s witness is some w ∈ Fnp .

Recursive step. Suppose n = kd > k.

• Notation: Let [A⃗⊤] :=
[

A1...
Ak

]
∈ (Gm×n/k)k and w⃗ :=

(
w1...
wk

)
∈ (Fn/kp )k, where [A] = [A1, . . . ,Ak] ∈

(Gm×n/k)1×k.
• P→ V: Compute [uℓ] =

∑
j−i=ℓ[Ai]wj . Send [uℓ] for ℓ = ±1, . . . ,±(k−1). ([u0] = [t] is known

to the verifier.)
• V → P: Pick z ← χ̃2k−1 with corresponding x,y. Send (x,y, z).
• Both parties compute [Â] = x⊤[A⃗⊤] =

∑
i xi[Ai] ∈ Gm×n/k and [t̂] = z⊤[u⃗] =

∑k
ℓ=−k zℓ[uℓ] ∈ G

the new batched statement. Moreover, P computes ŵ = w⃗⊤y =
∑

iwiyi. The protocol may
then be (recursively resumed), setting n← n/k, w ← ŵ, [t]← [t̂], [A]← [Â].
Base case. Suppose n ≤ k.

• P→ V: Send w.
• V: Tests if [A]w

?
= [t].

See Appendix G for a sketch of the protocol.
For efficiency reasons, our base case could start at n = 2k, not k. This (only) makes a difference

for k = 2, where it saves one round-trip. However, this would interfere with our zero-knowledge
conversions, slightly complicating complicating the proof and constructions. We could describe Pro-
tocol LMPAnoZK for general n = k1 . . . kℓ, as [13]. To keep the technicalities in check, we choose not
to.

Lemma 3.10 (Recursive extraction). Consider the situation above. Let χ̃2k−1 be a testing distribution
with xiyj = zj−i as above.15 Let [uℓ], [Ai], [t], wj and [Â], [t̂] be defined as above. Then:

1. Given a non-trivial kernel element of [Â], we (efficiently) find a non-trivial kernel element of
[A].

2. Given 2k−1 linearly independent challenges (with accepting transcripts), i.e. an invertible matrix
Z, one can extract (unconditionally) a witness [A]w = [t].

3. Given 2k challenges in general position,16 if the witness from above does not fit w.r.t. the [uℓ],
i.e. if an honest prover would send different [uℓ] for w, then we find (additionally) a non-trivial
kernel element v, i.e [A]v = 0.

Moreover, we have short-circuit extraction: From k independent challenges, one can compute a
candidate witness w′ for quick-extraction. If

∑
j−i=ℓ[Ai]w

′
j 6= [uℓ] for some ℓ, then we are guaranteed

to find a non-trivial kernel relation from 2k challenges in general position.

Note that, maybe surprisingly, extraction of a witness w with [A]w = [t] is unconditional, i.e. we
have a proof of knowledge,17 see also Question 3.7. The proof is a minor generalisation of [13, 16].

13It is possible to give a suitably generalised definition of testing distributions.
14 It can be shown that, up to scalar multiples, these are all possible such testing distributions. In the case n = 2,

it’s easy to see that x2
x1

= y1
y2

=: ρ. By fixing either two consecutive x’s or y’s and letting the other vary, we see that
xi
xj

=
yj
yi

= ρj−i.
15Note that the soundness error δsnd(χ̃2k−1) is an upper bound for the soundness errors of the (induced) testing

distributions for x and y.
16By Footnote 14, 2k challenges are in general position if ρ = x2/x1 is different for all challenges.
17Note that unconditional extraction does not apply to openings of [uℓ].
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Proof. Given a non-trivial kernel element ŵ for x⊤[A⃗⊤], i.e. 0 = x⊤[A⃗⊤]ŵ =
∑

i[Ai]xiŵ, we see that
ŵx as defined below satisfies [A]ŵx = 0. Thus, we can recursively “extend” kernel elements to earlier
rounds.

Now to the interesting case. Given 2k − 1 linearly independent z(i), we find

[u−k+1, . . . ,uk−1]z
(i) = (

k∑
j=1

x
(i)
j [Aj ])ŵ

(i)

=
∑
j

[Aj ]x
(i)ŵ(i)

= [A1, . . . ,An]ŵ
(i)
x

where ŵ
(i)
x :=

x
(i)
1 ŵ
...

x
(i)
n ŵ

 ∈ (Fn/kp )k.

Note that ŵ
(i)
x is a column vector of vectors, and is multiplied with a a row vector of matrices.18 We

will sometimes explicate this by writing [A⃗]⊤ and w⃗. Concretely, we let [A⃗⊤] =
[
A1
...
Ak

]
∈ (Fm×n/kp )k be

a matrix (of matrices). Thus, we get [A⃗]w⃗ = [t] for the a witness w⃗. For simplicity, the reader may
think of the case m = 1, n = k where we deal with “normal” vectors and matrices, c.f. Remark 3.8.
To gather all equations in a single linear system, let

Z := (z(1), . . . , z(2k−1)) ∈ F(2k−1)×(2k−1)
p and Ŵ := (ŵ

(1)
x , . . . , ŵ

(2k−1)
x ) ∈ (Fn/kp )k×(2k−1)

and note that we obtain
[u−k+1, . . . ,uk−1]Z = [A1, . . . ,Ak]Ŵ

as the linear system. Multiplication by Z−1 yields W := ŴZ−1 which satisfies

[u−k+1, . . . ,uk+1] = [A1, . . . ,Ak]W .

In particular, numbering columns from −k+1 to k−1, shows that the ℓ-th column of W is a preimage
of uℓ. (However, this preimage is under [A1, . . . ,Ak], and hence not necessarily one an honest prover
could have produced.) We only care about the preimage of [u0] = [t], hence the corresponding column
yields a witness w̃ satisfying [A]w̃ = [t̂]. This finishes the first part of the claim, i.e. unconditional
extraction.

Now, we consider the structure of W . A W obtained from an honest prover has zeroes in certain
components Wi,j . This is, because an honest [uℓ] is the sum of the ℓ-th off-diagonal of [Q] :=

[A1, . . . ,Ak]
⊤(w1, . . . ,wk), c.f. Eq. (3.1). By using the structure of wx, which was used to build Ŵ

and from the structure of each z (namely z = α(1, ρ, ρ2, . . . , ρk−1), we find as in [13, 16] that Ŵ must
have the correct structure, or yields a non-trivial kernel element.

Finally, let us remark the following: Given k (independent) challenges, we can compute a candidate
w⃗ via (w1, . . . ,wk)Y = (ŵ1, . . . , ŵk). If this is a suitable witness, we have quick-extraction. If this
fails, we need 2k − 1 transcripts, and must obtain a non-trivial kernel element, hence we have short-
circuit extraction.19

Remark 3.11. Let us sketch a possible generalisation of this argument (for which security claims can
be adapted). Consider P : Fkp ⊗Fkp = Fk×kp → Fmp , which maps [A⃗]⊤w⃗⊤ ∈ Gk×k to the “relevant part”.
Instead of P = id (as in the motivation) or P being the off-diagonal sums as our instantiation, one can
take any P which satisfies certain compatibility properties with (appropriately generalised) testing
distribution χP , and soundness properties.

For example, we find that we can make do with m = k − 1 messages [uℓ] instead of 2(k − 1).
We achieve this by additionally summing the ±ℓ off-diagonals. However, the compatible testing
distributions have (in some sense) rank 2, because they are constant and symmetric on off-diagonals.

18This notational horror suggests that we should be using multilinear algebra, i.e. tensor product notation. Alas, to
keep things “simple”, we don’t.

19Let v⃗⊤ be (ŵ1, . . . , ŵk)Y
−1 as described. Suppose that by using all 2k − 1 transcripts we obtain a witness w⃗ ̸= v⃗

(in all other cases, we’re done). Then from w⃗⊤yi = ŵi = v⃗⊤yi, we find that w⃗⊤Y = ŵi = v⃗⊤Y , and hence w⃗ = v⃗. A
contradiction.
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For example, x⊤⊗y⊤+y⊤⊗x⊤. This results in having to carry out two follow-up arguments, one for
x⊤[A]w⊤y and one for y⊤[A]w⊤x. so the size reduction is 2/k (instead of 1/k). Now every round
sends k−1 messages (instead of 2(k−1)), but also k ≥ 3. Unfortunately, this has worse communication
than the (simpler) approach we presented above.

3.4.3 Going zero-knowledge.

There are many variations for going zero-knowledge. The most straightforward one is to run Pro-
tocol 3.1 (Σstd) and replace sending z by proving ∃z : [A]z = β[t] + [a] via LMPAnoZK. This gives
a proof of knowledge, denoted LMPAsimpleZK, and is quite communication efficient. But computing
[A]r for random r is expensive. This is similar to [13, 16], where LMPAnoZK was only used to save
communication.

We achieve zero-knowledge more carefully. Instead of blinding the witness, we note that it is
enough to blind the prover’s responses. For this, a logarithmic amount of randomness suffices. This
should make the prover more efficient.

Warm-up: Proving knowledge of opening of a commitment. For simplicity, we first sketch
a protocol which assumes that [A] = [g] ∈ G1×n, and [g] is a commitment key and k = 2. Thus, [A]
has hard kernel assumption by construction. Later, we deal with m > 1 and adversarially chosen [A],
which we actually solve with a different technique. But the techniques employed in this simple example
help understanding the more complex technique, and they are reused and extended in Section 4.4.

So our current problem is to prove in zero-knowledge that ∃w : [g]w = [t]. We will employ a
masked version of LMPAnoZK, with judiciously chosen randomness r, to achieve this. In particular, we
do not pick r ← Fnp . We pick r so that only logarithmically many ri are non-zero. Thus, computing
[g]r = [a] is quite cheap (unlike in Protocol Σstd). By the uniform-or-unique guideline, we want that
each message [u±1] looks uniformly random. By analysing the recursive structure of LMPAnoZK, we
can see we can achieve this by picking ri ← Fp for i ∈Mn ⊆ {0, . . . , n− 1} with Mn as defined below,
and ri = 0 else.20

Definition 3.12 (Masking sets). For some implicitly fixed k, we define the masking (randomness)
sets/spaces Mn ⊆ {0, . . . , n− 1} (for n = kd) by the formulas below. The set Mn describes the unit
vectors of Fnp (with zero-based indexing) which are used for random masking. We typically treat Mn

as a subvector space of Fnp (instead of explicitly referring to its span 〈ei | i ∈Mn〉).

• M1 := {0} and Mk := {0, . . . , k − 1}
• Mkd := {Mkd−1} ∪̇ {ikd−1, ikd−1 + 1 | i = 1, . . . , k − 1} for d ≥ 2.

See Fig. 2 for a pictorial description for k = 2.

=̂ r

y1r1 =̂
+

y2r2 =̂

Figure 2: Left: The (construction of the) masking randomness sets M4, M8, M16 and M32 (for
k = 2). The squares denote the numbers 0, . . . , n − 1 (or the respective basis vectors (with zero-
based indexing)). Right: A demonstration of the “overlap” when a recursive step is applied to M16,
i.e. r̂ = y1r1 + y2r2 is computed. Note that by removing two dark squares in the overlap (i.e.
the randomness being “used up” in [u±1]), the sum is still is randomised as M8. This “recursive
property” is essential. The indices in Mn can also be constructed recursively via string concatenation:
m2n = mn|110n−2 and m1 = 1, m2 = 11.

20The masking sets M use zero-based indexing for convenience.
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By the structure of the masking sets, we have that (for k = 2), if r is split into r = ( r1r2 ) as in
LMPAnoZK, then [uj−i] = [gi]rj is uniformly distributed for r ← Mn. Moreover, r̂ = y1r1 + y2r2 is
distributed like a fresh r′ ←Mn/k. This holds even when considering the joint distribution (u−1,u1, r̂).
Thus, masking sets exhibit a useful recursive structure. There are some minor prerequisites to use the
recursive structure, which we ignore for now.
Protocol 3.13. Let crs = [g] ∈ G1×n be a uniformly random commitment key (in particular, [g]
has hard kernel relation under the DLOG assumption on G.). The following is a protocol to prove
∃w : [g]w = [t]. Let χ̃2k−1 be a testing distribution as in Protocol 3.9. Common input is (crs, [t]) ∈
G1×n ×G. We assume n = kd. The prover’s witness is some w ∈ Fnp .

• P→ V: Choose r ←Mn. Compute [a] = [g]r. Send [a].
• V → P: Choose β ← χ(β). Send β.
• P↔ V: Let z := βw + r and [t′] := β[t] + [a]. Engage in LMPAnoZK for ∃z : [g]z = [t′].

It is clear that this protocol is correct. Short-circuit extraction follows easily as this is almost a
sequential composition of Protocol Σstd and LMPAnoZK. Thus, only zero-knowledge remains. For this,
one should note that z = βw + r behaves like a linear combination throughout the protocol, because
the reduced witness ẑ is of the form βŵ+ r̂. Indeed, we can view the protocol as a linear combination
of protocols. Thus, to see that [u±ℓ] is uniformly distributed, we can focus our attention on r and
its effect alone. As explained before, due to the form of Mn (r̂, [u−1], [u1]) is uniformly distributed
in Mn/k × G × G. Thus, each iteration outputs uniformly distributed [u±1], and r̂ distributed as
r̂ ← Mn/2. For the base case, we note that by construction, Mk = {0, . . . , k − 1}. Thus, r ← Mk

is uniformly random in Fkp, and hence βw + r̂ is uniformly random for n ≤ k, perfectly hiding w.
In particular, the messages in the base case are uniformly random too. Since the uniform-or-unique
property is satisfied, the zero-knowledge simulator can construct the transcript in reverse, as usual.

Difficulties arising from general [A]. There are two main difficulties arising from general [A] ∈
Gm×n. First, the higher dimension due to m > 1 makes masking sets as described not directly
applicable anymore. Since [uℓ] ∈ Gm, the prover now communicates mk elements, and hence we
expect that mk log(n) random entries are necessary to randomise all of [uℓ]. Interestingly, the naive
approach of using Protocol Σstd shows that n random entries are sufficient. Note that n < mk log(n)
is possible for large m. (In practice mk log(n)� n.)

Second, we want to deal with adversarial [A]. In the above sketch for zero-knowledge, we ignored
a detail concerning the recursion. If it ever happens that in [g], for some i ∈ Mn, the element [gi] is
zero, the distribution of (r̂, [u−1], [u1]) is skewed and zero-knowledge fails. Note that [g] is reduced
in each statement, so this can happen randomly. Thus, even the naive reduction is only statistically
zero-knowledge. If [A] is chosen adversarially, it may be so that this failure case always (or often)
happens. Making the definition of Mn dynamic and depend on [A] is inconvenient and hard. Our
choice is therefore to act “dually” to commitment-extension. Remember that a commitment-extension
adds a row to [A] so that [A] is “computationally injective”. In contrast, we will, very roughly, add
columns to [A], to ensure that [A] is surjective. Our concrete approach is detailed below.

We remark that the naive approach to zero-knowledge for general [A] is a simple and viable option
if the computational overhead is acceptable. Considering the computational costs of LMPAnoZK, this is
often the case. Nevertheless, we demonstrate that, by applying our design guidelines, a more efficient,
but more technical, conversion to zero-knowledge (with slightly larger proofs) is possible.21

Dealing with general [A]. Our proof system separates the masking randomness from the actual
witness and is a linear combination of multiple protocol instances of LMPAnoZK: The actual protocol
for [A] =: [H(0)], and protocols for [H(i)], i = 1, . . . ,m, where [H(i)] essentially contains a Pedersen
commitment key in the i-th row and is zero otherwise.

To keep things simple, we let m = 1, k = 2 in the following discussion. Intuitively, we want to
run a “randomness-extended” protocol for [B] = [A|H](wr ). The intuition is that r will randomise

21It may be possibile to achieve smaller proof sizes. However, the current construction and security proofs are technical
enough, and better proof size would likely complicate at least security proofs.
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all [u±1]’s (because [H] is not adversarial). Unfortunately, this intuition is wrong: [u1] = [H]w is
certainly not zero-knowledge. The problem is how LMPAnoZK divides the statement. Appropriate
shuffling of [B] and (wr ) would solve this. Instead, we work with a linear combination of LMPAnoZK
instances.

More precisely, we run two arguments, one for [A]w = [t′] and one for [H]r = [t′′]. The messages
[u−1] and [u1] are the sums of the messages which individual protocols would send, e.g. [u−1] =
[A2]w1 + [H2]r1. Concretely[

u′−1
u′1

]
=

[
A1w2

A2w1

]
,

[
u′′−1
u′′1

]
=

[
H1r2
H2r1

]
,

[
u−1
u1

]
=

[
u′−1
u′1

]
+

[
u′′−1
u′′1

]
This ensures that the [u′′±1] are uniformly random in every round, because [u′′±1] is. In the base

case of the recursion, i.e. small n, the prover proves [A]w + [H]r = [t] in zero-knowledge, using (for
concreteness) Protocol Σstd.

To keep our protocol modular and comprehensible, we split it into two steps.
Protocol 3.14 (LMPAalmSnd). The following is a protocol to prove ∃w : [t(0)] = [A]w, using testing
distributions χm+1 resp. χ̃2k−1 (resp. χ(β)). with χ̃2k−1, χ(β) as in Protocol LMPAnoZK. Furthermore,
we require that x← χm+1 satisfies xi 6= 0 for all i.

Common input is ([A], [t(0)]) ∈ Gm×n×Gn and some h ∈ Gn (typically derived from the CRS when
this protocol is used as a subprotocol). We assume n = kℓ > 2k. Moreover, we let [H(i)] ∈ Gm×n for
i = 1, . . . ,m, be defined as the matrix with [h] in the i-th row and zeroes elsewhere, i.e. [H(i)] = ei[h].
We use a superscript 0, e.g. [H(0)] := [A], for terms related to [A]. The prover’s witness is some
w ∈ Fnp (also written r(0)).

• P→ V: (Step 1: Prepare masking.) Pick r(i) ←Mn ≤ Fnp and compute [t(i)] = [H(i)]r(i). Send
[t(i)] for i = 1, . . . ,m.

