
Ouroboros Clepsydra: Ouroboros Praos in the Universally

Composable Relative Time Model

Handan Kılınç Alper

Web3 Foundation

handan@web3.foundation

Abstract

Ouroboros Praos is a proof of stake based blockchain protocol. One of its security
assumptions is parties are synchronized i.e., all of them knows when the protocol passes
a new state. However, it is not easy to have such a protocol in real life, especially in a
decentralized network. Therefore, we construct a new version of Ouroboros Praos by com-
posing a new protocol called Relative Time protocol. We call the new version Ouroboros
Clepsydra. At the end of the relative time protocol, a party learns the approximate state
of the protocol based on the median of arrival times of messages sent by the other parties
and adjusts its local clock based on it. The relative time protocol does not add any new
computation to the other parties. They even do not realize that they are part of the rela-
tive time protocol. In order to prove Ouroboros Clepsydrain the Universally Composable
(UC) model, we define a general UC model to capture the notion of relative time. We
remove the synchronization assumption in Ouroboros Clepsydra and show that Ouroboros
Clepsydra is a secure proof of stake blockchain protocol in the UC model.

1 Introduction

The first popular decentralized cryptocurrency Bitcoin maintains the public distributed ledger
with a proof of work (PoW) consensus mechanism. PoW is an important solution about con-
sensus problem studied in many decades. However, it is a very known fact that PoW consumes
a vast amount of energy. Therefore, the blockchain society has explored new solutions that
replace PoW with a more energy-friendly mechanism while preserving the decentralized fea-
tures. Proof of stake (PoS) is the most promising replacement among the other solutions
appeared [12, 2, 13, 1]. It has the same nature of PoW which selects the block producers
randomly proportional to their stakes while in PoW, block producers are selected randomly
proportional to their computational power.

One of the critical issues in PoS is constructing a selection mechanism which cannot be
biased by an adversary. This issue is carefully considered by current PoS protocols. Some
important results for an unbiased random selection based on random oracle [18, 9], a publicly
verifiable secret sharing (PVSS) scheme [17], verifiable random function (VRF) [10, 8, 15, 16],
and threshold cryptography [16]. All parties in all solutions decide if they are eligible to
produce a block in a certain time interval with the unbiased randomness. However, the
question is how this party know whether (s)he is in the right time interval. This is another

1

mailto:handan@web3.foundation

issue of PoS which has not been formally treated before. Indeed, it is very critical for an
honest party to release his/her block in the right time for security. If (s)he is late, then the
next producers continue to build the chain without seeing the honest party’s block. As a
result, the honest party may not have chance to contribute building on the chain. If (s)he is
early, similar problem arises.

The timeline of parties in Ouroboros [17] and Ouroboros Praos [10] is divided into slots
where each slot may or may not have a block producer. The security is based on the fact
that all parties know when the slot starts and ends. Ouroboros Genesis [3] protocol which is
similar to Ouroboros Praos except with the chain selection rule mentions that the violation of
this assumption breaks the security. The timeline of parties in the Dfinity consensus protocol
[16] progresses based on certain events but it is not clear how everyone sees a certain event
occurred at the same time in a partially synchronous network. Algorand [8, 15] is a different
consensus algorithm which runs a Byzantine agreement protocol for each block. Parties can
trust all blocks and adjust their local clock according to the round inside the blocks. We note
that this is not possible in Ouroboros [17], Ouroboros Praos [10] or Ouroboros Genesis [3]
because a party cannot know if the block is from an honest party or sent during the correct
slot. Snow White [9, 18] is the only protocol considering this timing issue in their analysis
by adding up the maximum time difference between parties into the network delay. However,
they do not propose any protocol to obtain clocks with this maximum difference.

One solution to overcome the synchronization problem is a central clock which provides the
same time to all parties. However, the corruption of this clock breaks the whole mechanism.
In addition to this, it is not very logical to assume a central trusted clock while trying to build
a fully decentralized system. The timestamp is another solution but it requires an analysis
of how to trust the timestamp in a system where it is not clear who is honest or malicious.

In this paper, we focus on the synchronization problem of Ouroboros Praos [10]. We
replace the assumption about knowing the current slot with another assumption by being Θ-
slot behind the real slot number. We call the new version of Ouroboros Praos with our new
security model Ouroboros Clepsydra. We model this assumption in the general universally
composable (GUC) model for relative time. We also propose an algorithm that realizes our
slot number assumption in the real world. In more details, our contribution in this paper is
as follows:

Our Contribution:

• We construct a general universally composable (GUC) model that captures the notion
relative time. Our model consisting of a global functionality which defines the clock rate
globally and functionality for local clocks which does not necessarily follow the same
rate to capture the notion of a drifted clock. Our other global functionality keeps track
of the actual slot number according to the clock rate. The parties can contact with
this global functionality to learn the slot number but may not get the correct one. To
the best of our knowledge, our GUC model is the first model which models the relative
time. The closest GUC model to ours is by Canetti et al. [7] but their relative time
notion and ours differs because their model is constructed for server/client protocols.

