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1 Introduction

The famed Bitcoin white paper presented an unconventional (at the time) Byzantine fault tolerant consensus
algorithm that is now known as the Nakamoto consensus [6]. Nakamoto consensus centers around the proof-
of-work (PoW) mechanism and the “longest-chain-win” rule. It is extremely simple and can be described
very succinctly: at any time, an honest node adopts the longest PoW chain to its knowledge and attempts
to mine a new block that extends this longest chain; a block is committed when buried sufficiently deep in
the chain. Such a simple algorithm deserves a simple analysis, which is what this paper aims to provide.

2 Model and Overview

We assume the readers are familiar with how Nakamoto consensus works and we review its basics only to
introduce notations. Transactions in Nakamoto consensus are batched into blocks. Each block is linked to
a unique predecessor block via PoW, thus forming a PoW chain. A block’s height is its predecessor block’s
height plus one. Upon adopting a new longest chain, either through mining or by receiving from other nodes,
a node broadcasts and mines on top of the new longest chain. Ties are broken arbitrarily. An honest node
considers a block B committed if B is buried at least k blocks deep in its adopted chain.

We will prove that Nakamoto consensus guarantees safety and liveness with overwhelming probability.
– Safety. Honest nodes do not commit different blocks at the same height.
– Liveness Every transaction is eventually committed by all honest nodes.

The liveness property of Nakamoto consensus is phrased as chain growth and chain quality in recent liter-
ature [2, 7]. We use the conventional liveness definition since it separates the problem formulation (state
machine replication) from the specific solution (Nakamoto consensus).

Assumptions. We assume PoW mining are modeled by homogeneous Poisson point processes. Let α and β
denote the collective mining rate of honest nodes and malicious nodes, respectively. We assume the network
delay between any pair of honest nodes is upper bounded by ∆. If two honest nodes are connected via
multiple hops, ∆ is an upper bound on the end-to-end network delay between them.

Main theorem (informal). Let g = e−α∆. Let δ be any positive constant. Nakamoto consensus with the

k-confirmation commit rule guarantees safety and liveness except for e−Ω(δ2g2k) probability if

g2α > (1 + δ)β.

The above condition has a clear and intuitive interpretation: it is the “honest majority” condition after
taking network delay into account. Malicious nodes can coordinate their actions (mining strategies) perfectly
with zero network delay, so they can extend a chain at their collective mining rate β. Between honest nodes,
however, the (bounded) network delay will lead to a (bounded) loss in their collective mining rate. The crux
of the proof is to bound the honest mining rate loss. We will show that the loss is at most g for liveness and
at most g2 for safety. We assume 0 < δ < 1 throughout the paper unless otherwise stated.
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∆ upper bound on network delay
α collective honest mining rate
β collective malicious mining rate
g = e−α∆, a discount factor of honest mining rate due to network delay
k number of confirmations needed to commit

3 Proofs

3.1 Preliminary

In a Poisson process with rate λ, the number of event arrivals (blocks mined) in a time interval (t1, t2)
is independent of other non-overlapping internals and follows a Poisson distribution with rate λ(t2 − t1).
The interarrival times in a Poisson process follow independent exponential distributions with the same rate
parameter λ, whose cumulative distribution function is Pr[T ≤ t] = 1− e−λt.

The following tail bounds will be frequently used. The Chernoff bound is well known. We give its proof
in the appendix for completeness. The Poisson tail bound and proof are almost identical to the Chernoff
bound. This is as expected because the Poisson distribution is a limiting case of the binomial distribution.

Lemma 1 (Chernoff). Let X =
∑n
i=1Xi be the sum of n independent Boolean random variables and µ be

the expectation of X. For 0 < δ < 1, Pr[X ≤ (1− δ)µ] < e−
δ2µ
2 . For δ > 0, Pr[X ≥ (1 + δ)µ] < e−

δ2µ
2+δ .

Lemma 2 (Poisson tail). Let X be a Poisson random variable with rate µ (which is also its expectation).

For 0 < δ < 1, Pr[X ≤ (1− δ)µ] < e−
δ2µ
2 . For δ > 0, Pr[X ≥ (1 + δ)µ] < e−

δ2µ
2+δ .

3.2 Non-tailgaters and Loners

We call a block mined by an honest (resp. malicious) node an honest (resp. malicious) block. Let us put all
honest blocks on a time axis based on when they are mined.