• V → P: (Step 2: Random linear combination.) Pick and send x ← χm+1. The statement we
prove is now effectively

[A|H(1)| . . . |H(m)]

 x0w

x1r
(1)

...

 = [t] :=
∑
i

xi[t
(i)].

For simplicity, the prover redefines r(i) := xir
(i) for i = 0, . . . ,m.

• P → V: (Step 3: Begin the shrinking AoK.) Let [H(i)] = [H
(i)
1 , . . . ,H

(i)
k ] with H

(i)
j ∈ Gm×n/k.

Compute [uℓ] =
∑m

i=0[u
(i)
ℓ ], where [u

(i)
ℓ ] is computed as usual, i.e. [u

(i)
ℓ ] =

∑
j−i=ℓ[H

(i)
ℓ ]r

(i)
ℓ .

Send [uℓ] for ℓ = ±1, . . . ,±(k − 1).
• V → P: Pick z ← χ̃2k−1 (with associated x,y). Send (x,y, z).
• P → V: As in LMPAnoZK, compute w = x⊤w⃗ =

∑
j xjwi and r̂(i) = x⊤r⃗(i) =

∑
j xjr

(i)
j and

[Â] = x⊤[A⃗] =
∑

j xj [Aj ], [Ĥ(i)] =
∑

j xj [H
(i)
j ], and [t] = z⊤u =

∑
ℓ zjuℓ, for the reduced

statement (which V also computes).
If n > 2k, engage recursively in the AoK for this statement, i.e. goto Step 3. If n ≤ 2k, engage
in (for concreteness) Protocol Σstd to prove the statement.

It is easy to check that Protocol 3.14 is complete.

Lemma 3.15. Protocol LMPAalmSnd has µ-special soundness (with µ = (m + 1, 2k, . . . , 2k, 2)) for
finding a preimage v⃗ ∈ (Fnp )m (unconditionally) with [A|H(1)| . . . |H(m)]

(
v0
...
vm

)
= [t(0)], or a non-

trivial kernel element of [A|H ′(1)| . . . |H ′(m)]. Here, [H ′(i)] consists only of the non-zero components
of [H(i)]. (It is easy to find non-trivial kernel elements if [h] has zeroes, so we exclude them,
c.f. Remark 2.2.)

The protocol inherits short-circuit extraction with µ′ = (m+ 1, k, . . . , k, 2).
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Note Lemma 3.15 does not assert a witness w ∈ Fnp for [A]w = [t(0)]. That will be assured in
follow-up step.

Proof. We only sketch the proof. Let treeµ be a good µ-tree of transcripts. First of all, we can extract
the base subprotocol of Step 3. Using these witnesses, we can extract the linearly combined argument
essentially as in Lemma 3.10.22

Now we extract Step 2. From Step 3, we havem+1 preimages v⃗i ∈ (Fmp )n with [A|H(1)| . . . |H(m)]v⃗i =

[T ]xi where [T ] = [t(0), . . . , t(m)]. Arrange matrices V = (v⃗0, . . . , v⃗m) and X as usual. (V corre-
sponds to Ŵ from Lemma 3.10.) We find [A|H(1)| . . . |H(m)]Vi = [t]X. Multiplying with X−1, we
find preimages for each [t(i)], in particular a preimage for [t(0)].

To prove zero-knowledge of Protocol LMPAalmSnd, we first show that the prover’s messages [uℓ]
in the recursive steps are almost always uniformly distributed. This yields statistical HVZK via
straightforward simulation.

As a preparation, note following (easy) linear algebra facts:

Lemma 3.16. Let V ∼= Fnp and W ∼= Fmp be some vector spaces. Let M : V→W be a linear map (i.e.
a matrix M ∈ Fm×np ). Then r 7→Mr for r ← V uniformly random induces the uniform distribution
on W if and only if M is surjective. (Equivalently, if the rows of M (as a matrix) are linearly
independent.)

Lemma 3.17. Consider Protocol 3.14 (LMPAalmSnd). Suppose that (at least) all components of [h]
in Mn are distributed uniformly random (and the rest may be 0). Suppose that for any x← χm+1 we
have xi 6= 0 for all i.

Then, in this argument system, with probability about O(logk(n)k)/p the vector U consisting of
messages [uℓ] of all recursive rounds is uniformly random. The randomness is over [h], the challenges
and the prover’s randomness.

We give a short proof intuition for the case k = 2, m = 1. So we have [A], [H] ∈ G1×n. Intuitively,
we need 2 Fp-elements of randomness in each round to mask [u±1]. Moreover, these two terms of
randomness must be split so that one is in the first half r1 of r, and one in the second half r2, since
[uj−i] = [Hi]rj . The masking sets Mn are built exactly as such, see Fig. 2. Moreover, to allow
inductive reasoning, the masking sets are built in such a way that even when “removing” two terms of
randomness (say r1,0 and r2,1), the sum r′1 + r′2 is distributed according to Mn/k. Evidently, we need
xi 6= 0 to prevent loss of randomness by multiplication with 0. More precisely, we want surjectivity of

the “transition map”,
(
x1 idn x2 idn
H2 0
0 H2

)
( r1r2 ) =

(
r̂
u′′−1

u′′1

)
when restricted to M2n ≤ F2n

p in each step. A full

proof follows.

Proof. It suffices to consider m = 1, because the matrices H(i) are constructed such that they mask
the i-th row only (they are zero in all other rows). Evidently, there is also no “interference” between
rows in the protocol because Ĥ(i) is again only non-zero in the i-th row (i 6= 0). Consequently, we
consider [A], [H] ∈ G1×n and drop the superscripts.

As a first step, we consider the case where the masking randomness is simply taken from Fnp uni-
formly, i.e. Mn = {0, . . . , n− 1}. (Note that we use zero-based indexing for the masking randomness.)

22Indeed, after suitably permuting the columns of [A|H(1)| . . . |H(m)], witness, and randomness, the exact same
reasoning as in Lemma 3.10 works for the recursive step.
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By construction, we have

x1 id x2 id . . . xk−1 id xk id
Hk 0 . . . 0 0
Hk−1 Hk . . . 0 0

...
...

...
...

...
H1 H2 . . . Hk−1 Hk

...
...

...
...

...
0 0 . . . H1 H2

0 0 . . . 0 H1


︸ ︷︷ ︸

=:M ′


r1
r2
...

rk−1
rk

 =



r̂
u1−k
u2−k

...
u0
...

uk−2
uk−1


(3.2)

Let M be the matrix where the row (H1, . . . ,Hk) corresponding to u0 is removed. Then, by
Lemma 3.16, it suffices to show that

• M is surjective, i.e. has independent rows. Then we know that uℓ (for ℓ 6= 0) and r̂ are uniformly
distributed.

• This surjectivity is “preserved by reduction”, i.e. even after “application” of x, for Ĥ the re-
spective M is again surjective (with overwhelming probability).

In fact, we want a bit more: We want to bound the (worst-case) probability that, conditioned on
some fixed H1 6= 0, this matrix is surjective. Note that surjectivity certainly implies H1 6= 0. Thus,
restricting to H1 6= 0 is already covered by restricting to surjective matrices only. The probability
that, for fixed H1 6= 0, the matrix fails to be surjective with probability ≤ O(n)/p, can be checked
by many means.23 However, a formal derivation for the general case is straightforward, but tedious.
We therefore specialise to the case k = 2. (But we still write k instead of 2 where it makes not much
difference.) We considerx1 id x2 id

H2 0
0 H1

 Gauß
====⇒

x1 id x2 id
0 −x2

x1
H2

0 H1

 and note that
(
−x2
x1
H2

H1

)

evidently has full rank if Hi are linearly independent. Since Hi are random vectors of dimension ≥ 2,
this happens with overwheming probability. More precisely, it fails with probability 1− (1− p−1)(1−
p−2). Conditioned on H1 6= 0, it fails with probability p−1.

Now we argue why the recursions pose no problem. This follows because: Mn/2 ∩Mn = Mn/2

by assumption.24 Thus, r̂ lies in the “correct” subspace of Fn/2p , namely the masking space for
Mn/2. Furthermore, the distribution of r̂ is uniformly random (in that subspace), even conditioned
on u1−k, . . . , uk−1. Thus, we can recursively apply our reasoning to find that all u1−k, . . . , uk−1 are
uniformly random in all rounds. More precisely, we use that conditioned on a fixed H1, we obtained
these properties. Thus, Ĥ =

∑
xiHi is (almost) uniformly random, even conditioned on Hi for i > 1.

This holds because H1 is still uniformly random and “untouched” (conditioned on not being zero).
This allows us to “restart” our reasoning. (We only guarantee that Ĥ is statistically close to uniform.
But this is evidently good enough.)

Since the matrix M has dimensions n × n/k + 2(k − 1) we need n ≥ n/k + 2(k − 1), i.e. n ≥ 2k
for it to possibly be surjective. Thus, stopping our recursion there works fine.

Now, let us consider the case where Mn as in Definition 3.12. Note that Mn has following structural
properties (for general k):

• Mkℓ,i := Mkℓ ∩ {ikℓ−1, . . . , (i + 1)kℓ−1 − 1} satisfies Mn,0 = Mn/k and Mkℓ,i = Qℓ−1 with
Qℓ := {ikℓ + δ | i = 0, . . . , k − 1; δ = 0, 1}.

23We note that it is vital that Hi is a vector, not a scalar. Obviously, doing the recursion in the base case n = k (with
scalar Hi) yields a non-surjective M .

24Remember that we are working with Mn = {0, . . . , n− 1} at the moment. But the same applies to general Mn.
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• Consequently, modulo n/k = kℓ−1, Mn maps (surjectively) onto Mn/k.

Now we analyse M in this setting. First of all, we remove the columns not in Mn from M . (The
respective columns are “useless” for randomisation, since r is only non-zero for components in Mn.)
Second, we remove the rows not in Mn/k from the upper part of M (corresponding to r̂). (Again, since
r̂ need only be non-zero ony for components in Mn/k, we only need surjectivity in those components.)
Note that now all remaining components of r and consequently of H were chosen uniformly at random.

Now, only the relevant portions of M remain. Note that M has now dimensions dim(Mn) ×
(dim(Mn/k) + 2(k − 1)). Since dim(Mn) = dim(Mn/k) + 2(k − 1), we see that M is in fact a square
matrix.

We now split r1 into (r′1, r
′′
1), the Mn/k components and those in (Mn ∩ {0, . . . , n/k − 1}) \Mn/k.

Using the same notation for matrices Hi, we see that H ′i for i 6= 1 is zero when restricted to Mn,0 =
Mn ∩ {0, . . . , n/k − 1} = Mn/k. On the other hand, H ′′i is uniformly random. For H1, we see that
H ′1 and H ′′1 are uniformly random. Note that we use the structure of Mn here. If we reorder (the
columns of) idMn/k

to (P ′|P ′′), where P ′ ∈ Fdim(Mn/k)×2
p corresponds to the components in Qn and

P ′′ to Mn/k \Qn, we find:

x1P
′ x1P

′′ x2P
′′ . . . xk−1P

′′ xkP
′′

0 Hk 0 . . . 0 0
0 Hk−1 Hk . . . 0 0
...

...
...

...
...

...
0 H2 H3 . . . Hk 0
0 0 H1 . . . Hk−2 Hk−1
...

...
...

...
...

...
0 0 . . . . . . H1 H2

0 0 . . . . . . 0 H1


︸ ︷︷ ︸

=:M



r′1
r′′1
r′′2
...

r′′k−1
r′′k


=



r̂
u1−k
u2−k

...
u−1
u1
...

uk−2
uk−1



Here, to reduce visual noise, we omitted all primes, i.e. we write Hi instead of the formally correct
H ′′i everywhere. By suitable reordering of rows (and columns) related to P ′ and P ′′, we obtain

x1 idℓ 0 0 . . . 0 0
0 x1 id2 x2 id2 . . . xk−1 id2 xk id2

0 Hk 0 . . . 0 0
0 Hk−1 Hk . . . 0 0
...

...
...

...
...

...
0 H2 H3 . . . Hk 0
0 0 H1 . . . Hk−2 Hk−1
...

...
...

...
...

...
0 0 . . . . . . H1 H2

0 0 . . . . . . 0 H1


(3.3)

where ℓ = dim(Mn/k)−2. The removal of the rows corresponding to Mn/k \Qn (i.e. idℓ in the above)
means that all zero-rows in P are removed. What remains are blocks with P ′′ = id2×2. Thus, we are
in fact in exactly the same setting as before, namely Eq. (3.2)! Since H ′′i are uniformly random, the
same argument works.

With this, all of our reasoning before applies. In fact, things get simpler because H ′′i ∈ G1×2 by
construction. Thus, the probability that H ′′1 6= 0 is 1− p−2 (for uniform H ′′1 ). Conveniently, H ′1 does
not even appear in our reasoning! Finally note that Ĥ =

∑
i xiHi is distributed statistically close to

uniform (over Mn/k), because H ′1 is. Hence we can apply our reasoning recursively, as before.
We see that the probability that the matrix in Eq. (3.3) is not invertible is about 2(k − 1)/p (or

less). This follows because by assumption all xi are non-zero. Thus only the H ′′i part has to be
“checked”. Again, after some tedious computations, one obtains O(2(k − 1))/p as a bound of the
failure probability.
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Finally, after log(n) recursions, we find a combined failure probability of about 2k logk(n)(1/p +
1/p2) ≤ 2 logk(n)/p (by the union bound).25 (The 1/p2 term is from the condition that H ′′1 6= 0.)

For k = 2, one can easily test if M is surjective, and could therefore sacrifice perfect correctness
to gain perfect zero-knowledge by aborting bad executions.

Lemma 3.18. LMPAZKis ε-statistical zero-knowledge for ε ∈ O(logk(n)k)/p.

We sketch HVZK simulation: For a recursive step, the HVZK simulator picks [uℓ]← Gm for ℓ 6= 0
and computes the uniquely defined [u0] which makes the verifier accept that round. For Step 1 note
that [t(i)] = [eit

(i)] (i 6= 0) and hence [t(0)] and [t] (which is [u0] of the last recursion) uniquely define
all [t(i)]. Since the messages [uℓ] are uniformly distributed in an honest execution with probability
O(logk(n)k)/p, our claim follows. A more detailed proof follows.

Proof. We can assume that all messages [uℓ] in the protocol are uniformly random, in the sense
of Lemma 3.17 and simulate in this case. By Lemma 3.17, this fails with probability at most
O(logk(n)k)/p, so our simulation will be statistically close to an honest execution. As usual, the
simulator picks all challenges beforehand. By using the simulator of the base subprotocol, i.e. Pro-
tocol Σstd, we only need to show how to simulate one round of reduction, and how to simulate the
initial masking step.

Let us consider how to simulate one recursion step. We are given [Ĥ(i)] and [t̂] (and challenge
(x,y, z)). To simulate, we pick uniformly random [uℓ] for ℓ = ±1, . . . ,±(k−1) for this round. We set
[t] = [u0] = [t̂]−

∑
ℓ̸=0 zℓ[uℓ], which is the unique [t] which would make this an accepting transcript.

The simulator’s messages [uℓ] are all uniformly random, hence just as in an honest transcript.
For the initial masking step we need to find [t(i)] ∈ Gm for i = 1, . . . ,m such that [t] =

∑m
i=0 xi[t

(i)].
Since [t(i)] is zero, except in the i-th component (for i 6= 0), and [t(0)] is fixed in the statement, this
already uniquely defines [t(i)] for all i. (And they are efficiently computable.) Thus, simulation of this
step is perfect.

Now, we finish the protocol and ensure that extraction yields a witness w for [A]w = [t] as we
desired. For this, we use a dual testing distribution to ensure vi

!
= 0 for i ≥ 1 (with notation as in

Lemma 3.15).
Protocol 3.19 (LMPAZK). The following is a protocol to prove ∃w : [A]w = [t]. We use Protocol 3.14
(LMPAalmSnd) as a subprotocol with the same testing distributions χm+1 resp. χ̃2k−1 (resp. χ(β)). By
χ∨dim(Mn)+1, we refer to the dual testing distribution of χdim(Mn)+1 as in Definition 2.16. In particular,
we require that the first component x0 of x← χdim(Mn)+1 is always 1.

Common input is ([A], [t]) ∈ Gm×n×Gn We assume n = kℓ > 2k. The prover’s witness is some w ∈
Fnp (also written r(0)). The CRS crs contains randomly (independently) chosen [q]← G1×dim(Mn)+1.

• V → P: (Step 0: Setup of a “new” crs.) V picks and sends M := Mx ← χ∨dim(Mn)+1 (as
described in Definition 2.16).

• Both parties compute [h̃] := [q]M ∈ G1×dim(Mn). They define [h] ∈ Gn so that the components
Mn ⊆ {0, . . . , n− 1} of [h] correspond to [h̃] (in order). All components of [h] not in Mn are set
to 0. See Fig. 2 for a pictorial description of (non-)zero components of [h] in case of k = 2.

• P↔ V: Engage in Protocol LMPAalmSnd for ∃w : [A]w = [t] with parameters (in particular [h])
as above.

Lemma 3.20. Protocol LMPAZK has µ-special soundness (with µ = (dim(Mn)+1,m+1, 2k, . . . , 2k, 2))
for finding a witness w ∈ Fnp with [A]w = [t], or a non-trivial kernel element of [A|e⊤1 q| . . . |e⊤mq]
(equivalently [A|diag(q, . . . , q)]).

The protocol has short-circuit extraction with µ′ = (1,m+ 1, k, . . . , k, 2).

There are reasons to suspect that LMPAZK may have unconditional extraction, i.e. it is proof of
knowledge. But we could not (dis)prove it yet. Compare to Question 3.7.

25Including that recursive steps are only statistically close to the desired uniform distribution.
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Proof. By extracting LMPAalmSnd i.e. applying Lemma 3.15, we can find preimages u⃗ ∈ (Fnp )m+1.
(Also, we inherit short-circuit and unconditional extraction.) Let [h] and [H(i)] = ei[h] be as con-
structed in the protocols.

For simplicity, we first consider the case m = 1 and remove all 0-columns of [H]. In other words,
we consider [A|qM ] ∈ G1×n+dim(M).