• We modify Ouroboros Praos [10] such that newly joining parties obtain the slot number
from the global functionality we define. Since the obtained slot number may not be
correct, some of the parties may not release their blocks in the right slot. Considering

2

these type of parties, we formally analyze the security of the new version of Ouroboros
Praos:Ouroboros Clepsydra.

• We propose an algorithm called Relative Time algorithm that realizes the global func-
tionality providing the slot number. Our algorithm does not add any extra computation
to the algorithms of block producers. The algorithm outputs a slot number by using
the arrival times of the blocks. Our algorithm outputs a slot number which is ∆ + 1
less than the actual slot number. If the clock is not drifted then the output is ∆ less
than the actual one. Here, ∆ is the maximum network delay in the partial-synchronous
network. Our security analysis in Relative time does not depend on any specific func-
tionality that Ouroboros Clepsydra has. Therefore, our algorithm can be adopted by
similar types of PoS protocols [9, 3, 16].

Structure of the Paper: In Section 2, we give some preliminaries related to UC model,
some functionalities defined in Ouroboros [17] and Ouroboros Praos [10] and the blockchain
structure. We define our new GUC model for relative time in Section 3 and give the UC
model defined in [10] for partial-synchronous networks with minor changes. In Section 4, we
describe Ouroboros Clepsydra in the hybrid model and prove its security. Finally, we give a
relative time protocol and prove its security in our new GUC model in Section 5.

2 Preliminaries

Notations: We denote by B a blockchain block and by C a blockchain. Given two
blockchains C1 and C2, C1 � C2 means that C1 is a prefix of C2. Cpk is a blockchain
after cutting the last k blocks.

We use D to define a distribution. x ← D shows that x is selected with respect to the
distribution D.

Two ensembles X = {X1, X2, ..., Xn} and Y = {Y1, Y2, ..., Yn} are computationally indis-
tinguishable if for all probabilistic polynomial time (PPT) algorithms D and for all c > 0,
there exits an integer N such that for all n ≥ N

|Pr[D(Xi) = 1]− Pr[D(Yi) = 1]| < 1

nc
.

The notation ≈ is used to show that two ensembles are computationally indistinguishable
(i.e. X ≈ Y).

2.1 Universally Composable (UC) Model:

UC model consists of an ideal functionality that defines the execution of a protocol in an
ideal world where there is a trusted entity. The real-world execution of protocol (without a
trusted entity) is called UC-secure if running the protocol with the ideal functionality F and
in the real-world is indistinguishable by any external environment Z.

A protocol π is defined with distributed interactive Turing machines (ITM). Each ITM
has an inbox collecting messages from other ITMs, adversary A or environment Z. Whenever
an ITM is activated by Z, the ITM instance (ITI) is created. We identify ITI’s with their
identifier consisting of a session identifier sid and the party identifier P .

3

- π in Real World: Z initiates all or some ITM’s of π and the adversary A to execute
an instance of π with the input z ∈ {0, 1}∗ and the security parameter κ. The output of a
protocol execution in the real world is denoted by EXEC(κ, z)π,A,Z ∈ {0, 1}. Let EXECπ,A,Z
denote the ensemble {EXEC(κ, z)π,A,Z}z∈{0,1}∗ .

- π in Ideal World: Ideal world consists of an incorruptible ITM F which executes π in an
idealistic way. The adversary S (called simulator) in the ideal world has ITMs which forwards
all messages provided by Z to F . These ITMs can be considered as corrupted parties and they
are known by F . The output of π in the ideal world is denoted by EXEC(κ, z)F ,S,Z ∈ {0, 1}.
Let EXECF ,S,Z denote the ensemble {EXEC(κ, z)F ,S,Z}z∈{0,1}∗ .
Z outputs whatever the protocol in the real world or ideal world outputs. We refer [4, 5]

for further details about the UC-model.

Definition 1. (UC-security of π) Let π be the real-world protocol and F be the ideal-world
functionality of π. We call π UC-realizes F (π is UC-secure) if for all PPT adversaries A in
the real world, there exists a PPT simulator S such that for any environment Z,

EXECπ,A,Z ≈ EXECF ,S,Z

π in Hybrid World: In the hybrid world, the parties in the real world interact with some
ideal functionalities. We say that a protocol π in hybrid world UC-realizes F when π consists
of some ideal functionalities.