Definition 3 (Non-tailgaters and loners). Suppose an honest block B is mined at time t. If no other honest
block is mined between time t−∆ and t, then B is a non-tailgater (otherwise, B is a tailgater). If no other
honest block is mined between time t−∆ and t+ ∆, then B is a loner.

In other words, a non-tailgater is an honest block that is mined at least ∆ time after the previous
honest block. A loner (called a “convergence opportunity” in [7]) is an honest block that does not tailgate
and is not tailgated. We emphasize that these notions apply to honest blocks only. An honest block is
potentially “wasted” if it tailgates. On the other hand, the next lemma establishes the key property that
makes non-tailgaters and loners contribute to liveness and safety.

Lemma 4. (i) Non-tailgaters have different heights. (ii) A loner is the only honest block at its height.

Proof. It suffices to show that if two honest blocks do not tailgate one another, then they have different
heights. Let the two blocks be B and B′. Without loss of generality, assume B is mined first. B reaches all
honest nodes within ∆ time, which is before B′ is mined (otherwise B′ tailgates B). Upon receiving B, an
honest node will attempt to extend B and will only mine at a height greater than B.

The next two lemmas show that there are abundant non-tailgaters and loners, both in raw numbers and
relative to malicious blocks. While the conclusions of these two lemmas are intuitive, their proofs turn out
to be quite subtle. Readers seeking a proof sketch may skip their proofs if content with the intuition below.

We can easily show that each honest block has a probability g = e−α∆ to be a non-tailgater and a
probability g2 to be a loner. Lemma 6 states that the number of non-tailgaters and loners in an interval
of duration t cannot be much smaller than their respective expectations of gαt and g2αt. Lemma 7 states
that, with g2α > (1 + δ)β, there will be more loners than malicious blocks in all time intervals covering a
sufficiently long interval (r, s]. Lemma 7 is first proved in [5] and we give an alternative proof.

2



Definition 5. For any time interval (r, s], define Xr,s, Yr,s, and Zr,s to be the number of non-tailgaters,
loners, and malicious blocks mined in the interval, respectively.

Lemma 6. For any time interval (r, r + t], (i) Pr[Xr,r+t ≤ (1 − δ)gαt] < e−Ω(δ2gαt), and (ii) Pr[Yr,r+t ≤
(1− δ)g2αt] < e−Ω(δ2g2αt).

Proof. Pick δ1 ∈ ( δ3 ,
2δ
3 ) such that n = (1 − δ1)αt is an integer. For sufficiently large t, such an δ1 exists.

Consider the first n+ 1 honest blocks mined since the beginning of the interval r (but not necessarily before
the end of interval r + t). Number these blocks 1, 2, . . . , n + 1. Define block 0 to be the last honest block
mined prior to the interval. Let Xi = 1 if block i is a non-tailgater, and 0 otherwise. Let Yi = 1 if block i is
a loner, and 0 otherwise. Define X =

∑n
i=1Xi and Y =

∑n
i=1 Yi.

Let AX be the event that X > (1− δ)gαt. Recall that interarrival times in a Poisson process follow i.i.d.
exponential distributions with the same rate parameter. Thus, Xi’s are i.i.d. and Pr[Xi = 1] = e−α∆ = g.
Let δ2 = δ − δ1; we have δ2 ∈ ( δ3 ,

2δ
3 ) and (1− δ2)(1− δ1) > (1− δ). Then, by Chernoff bound.

Pr[AX ] = Pr[X ≤ (1− δ)gαt] ≤ Pr[X ≤ (1− δ2)gn] < e−δ
2
2gn/2 = e−Ω(δ2gαt).

Let A0 be the event that more than n honest blocks are mined in the interval. By Lemma 2, Pr[A0] <

e−Ω(δ2αt). A0 ∩ AX is the event that “more than n honest blocks are mined in the interval and more than
(1− δ)gαt among the first n blocks mined are non-tailgaters”, which implies Xr,r+t > (1− δ)gαt. Thus,

Pr[Xr,r+t ≤ (1− δ)gαt] ≤ Pr[A0 ∪AX ] < e−Ω(δ2gαt).