We know (i.e. extracted) some w ∈ Fnp ,v ∈ Fdim(M)
p such that [A]w+[H]v = [t]. We have to show

that [A]w = [t], or we find a non-trivial element in the kernel of [A|q]. In the case that [H]v = 0, w
is the witness we want. So suppose that [H]v 6= 0. In that case, we guarantee short-circuit extraction.
So, suppose we have dim(M) + 1 transcripts with “independent” challenge matrices Mi. (Remember
that this means

⋂dim(M)
i=0 im(Mi) = {0}, which is equivalent to xi being linearly independent since

Mi = Mxi .) By subtracting the 0-th witness from the i-th witness, we find

[A](wi −w0) + [q](Mivi −M0v0) = 0.

Thus, if Mivi −M0v0 6= 0, we obtain a non-trivial kernel element. The only case where we do not
obtain a non-trivial kernel element of [A|qM ] is, if for all i we have Mivi = M0v0 =: u. However,
this implies that u ∈

⋂dim(M)
i=0 im(Mi). But, by assumption we have

⋂dim(M)
i=0 im(Mi) = {0}. Thus, the

bad case is impossible.
For general m, we have diag(Q, . . .) and diag(M , . . .) instead of Q and M . We obtain (wv ) from

LMPAalmSnd with [A|diag(H, . . .)](wv ) = [t]. Evidently,

dim(M)⋂
i=0

im(diag(Mi, . . . ,Mi)) =

dim(M)⋂
i=0

im(Mi)
m = {0}.

Thus, our claim follows analogously.

Corollary 3.21. Protocol LMPAZK has ε-statistical HVZK with ε ∈ O(logk(n)k)/p.

Proof. This is immediate from Lemma 3.18.

Remark 3.22. Instead of jumping through hoops, randomising the witness as usual via βw + r, for
r ←Mn, is tempting. It even is more efficient. However, the surjectivity requirements of Lemma 3.17
now refer to [A] (instead of [H]), which is adversarially chosen. Moreover, the masking sets we
constructed only work for m = 1, so we need new (larger) masking sets. This setting is very technical
and entangles soundness and zero-knowledge. In particular, the probability for surjectivity seems
related to δsnd(χ̃2k−1) now. By testing for surjectivity (which is possible at least for k = 2), we may
still obtain (perfect) zero-knowledge via aborts. All in all, this mixes correctness, soundness and
zero-knowledge, which we avoid.

One might try to use [A] + x[H], i.e. use batching on
[
A
H

]
to attain a suitable [Â] for the above.

However, now we may additionally have trouble with soundness similar to Question 3.7.
Remark 3.23 (Proof size and computation.). It is plausible that (perhaps after enlarging the base case
of Mn) similar reasoning as used in Lemma 3.18 could be applied to remove the base case of LMPAZK
by instead permuting [A|H] so that running LMPAnoZK (for the permutation) is zero-knowledge.
This may be slightly more efficient, but for m = 2, which is the standard use case (because LMPAbatch
almost always improves both computation and communication), we do not expect much.

With regards to communication alone, the naive approach sketched in Section 3.4.3 seems to be the
best option with size O(m log(n)) instead of O(m log(mn)). Moreover, it yields a proof of knowledge26

with efficient extraction, but see Question 3.7. The price is O(mn) instead of O(m log(n)) worst-case
additional computation over LMPAnoZK.

Due to its more complicated nature, the computational efficiency improvement of LMPAZK over
the naive LMPAsimpleZK is perhaps mostly of theoretical interest.

26Formally, the other arguments are also proofs of knowledge, but they are proofs with respect to a changed (OR-type)
statement. LMPAsimpleZK is a proof of knowledge for the original ∃w : [A]w = [t].
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3.5 Step 3: Adding (arithmetic circuit) relations to the witness
If the witness w for [A]w = [t] is committed to, e.g. if the first row of [A] is a Pedersen commitment
CRS [g], it is easily possible to make other (zero-knowledge) statements about w by composition of
zero-knowledge protocols. Using Protocol QESACopy from Section 4 (or [16]), it is possible to add
constraints on the witness. In particular, one can use range-proofs to control w.
Remark 3.24. Often, w is much larger than the part which has to satisfy some constraints. It is
efficiently possible to “split” and “merge” Pedersen commitments i.e. [c] = [c1] + [c2] where [G] =
[G1|G2] and [ci] = [Gi]wi. (Indeed, we use this quite often. With small changes, this is possible
in zero-knowledge.) With this, one can split off the relevant portion w1 of w into the commitment
[c1] and prove additional relations about this portion only. Splitting is generally very cheap. See
Appendix C.1 for a concrete application.

4 Arithmetic circuit satisfiability from quadratic equations
In this section, we describe quadratic gates, and relate them to rank 1 constraint systems (R1CS) and
arithmetic circuits (AC). Then, we construct a proof of satisfiability of a set of quadratic equations
via a (zero-knowledge) inner-product argument.

4.1 Quadratic gates
The equations our scheme is able to prove are quadratic equations, i.e. given a witness w ∈ Fnp and a
matrix Γ ∈ Fn×np we wish to prove

w⊤Γw = 0.

We choose this description of quadratic equations for simplicity and uniformity of notation. In partic-
ular, we assume without loss of generality, that the witness w has the constant 1 as first component,
i.e. w1 = 1. Our notation is similar to [22], which uses such notation for Groth–Sahai proofs [32].
Indeed, our arguments are essentially commit-and-prove systems [22].

Consider a general quadratic equation x⊤Γx + a⊤x = t, with a,x ∈ Fnp , Γ ∈ Fn×np , t ∈ Fp with
statement given by the constants (a,Γ, t). This can be encoded via w = ( 1

x ) and suitably (re)defined
Γ, namely w⊤

(−t 0
a Γ

)
w = 0.

It is straightforward to encode arithmetic circuits (ACs) as systems of quadratic equations. Doing
this allows for ACs built from quadratic gates, i.e. gates whose input-output behaviour is described by
a quadratic equation.

4.2 Arithmetic circuits and rank 1 constraint systems
Rank 1 constraint systems (R1CS) are systems of equations of the form (w⊤a)(b⊤w) − c⊤w = 0,
where a, b, c ∈ Fnp . Evidently, these are special cases of quadratic equations with Γ = ab⊤ + e1c

⊤.27

Arithmetic circuit satisfiability can also be encoded in R1CS. See [9] for details.
The gates testable by one R1CS equation allow a single “multiplication”. As we saw in the in-

troduction, quadratic equations are more flexible. For example, the inner product x⊤y is a single
quadratic gate. To the best of our knowledge, n gates are necessary to encode this in R1CS (essen-
tially one per xiyi multiplication). Thus, quadratic gates enable new optimisations. Indeed, all “AC
to R1CS” optimisations (and more), are applicable for “AC to QE”. Implementing optimisations for
“R1CS to QE” is harder, since the “directed graph” structure is implicit.

4.3 The verification strategy
Verification that a system of quadratic gates is satisfied is easy given the witness w, in our case the
wire assignments of the AC, and equations Γg (the gate g encoded as a matrix). One simply checks

27The name may be R1CS misleading, since Γ may have (tensor) rank 2, i.e. the (tensor) rank of Γ is ≤ 2 for R1CS
(and arbitrary for general quadratic equations). Nevertheless, we follow this standard naming convention.

25



w⊤Γgw = 0 for all g ∈ G. By batching this can be sped up: Pick (rg)g ← χ#G from a testing
distribution. Then compute Γ :=

∑
g∈G rgΓg as the “batched statement”. Finally, check if w⊤Γw = 0.

We run this strategy in a commit-then-prove manner. First, we commit to the witness w. Then
we let the verifier pick testing randomness (rg)g and we prove that w⊤Γw = 0 where Γ :=

∑
g∈G rgΓg

is the “batched statement”. Note that w⊤Γw = 〈w,Γw〉 is an inner product. Hence, we require a
zero-knowledge inner-product argument.

For technical reasons, we cannot generate a commitment to Γw efficiently (prior to knowing Γ).28

Therefore, the prover first commits to w as [cx] = Comck1(w). Then he obtains Γ and commits to
Γw as [cy] = Comck2(Γw). Then the prover carries out the inner product argument. He must also
prove that the commitments [cx] and [cy] open to values x = w and y = Γw as promised. Again, we
use (linear) batching to shorten the proof for y = Γx. Namely, to check y = Γx, the verifier picks
random s← χn (after [cx], [cy] and hence x, y are fixed) and the prover proves 0 = 〈Γx− y, s〉.

Instead of running two inner product arguments (for 〈Γx− y, s〉 = 0 and 〈x,y〉 = 0) we immedi-
ately batch verify again: The verifier picks randomness α and the prover proves knowledge of openings
x,y such that,

〈x− αs,y + αΓ⊤s〉 = 〈x,y〉+ α
(
〈x,Γ⊤s〉 − 〈s,y〉

)
− α2〈s,Γ⊤s〉

= 〈x,y〉+ α〈Γx− y, s〉 − α2〈s,Γ⊤s〉
!
= −α2〈s,Γ⊤s〉︸ ︷︷ ︸

=:t

(4.1)

where t is fixed by the random choices of the verifier. If x,y,Γ, s are fixed, the lemma of Schwartz–
Zippel can be applied to the polynomial in α. If α ← S, the probability that Eq. (4.1) holds but
〈x,y〉 6= 0 or 〈Γx− y, s〉 6= 0 is 2/#S. If s is chosen from a testing distribution χn with error
δsnd(χn), the probability that Γx − y 6= 0 is at most δsnd(χn). Thus, this strategy is sound. To
instantiate it, we need a zero-knowledge inner product argument.

4.4 Zero-knowledge inner product argument
Now, we show how to construct a zero-knowledge inner product argument (IPA). We first recall [13,
16], from a high level. We identify [16] as a linear combination of protocols. Unlike for LMPAZK, we
will not use linear combination (with “extended randomness”) to attain zero-knowledge. We achieve
HVZK similar to Protocol 3.13 by masking the witness, but we also exploit redundancy (or kernel)
guideline. Addition of zero-knowledge adds a single round, where one group element and one challenge
are sent. (Note that m = 1 now.) For technical reasons we have a base case at n = 8 (for k = 2). In
practice, this is hardly worth mentioning.

4.4.1 Inner product argument (IPA).

First, we describe the inner product argument following [13, 16]. It will also be evident how to extend
[16] to k > 2. Since k = 2 minimises communication, we only mention this in passing. For simplicity,
we ignore zero-knowledge.

Our setting is as follows: We have a CRS crs = ([g′], [g′′], [Q]) for which finding a non-trivial
kernel element of [g′, g′′, Q] ∈ G2n+1 is hard. In other words, these are three independent (or one large
three-split) Pedersen commitment keys.

Naively, one proves knowledge of openings of c′w and c′′w with 〈w′,w′′〉 = t. The idea and argu-
ment(s) in Section 3.4, in particular Protocol 3.13, allow to recursively shrink our statement. After
one recursion step, we obtain 〈ŵ′, ŵ′′〉 = t̂. The prover sends terms v±1 = 〈w′i,w′′j 〉 (for j − i = ±1),
so that the verifier can compute t̂, in analogy to [u±1] in Section 3.4,

A linear combination of Protocol LMPAnoZK for w′ and w′′ with the same challenge (x,y) does
not work so well with t̂ as indicated by following formula: t̂ = 〈ŵ′, ŵ′′〉 = 〈x⊤w⃗′,x⊤w⃗′′〉. There are

28If [g] is a Pedersen commitment key and [c] = [g]w, then [h] = [g]Γ−1 is a Pedersen commitment key where
[c] = [h](Γw). We do not use this for various reasons.
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no compatibility guarantees for this expression, and indeed for x = (1, ξ), y = (ξ, 1), we find

〈ŵ′, ŵ′′〉 = 〈w′1,w′′1〉+ ξ(〈w′1,w′′2〉+ 〈w′2,w′′1〉) + ξ2〈w′2,w′′2〉.

In analogy to [u0] in LMPAnoZK, we want that the term t = 〈w′1,w′′1〉 + 〈w′1,w′′1〉 appears (perhaps
scaled by ξ) and is preserved. Instead the “mixed terms” are preserved this way! Fortunately, we
solved this problem in Section 3.4 already. The solution is to use 〈x⊤w′,y⊤w′′〉, since x and y are
constructed like that.29 Thus, we find

〈x⊤w′,y⊤w′′〉 = ξ〈w′,w′′〉+ 〈w′1,w′′2〉+ ξ2〈w′2,w′′1〉

Therefore we run the protocol for w′ with challenge (x,y), and we run the protocol for w′′ with flipped
challenge (y,x). Now, as in Protocol LMPAnoZK, it suffices to send vj−i := 〈w′i,w′′2−i〉 (for i = 1, 2).

The argument described above is a hybrid of [13] and [16]. For security, we need that “commitment
merging” (see Remark 3.24), which the linear combination of protocols induces, still is binding. To
obtain [16], we simply commit to vℓ as well (using [Q]), and send the combined commitment, i.e. apply
again a linear combination. This “merged” commitment key is now [g′, g′′, Q]. Thus instead of sending
two messages thrice (namely [u′±1], [u′′∓1], [v∓1Q]), we only send the two “merged commitments”
[u±1] = [u′±1] + [u′′∓1] + [v∓1Q]. Unlike [16], which uses x = (ξ−1, ξ) we prefer x = (1, ξ) since
exponentiation with 1 is free.
Protocol 4.1 (IPAnoZK). The following is an inner product argument to prove

∃w′,w′′ ∈ Fnp : [c] = [g′]w′ + [g′′]w′′ + t[Q] ∧ 〈w′,w′′〉 = t.

Let χ̃2k−1 (and χ(β ̸=0)) be a testing distribution with the properties as in Protocol 3.9, i.e. we have
z ← χ̃2k−1 (with z indexed from −k to k) together with x,y such that zj−i = xiyj . Common input
is crs = ([g′, g′′, Q])) ∈ G1×n × G1×n × G and the statement ([c], t) We assume n = kd. The prover’s
witness is (w′,w′′).

• V → P: (Step 0: “Fixing” t.) V picks α← χ(β ̸=0). Send α. Both sides set [Q] := α−1[Q]. Then
they set [c] := ([c]− αt[Q]) + t[Q].30

Recursive step. Suppose n = kd > 1.
• P → V: Compute [u′ℓ] =

∑
i−j=ℓ[g

′
i]w
′
j , where [g′j ] and [w′j ] are as usual (i.e. split [g′], [w′]

into k equal-size pieces). Compute the respective [u′′ℓ ]. Let vℓ :=
∑

ℓ=j−i 〈w′i,w′′j 〉. Let [uℓ] :=

[u′ℓ] + [u′′−ℓ] + v−ℓ[Q]. Send [uℓ] for ℓ = ±1, . . . ,±(k − 1).31

• V → P: pick z ← χ̃2k−1 with corresponding x,y. Send (x,y, z).
• Both parties compute [ĝ′] = x⊤[g⃗′] =

∑
xi[g

′
i] ∈ G1×n/k and [ĝ′′] = y⊤[g⃗′′] ∈ G1×n/k. and

[ĉ] = z⊤[u⃗] =
∑

ℓ zℓ[uℓ] ∈ G as new batched statement. Moreover, P computes ŵ′ = y⊤w⃗′ and
ŵ′′ = x⊤w⃗′′. (Note the invariant: t̂ = z⊤v =

∑k−1
ℓ=−k+1 zℓvℓ = 〈ŵ′, ŵ′′〉.)

Skipping Step 0, recursively continue with n ← n/k, w′ ← ŵ′, w′′ ← ŵ′′, [c] ← [ĉ], [g′] ← [ĝ′],
[g′′]← [ĝ′′].
Base case. Suppose n = 1.

• P→ V: Send w′, w′′.
• V: Let t := 〈w′,w′′〉 and test if [c] ?

= [g′]w′ + [g′′]w′′ + t[Q].

See Appendix G for a sketch of this protocol.
The above argument is correct by inspection. Due to space constraints, we do not consider Step 0

a transformation on its own, compare [16, Protocol 1]. In Step 0, we “force” a commitment to t. Hence
t is not explicit in any further compuation, but [c] satisfies the invariant that it is a commitment to
w′,w′′, t where t = 〈w′,w′′〉.

Lemma 4.2. Protocol IPAnoZK is special µ-sound (with µ = (2, 2k, . . . , 2k)) for finding a valid witness
or a non-trivial element in the kernel of [g′, g′′, Q]. It has short-circuit extraction with µ′ = (1, k, . . . , k).

29Remember that in Protocols 3.9, 3.14 and 3.19 x, y associated to z satisfy xiyj = zj−i.
30This changes the committed value s in [c] to α(s− t) + t under the new [Q].
31Note that [u0] is implicitly known to V.
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The proof is straightforward, and essentially the same as [13, 16]

Proof. First, we ignore Step 0, i.e. we treat t as part of the prover’s witness and do not change [Q] or
[c]. (This is the case in the recursive steps.)

Then, the proof of extraction is essentially the same as Lemma 3.10. More concretely: The base
case is extractable by definition. In each recursive step, we find 2k transcripts ŵ′i, ŵ′′i , t̂i, zi (with fixed
[uℓ]) which we arrange into a matrix equation as in Lemma 3.10. Using invertibility of the obtained
matrix Z, we can compute a candidate witness w′, w′′, s which is a valid opening of [c] and all [uℓ].
Again, by computing w′ and w′′ from k transcripts by using Y −1 (resp. X−1) we get quick-extraction,
if t = 〈w′,w′′〉.

If quick-extraction fails, then either we get a non-trivial element in ker([g′, g′′, αQold]), as in
Lemma 3.10, and (since α 6= 0) find one in ker([g′, g′′, Qold]).32 Except, if we have the case t 6= 〈w′,w′′〉.
Suppose the latter happens. Since we have openings of the commitment, and by induction hypothesis,
we find

k−1∑
i=−k+1

〈ŵ′, ŵ′′, z〉ℓ = 〈x
⊤w′,y⊤w′,=〉

∑
ℓ

vℓzℓ

for all 2k challenges. This implies that t = v0 = 〈w′,w′′〉, so the case t 6= 〈w′,w′′〉 cannot happen
(without breaking the commitment first).