We define relative time model of Ouroboros Clepsydra in generalized UC model [6]. GUC
model formalizes the global setup in UC-model. In GUC model, Z can interact with arbitrary
protocols and ideal functionalities F can interact with GUC functionalities G.

2.2 Primitives

In this section, we give the functionalities used in Ouroboros Clepsydra in the hybrid model.
We do not give the details of them because the details are not required to understand
Ouroboros Clepsydra.

Ideal Signature Scheme FDSIG: FDSIG is defined in [17] that defines an ideal signature
scheme. They show that any EUF-CMA secure signature scheme realizes FDSIG. FDSIG

provides a public key pksi to a party Pi after receiving the message (KeyGen, sid, Pi). After
the key generation, when FDSIG receives a message (Sign, sid, Pi,m) from Pi for signing, it
provides the signature by sending (Signature, sid, Pi,m, σ). FDSIG verifies a signature when it
receives a message (Verify, sid, Pi, σ, pks). The details of FDSIG is in [17].

Ideal Forward Secure Signature FKES: David et al. [10] define FKES for signature
schemes with evolved keys. In FKES, the signatures generated in the past with an old key are
not valid signatures anymore. The key generation of FKES is same as FDSIG. Differently, a
party sends a message (USign, sid, Pi,m, j) for signing with the parameter j which indicates
the total number of signatures so far. FKES verifies the signature of a party if its index is
equal to or greater than j. The details of FKES is in [10].

4

Ideal Verifiable Random Function FVRF: A verifiable random function (VRF) [11] gen-
erates an unpredictable random number with an input and a secret key. The construction
of this random number should be provable with corresponding secret key i.e., the random
number is generated with the public input and the secret key. David et al. define a function-
ality for a VRF (FVRF) which generates an unpredictable random number under malicious
key generation. It briefly works as follows:

A party Pi sends a message (KeyGen, sid, Pi) to FVRF to obtain a verification key. Then,
FVRF gives the verification key pkvi with the message (VerificationKey, sid, Pi, pkvi) and creates a
table to keep the tuples (pkvi ,mi, di) (i.e., the unpredictable random number di corresponding
to the input mi and the key pkvi). After the key generation, a party Pi can contact with
FVRF to obtain a random number and a proof that corresponds the input provided by Pi.
For this, Pi sends a message (EvalProve, sid, Pi,m, pkvi). If m is not given by Pi before, FVRF

chooses a random number d and asks for a unique proof π from the adversary S. Then,
FVRF gives (Evaluated, sid, Pi,m, d, π) to Pi. FVRF also verifies the proof when it receives a
message (Verfiy, sid, Pi,m, d, π, pkvi) from any party. It verifies if the table includes a tuple
(pkvi ,m, d). Even if the adversary S asks for an evaluation of an input m, FVRF makes sure
that the random number corresponding m and the public key of S is unique. We refer to [10]
for further details of this functionality.

2.3 Blockchain

Definition 2 (Block, Blockchain). The first block of a blockchain is called genesis block.
Given a genesis block B0, a block Bi is collection of data having the information of another
block that is connected to. All blocks is connected to only one block. We call that Bi is
connected to a block Bi−1 if the data related to parent of Bi is H(Bi−1) where H is a hash
function. A blockchain C = B0||B1||...||Bi−1||Bi is a data structure consisting of connected
blocks.

A protocol that defines the construction of a blockchain is called a blockchain protocol.
Garay et al. [14] define the properties defined below in order to obtain a secure blockchain
protocol. If a blockchain protocol satisfies these properties, it is called secure. In all definitions
below, slot represents time. The formal definition of the notion of slot is in Section 3.1.

Definition 3 (Common Prefix (CP) Property [14]). The common prefix property with pa-
rameters k ∈ N ensures that any blockchains C1, C2 owned by two honest parties at the onset
of the slots sl1 < sl2 satisfy that Cpk

1 � C2.

In other words, the CP property ensures that the blocks which are k-blocks before the last
block of an honest party’s blockchain cannot be changed. We call all unchangeable blocks
finalized blocks.

Definition 4 (Chain Growth (CG) Property [14]). The chain growth property with parameters
τ ∈ (0, 1] and s ∈ N ensures that if a blockchain owned by an honest party at the onset of
some slot slu is Cu, and a blockchain owned by another honest party at the onset of slot
slv ≥ slsv + s is Cv, then the difference between the length of Cv and Cu is greater than or
equal to τs.

In other words, the CG property guarantees a minimum growth after s slots later. τ
defines how fast the blockchain grows.