Let AY be the event that Y > (1 − δ)g2αt. We have Yi = XiXi+1, so Pr[Yi = 1] = g2. But Yi and
Yi+1 are dependent (both depend on Xi+1), so we cannot directly invoke Chernoff bounds. Luckily, Yi and
Yi+2 are independent. Thus, Y can be broken up into two summations of independent Boolean random
variables Y =

∑
odd Yi +

∑
even Yi. Applying Chernoff bounds on the two summations separately yields

Pr[AY ] = Pr[Y ≤ (1− δ)g2αt] < e−Ω(δ2g2αt). The rest of the proof for part (ii) is identical to part (i).

Lemma 7. Suppose g2α > (1 + δ)β. For two points in time r < s, define Gr,s to be the following event: for

all u ≤ r and v ≥ s, Yu+∆,v−∆ > Zu,v. Then, Pr[Gr,s] < e−Ω(δ2g2α(s−r)).

Proof. Let w = (r+s)/2. We define two events: G−r,s is the event that for all u ≤ r, Yu−∆,w > Zu,w, and G+
r,s

is the event that for all v ≥ s, Yw,v−∆ > Zw,v. Since Yu+∆,v−∆ = Yu+∆,w +Yw,v−∆ and Zu,v = Zu,w +Zw,v,

G−r,s ∩G+
r,s implies Gr,s. Hence, Pr[Gr,s] ≤ Pr[G−r,s] + Pr[G+

r,s]. Due to the symmetry over the mid-point w,

it suffices to bound Pr[G+
r,s].

Pick δ1 = δ/4. Let Si be the time the i-th malicious block after w is mined. Let si = w+ i
(1−δ1)g2α + ∆.

Let Fi be the event that Si ≥ si and Yw,si−∆ > i, i.e., since time w, the i-th malicious block is mined
after si and more than i loners have been mined by si − ∆. Let y0 = (1 − δ1)g2α(s − w − ∆). Note that

y0 = Ω(g2α(s − r)). Let AY be the event that Yw,s−∆ > y0. Observe that
(⋂

i>y0
Fi

)
∩ AY implies G+

r,s.

(There is no need to include Fi for smaller i because event AY ensures that more than y0 loners are mined

by time s−∆.) Thus, G+
r,s implies

(⋃
i>y0

Fi

)
∪AZ and Pr[G+

r,s] ≤ Pr[AZ ] +
∑
i>y0

Pr[Fi].

Fi is the event that either Si < si or Yw,si−∆ ≤ i. The former means that at least i malicious blocks are
mined in i

(1−δ1)g2α + ∆ time. When s − w is sufficiently large (a sufficient condition is s − w > 2∆ + ∆
δ ),

for all i > y0, the above duration is shorter than i
(1+δ1)β , and we have Pr[Si < si] < e−Ω(δ2i) by Lemma 2.

The latter means that at most i loners are mined in i
(1−δ1)g2α time, which happens with e−Ω(δ2i) probability

by Lemma 6(ii). Thus, when s − w is sufficiently large, for all i > y0, Pr[Fi] < e−Ω(δ2i). Summing over i,∑
i>y0

Pr[Fi] < e−Ω(δ2y0). In addition, Pr[AY ] < e−Ω(δ2y0) by Lemma 6(ii). Plugging them into Pr[G+
r,s]

yields Pr[Gr,s] ≤ 2 Pr[G+
r,s] < e−Ω(δ2y0) = e−Ω(δ2g2α(s−r)).
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3.3 Liveness

Theorem 8 (Liveness). Suppose gα > (1 + δ)β. At time t, except for e−Ω(δ2gαt) probability, every honest
node commits at least δ

6gαt− k − 1 honest blocks.

Proof. At time t, each honest node receives at least X0,t−∆ non-tailgaters, so its chain is at least that long by
Lemma 4(i). Its chain contains at most Z0,t malicious blocks. The last k blocks are not committed. Further
note that X0,t ≤ X0,t−∆ + 1 because there can be at most one non-tailgater within ∆ time by definition.
Thus, every honest node commits at least Lt ≥ X0,t − Z0,t − k − 1 honest blocks at time t.

Pick δ1 = δ/3. By Lemma 4(i) and 6(i), X0,t > (1 − δ1
2 )gαt except for e−Ω(δ2gαt) probability. By

Lemma 2, Z0,t < (1−δ1)gαt except for e−
ε2βt
2+ε probability where ε = (1−δ1)gα

β −1. The exponent ε2βt
2+ε can be

shown to be Ω(δ2gαt). Therefore, Lt >
δ1
2 gαt− k − 1 = δ

6gαt− k − 1, except for e−Ω(δ2gαt) probability.