Finally, let us consider Step 0. Given 2 transcripts α1 6= α2 with extracted witnesses (from subtrees)
w′, w′′, and s := 〈w′,w′′〉. These witnesses are identical for both subtrees, or we find a non-trival
kernel element. But then the recomputation of [c] and [Q] in Step 0 implies that α1(s− t) = α2(s− t),
which implies s− t = 0 as claimed.

4.4.2 Going zero-knowledge.

Making the inner-product argument zero-knowledge can be done in many ways. To be competetive
with Bulletproofs [16], which uses the IPA without zero-knowledge, we directly mask the witness
(as in Protocol 3.13, unlike LMPAZK). This is problematic, since the scalar product is non-linear.
Consequently, our (initial) approach only works under some (mild) constraints.

As mentioned above, the problem with using masking randomness and proving 〈w′ + r′,w′′ + r′′〉
is the non-linearity: Sending only tr = 〈r′, r′′〉 to the verifier is not enough. So we need to send also
〈w′, r′′〉 or 〈r′,w′′〉 or some other “error term” to correct the non-linearity. Then we have to show
that these terms don’t expose “information” about the witness. In particular, sending βw′+r′, which
was possible in Section 3.3, seems impossible.

Fortunately, we already saw that the recursive argument only needs a small amount of randomness
to conceal the witness. We exploit this now to show that the sketched masking almost yields zero-
knowledge. Instead of sending the error terms, we pick randomness with the “kernel guideline” in
mind:

• r′ ∈ ker(w′′⊤), i.e. 〈r′,w′′〉 = 0.
• r′′ ∈ ker(w′⊤) ∩ ker(r′⊤), i.e. 〈w′, r′′〉 = 0 = 〈r′, r′′〉.

In other words, we pick randomness which does not induce any errors. Thus, we do not need to send
anything besides [tr] = [g′]r′ + [g′′]r′′ to the verifier. Let us first outline our almost zero-knowledge
argument, using an augmented masking set M+

n which is defined later.
Protocol 4.3 (IPAalmZK). The following is an inner product argument with the same statement, witness
and notation as Protocol 4.1 (IPAnoZK).

• P→ V: Pick r′ ← ker(w′′⊤)∩M+
n and r′′ ← ker(

(
w′⊤

r′⊤

)
)∩M+

n . Compute [cr] := [g′]r′+[g′′]r′′.
Send [cr].

• V → P: Pick β ← χ(β). Send β.
32Here [Qold] is [Q] before overwriting in Step 0.
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• P ↔ V: Engage in Protocol IPAnoZK for 〈βw′ + r′, βw′′ + r′′〉 = β2t (with commitment [c] =
β[cw]+[cr]+β

2t[Q]). Verifier (and prover) use t (and [cw]) from the statement to compute [c].33

See Appendix G for a sketch of this protocol.
Correctness follows by inspection. Special soundness follows essentially from Lemma 4.2 and

Lemma 3.2.

Corollary 4.4. Protocol 4.3 is special µ-sound (with µ = (2, 2, 2k, . . . , 2k)) for finding a valid
witness or a non-trivial element in the kernel of [g′, g′′, Q]. It has short-circuit extraction with
µ = (2, 1, k, . . . , k).

Showing zero-knowledge is more contrived. As for LMPAZK in Lemma 3.17, we want to show that
the prover’s messages are uniformly random. Unfortunately, the constraints which must be satisfied
now depend on the witness. Thus, an adversarially chosen witness may be a problem. Fortunately,
we use IPAalmZK with “randomised” witnesses, so this problem does not manifest.
Definition 4.5. Let k be fixed and n ≥ 4k. Define M+

n := Mn ∪̇ {n− 2, n− 1}. (Recall that Mn indices
are zero-based and n− 2, n− 1 6∈Mn for n ≥ 4k.)

We introduce M+
n because satisfying the kernel constraints “consumes” one (resp. two) pieces of

randomness in r′ (resp. r′′). We compensate this in M+
n .

For the sake of simplicity, we stick to k = 2. It should be evident how to appropriately generalise,
c.f. Lemma 3.10.

Lemma 4.6. Let crs = ([g′, g′′, Q])) be as in Protocol 4.3 (IPAalmZK) and k = 2. Define

M̃ ′ :=


w′′⊤1 w′′⊤2
g′2 0
0 g′1

y1 id y2 id2

 and M̃ ′′ :=


w′⊤1 w′⊤2
r′⊤1 r′⊤2
g′′2 0
0 g′′1

x1 id x2 id2

 .

Suppose that n ≥ 4k and let M+
n be as in Definition 4.5. Suppose r′ ← ker(w′′⊤) ∩M+

n and r′′ ←
ker(w′⊤) ∩M+

n . If M̃ ′ and M̃ ′′ restricted to columns in M+
n are surjective, then all messages [uℓ] of

the IPA are uniformly randomly distributed with probability O(logk(n))/p. Moreover, the final (plain)
messages ŵ′, ŵ′′ are uniformly random.

Let A be an HVZK adversary which picks witnesses (w′,w′′) which satisfy the conditions (except
with probability ε). Then protocol is δ-statistical HVZK against A, with δ ∈ O(logk(n)k)/p+ ε.

We introduce M+
n because we have to satisfy the kernel constraints of r′ and r′′. Concretely, since

M̃ ′′ ∈ Fdim(M+
n )×(dim(Mn/k)+4)

p must be surjective, we require dim(M+
n ) ≥ dim(Mn)+2 ≥ dim(Mn/k)+4.

This increases our base case (e.g. n ≥ 8 for k = 2). Otherwise, the idea and proof of Lemma 4.6 is very
similar to Lemma 3.17. Generalisations of this result to k ≥ 2 are straightforward. Also, note that to
ensure all [uℓ] are randomised, using either r′ or r′′ is enough, because either randomises [u′ℓ] resp.
[u′′ℓ ]. Since r′′ = 0 is not sufficient for randomisation, we treat r′ and r′′ symmetrically for simplicity.

Lemma 4.6. For the claim of random [uℓ], we are essentially only concerned with the subprotocol and
its specific input. We now analyse the rounds of this subprotocol.

The first round. Recall Lemma 3.16 which states that, if M̃ ∈ Fnp → Fmp is surjective, the
image a uniformly drawn element is uniformly distributed. By definition, the matrix M̃ ′ (resp. M̃ ′′)
is constructed essentially as in Lemma 3.17:

• The first (resp. first two) rows are the constraints imposed on r′ (resp. r′′).
• The rows with g′1, g′2 (resp. g′′1 , g′′2) yield the respective u′±1 (resp. u′′±1.

33As usual, the choice β and ⟨βw′ + r′, βw′′ + r′′⟩ = β2t is purely for simplicity and suitable general testing dis-
tributions work. In particular, if β ← χ(β ̸=0), then ⟨w′ + βr′,w′′ + βr′′⟩ = t works as well. (We want β ̸= 0 for
zero-knowledge.)
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• The blocks of multiples of identity matrices yield the batched randomness/witness r̂′ (resp. r̂′′).

In formulas:

M̃ ′
(
r′1
r′2

)
=


0
u′−1
u′+1

r̂′

 and M̃ ′′
(
r′′1
r′′2

)
=


0
0
u′′−1
u′′+1

r̂′′

.
Thus, if M̃ ′ (resp. M̃ ′′) is surjective, we get that the image of r′ (resp. r′′) is uniformly distributed.
This holds, even if we choose r′, r′′ uniformly random subject to the constraint imposed by the first
(and second) rows.34 Consequently, w′ + r′ is reduced to a some ŵ′ + r̂′ where r′ is uniformly
distributed in Mn/2. (We argue identically for w′′ + r′′). Note that we use linearity of the protocol’s
recursive step (i.e. v⃗ 7→

∑
i xivi) to treat ŵ′ and r̂′ as separately batched entities.

Recursive rounds. From this point on, we are working with the same masking set Mn/2 as
in Lemma 3.17. Let M ′ (resp. M ′′) be M̃ ′ (resp. M̃ ′′) without the first (and second) row, i.e.
without the constraints. These are the “transition matrices” for a recursion, c.f. Lemma 3.17. By the
same arguments as in Lemma 3.17, we find that each [uℓ] (in fact, each [u′ℓ], [u′′ℓ ]) in each round is
uniformly distributed with high probability. The biggest difference is that we separate w and r only
“conceptually” (as we did above). In a sense, we work with [g′, g′]

(
w′

r′

)
.

Since we run protocol LMPAnoZK essentially twice, we obtain at most twice the failure probabil-
ity.35 That is, the failure probability stays at O(logk(n))/p as claimed. (Remember that the failure
probability is the probability that [uℓ] is not uniformly distributed. This happens if (both) M ′ and
M ′′ are not surjective.)

The last round. Finally, consider the last recursive round, i.e. the reduction from n = k to n = 1.
Note that by definition of Mn, we have Mk = {0, . . . , k−1}, i.e. Mk masks everything. Remember that
we need 2(k − 1) terms of randomness for randomising the u±ℓ, i.e. the matrices M ′,M ′′ ∈ Fk×2k−1p

cannot be surjective! However, we can conceptually separate the randomisation of u±ℓ into uℓ and u−ℓ
(for ℓ = 1, . . . , k − 1) as follows: For uℓ we pick r′, i.e. u′ℓ, to randomise. For u−ℓ we pick r′′, i.e. u′′ℓ ,
to randomise.36 Consequently, we can work with different M ′, M ′′ where one row is removed. Now
the matrices are square matrices and evidently bijective (since xi, yi 6= 0). Thus ŵ′ =

∑
xi(w

′
i + r′i)

and ŵ′′ are uniformly random. This finishes our argument. (More formally, write down the combined
transition matrix, instead of keeping M ′ and M ′′ separate. It is evident that this 2k× (2k−1) matrix
is surjective.)

HVZK Simulation. Simulation for adversaries as described is straightforward. We sketch an
explicit simulator for completeness. With probability η = ε + O(logk(n)k)/p, all transition matrices
M ′, M ′′ as well as M̃ ′, M̃ ′′ are surjective. Hence with probability η, the response is uniformly
random. We simulate a transcripts in reverse. For the base case, we pick w′1, w′′2 ← Fp and computing
the respective [c] =̂ [u0].

Now, we simulate recursive steps by picking [uℓ], ℓ = ±1, . . . ,±k − 1 uniformly at random and
computing [u0] from this. The final round yields [u0] = [c], which was supposedly used in the (non-
zeroknowledge) subprotocol. From this, we compute [d] = [c] − β[cw] − β2t[Q]. This constitutes
an accepting transcript. Note that in each step, non-uniformly distributed elements (which lead to
an accepted response) are unique. Thus, we see that, conditioned on the event that all (combined)
transition matrices are surjective, the simulation is perfect. The probability for the event is at least
1− η.

34This can be seen by using that the constraint rows are linearly independent of the remaining rows. More generally,
if the intersection of the vector space spanned by the constraint rows and the vector space spanned by the remaining
rows is {0}, then choosing r′ (resp. r′′) uniformly but subject to the constraints still results in uniformly random images
under M̃ ′ (resp. M̃ ′).

35This is very naive. Actually, if either M ′ or M ′′ is good, the response is perfectly randomised as well. (Because we
compute [u′

ℓ] and [u′′
ℓ ] individually.) Thus, the failure probability actually decreases.

36Yes, it is index ℓ again, because the [u′′
ℓ ] is “swapped” in this linear sum of protocols.
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4.5 Quadratic equation satisfiability
We can finally instantiate our sketch of an argument system for satisfiability of a system of quadratic
equations from Section 4.3. It is a commit-and-prove system as follows. The prover commits to the
solution w. Then Γ is fixed and 〈w,Γw〉 = 0 shown to hold. The commitment scheme pads w ∈ Fn−2p

with randomness and extends Γ in a suitable way. Intuition for soundness is given in Section 4.3.
Protocol 4.7 (QESAZK). Let Γi ∈ F(n−2)×(n−2)

p (i = 1, . . . , N) be a system of quadratic eqations.
Suppose N ≥ 2.37 Let w ∈ Fn−2p be a solution, i.e. w⊤Γiw = 0 for all i. We assume that the first
component w1 of w is 1.

Let crs = [g′, g′′, Q], χ̃2k−1, χ(β ̸=0) and n ≥ 4k as in Protocol 4.3, and M+
n as in Lemma 4.6. Let

x ← χN be a testing distribution with x1 = 1 and x2 6= 0 for all x.38 Let y ← χn+1 be a testing
distribution with y1 = 1 always. The following is a protocol for proving

∃w ∈ Fn−2p : ∀i : w⊤Γiw = 0

where crs and Γi are common inputs and the prover’s witness is w.

• P → V: (Step 0: Commitment.) Pick r′ ← F2
p. Let the “extended” witness be w′ := (wr′ ) and

compute the commitment [c′w] = [g′]w′. Send [c′w].
• V → P: (Step 1: Batch verification.) Pick and send x← χN .
• (Batch equations): Both parties compute Γ :=

∑
xiΓi ∈ F(n−2)×(n−2)

p .
• (Fix w1 to 1): Both parties let β := x2 and do: Redefine [g′1] as β−1[g′1]. Redefine [c′w] ←

[c′w]− (β − 1)[g′1] (with the new [g′1]).
• P→ V: Let r′′ = Rr′ where R =

(
0 −1
1 0

)
is a rotation by 90 degrees. Let w′′ =

(
Γw
r′′
)
. Compute

and send [c′′w] = [g′′]w′′.
• V → P: Pick (1, s, b)← χn+1, where s ∈ Fn−2p , b ∈ F2

p. Send s′ := ( sb ).
• P ↔ V: Engage in Protocol IPAalmZK for 〈w′ − s′,w′′ + Γ′⊤s′〉 = t with t = −〈s,Γ⊤s〉, and

commitment ([c′w]− [g′]s′) + ([c′′w] + [g′′]Γ′⊤s′) and the modified [g′] (and unmodified [g′′], [Q])
as commitment keys. Here Γ′ =

(
Γ 0
0 R

)
∈ Fn×np where R is as in Step 1.

See Appendix G for a sketch of this protocol.
Remark 4.8. It is not hard to see that the prover never needs to compute [c] = ([c′w]− [g′]s′)+ ([c′′w]+
[g′′]Γ′⊤s′). (In general, P does not need [u0].) While the verifier has to check [c], using lazy evaluation
and optimisations from [16], this hardly affects its runtime. All in all, dealing with s′ is almost free.

Lemma 4.9. Protocol QESAZK has perfect correctness.

Using 〈
(
u′

r′

)
,
(
u′′

r′′

)
〉 = 〈u′,u′′〉 + 〈r′, r′′〉 and 〈r,Rr〉 = 0 for all r ∈ F2

p, this is a straightforward
check.

Proof. IPAalmZK is perfectly correct and the verifier only rejects an honest prover if the IPAalmZK
rejects. So consider the statment 〈w′ − s′,w′′ + Γ′⊤s′〉 = t, for t = −〈s,Γ⊤s〉. which the IPA proves.
Let w′ = (wr′ ), w′′ =

(
Γw
Rr′
)

as in the protocol and let s′ = ( sb ) with b, s as in QESAZK. By
construction, 〈x,Rx〉 = 0 for any x ∈ F2

p. With this, we find

〈w′ − s′,w′′ + Γ′⊤s′〉 = 〈w − s,Γw + Γ⊤s〉+ 〈r′ − b,Rr′ +R⊤b〉
= −〈s,Γ⊤s〉

because from R⊤ = −R and Γw = w we have

〈r′ − b,Rr′ +R⊤b〉 = 〈r′ − b,R(r′ − b)〉 = 0

and 〈w − s,Γw + Γ⊤s〉 = 〈w,Γw〉︸ ︷︷ ︸
=0

+(〈w,Γ⊤s〉 − 〈s,Γw〉)︸ ︷︷ ︸
=⟨Γw−w,s⟩=0

−〈s,Γ⊤s〉

and thus
〈w′ − s′,w′′ + Γ′⊤s′〉 = −〈s,Γ⊤s〉.

37Otherwise, add trivial equations Γ = 0.
38Restrictions on χN are merely to simplify protocol description and proofs.
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Lemma 4.10. Protocol QESAZK has µ-special soundess (with µ = (N,n + 1, 2, 2, 2k, . . . , 2k)) for
extracting a witness or a non-trivial kernel element of [g′, g′′, Q]. It inherits short-circuit extraction
with µ = (1, 1, 2, 2, k, . . . , k).

We did away with “α” compared to Section 4.3 to improve soundness. Extracting a challenge
(α, s) naively requires a (3, n− 2) subtree. Our construction only needs an (n+ 1) sub-“tree”.

Proof. First of all, note that the randomisation of [g′1] is as in Lemma 4.2. In particular, non-trivial
kernel elements in [g′new] yield such in [g′old]. Therefore, we need only consider [g′] = [gold] in the
following.

The proof is straightforward. First extract the subprotocol, using the guarantees of Corollary 4.4.

We find w′i,w
′′
i , ti with [g′, g′′, Q]

(
w′

i

w′′
i
ti

)
. Note that these openings are prior to randomisation of [g′1].

We may assume that w′ = w′i, w′′ = w′′i , 0 = t = ti = 〈w′,w′′〉 for all i, otherwise we get a non-
trivial kernel element of [g′, g′′, Q]. In particular, if β1 6= β2 for some transcript, we find v′1 = 1 as in
Lemma 4.2.

We’re left with a (N,n + 1)-tree of transcripts where the extracted witness w′,w′′ is fixed and
satisfies

〈w′ − s′,w′′ + Γ′⊤s′〉 = −〈s,Γ⊤s〉

for each transcript with challenge s′. Since 〈s′,Γ⊤s′〉 = 〈s,Γ⊤s〉 we find

0 = 〈w′ − s′,w′′ + Γ′⊤s′〉+ 〈s′,Γ⊤s′〉
= 〈w′,w′′〉+ 〈Γ′w′ −w′′, s′〉

= (1, s′⊤)

(
〈w′,w′′〉
Γ′w′ −w′′

)
Since χn+1 is a testing distribution (and

(
1
s′
)
← χn+1), we find that 〈w′,w′′〉 = 0 and Γ′w′−w′′ = 0.