3.4 Safety

Recall that with the k-confirmation commit rule, at any time t, a block B is considered committed by an
honest node if B is buried at least k blocks deep in that node’s adopted chain.

Theorem 9 (Safety). Suppose g2α > (1 + δ)β. Consider any time t and any block B that is considered

committed by some honst node at time t. Except for e−Ω(δ2g2k) probability, for all time t′ ≥ t, no honest
node commits a block B′ 6= B at the height of B.

Proof. Let T1 be the first time since t that some honest node commits such a block B′. Thus, right before
T1 (or at T1 if T1 = t), an honest node (potentially the same one) adopts a chain that extends B. Let these
two diverging chains end at B1 and B′1 respectively. Let block B′0 be the last common ancestor and B0 be
the last honest common ancestor of the two diverging chains. Note that if B′0 is mined by an honest node,
then B0 and B′0 are the same block; otherwise, the blocks between B0 (excluded) and B′0 (included) are
all malicious blocks. Let H0, H

′
0, H1, H

′
1 be the height of block B0, B

′
0, B1, B

′
1, respectively. Let T0 be the

time B0 is mined. Without loss of generality, assume H1 ≤ H ′1. Figure 1 illustrate the scenario. Note that
T0 and T1 are random variables (as they depend on random mining outcomes), so the proof cannot invoke
properties of Poisson for intervals defined by them.

Lemma 10. Zt0,t1 ≥ Yt0+∆,t1−∆.

Proof. We omit the subscripts and write the two sets as Z and Y for short. First, we show that every loner
y ∈ Y has height Hy ∈ (H0, H1]. By time T0 + ∆, all honest nodes have received B0 with height H0 and
will never again mine on height H0 or lower. If any y ∈ Y has height Hy > H1, then by time T1, it arrives
at all honest nodes and no honest node will adopt a chain ending at B1 with height H1.

Each y ∈ Y can now be paired with a distinct malicious block in Z as follows. If y has height Hy ∈
(H0, H

′
0], then it is paired with the height-Hy block that buries B0, which is a malicious block by the

definition of B0. If y has height Hy ∈ (H ′0, H1], then it is paired with the height-Hy block on one of the
two diverging chains, which must be a malicious block because a loner does not share height with other
honest blocks due to Lemma 4(ii). In either case, the paired malicious block belongs to Z (i.e., mined during
(T0, T1]) because it extends B0 (mined at T0) and is known to some honest node by time T1. Lastly, these
malicious blocks have distinct heights (because the loners have distinct heights) and are thus distinct.

… B0 B'0
…… B1

…… B'1Last honest 
common ancestor

……

Last common 
ancestor of B1

and B'1

Both adopted by 
honest at T1 and

both bury B0 by >k

Height H1

Height H'1 ≥ H1

Height H0 Height H'0
Mined at T0

Figure 1: The scenario analyzed in the proof of Theorem 9, which is similar to the one studied in [2].

4



Recall from Lemma 7 that event Gt− k
2α ,t

contradicts with ZT0,T1 ≥ YT0+∆,T1−∆ if T0 ≤ t− k
2α . Thus, for

such a safety violation to happen, either Gt− k
2α ,t

does not occur or T0 > t− k
2α . By Lemma 7, Pr[Gt− k

2α ,t
] <

e−Ω(δ2g2α k
2α ) = e−Ω(δ2g2k). Since B extends B0 and is considered committed by some honest node at time t,

at least k blocks are mined during (T0, t]. On the other hand, since the combined mining rate of honest and
malicious nodes is α+ β < α(1 + 1

1+δ ), by Lemma 2, fewer than k blocks are mined during (t− k
2α , t] except

for e−Ω(δ2k) probability. Hence, Pr[T0 > t− k
2α ] < e−Ω(δ2k). Therefore, such a safety violation happens with

e−Ω(δ2g2k) probability.