Now, let w′ =
(
u′

r′

)
with r′ ∈ F2

p, u′ in Fn−2p and likewise w′′ =
(
u′′

r′′

)
. We find (using the block

structure of Γ′) that
r′′ = Rr′ and u′′ = Γu′.

Thus, we get
0 = 〈w′,w′′〉 = 〈r′, r′′〉︸ ︷︷ ︸

=0

+〈u′,u′′〉.

Consequently, w := u′ is a witness with w⊤Γw = 0. We get w1 = 1 because we are guaranteed to
have two different β’s (since all n+ 1 challenges are linearly independent and x1 = 1 always).

What’s left to show is that given N transcripts (with linearly independent challenges), we must
have a solution (or a non-trivial kernel element). Since we assume that all extractions yield the same
w′,w′′, hence the same w, we show that w must be a witness. Consider the vector e ∈ FNp defined
by ej := w⊤Γjw. Write Γ(i) :=

∑
j x

(i)
j Γj , where the superscript i indicates the i-th transcript. Since

all transcripts are valid, we know that w⊤Γ(i)w = 0. We get

0 = w⊤Γ(i)w =
∑
j

x
(i)
j w⊤Γjw = x(i)e.

Since all x(i) are linearly independent this implies e = 0, i.e. w solves each equation.

Lemma 4.11. Protocol QESAZK is ε-statistical zero-knowledge for some ε ∈ O(logk(n)k)/p.

For the proof, we establish that the conditions of Lemma 4.6 are met except with probability
O(logk(n)k)/p. This follows essentially because QESAZK uses w′ = (wr ), where r is random (and
similar for w′′). Thus, IPAalmZK is statistical zero-knowledge, and consequently QESAZK is statistical
zero-knowledge as well.
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Proof. We use Lemma 4.6 to show that (with probability O(logk(n)k)/p), the prover’s messages in
the IPA subprotocol are all uniformly random. This will allow us to simulate the IPA subprotocol.
The rest is standard and straightforward.

Namely, assume that the subprotocol is zero-knowledge. Our simulator then first picks [c′], [c′′]← G
uniformly at random. Note that the randomisation terms r′ resp. r′′ = Rr′ in Step 0 (resp. Step 1)
ensure that [c′] and [c′′] are uniformly distributed in the honest protocol as well. Then we compute
[c′new] as in the protocol. Finally, we simulate the IPA subprotocol (for otherwise “honestly” computed
inputs).

Now, let us show that in an honest protocol run, the prover satisfies the requirement of Lemma 4.6
with probability O(logk(n)k)/p.

Let u′ := w′ − s′, u′′ := w′′ + Γ′⊤s′ as in Protocol 4.7 (QESAZK). Note that u′n and u′′n are
(independent and) uniformly random: u′n = r′1 − s′1 and u′′n = r′2 + s′2 (and r′ = (r′1, r

′
2)
⊤ ∈ F2

p is
uniformly random.

Let M ′′ and C ′′ be as in Lemma 4.6. (The proof for M ′ is analogous, and simpler.) We specialise
to k = 2. For general k one argues analogously.

Consider the columns {1, . . . , 4} and {n − 3, . . . , n} of M ′′. In other words, take the first 4 and
last 4 columns of M ′′. Note that M+

n (n ≥ 8) contains all of these by construction. After removing
0-rows (from the xi id blocks) we end up with:

M ′′ :=



u1 u2 u3 u4 un−3 un−2 un−1 un
r1 r2 r3 r4 ⋆ ⋆ rn−1 rn
g2,1 g2,2 0 0 0 0 0 0
0 0 0 0 g1,1 g1,2 g1,3 g1,4
x1 x2

x1 x2
x1 x2

x1 x2


Empty entries are 0, ⋆ entries don’t matter. We dropped all “primes” to simplify notation. Further-
more, the ri belong to r′′ from Lemma 4.6.

Note that r′′ ← K := ker(
(
u′

r′

)
) ∩M+

n (for the r′ of Lemma 4.6, which is of no further interest).
In particular, dim(K) ≥ dim(M+

n ) − 2. Thus, we find some index j ∈ {1, 2, 3, 4} such that rj ∈ Fp
is distributed uniformly random (in fact, we find at least two such indices). Suppose r2 is uniformly
random. The other cases can be handled analogously.

We now develop the determinant of above matrix (row-wise). We pick the terms un, r2, g2,1 and
g1,3 for this. We find

±det(M ′′) = vn · r2 · g2,1 · g1,3 · det


x2

x2
x1

x1


︸ ︷︷ ︸

̸=0

+ poly

where poly is some polynomial (in the entries of M ′′) whose monomials are different from vnr2g2,1g1,3.
Since u1, r3, g2,1 and g1,4 are distributed uniformly at random, the Lemma of Schwatz–Zippel implies
that P(det(M ′′) = 0) ≤ 4/p for any (fixed) x1, x2 6= 0.

4.6 Combining QESAZK with other proof systems
As is, QESAZK can be used to commit-and-prove quadratic equations. However, oftentimes, one
wishes to prove statements about commitments which come from some other source (and do not
include auxiliary information necessary for a proof). For example, Bulletproofs [16] were designed
for confidential transaction, where the commitments are input to the proof system. This is not
immediately feasible with QESAZK as is, because QESAZK is commit-and-prove only w.r.t. the solution
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of the set of quadratic equations. So either the commitment includes the auxiliary information (e.g. a
bit decomposition for range proofs), or QESAZK is not directly applicable.

Fortunately, applying QESAZK in such circumstances is not hard. Although, since QESAZK only
assures a solution to a set of quadratic equations, some additional steps (beyond QESAZK’s guarantees)
may be necessary to achieve the desired properties.

We consider following setting. There are commitment keys c̃k(i) for i = 1, . . . ,M . Each commit-
ment key corresponds to a subset Ii ⊆ {1, . . . , n} of the components of [g′], where crs = ([g′, g′′, Q])
is the commitment key of QESAZK. That is c̃k(i) =̂ {[g′j ]}j∈Ii . Let I := ∪Mi=1Ii be the set of all indices
which are part of some c̃k(i). Let M (i) := #Ii be the size of c̃k(i). We assume the following: Every
commitment key c̃k(i) uses [g′n] (or [g′n−1]) as its randomness components. Moreover, 1 6∈ Ii, because
the index 1 =̂ [g′1] is reserved for the commitment to value 1 in QESAZK. A useful point of view is
that c̃k(i) is a commitment under [g′] ∈ Gn to a vector v(i) ∈ Fnp with

∀i 6∈ Ii : vi = 0. (4.2)

We assume for simplicity that there is only one commitment per commitment key c̃k(i). To model the
case of multiple commitments [c1], . . . , [cM ] for one key, e.g. all commitments are under c̃k = c̃k(1), we
simply duplicate c̃k, i.e. we rewrite this as [c̃(i)] = [ci], c̃k(i) = c̃k.
Example 4.12. In a typical range proof, with Pedersen committed value, we would have c̃k(1) =̂ [g′2, g

′
n],

where M = 1. We write c̃k := c̃k(1) for simplicity. This means I = {2, n}.
Remark 4.13. Using the in n varying [g′n] in the commitment keys c̃k(i) is problematic and incon-
venient. We want the randomness terms in QESAZK and our commitment to “overlap”. But now,
running QESAZK for a smaller or larger instance, e.g. an instance of size n/2 or 2n is incompatible. A
simple solution is to fix some (random) [g′,⋆rnd1, g

′,⋆
rnd2] (as part of crs) and construct [g′] when starting

Protocol QESAZK so that [g′n−1, g′n] = [g′,⋆rnd1, g
′,⋆
rnd2]. Another solution is to permute the position of the

randomness and reserve the fixed indices 2, 3 for randomness (instead of n − 1, n). Either approach
fixes the group elements corresponding to the randomising term, solving the problem.

With this setup, we can extend QESAZK as follows: Given commitments [c̃(i)] under keys c̃k(i),
prove that the values committed in [c̃(i)] satisfy some set of quadratic equations. In other words, prove
that the [c̃(i)] satisfy some arithmetic circuit.
Example 4.14 (Aggregate range proof). Consider [c̃(j)], j = 1, ..., 10. We wish to prove that the values
v(j) committed in [c̃(j)] all lie in the range {0, . . . , 28 − 1}. We can also prove additional properties,
like v(j) ≤ v(j+1) for all j.

Unsurprisingly, our solution to the problem is probabilistic verification. On a high level, we proceed
as follows: The verifier knows the commitments [c̃(i)] as part of the statement. We start QESAZK as
usual, the prover sends the commitment [c′w] to the witness, where the components I are zeroed
(except for the randomness in n − 1, n). Then the verifier sends a challenge αFM(+)1

p with α0 = 1.
Both sides compute the random linear combination [c′w]← [c′w] +

∑
i αi[c̃

(i)] as the new commitment.
The prover adjusts his (extended) witness w′ = (wr′ ) to w′ ← α0w

′ +
∑

i αiv
(i). The statements, i.e.

the matrices Γi are also adjusted, and perhaps additional equations are included.
For a single commitment, the strategy can be made to work as described. For multiple commit-

ments, it depends on the statement. However, there is one problem which this kind of probabilistic
verification does not address: It is never proven that the commitments [c̃(i)] actually satisfy Eq. (4.2).
In general, this is not implied. We can either assume that this is enforced by means outside of the
protocol, or add proof for this, e.g. another proof of knowledge.
Example 4.15. Suppose there is no statement to verify, i.e. Γ = 0. Then QESAZK and its modification
above degrades to a proof of knowledge of an opening. But it does not prove that v(i) satisfies Eq. (4.2).
If there are components of the witness, which are unused (because less than 2n − 3 values are needed
in the proof), then similar problems apply. So this is a practical problem. It is possible to (artificially)
zero all unused components. But even then, there are (trivial) statements where Eq. (4.2) is violated.

Our idea for general interoperability is as follows: The initial QESAZK witness w (commitment
c′w) has all components in I zeroed (except for randomness n − 1, n) and also contains copies of
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the committed v(i). The actual equations, i.e. the Γi, only refer to the copies and the components
I. As before, for verifier randomness α, we set [c′w] ← [c′w] +

∑
i αi[c̃

(i)], and obtain w′ ← w′ +∑
i αiv

(i) as new extended witness. Note that all (extended) equations w′Γ′⊤i w′ still hold (for an
honest prover). Now we add (linear) equations Γ

(i)
copy to the statement, which we call copy-equations

and which depend on the randomness αi. These equations simply assert that, if we compute
∑

i αiv
(i)

using the committed copies in w, then this equals the values committed in components I (again
excluding the randomness components n− 1, n). In other words, we assert that the purported copies
of v(i) in witness [c′w ,old] were valid copies. This “copy-based” approach is simple and modular.

The formulaic description of QESACopy is arguably technical. However, the examples in Fig. 3 and
Fig. 4 demonstrate that it is actually a simple concept.

c̃(1) =̂ I1 = {2, n}: m(1) r(1)

c̃(2) =̂ I2 = {2, n}: m(2) r(2)

w′ = ( w
r′ ): 1 0 m(1) m(2) r1 r2

α0w
′ + α1v

(1) + α2v
(2): 1

α1m(1)

+α2m(2) m(1) m(2) r1 r∗2

α1

α2

α0

= 1

Figure 3: An example of a copying two values from two commitments. The blocks are colour-coded
as follows: White blocks contain either 0 or the value indicated. Orange blocks belong to the (value-
part) of commitment indices, i.e. to I. Green blocks denote “copied” values. Gray blocks contain
an arbitrary value. Blue blocks refer to randomness parts (i.e. components n − 1, n). Note that
randomness is not copied, as it is not a relevant part of the committed value. It is simply accumulated
in r∗2 = α0r2 + α1r

(1) + α2r
(2). The actual statements (i.e. the matrices Γi) are statements over all

variables except the orange (and blue) blocks, as these are merely “test-values” which ensure that w
contains copies of (the message part of) v(i), here m(i), as claimed.

I1 = {2, 3, n}: m
(1)
2 m

(1)
3 r(1)

I2 = {2, 4, n}: m
(2)
2 m

(2)
4 r(2)

w′ =
(w
r′

)
: 1 0 0 0 m

(1)
2 m

(1)
3 m

(2)
2 m

(2)
4

r1 r2

w′
new: 1 ⋆ ⋆ ⋆ m

(1)
2 m

(1)
3 m

(2)
2 m

(2)
4

r1 ⋆

α1

α2

α0

= 1

Figure 4: This is a more complex example of the copying technique. Colour-coding is as before. Note
that I1 6= I2. Again, all orange values m(i) =̂ v(i), are copied and appear as green values in w. Note
that we can go much further than this: Green values could be implicitly given by quadratic equations,
as noted in Remark 4.18. The copy for a one commitment, e.g. [c̃(1)] could be elided, c.f. Remark 4.18.

Protocol 4.16 (QESACopy). Let n ≥ 4k, Γi, crs = [g′, g′′, Q], χ̃2k−1 be as in Protocol QESAZK. Let
χM+1 be a testing distribution where the first component is always 1, i.e. α ← χM+1 has α0 = 1.39

Let c̃k(i) =̂ Ii be commitment keys for commitments (for i = 1, . . . ,M), as described above. Let
[c̃(i)] be commitments to values v(i). We identify v(i) with a vector in Fnp when necessary (satisfying
Eq. (4.2)). Let w ∈ Fn−2p be a solution, i.e. w⊤Γiw = 0 for all i. We assume that the first component
w1 of w is 1 and

∀i ∈ Ii ∩ {1, . . . , n− 2} : wi = 0.

39The restriction α0 = 1 is just for convenience.
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For simplicity, assume that the last component of v(i) is used for commitment randomness and c̃k(i)

M(i) =

[g′n], hence message size is M (i) − 1. We assume there is an injective map τ with

τ(i,_) : {1, . . . ,M (i) − 1} → {1, . . . , n− 2} \ I such that wτ(i,j) = v
(i)
j ,

which tells us components v(i)
j of the committed message are copied to. This excludes the commitment

randomness v
(i)

M(i) , which by assumption corresponds to component n and maps to component n.40

In other words, the mapping τ tells us where copied components v
(i)
j are stored in w. (We ignore

commitment randomness at indices n−1, n, as this is of no interest,41 and part of the extended witness
w′ = (wr′ ) ∈ Fnp .) Let S be a protocol proving knowledge of v(i) for all i.42 Then the following is a
protocol for proving

∃w ∈ Fn−2p ,v(i) ∈ FM
(i)

p ≤ Fnp such that ∀j : w⊤Γjw = 0

and ∀i∀j ∈ I ∩ {1, . . . , n− 2} : wτ(i,j) = v
(i)
j

and ∀i : [c̃(i)] = c̃k(i)v(i) =̂ [g′]v(i).

The prover’s witness consists of w and v(i). The statement consists of {Γj}j and [c̃(i)].

• P→ V: (Step −1: Prove well-formedness of [c̃(i)])
Engage in S to prove that ∃v(i) : [g]v(i) = [c̃(i)] and v(i) satisfies Eq. (4.2). (This may be run in
parallel.)

• P → V: (Step 0: Commit to w.) Send [c′w] := [g′]w′ with w′ = (wr′ ), where w is as outlined
above and r′ ← F2

p.
• V → P: (Step 1: Batch verification and statement adaption for QESAZK) Pick and send α ←
χM+1, where (α0, . . . , αM ) = α ∈ FM+1

p and where α0 = 1 always (by assumption). Both
sides set [c′w] := α0[c

′
w] +

∑
i αi[c̃

(i)]. The prover sets w′ := α0w
′ +
∑

i αiv
(i) ∈ Fnp . The set

of equations is augmented by additional equations, given by “copy-matrices” Γ
(k)
copy for each

k ∈ I ∩ {1, . . . , n− 2} as follows:

w⊤Γ
(k)
copyw = 0 =̂

∑
τ(i, k) = j if k ∈ Ii

αiwτ(i,k) − wk = 0.

These equations merely formalise that computing the (random) linear combination of the (pur-
ported) copies of v(i) (as part of w′) yield the same value as the (random) linear combination
of the commitments, c.f. Figs. 3 and 4. (Note the linearity of the commitments).
With these additional equations and the adapted witness, continue as in QESAZK (Step 1) with-
out further changes.

See Appendix G for a sketch of this protocol.
It not hard to see that QESACopy is correct. For zero-knowledge, we merely note that QESAZK is

statistical HVZK, and by a completely analogous proof, QESACopy is statistical HVZK as well.

Lemma 4.17. Suppose S is ν-special sound. Then Protocol QESACopy is (ν, µ)-special sound for
extraction of a witness or a non-trivial kernel element of [g′, g′′, Q], with µ = (M + 1, N ′, n +
1, 2, 2, 2k, . . . , 2k), where N ′ is the number of equations plus the number of copy equations. The
µ-part is short-circuit extractable with µ′ = (1, 1, 1, 2, 2, k, . . . , k).

40This can trivially be relaxed to allowing randomness in components n− 1 and n. By construction, the commitment
randomness is not copied and cannot be reconstructed or used in the statements. If different components than n− 1, n
are used as commitment randomness, they are treated like a committed message, and (may be) copied as well.

41If commitment randomness is used in other indices, we treat it like the committed message, and do copy it.
42It suffices to prove that Eq. (4.2) holds for all i. If all I are equal, dual testing distributions can be used instead,

to freshly generate all components gi for i ̸∈ I. Remember that dual testing (Definition 2.16) ensures that previous
commitments must be zero for all components i ̸∈ I (or cannot be opened without breaking the hard kernel assumption).
If not all I are equal, treating them as equal, i.e. “extending” the commitment keys c̃k(i) and proving that the copied
values are zero outside Ii, still allows to resort to dual testing.
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Proof sketch. The proof is straightforward, but the indexing is tedious. We only sketch it.
First of all, note that just like with QESAZK, we can for each run with randomness α extract a

witness wα satisfying all Γi, including the additional copy-equations. We only need to prove that (all)
wα have correctly copied the values v(i) of commitments [c̃(i)]. Since we assumed special soundness of
the subprotocol S, we could use it for extraction. However, we refrain from doing so, to sketch how
the lemma and proof generalise to the setting, where S only ensures that any opening v(i) satisfies
Eq. (4.2). So, by soundness of S, we can assume that for all components not in I, we know that
wα does not depend on α, i.e. is fixed. (Remember that α0 = 1, and [cw] is the only commitment
which is possibly non-zero in components outside I.) In particular, the copies of v(i) in wα are always
identical, and do not depend on α. Otherwise we find a non-trivial kernel element. We show this in
the following.

First, we note that from M + 1 linearly independent challenges α, we obtain (since [c̃(i)] and [c′w]
are fixed) openings to each commitment in the usual way. A priori, the openings w and v(i) are
only openings w.r.t. [g′], and need not respect Eq. (4.2). However, due to subprotocol S, we see that
Eq. (4.2) holds for each i, or the soundness of S is broken.

Now, we reinterpret the setting to avoid carrying around too many indices. The “copy proofs”
essentially state the following: There is a subvector (a, b1, . . . , bM ) in w such that bi consists of the
copied values of all v(i), and a should be zero. In wα, we get aα = a +

∑M
i=1 αiv

(i). (Note that a
should be zero, but we need to prove this.) By the “copy equations” from Step 1, we also have43

M∑
i=1

αibi = aα = α0a+
M∑
i=1

αiv
(i).

Given M + 1 linearly independent α, we find that a = 0. Thus, we find that the v(i) which satisfy
these equations are openings of [c̃(i)]. If any of this fails, we find non-trivial kernel relations.

A priori, the opening v(i) only respects I, not Ii, in the sense of Eq. (4.2). But another invocation
of the soundness of S shows that they do respect Ii. Thus, they are openings w.r.t. c̃k(i). (Actually,
to get openings we need to look at the randomness too, i.e. include components n − 1, n. It is not
hard to do this.)

Now, we have openings for the commitments, we know that w actually contains copies of these
commitments, we know that w has zeroed all wi with i ∈ I, and w satisfies the all equations Γi. This
is what we wanted to show.

Remark 4.18. One can “optimise away” unnecessary copies. For example, if the value of a copy can be
computed from other values by some quadratic function, then one can use this instead of making an
explicit copy. This is the case for range proofs, where v =

∑
i 2
ibi is is copied. The bit-decomposition

of v is enough to recover it, so no extra copy of v is necessary. Evidently, the “copy-equations” must
be adapted accordingly.

There is one further optimisation: In the case of range proofs, one does not need b0 if one proves
instead that v −

∑
i≥1 2

ibi is a bit (which is a quadratic, even R1CS, equation). A priori, this is
not possible with the copy approach. However, close inspection shows that when copying a single
commitment, one can, instead of copying it, adapt all Γi of the statement by multiplying all rows and
columns in I by α−11 (except randomness indicices, which are not even part of the equations).

In the “copy-based” case, we can combine both optimisations: Given (implicit) copies of v(2), …,
v(M), one can compute v(1) from these and the sum

∑M
i=1 αiv

(i). By adapting all Γi with α−11 as
before, we can make use of v(1) implicitly, as α−11

∑M
i=2 αiv

(i)
copy. Thus, we need at most M − 1 copies.

These optimisations are especially useful if a lot of components need to be copied, i.e. if #I is
large w.r.t. to the rest of the witness.
Example 4.19. Consider the situation of (aggregate) range proofs in [16], that is, we have a commitment
key c̃k := [g′2, g

′
n] and want to prove that commitments [ci], for i = 1, . . . ,M , all under this key, contain

values within a some ℓ-bit range. We would instantiate QESACopy as follows: As the subprotocol S,
use a batch proof of knowledge of openings of [ci] (Appendix B). This requires transmitting 1 group

43If we don’t have this, QESAZK extraction would short-circuit.
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Parameters Bulletproofs QESARP QESARP (short)
P V P V P V

60 bit 0.26 0.17 0.16 0.07 0.15 0.06
60 bit × 2 0.47 0.29 0.32 0.15 0.30 0.10
60 bit × 32 7.4 4.5 5.1 2.4 4.6 1.7
60 bit × 128 28.9 17.9 20.6 9.4 18.4 6.7
60 bit × 512 116 78.7 82.3 37.5 73.8 27.1
124 bit 0.46 0.29 0.32 0.15 0.29 0.11
124 bit × 32 14.9 9.2 10.4 4.7 9.3 3.4
124 bit × 128 59.7 36.8 41.4 18.9 37.2 13.5
124 bit × 512 238 147 165 75.4 149 54.6
252 bit 0.95 0.59 0.65 0.30 0.57 0.22
252 bit × 32 30.2 18.6 20.8 9.5 18.9 6.8
252 bit × 128 121 74.3 83.5 37.8 76.1 27.4
252 bit × 512 484 297 358 165 302 109

Table 3: Comparison of non-optimised prover runtime in seconds of aggregate range proofs from [16]
with this work. Verification times are only included for completeness. See Section 5 for details.

element and 2 scalars (and 1 challenge). Thus, the corresponding (almost) naive QESACopy requires
ℓM + 1 variables, and hence n = ℓM + 4.44

In total, the prover transmits 2dlog(ℓM + 4)e + 5 group elements and 4 scalars. This is almost
identical to [16], where 2dlog(ℓM)e + 4 group elements and 5 scalars are transmitted. However, our
approach is generic and not tailored to range proofs. Thus, the performance seems adequate.45

5 Implementation
We implemented all protocols in C++17 using the RELIC toolkit [4] for underlying group operations.
Our instantiation uses G = Curve25519 and thus Fp = F2255−19. For a fair comparison, we implemented
Bulletproofs on the same architecture with equal care. The code is available on GitHub.46

Representing Γ. All QESA protocols make use of sparse matrices Γ. For efficient computation, a
suitable representation is necessary. Decomposing Γ into a sum

∑
i aib

⊤
i , similar to R1CS, allows for

both runtime and memory optimisations. Note that vectors ai and bi are sparse themselves, allowing
for even further optimisation via an appropriate data structure. For multiplications Γs, at most
m
∑

i kiℓi scalar multiplications are necessary, where m, ki, ℓi are the number of non-zero entries in
s, ai, bi. Thus, all operations remain polynomial in the input size.

Results. We benchmarked our protocols on an Intel Core i7-6600U CPU at 2.6GHz running Debian
Stretch 4.9.168 using a single core. A point multiplication with a random 254-bit scalar takes on
average 0.28ms on this platform. Table 3 shows how our aggregate range proofs QESARP compare
to Bulletproofs. For QESARP, the internal witness w contains 4 static elements: the constant 1, the
aggregate element for QESACopy, and the 2 random elements added by QESAInner, c.f. Appendix G.
Hence, we select the range as a power of 2 minus 4, in order to keep the CRS size from expanding to the
next power of two. Our results show that QESARP outperforms Bulletproofs for all tested parameters.
Allowing batching randomnesses to be small further improves the performance (cf. QESARP (short)

44We either eliminate bit b0 or instead of copying we use the “implicit” copy
∑

2ibi. Otherwise, we would need
(ℓ+ 1)M + 1 variables. With all optimisations of Remark 4.18, we could get down to ℓM variables, hence n = ℓM + 3.

45[16] instantiates arithmetic circuit proofs differently. While [16] can deal with commitments, these are only single-
valued Pedersen commitments. It should be possible to extend [16] to our more general setting, but it is not obvious
how hard it is

46https://github.com/emsec/QESA_ZK
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Shuffle size 1000 10000 100000
P V P V P V

Time [s] 8.8 4.4 117 56.1 1009 491

Table 4: Evaluation of shuffle proofs via QESACopy and LMPAsimpleZK.

for 140-bit random values).47 Note that the execution times given in [16] are lower, since a highly
optimised library dedicated to a single elliptic curve was used instead of a general purpose library as
in this work. However, since both protocols were benchmarked on the same platform with the same
underlying library, the values in Table 3 give a fair comparison.

Note that we have not applied special optimisations to the verification algorithms and therefore
show verification times in gray. Using delayed (batch) verification, e.g. as in [16], significantly improves
verifier performance. Optimised verification performance of Bulletproofs and our proof systems is
almost identical.48 This was also verified in independent benchmarks by Noether and Wedderburn.49

We are not aware of similar optimisations for the prover.
Table 4 gives execution times for our shuffle proofs. They are an instantiation of [5], c.f. Ap-

pendix C, and we project them to be 2–3× more computationally expensive than [5], but they are size
O(log(N)) instead of O(

√
N) for N ciphertexts. Again the very high execution times compared to [5]

are caused by the underlying library.
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A Omissions
This section is only for appendix numbering compatibility with the extended version.

B Batch proofs of knowledge
By applying the “linear combination of protocols” technique, to multiple “trivial proofs of knowledge”
(c.f. Fig. 2) we obtain batch verification of statements ([A], [ti]), i = 1, . . . , N , i.e. the setting of [44],
in a straightforward way.
Protocol B.1. The following is a protocol to prove: ∃wi : [A]wi = [ti] for i = 1, . . . , N . Let χN+1 be
a testing distribution for challenges, such that x ← χN+1 has xN+1 6= 0 always. Common input is
([A], ([ti])i) ∈ Gm×n ×Gn. The prover’s witness are some wi ∈ Fnp .

• P→ V: Pick r ← Fnp and let [a] = [A]r. Send [a] ∈ Gm.
• V → P: Pick x← χN+1. Send x ∈ Fp.

• P→ V: Compute z = x⊤
(

w1
...
wN
r

)
=
∑N

i=1 xiwi + xN+1r. Send z ∈ Fnp .

• V: Check [A]z
?
=
∑N

i=1 xi[ti] + xN+1[a], and accept/reject if true/false.
Lemma B.2. Protocol B.1 is a HVZK-PoK for ∃w : [t] = [A]w. It is perfectly complete, has perfect
HVZK and is (N + 1)-special sound.
Proof. Completeness is straightforward. Extraction uses N + 1 accepting transcripts ([a],xj , zj).
Let [T ] := [t1, . . . , tN ,a] and Z, X be appropriate matrices built from the N + 1 transcripts. Since
[A]Z = X, we find (w1, . . . ,wN , r) := ZX−1 is a valid witness. For HVZK note that xN+1 6= 0.
Hence z is uniformly distributed for any honest execution. Thus, we can pick z ← Fmp and let
[a] := [A]z − [T ]x as usual.

Using vectors of vectors and matrices of matrices, we can write the above as

x⊤⊗ id
[

A
. . .

A

][w1...
r

]
= [A]

[w1...
r

]⊤
x = [A](

N∑
i=1

xiwi + xN+1r)

=
N∑
i=1

xi[ti] + xN+1[a] = x⊤

[
t1...
a

]
=

[
t1...
a

]⊤
x

In a sense, we run LMPAbatch, but exploit the structure (namely block-diagonality) to “commute”
x and diag([A], . . . , [A]). Linear combination also yields efficient k-out-of-N proofs, by having the
verifier only partially fix the challenge. However, this must be done carefully or it is unsound, see [34].

C An efficient proof of correctness of a shuffle
A proof of correctness of a shuffle is a proof that two (multi-)sets of ciphertexts decrypt to the same
multi-set of plaintexts. This is especially interesting in settings with rerandomisable ciphertexts,
because the “shuffling party” does not need to decrypt. For electronic voting, a shuffle achieves a
certain unlinkability between the originally encrypted votes, and the (in a final step) decrypted votes,
while the proofs of correctness of the shuffle ensure that the voting result is unaffected.

With our tools, it is possible to prove the correctness of a shuffle in logarithmic communication for
ElGamal ciphertexts in a very naive manner. Namely, we commit to a permutation matrix (as part
of w) and rerandomisation randomness for the ElGamal ciphertexts (also part of w). Then we prove
that [A]w = [c⃗], where [A] is constructed from the old ciphertexts and the ElGamal public key, and
[c⃗] is the vector of shuffled ciphertexts. We also add a proof that (the relevant part of) w commits
to a permutation matrix, as sketched in Section 3.5. This all neatly fits into our framework, giving
a logarithmic size proof overall. However, there is a huge drawback: The size of the permutation
matrix, hence w, is N2 for N ciphertexts. Thus, the computation grows quadratically in N . This is
unacceptable in practice.
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Remark C.1. Shuffle arguments for (Pedersen) committed values were already constructed in [16],
by using a sorting circuit and comparing the sorted sequences. In [3], an improved shuffle argument
(for commitments) is constructed. It relies on the techniques in [5, 42]. More generally, [3] allows
randomized R1CS, by using a commit-and-prove structure of Bulletproofs.

In Appendix C.1 below, we rely essentially on the same techniques and properties as [3]. However,
our setting concerns (ElGamal) encrypted values (e.g. votes), not (Pedersen) committed values. While
it is likely that Bulletproofs can be suitably modified to cover this setting as well, it is not immediately
obvious how.

Lastly, we note that given any log-communication proof system, theoretically “efficient” (poly-
nomial time) and short shuffle proofs are essentially a triviality. Just prove the relevant state-
ments (e.g. ElGamal randomisation) in a non-black-box manner. Since we have O(log(poly(κ, n))) =
O(log(κ) + log(n)), communication is almost logarithmic in n (and if n ∈ Ω(κ), it is logarithmic).

C.1 Adapting the shuffle argument of Bayer–Groth
The shuffle argument of Bayer and Groth [5] is built from two sub-arguments, a “product argument”
and a “multi-exponentiation argument”. A generic proof of security is given in [5, Theorem 5]. The for-
mer argument can be instantiated by QESAZK, or more precisely, QESACopy. The latter argument can
be instantiated by LMPAZK. Since our arguments have logarithmic communication and need linearly
many exponentiations, so does the resulting shuffle argument. We give a more detailed instantiation
below.

• CRS: ck = (ckQ, ckL), where ckQ = ([g′, g′′, Q]) is the commitment key for QESAZK and ckL =
[h] is the commitment key for LMPAZK (or empty if a simple zero-knowledge LMPA version
is used). Here [g′] ∈ Fnp , where n ≥ N + 2 is a (suitably large) power of 2. Note that our
commitment keys consist of random group elements.

• Common input: Old and new ciphertexts [ctold
i ], [ctnew

i ] ∈ G2 for i = {0, . . . , N−1} and ElGamal
public key [pk] ∈ G2.

• Prover’s witness: The random permutation π ∈ {0, . . . , N − 1}N and rerandomisation random-
nesses ρi ∈ Fp such that [ctnew

i ] = [ctold
πi ] + ρi[pk]. (Note that Enc(0; ρi) = ρi[pk] for ElGamal.)

• P→ V: Compute and send the commitment [cπ] to π:

[cπ] = ComckQ
(π; 0, rπ)

= [g′1 | g′2, . . . , g′N+1 | g′N+2, . . . , g
′
n−2 | g′n−1, g′n]


0

π

0

0
rπ


(Remember that [g′n−1] and [g′n] are reserved for randomness in QESAZK commitments, and [g1]
is also reserved (for the constant 1).)

• V → P: Send x = (x0, . . . , xN−1)← χN .
• P→ V: Send [cy] = ComckQ

(y; 0, ry), where [y] := π(x) = (xπi)i = (xπ0 , . . . , xπN−1).
• V → P: Send ζ, z ← Fp.
• P↔ V: Prove following statements using (logarithmic communication) sub-protocols QESACopy

and LMPAZK:
– [cπ] is a permutation and [cy] is a commitment to π(x): The prover shows (in

zero-knowledge) that
N−1∏
i=0

(ζπi + yi − z) =
N−1∏
i=0

(ζi+ xi − z).

Note that ζ[cπ] + [cy] is a commitment to ζπ + y, which can be used for QESAZK, or
more precisely, QESACopy. Also note that the right-hand side is computable from public
information.
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– [c⃗tnew] is a rerandomised permutation of [c⃗told]: The prover shows (in zero-knowledge)
that ∑

i

[ctold
i ]yi + [pk]

∑
i

ρixi =
∑
i

[ctnew
i ]xi.

This fits into our matrix multiplication proofs (with witness
(

y

x⊤ρ

)
∈ FN+1

p ). Concretely,
the prover commits to σ := x⊤ρ via [cσ] = ComckQ

(( 0σ ); rσ, 0) = [g′N+2, g
′
n−1](

σ
rσ ) for

rσ ← Fp. He sends cσ to the verifier and engages in a LMPAZK protocol for
g′2, . . . , g

′
N+1 g′N+2 g′n−1 g′n

g′2, . . . , g
′
N+1 0 0 g′n

0 g′N+2 g′n−1 0
ctold

0 . . . ctold
N−1 pk 0 0




y

σ

rσ
ry

 =


cy + cσ
cy
cσ
u


where [u] :=

∑
xi[ctnew

i ]. The top row is added so one can run LMPAbatch, reducing to
a 2 × n matrix. Since [g′] has hard kernel relation, so has [A]. (This is a “commitment-
extension”, see Remark 3.6.) Also note that this LMPA proof ensures the requirements of
QESACopy on the opening of [cy], hence no additional subprotocol S is necessary in this
instance.

Honest verifier zero-knowledge of this protocol follows from honest verifier zero-knowledge of the
subprotocols. Soundness (and extraction) follows from soundness (and extraction) of the subprotocols.
Namely, for fixed π, randomly chosen x and arbitrary y, the probability that

∏N−1
i=0 (ζπi + yi − z) =∏N−1

i=0 (ζi+xi−z) holds for ζ, z ← Fp if yi 6= xπ(i) is negligible thanks to the Schwartz–Zippel lemma.50

In [5], intuition and a detailed security argument is given. Despite our minor modifications, their
proof adapts seamlessly to our setting. The idea of using (permutation invariant sets of) roots of
polynomials to prove that one set of roots is a permutation of another goes back to [42] and was
extended to restricted permutations in [45].

A rough efficiency estimate of our scheme is 30N exponentiations for the prover and 10N expo-
nentiations for the verifier. These are roughly twice the numbers of [5], when trading interaction for
efficiency. However [5] has O(

√
N) size proofs, while we have O(log(N)) size proofs.