4 Remarks

Related work. Garay et al. [2] show that Nakamoto consensus works under the “honest majority” assump-
tion in the lock-step synchrony model which abstracts away network delays. Pass et al. [7, 8] extended the
analysis to non-lock-step synchrony. Translated into our terminology, they show that Nakamoto consensus
works if (2g − 1)α > (1 + δ)β. When g ≈ 1, 2g − 1 ≈ g2; but when g is noticeably smaller than 1 (implying
that the network delay cannot be ignored), their result is looser than ours. The reason why their result
is looser is that they undercount loners (called convergence opportunities in their papers). Kiffer et al. [4]
gave a method to count loners tightly using Markov chains. Aside from the extra complexity from advanced
tools, their result has a non-closed form that involves three levels of nested summations. A concurrent work
Zhao [9] shows that the nested summation, in fact, equals g2. The main source of simplification in this paper
is a much simpler way to count loners tightly.

Modeling PoW mining as Poisson processes is by no means new, as it is used in Nakamoto’s original
paper [6]. Other papers analyzing Nakamoto consensus [7, 8, 4] assume mining happens in discrete rounds.
We prefer the continuous model because the discrete rounds seem artificial and various quantities in the
continuous world take on simpler forms than their discrete counterparts.

Several papers referred to the non-lock-step synchrony model as “asynchroy” [7, 9] or “partial syn-
chrony” [4]. We strongly advise against it because those two terms are well established in the literature
and they describe much weaker models that Nakamoto consensus cannot handle. For example, the partial
synchrony model assumes the network delay bound ∆ is “unknown”, meaning that the adversary can choose
∆ after all the other protocol parameters are fixed [1]. Then, it can break the safety of Nakamoto consensus
even with zero mining rate: pick a very large ∆ to keep the network partitioned for sufficiently long until two
forks of length k are created. This is reflected in our result: the error probability contains g in the exponent,
so if the adversary can pick ∆ after k is fixed, it can make the error probability unacceptable.

Open problems. Whether the safety condition g2α > (1 + δ)β is tight remains open. The best attack we
know is still the simplest “private chain” attack described by Nakamoto [6] and it requires at least β > gα.

Another aspect that is quite loose in all existing analysis is the precise error probability of the k-
confirmation commit rule. Because of this, we still do not have a theoretically sound way to recommend the
k needed for a target error probability in Nakamoto consensus.

We have assumed that there is no mining difficulty adjustment. Garay et al. has extended their lock-step
analysis [2] to variable difficulty [3]. Such an analysis under non-lock-step synchrony remains open.
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A Proofs of Tail Bounds

Lemma 1 (Chernoff). Let X =
∑n
i=1Xi be the sum of n independent Boolean random variables and µ be

the expectation of X. For 0 < δ < 1, Pr[X ≤ (1− δ)µ] < e−
δ2µ
2 . For δ > 0, Pr[X ≥ (1 + δ)µ] < e−

δ2µ
2+δ .

Proof. We show the X ≥ (1 + δ)µ side. The other side is similar. First, by Markov Inequality, for all t > 0,

Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ] ≤ E[etX ]

et(1+δ)µ
. (1)

For Bernoulli random variable Xi, let pi = Pr[Xi = 1] = E[Xi]. Then, E[etXi ] = pie
t+1−pi = 1+(et−1)pi <

e(et−1)pi where the last step uses the inequality 1 + x < ex. Thus, we have

E[etX ] = E[Πie
tXi ] = ΠiE[etXi ] < Πie

(et−1)pi = e(et−1)
∑
i pi = e(et−1)µ,

where the second equality is by independence. Plugging into (1) gives

Pr[X > (1 + δ)µ] ≤ e(et−1)µ

et(1+δ)µ
.

Setting t = ln(1 + δ), the right-hand side becomes e[δ−(1+δ) ln(1+δ)]µ. Lastly, it is not hard to show that

ln(1 + δ) > 2δ
δ+2 and hence (1 + δ) ln(1 + δ) > δ + δ2

2+δ , which completes the proof of the upper tail bound.
The other side is similar.

Lemma 2 (Poisson tail). Let X be a Poisson random variable with rate µ (which is also its expectation).

For 0 < δ < 1, Pr[X ≤ (1− δ)µ] < e−
δ2µ
2 . For δ > 0, Pr[X ≥ (1 + δ)µ] < e−

δ2µ
2+δ .

Proof. Recall that the moment generating function of a Poisson random variable is E[etX ] = e(et−1)µ. By
Markov Inequality, we have, for all t > 0,

Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ] ≤ E[etX ]

et(1+δ)µ
=
e(et−1)µ

et(1+δ)µ
.

The rest of the proof is identical to that of the Chernoff bound.
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