D Witness-extended emulation and TreeFind
D.1 Witness-extended emulation
We define (black-box) witness-extended emulation following [13, 31, 38]. But we separate extraction
and emulation, and allow emulation (or rather extraction) to fail with probability depending on the
extraction error. This is somewhat inconvenient, redundant, and yields yet another definition of
“of knowledge”. Fortunately, the extraction (i.e. the “knowledge” parts) are equivalent to standard
formulations. However, combined with emulation, the prior work we are aware of was only concerned
with negligible extraction errors.
Definition D.1 (Witness-extended emulation). Let (P,V) by an interactive argument system for R. We
say that (P,V) is an argument of knowledge with witness-extended emulation and extraction
error δext if there exists a (universal) expected polynomial-time emulator Emu. The emulator takes
as input the CRS, a statement st and a rewindable deterministic51 proof-oracle P∗(state), written
Emu(crs, st,P∗(state)). (As usual, we suppress crs in the following.) It outputs a pair (tr,w) of
emulated transcript and purported witness. We require following properties. For every adversary
given by a pair of efficient algorithms (A,P∗) we have:

50In more detail: The degree of the (difference) polynomial in z is at most N . The two polynomials are equal if and
only if they have the same roots (with multiplicity). So the sets {ζπi+yi}i and {ζi+xi}i must be equal. The probability
that ζi + y = ζj + x if i ̸= j is negligible (for any fixed choice of x, y). Hence if the sets are equal, with overwhelming
probability we find that the sets {(πi, yi)}i and {(j, xj)}i are equal. In other words, π is a permutation of the roots.
With probability 1− δsnd(χN ) all xj are distinct, see Remark E.6. Hence π is a permutation of {0, . . . , N − 1}.

51We refer to [7] for a comparison of deterministic and probabilistic proof-oracles.
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• (Computational) Emulation:

P

(
crs← GenCRS(1κ); (st, state)←A(crs);
tr← 〈P∗(state),V(st)〉 : A(state, tr) ?

= 1

)
c
≈ P

(
crs← GenCRS(1κ); (st, state)←A(crs);
(tr,w)← Emu(st,P∗(state)) : A(state, tr) ?

= 1

)

• Extraction: For all crs← GenCRS(1κ) and all (st, state)←A(crs) we have

P (Emu(st,P∗(state)) fails) ≤ δext
P(〈P∗(state),V(st)〉 = 1︸ ︷︷ ︸

P∗ succeeds

)
(D.1)

By “Emu fails”, we mean that the extracted witness w does not satisfy (st,w) ∈ R. An equivalent
formulation of the inquality is

P (Emu(state,P∗(state)) fails | 〈P∗(state),V(st)〉 = 1) ≤ δext.

where we assume V uses independent randomness.

If δext is negligible, then the definition is very similar to [13, 31, 38]. However, we can deal with
non-negligible δext, e.g. fixed to 2−80 independent of the security parameter, essentially having the
(partial) definition of an extractor (not emulator) due to Eq. (D.1). In any case, we require the
emulated transcript to be (computationally) indistinguishable from a real transcript.

Typically, the emulator proceeds in two steps, c.f. [38]. First, it uses the honest verifier’s strategy
to obtain a transcript. If this is not accepting, we’re done. Otherwise, the emulator runs an extractor
to obtain the witness (with suitable probability). In such a two-phase setting, one can amplify the
probability to obtain a witness, e.g. by retrying the extraction step often enough.52 For example, if
we have acceptance probability ε ≥ δext(1 + 1

poly), then by O(κ · poly(κ))-fold repetition, we achieve
overwhelming extraction probability. Thus, switching to a (sufficiently large) upper bound δ′ext ≥ δext,
we can obtain overwhelming extraction for this (weaker) extraction error.

We choose not to require such amplification for two reasons: First, a “one-shot” extractor with
extraction error δext is quite natural in our applications. Second, one might arguably want to call the
“minimal” δext the extraction error. Since amplification requires δ′ext > δext, we can only approximate
δext for such extractors, see [48] for similar considerations.

The focus of this paper is not the definition of witness-extended emulation with extraction error.
Hence we stop the discussion of possible variations here.

D.1.1 Relating knowledge errors

Our definition of extraction error should be viewed as “per extractor”, not “per protocol” (see [48] for
a similar point of view). Moreover, we chose a definition of extraction error which implies soundness,
unlike Bellare and Goldreich [6], where soundness and extraction are explicitly separated. We ignore
these differences here.

The (alternative) definition of knowledge error [6, Section 6] fits nicely into our setting. Indeed,
from P(Ext succeeds) ≥ 1− δext

ε we see that by first generating a (random) transcript, and only invoking
Ext if P∗ was successful, we get an extractor Ext′ with

P(Ext′ succeeds) ≥ ε(1− δext
ε

) = ε− δext

and expected polynomial runtime. Here, we considered an extractor sastifying Eq. (D.1), not an
emulator. Thus, our notion implies that of [6]. (As noted before, witness-extended emulators can be
constructed as Ext′.)

52Doing so by retrying the whole emulation must be done with care. Simply taking the “first successful run” can skew
the distribution of the emulated transcript.
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The converse regarding extraction is also evident from this inequality. Emulation almost follows
from [38]. The construction and proof in [38] is only for negligible extraction error (and only guarantees
negligible soundness error).53 However, by choosing a weaker extraction error δ′ext ≥ αδext with a
sufficient gap α > 1, the proof strategy should generalise.54 Here, α should be constant or at least of
the form α = 1+ 1

poly . Due to runtime requirements, it is not obvious whether the (stronger) extraction
error δext can be preserved by some (improved) construction.

Again, we stop the discussion here, since this is not the focus of this work.

D.1.2 Lower bounds for black-box extraction

We pose following natural question.
Question D.2. Let R be a witness relation and ΠArg be an argument system for R. Suppose R has
“short” witnesses of size n. In particular, R defines a hard language. Suppose a transcript of ΠArg has
size sP + sV. Does a black-box extractor (or emulator) need n/sP transcripts for extraction? (Here
sP is the size of the total communication sent by P, and likewise sV.)

If above assumption is true, it gives a lower-bound on the number of necessary rewinds of any
efficient emulator. Indeed, it guarantees that small communication implies large black-box extraction
overhead.

D.2 Modular extraction from µ-special soundness
Witness-extended emulation for µ-special sound protocols can be constructed as a two-stage process:
First, run the protocol and keep the transcript (for emulation). If it is a successful transcript, find
a good µ-tree. Second, apply the extractor from Definition 2.17 to obtain a witness. To find a good
µ-tree with acceptable runtime, the straightforward “follow your nose” approach actually works, c.f.
the general forking lemma in [13]. An alternative, with better guarantees but worse runtime estimates,
is given in [48].

Given such a TreeFind, we get the following:

Lemma D.3. Let ΠArg = (GenCRS,P,V) be a public coin interactive argument system with µ-
special soundness and extractor Ext. Let µ = (µ1, . . . , µℓ) and δi = δsnd(χ(i)) the soundness error
of the i-th testing distribution. Suppose TreeFind is a tree-finding algorithm with expected runtime
tTreeFind/ε ∈ O(poly(κ))/ε, where ε is the probability the oracle P∗(state) convinces the honest verifier.
Let η be the probability that TreeFind outputs a bad µ-tree. Then ΠArg has a witness-extended emulator
Emu (as described above) with expected runtime roughly O(tV + tTreeFind + tExt) and extraction error η.

(For more precise runtime estimates, TreeFind should be modelled as a transcript oracle for Ext.
Otherwise, short-circuit extraction is not useful. We chose to simplify here.)

The TreeFind algorithm of [13] outputs the first µ-tree it finds, if it is good. It generates trees
recursively, depth-first, always branching paths with accepting transcripts, and aborts if it rewinds
more than 1/α times (for suitable negligible α). By a union bound, the probability that such a tree is
bad is at most η =

∑n
i=1

δi
α

∏i−1
j=1 kj . Here δi = σ∞(χ(i)). Unfortunately, negligible α enforces negligible

soundness errors for all i. Thus one cannot fix the soundness level of the testing distributions to, say
2−100.

The algorithm in [48] can be configured to do better, e.g. to attain η =
∑n

i=1 δiν
i for any choice

of ν > 1. The choice ν = 2 is quite natural, but yields relatively large bounds on runtime.
We have following question/conjecture which we also leave for future work:

53The proof in [38] is in the plain model, but it translates to the CRS model. Recall that our notion of extraction
(error) is “unconditional”. However, we consider statements such as “either st ∈ L or a hard problem was solved” and
thus still incorporate hardness assumptions. This follows [13] and is convenient to use.

54Namely, we estimate the success probability ε of the prover precise enough (depending on α). Except with probability
2−κ, the approximation ε′ is so close that ε′

δ′ext
is bounded by constants small enough w.r.t. α. Thus 1

ε′−δext
is also

(polynomially) bounded. (Note the use of δ′ext and δext here.)
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Question D.4. Consider µ-special soundness with µ = (µ1, . . . , µℓ). Suppose the respective testing
distributions have soundness errors δi = δsnd(χ(i)). Hence, we expect55 the “overall extraction error”
δsnd to be bounded by

∑
i δ

(i)
snd. Does there exist an efficient TreeFind algorithm such that

• TreeFind has runtime roughly Õ(n/ε) where n =
∏
i µi and ε is the probability for the verifier

to accept. (By Õ(f), we denote asymptotic behaviour up to polylogarithmic factors.)
• TreeFind returns a good tree with probability at least 1− δsnd/ε.

If the above is not satisfiable, how close can we get?
The algorithms from [13, 48] do not achieve this. The TreeFinder in [13] has weak soundness

guarantees, but satisfies the runtime of first point. As noted above, [48] achieves the second point
arbitrarily close by sacrificing runtime. Moreover, we note that [48] generalises testing distributions
by working with matroids. Improving or strengthening results [48] could settle some of our questions
and conjectures.
Remark D.5. We note that [48] relies on σ∞(χ) instead of δsnd(χ). We hope that both measures are
identical, see Conjecture E.1. We also note that our definition(s) of extraction error differs slightly
from those in [48].

E Testing distributions
In this section, we state some simple but helpful insights on testing distributions. We note that linear
independence can be generalised and used instead. For example, [48] uses a generalised setting.

E.1 Conjectures and computational soundness errors
We first conjecturally characterise the soundness error by a different measure, namely we define

σ∞(χm) := max
H≤Fn

p

P(x← χm : x ∈ H)

where H ranges over all (n− 1)-dimensional subspaces. We have following lemma.

Conjecture E.1. Let χ be a testing distribution on Fmp . Then

δsnd(χm) = σ∞(χm).

Partial proof. The subdistribution ψH over the maximising H always yields n linearly dependent
vectors (i.e. determinant 0), Moreover, ψH has weight ε = χm(H) = σ(χm). By definition of δsnd, we
find 1 ≤ 1

εδsnd(χm). Therefore δsnd(χm) ≤ σ∞(χm).
To prove the claim, we need to show that σ∞(χm) is admissible as a soundness error, i.e.

P(xi ← ψ : det(x1, . . . ,xm) = 0) ≤ 1

ε
σ∞(χm)

for all subdistributions ψ (with weight ε).
Note that the lefthand side is P(X ← ψm : X ∈ T ) where T := {X ∈ Fm×mp | det(X) = 0}.

Equivalently T = ∪HHm where H ranges over all hyperplanes. For convenience, we write ψ(M) :=
P(M ∈ ψ). Thus, we find

P(X ← ψm : X ∈ T ) = ψm(∪HHm)

=
∑
H1

ψm(Hm
1 )− 1

2!

∑
H1 ̸=H2

ψm(Hm
1 ∩Hm

2 ) + . . .

=
∑
H1

ψ(H1)
m − 1

2!

∑
H1 ̸=H2

ψ(H1 ∩H2)
m + . . .

55We have not formally defined an extraction error for sequences of testing distributions. Indeed, a definition is non-
trivial. We conjecture for some natural generalisation of testing distribution (covering such sequences) natural results
hold, e.g. the sum of the soundness errors bounds the soundness error of the sequential composition of (generalised)
testing distributions. The results in [48] support this (and might even partially prove it).
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by application of the inclusion-exclusion principle, probabilistic independence (for ψm(Hm) = ψ(H)m)
and subspace properties (i.e. Hm

1 ∩Hm
2 = (H1 ∩H2)

m). Here all Hi range over all hyperplanes.
Heuristically, the higher order term should only decrease the sum. Moreover, a sum

∑
xmi under

constraints
∑
xi = 1, xi ∈ [0, σ∞(χ)] is maximised by maximising all xi (i.e. to σ∞(χ), or whatever

is “left” for the last one). Thus, heuristically, we have an upper bound Nσ∞(χ) where N = 1
ε (the

“number” of xi’s). This is exactly our claim.
However, the heuristic oversimplifies possible interdependencies of higher order terms (i.e. hyper-

planes sharing lower-dimensional subspaces). As is, this is not a proof. ⊏

The above conjectured characterisation of the soundness error allows to prove and argue much
easier. Most of the following results are stated w.r.t. to σ∞(χ).

The impact of the (or a) “favoured hyperplane”, that is a hyperplane H with P(H ∈ χ) = σ∞(χ),
is evident in following example.
Example E.2. Fix some hyperplane H ≤ Fmp . Consider the distribution χ over Fmp induced by following
algorithm: Pick x0 ← Fmp and x1 ← H uniformly at random. Pick b ← {0, 1} uniformly at random.
Output xb.

This has following characteristics: With probability at most 2−m+3m2p−1 a sample of m elements
is linearly dependent.56 But the soundness error, or rather σ∞, is (slightly greater than) 1

2 . This is
because the subdensity ψH , which is χ conditioned on H, has weight (slightly greater than) 1

2 and m
samples are always linearly dependent.
Remark E.3. If the halfplane H in Example E.2 is chosen uniformly at random and secret, and m grows
in κ fast enough, then it is probably a hard problem to differentiate the distribution from a uniformly
random one. See [15], where a similar (even more structured) assumption is used constructively.

Note that for constant m, one can give a (very inefficient) algorithm which recovers H given
enough (e.g. 2m) samples. Namely, try every subset of m − 1 indices, compute a candidate H ′, and
check if about m samples xi lie in H. This recovers H with high probability, thus distinguishing the
distribution from random. (The effort to try all subsets is exponential im m, which by assumption is
constant. Thus the overall algorithm is still polynomial in κ.)

The definition of soundness error δsnd(χ) of χ is a “perfect unconditional” notion. It assigns to the
distribution in Example E.2 a soundness error which is greater than 1

2 , even when m = poly(κ) grows
with with the security parameter κ, and the distribution is assumed to be pseudorandom.

This motivates a relaxation of the soundness error. There are different ways to define a(n admis-
sible) computational soundness.57 The cleanest one is by comparison to a (unconditionally) secure
distribution, similar to computational entropy. Namely, we say δcomp

snd (χ) is a(n admissible) computa-
tional soundness error if there exists a distribution χ′ such that χ c

≈ χ′ and δsnd(χ′) = δcomp
snd . (Recall

that whenever we say “distribution” we actually mean probability ensemble or family of distributions
(paramterised over κ).)

While this definition is elegant and resembles pseudoentropy, it has limited use: We would like to
replace uniformly random samples by a PRG and give away the seed. Replacing uniform randomness
with a PRG works nicely and yields a computational soundness error which is identical to the statistical
one, according to the previous definition. However, giving away the seed makes no sense in that model.
There is no indistinguishability involved.
Reminder. The soundness error is a combinatorial property. There is no need for pseudorandomness,
as testing with powers of x shows. However, since we do not know a simple example of a distribution
with (small) exponents xi ∈ S for general S ⊆ Fp, it is natural to turn to PRG’s. It is also a

56Split P(x1, . . . ,xm lin. dep.) depending on the number k of picks with b = 1. For fixed k and (x1, . . . ,xm)← Hk ×
(Fm

p )m−k (which is enough due to symmetry), we find P(x1, . . . ,xm lin. dep.) ≤ P({x1, . . . ,xk ∈ H} ∪ {xk+1, . . . ,xm ∈
Fm
p lin. dep.} ∪ {∃k + 1 ≤ i ≤ m : xi ∈ H}) which is easily bounded above by 3m2p−1 for k < m. For k = m, linear

dependence is guaranteed, but this only happens with probability 2−m. Thus, 2−m+
∑m−1

k=0

(
m
k

)
2−m3m2/p ≤ 2−m+3m2/p

is the desired bound.
57We speak of admissible, because there may be different computational soundness errors which are satisfied, depending

on the choice of negligible functions. We do not know whether there is a (uniquely) well-defined minimal one. (Unlike
statistical soundness, where a unique (minimal) error is given essentially by definition, and where Conjecture E.1 would
imply very simple characterisation of it.)
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plausible assumption, that non-pathological PRG’s have a (statistical) soundness error close to the
uniform choice. Otherwise, assuming Conjecture E.1, the PRG would have to have hidden favoured
hyperplanes.

To define computational soundness which can encompass the setting where a PRG seed is sent (as a
compressed challenge), we need a few definitions. Since this is not the focus of the paper, we will only
sketch a possible choice. For this, we have to make encoding and decoding of a testing distributions
test vector explicit.

A testing distribution χ over Fmp with decoding decode is a distribution χenc over some set of
encodings, such that χ := decode(χenc). The (encoded) challenge is s ← χenc, which the actual
(decoded) challenge vector is decode(s) ∈ Fmp . Note that encoding the challenge (i.e. recovering s)
need not be efficient,58 e.g. if decode = PRG and χenc draws uniformly from {0, 1}κ.

A subdistribution ψ of a testing distribution χ over Fmp (with decoding) is called efficiently sam-
plable if there is an algorithm Rej, the rejection sampler, such that decode(Rej(χenc)) has the distribu-
tion of ψ, conditioned on Rej(χenc) 6= ⊥ (i.e. Rej not rejecting). Note that Rej is given the encoding,
e.g. the seed of the PRG challenge.

By taking a brief look at the previous definition of computational soundness error, and not-
ing that the weights of efficiently samplable subdistributions of a computationally indistinguish-
able distributions must be close (up to negligible error), one sees the following: To relax the no-
tion of computational soundness, one can allow a computational soundness error of δcomp

snd if for
all efficiently samplable subdisitributions ψ there exist negligible functions negl1, negl2 such that
P(xi ← ψ : det(x1, . . . , xm) = 0) ≤ (ε(ψ) + negl1(κ))δ

comp
snd + negl2(κ) where ε(ψ) is the weight of

ψ.
This definition is somewhat unwieldy. But, to the best of our knowledge, it is appropriate and we

have no simpler notion.
Example E.4. Let PRG by a non-uniformly secure PRG. Suppose Conjecture E.1 holds. Then PRG has
statistical soundness error negligibly close to δsnd(χuniform). Otherwise, due to Conjecture E.1, there
must be a favoured hyperplane H (with σ∞(PRG) non-negligibly greater than σ∞(χuniform)). Encoding
this hyperplane as the non-uniform advice zκ, we can constructed a distinguisher with non-negligible
advantage. (If x ∈ H, say PRG. Else, return a random guess.)
Remark E.5. It is not immediately clear how to generalise Example E.4 to other settings, such as
families of PRG’s or uniform security assumptions. Hence, it is rather a testament to the strength
of non-uniform security assumptions. However, by using computational soundness, the idea may be
salvageable.

However, any successful “adversary” Rej induces some ψ with non-negligible weight and non-
negligible deviation from (ε(ψ) + negl1(κ))δ

comp
snd + negl2(κ), where we set δcomp

snd (PRG) = δsnd(χuniform).
Thus, using Conjecture E.1 in a computational setting, the non-negligibly more likely linear depen-
dency of ψ may allow to sample a favoured hyperplane H ′ via ψ, as a preprocessing step. Then, one
can use using this H ′, as the advice above to break the PRG. If this works, then the technique should
also apply to families of PRG’s (e.g. based on RSA). (This is only an unfinished sketch and not a
proof.)

E.2 Properties of testing distributions
Remark E.6. Let χm be a testing distribution. Then the probability that xi = xj for x ← χm is
smaller than δsnd(χm). This is due to following observation: Let B be the set of all vectors with
xi = xj and let ε be the probability of B under χm, that is, ε is the weight of the subdistribution ψB
belonging to B. Note that B contains no basis of Fmp . Thus, the soundness error of χm is bounded
below by ε. In other words, ε ≤ δsnd(χm).

Remark E.6 above is another example demonstrating that the soundness error can be very far from
probability that a X ← χmm is not invertible. For random binary n × n matrices over the reals, the
conjecture is that only a (1 + o(1))n22−n fraction is singular. But the probability that xi = xj is 1

4

58This is irrelevant for the stronger “perfect” notion of soundness error. Any “encoding” is equivalent in that setting.
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in this case. In our case, the matrices are not over the reals, but modulo p. This makes a difference,
e.g. for p = 2, the fraction of singular matrices is roughly 1

2 . But it is natural to assume that for large
p � n (e.g. an exponential gap as in our case), asymptotics which could “justify” random binary
vectors modulo p as testing distributions do hold. Thus, there may be distributions, where xi = xj
with high probability, but where any n random vectors are independent with very high probabity.
Again, this shows the importance of considering subdistributions for δsnd.
Remark E.7. The above argument in Remark E.6 generalises to other relations/properties of vectors
which affect invertibility. Thus, a testing distribution must be “well-spread” over a vector space to
achieve high (computational) soundness. We note that relations which are computationally hard may
affect the soundness heavily, while leaving computational soundness “unaffected” (up to a negligible
loss).

E.3 Constructions of testing distributions
We consider the tensor product of testing distributions. In a sense, this construction is the unrolling of
the recursive steps in our proof systems. The tensor product distribution χ = χ1⊗ . . .⊗χℓ is defined
by sampling z ← χ via z = z1⊗ . . .⊗ zℓ for zi ← χi. Note that z is therefore always an elementary
tensor.

Lemma E.8. Let χ = χ1⊗ . . .⊗χℓ be the tensor product of ℓ testing distributions χi on Fkip with
σ∞(χi). Then χ has σ∞(χ) ≤

∑ℓ
i=1 σ∞(χi). If Conjecture E.1 holds, this translates to δsnd(χ) ≤∑ℓ

i=1 δsnd(χi).

Proof. By induction, it suffices to consider ℓ = 2. Let δi := σ∞(χi). Suppose V = ker(φ) is some
hyperplane with σ∞(χ) = Pz←χ(z ∈ V ), where φ : Fk1p ⊗Fk2p → Fp is a linear map. Recall that any
element z in supp(χ) is an elementary tensor x⊗y by definition of χ = χ1⊗χ2.

Since φ(_⊗y) induces a linear map Hom(Fk1p ,Fp) ∼= Fk1p , we find that

Px←χ1(φ(x⊗y) = 0) ≤ δ1

for any choice of y, except if φ(_⊗y) = 0 as a map. But φ(_⊗y) = 0 implies that y ∈ K, where
K := {b | φ(_⊗ b) = 0} ≤ Fk2p . which is at most a subspace of dimension (k2 − 1), (else φ = 0, a
contradiction).59 Thus, we get

Py←χ2(φ(_⊗y) = 0) = Py←χ2(y ∈ K) ≤ δ2.

Then we from z = x⊗y that

Pz←χ(z ∈ V ) = Px,y(φ(x⊗y) = 0)

≤ (1− Py(y ∈ K))max
y ̸∈K

Px(φ(x)) + Py(y ∈ K)

≤ δ1 + δ2 − δ1δ2
≤ δ1 + δ2.

Consequently, σ∞(χ) ≤ σ∞(χ1) + σ∞(χ2). This proves our claim. We stress the importance of
using σ∞, which allowed us to work directly with χ instead of subdistributions. While χ has a simple
product structure, where x, y are drawn independently, a subdistribution of χ can break this stochastic
independence.

Our recursive arguments actually have a tensor structure, namely they reduce Fnp = (Fkp)ℓ to
(Fkp)ℓ−1 in one step, i.e. they apply a linear map to one of the factors of the tensor product. It is
not hard to see that in Section 3.5, Protocol 3.9, one applies x1⊗ . . .⊗xℓ to [A] and y1⊗ . . .⊗yℓ
to w when all batching steps are taken together. It follows easily, that assuming quick-extraction in
Lemma 3.10, this means that we can extract a witness by obtaining n = kℓ separate transcripts with

59K is a subspace because φ(x⊗(b+ γc)) = φ(x⊗ b) + γφ(x⊗ c).
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challenges y1⊗ . . .⊗yℓ ← χ1⊗ . . .⊗χk, one can invert the respective matrix Y ∈ Fn×np to recover
the witness. This way of extraction only needs a TreeFind algorithm of depth 1. Therefore, simply
rewinding until n transcripts are found is sufficient, giving us a runtime of poly(κ)/ε (where ε is the
probability of convincing the verifier). Furthermore, since the adversary induces a subdistribution on
the challenges, we obtain a knowledge error of ℓδsnd(χk), which is almost optimal. Indeed, the emulator
has rewinding-tightness of O(n), which is almost best possible assuming the bound of O(n/ log(n))
from Question D.2 holds.

Even though the above is a very special situation, we take this as a hint that Question D.4 has a
positive answer. Although the strategy must be quite different in that case.

F Further Remarks on our Implementation
F.1 Arithmetic Circuits
We use QESAZK to proof arithmetic circuits. In contrast to existing techniques, QESAZK is not
restricted to R1CS circuits, but can also handle quadratic equations. Hence we include a preprocessing
step in Python, which transforms arithmetic circuits generated by the Pinocchio compiler [43] or
jsnark60 into quadratic equations.

Preprocessing. We preprocess the arithmetic circuit in order to better make use of “quadratic
equation gates” (quad gates in the following). To this end, we perform a series of transformations,
which in the end yield an equivalent circuit comprised almost entirely of quad gates.

The transformations follow a few simple observations. Some gates can be represented directly by
(quadratic) constraints. For example, xor(X,Y ) can be represented as (1−X)Y +X(1− Y ) = 0. We
refer to these as isolated gates in the following. Other gates, such as pack with pack(x1, . . . , xk) =∑k

1 xi2
i = x0 +2(x1 +2(. . .+2xk . . .)), can be decomposed into a series of arithmetic gates, hence we

coin them decomposable gates. The remaining basic gates, i.e., add, sub, const-mul, and const-mul-neg,
can be merged if they precede a mul gate, resulting in a quad gate computing

∑
i,j wiΓi,jwj = wk.

Such a quad gate g can be represented by Γg =
∑

i ag,ib
⊤
g,i−e1e⊤g ∈ Fn×np , where ag,i, bg,i are constants

describing the gate. We find that w⊤Γgw = 0 iff g is satisfied by the wire assignment w.
Based on these observations, our preprocessing applies the following steps: First, decomposable

gates are replaced with other gates depending on their functionality.
Then, each wire w that is either a global output wire or an input wire of an isolated gate, is

prepended with a new mul gate where one input is w and the other is the constant-1 wire. Naturally,
this is only applied if w is not already the output of a mul gate. The insertion allows for later
aggregation of preceding logic into a single quad gate.

Now, all remaining basic gates are merged into quad gates of the form
∑

i,j aiwiΓi,jbjwj = wk.
This aggressive optimisation may result in several gates with constant wk = 0. Therefore, constant
zeros are propagated through the circuit, eliminating affected gates and wires. Finally the circuit is
stripped of floating gates where no output is connected any more and for each remaining gate the
corresponding Γi is extracted.

Results. We evaluate QESAZK using the same 512-bit SHA256 circuit without padding as in [16].
The preprocessed circuit consists of 25657 wires, i.e., w ∈ F25657

p and 25840 matrices Γi ∈ F25657×25657
p .

If the Γi would have been stored without the sparse matrix optimisation, this would require the
implementation to hold 25840 · 256572 > 243 Fp elements in memory just for the matrices. The sparse
representation reduces this to 197465 Fp elements. Since QESAZK expects n to be a power of two, we
set n = 215 = 32768 and the witness is zero-extended accordingly. As a result, the implementation
took 84.2s for P and 38.1s for V on average.

60See: https://github.com/akosba/jsnark
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Parameters Bulletproofs Bulletproofs with IPAnoZK
P V P V

60 bit 0.26 0.17 0.23 0.11
60 bit × 2 0.47 0.29 0.42 0.21
60 bit × 32 7.4 4.5 6.3 3.7
60 bit × 128 28.9 17.9 26.6 14.2
60 bit × 512 116 78.7 105 55.5
124 bit 0.46 0.29 0.41 0.22
124 bit × 32 14.9 9.2 13.6 7.0
124 bit × 128 59.7 36.8 54.1 29.7
124 bit × 512 238 147 219 117
252 bit 0.95 0.59 0.79 0.46
252 bit × 32 30.2 18.6 26.1 14.3
252 bit × 128 121 74.3 105 58.4
252 bit × 512 484 297 426 227

Table 5: Comparison of non-optimised prover runtime in seconds of aggregate range proofs from [16]
with the original IPA and with IPAnoZK. Verification times are only included for completeness. See
Section 5 for details.

F.2 Bulletproofs with IPAnoZK

One of our main contributions is the improvement of the original IPA from [16]. In order to practically
evaluate the impact of said improvements, we benchmarked Bulletproofs aggregate range proofs with
the same parameters as in Table 3, but this time used IPAnoZK instead. Table 5 shows the results.

G Overview of protocols
In the following, we give an overview of the protocols for with several choices fixed. In particular, we
fix k = 2. Otherwise, the respective setting is as in the definition of the protocols. Let S ⊆ F×p . Note
that S are always non-zero. For simplicity, we use the testing distribution χ(β ̸=0), which draws α← S

and returns (α, 1). (In this case, χ(β ̸=0) = χ(β).) Moreover, we write α ← χ(β ̸=0) instead. For other
testing distributions χn, we consider x← {1}×Sn−1, that is x1 = 1 always and the other components
are random (small) exponents in S. These choices are compatible with the restrictions posed in some
protocols. For χ̃2k−1 we use an explicit choice (x,y, z), namely (1, β) = x ← χ(β ̸=0), y = (β, 1) and
z = (1, β, β2).

We deviate from the standard presentation of inputs as follows:

• Inputs, which must be known to both parties are common inputs.
• Inputs, which a party (generally the prover) can derive from other inputs, are removed from

common inputs.

For example, the target value t in IPAalmZK is not a treated as a common input, since P can
recompute t = 〈w′,w′′〉 via the witness. This makes data flow (and some optimisations) more explicit,
e.g. Remark 4.8. The common input in the usual sense is always given by the “reduced” common
input as above and the verifier’s additional input. For this point of view to be essentially equivalent
to standard zero-knowledge proofs, we merely require that the statement is fixed by the (reduced)
common input and P’s (resp. V’s) additional input.
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IPAnoZK(Protocol 4.1)
Common Input: crs = ([g′, g′′, Q])

Prover P Verifier V

Input: w′,w′′ Input: [c], t
α← χ(β ̸=0)

α←−−−−−−−−−
[Q] := α−1[Q] [Q] := α−1[Q]

[c] := [c]− (α− 1)t[Q]

Recursive step. Suppose n > 1
split w′ in halves w′1,w

′
2

split w′′, g′, g′′ analogously
[u′−1] := [g′2]w

′
1, [u′+1] := [g′1]w

′
2

compute [u′′±1] analogously
v−1 := 〈w′2,w′′1〉
v+1 := 〈w′1,w′′2〉
[u−1] := [u′−1] + [u′′+1] + v+1[Q]
[u+1] := [u′+1] + [u′′−1] + v−1[Q]

[u−1],[u+1]−−−−−−−−−→
ξ ← χ(β ̸=0)

ξ←−−−−−−−−−
[g′] := [g′1] + ξ[g′2] [g′] := [g′1] + ξ[g′2]
[g′′] := ξ[g′′1 ] + [g′′2 ] [g′′] := ξ[g′′1 ] + [g′′2 ]
w′ := ξw′1 +w′2 [c] := ξ2[u−1] + ξ[c] + [u+1]
w′′ := w′′1 + ξw′′2
n := n/2 n := n/2

Start next recursion iteration.
Base case. Suppose n = 1

w′,w′′
−−−−−−−−−→

return true iff:
[c]

?
= [g′]w′ + [g′′]w′′ + t[Q]

where t := 〈w′,w′′〉

IPAalmZK (Protocol 4.3)
Common Input: crs = ([g′, g′′, Q])

Prover P Verifier V

Input: w′,w′′ Input: [cw], t
r′ ← ker(w′′⊤) ∩M+

n

r′′ ← ker(
(

w′⊤

r′⊤

)
) ∩M+

n

[cr] := [g′]r′ + [g′′]r′′

[cr ]−−−−−−−−−→
β ← χ(β)

β←−−−−−−−−−
t := β2t

w′ := βw′ + r′ [c] = β[cw] + [cr] + t[Q]
w′′ := βw′′ + r′′

Engage IPAnoZK(crs, P(w′,w′′), V([c], t))
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QESAInner (part of Protocol 4.7)
Common Input: crs = ([g′, g′′, Q]), {Γi}

Prover P Verifier V

Input: w, r′ Input: [c′w]
w′ := (wr′ ) x← χN

x←−−−−−−−−−
Γ :=

∑
xiΓi Γ :=

∑
xiΓi

β := x2 β := x2
[g′1] := β−1[g′1] [g′1] := β−1[g′1]
w′′ :=

(
Γw
Rr′
)

[c′w] := [c′w]− (β − 1)[g′1]
[c′′w] := [g′′]w′′

[c′′w]−−−−−−−−−→
(1, s, b)← χn, s′ := ( sb )

s′←−−−−−−−−−
t := −〈s,Γ⊤s〉

w′ := w′ − s′ [cw] := [c′w]− [g′]s′ + [c′′w] + [g′′]Γ′⊤s′

w′′ := w′′ + Γ′⊤s′

Engage IPAalmZK(crs, P(w′,w′′), V([cw], t))

QESAZK (Protocol 4.7)
Common Input: crs = ([g′, g′′, Q]), {Γi}

Prover P Verifier V

Input: w Input: ∅
r′ ← F2

p

[c′w] := [g′](wr′ )
[c′w]−−−−−−−−−→

Engage QESAInner((crs, {Γi}), P(w, r′), V([c′w]))

QESACopy(Protocol 4.16)
Common Input: crs = ([g′, g′′, Q]), {Γi}, {c̃k(i)}, {[c̃(i)]}

Prover P Verifier V

Input: w, {v(i)} Input: ∅
r′ ← F2

p

w′ := (wr′ )
[c′w] := [g′]w′

[c′w]−−−−−−−−−→
α← χM+1 with α0 = 1

α←−−−−−−−−−
[c′w] := α0[c

′
w] +

∑
i αi[c̃

(i)] [c′w] := α0[c
′
w] +

∑
i αi[c̃

(i)]

{Γi} ∪= {Γ(k)
copy for k ∈ I} {Γi} ∪= {Γ(k)

copy for k ∈ I}
w′ := α0w

′ +
∑

i αiv
(i)

decompose (w, r′) := w′

Engage QESAInner((crs, {Γi}), P(w, r′), V([c′w]))
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LMPAnoZK(Protocol 3.9)
Common Input: [A]

Prover P Verifier V

Input: w Input: [t]

Recursive step. Suppose n > 1
[u−1] := [A1]w2

[u+1] := [A2]w1
[u−1],[u+1]−−−−−−−−−→

ξ ← χ(β ̸=0)

ξ←−−−−−−−−−
[A] := [A1] + ξ[A2] [A] := [A1] + ξ[A2]
w := ξw1 +w2 [t] := [u−1] + ξ[t] + ξ2[u+1]
n := n/2 n := n/2

Start next recursion iteration.
Base case. Suppose n = 1

w−−−−−−−−−→

return true iff [A]w
?
= [t]

LMPAsimpleZK

Common Input: [A]
Prover P Verifier V

Input: w Input: [t]
r ← Fnp
[a] := [A]r

[a]−−−−−−−−−→
β ← χ(β ̸=0)

β←−−−−−−−−−
Engage LMPAnoZK([A], P(βw + r), V(β[t] + [a]))
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