5

Definition 5 (Chain Quality (CQ) Property [14]). The chain quality property with parameters
µ ∈ (0, 1] and k ∈ N ensures that the ratio of honest blocks in any k length portion of an honest
blockchain is µ.

The CQ property ensures sufficient honest block contribution to any blockchain owned by
an honest party.

3 UC-Model for Ouroboros Clepsydra

In this section, we describe the GUC-model for relative time and the partial synchronous
network for Ouroboros Clepsydra.

The ITMs of Ouroboros Clepsydra in the hybrid world are called stakeholder and each
ITM Pi is denoted by Pi. Z activates all stakeholders in order and the adversary and creates
ITIs. A is also activated whenever the ideal functionalities invoke.

We first introduce our new GUC-model for the relative time notion and then give the
UC-model for partial synchronous network similar to the model in [10, 3].

3.1 GUC-Model of Relative Time

GUC network time model is introduced by Canetti et al. [7] which models the clock adjust-
ment of a client with servers of which can be corrupted. Now, we consider a similar model
in a network where relative time is critical. We do not have a client or a server in this model
instead we have parties who send messages (e.g., blocks) regularly according to their clock
rate. We use the notion of a slot that is defined for a specific time interval. A slot is a metric
time in the metric system in the real world. Therefore, we consider it as the same notion of
time in the network time model [7].

In a nutshell, we want to define a GUC-model where each party immediately accesses to
its local clock which may not progress as the same rate of other parties’ local clock. The rate
of all local clocks is defined in a global setup but the local clocks may not follow the same
rate while they progress. In our model, the only absolute value is slot number. The rest is
based on relative time.

Remark that the main difference in our model and the GUC-network model [7] is the
definition of relative time. If we consider slot as the same as clock output in [7], the relative
time means how many slots passed. However, in our model, the relative time means how
much a local clock is progressed.

GUC-Model of relative time consists of the following functionalities:

Reference Rate (GrefRate) : This functionality defines a global clock rate. The parties
who wants to be notified in every progress of time register to GrefRate. Whenever Z contacts
with GrefRate, GrefRate signals it all registered parties as a sign of time progress. The difference
between GrefClock [7] and GrefRate is that GrefRate does not have any notion of clock or time. It
just lets the all functionalities increase their own clock. The details are in Figure 1.

Local clock (FΣ,P
local): The local clock functionality FΣ,P

local represents a local clock of a party.
Σ ∈ N represents how much the time is drifted. This clock is accessible by the party P without
any delay. FΣ,P

local stores two local clocks: localclockZ and localclock. It increments localclockZ
whenever it receives a message from Z and increments localclock whenever it receives GrefRate.

6

Functionality GrefRate

GrefRate has a list of registered parties ListRate which is initially empty.

• (Registration) If a party P sends a message (Register, sid, P), GrefRate adds P to ListRate and sends
(Registered, sid, P) to P .

• (Progress in Time) When Z sends a command Continue, GrefRate sends (Increase, sid′, P) to all P ∈
ListRate

Figure 1: The global functionality GrefRate

Functionality FΣ,P
local

Z initiates FΣ,P
local with a value counter. Then, FΣ,P

local creates two parameters localclockZ = counter and
localclock = counter.

• (Registration) FΣ,P
local sends (Register, sid,GT,Θ

Slot) and receives back (Registered, sid, P). This is done
once after initialization of the functionality.

• (Increasing localclockZ) When Z sends (Increase, sid, P), FΣ,P
local increases localclockZ and lets Σ =

localclock− localclockZ .

• (Increasing localclock) When GrefRate sends (Continue, sid,FΣ,P
local), FΣ,P

local increases localclockZ and lets
Σ = localclock− localclockZ .

• If P sends (get clock, sid,P), FΣ,P
local sends (clock, sid, localclockZ , P).

Figure 2: The global functionality GrefRate

However, it never shares localclock with the party. The reason of having localclock is to keep
the amount of total drift (Σ) in any time. We define it in Figure 2.

One can see the functionality FΣ,P
local as a very powerful functionality than the real-world

local clocks since it has the information localclock. However, in the realization of FΣ,P
local in

the real world, we do not need to simulate the parameter localclock or Σ because it is never
shared with the parties and its execution of localclockZ does not depend on it. So, a usual
local clock in the real world can be proven as a realization of FΣ,P

local.

Slot Provider (GT,ΘSlot): G
T,Θ
Slot has a similar role as GClock in the network time model [7].

GT,ΘSlot provides a slot number to a requester party. When a party asks about the current slot

number, GT,ΘSlot asks to A what to send to the party. If A provides a slot number which is

less than slcurr −Θ or greater than slcurr where slcurr is the current slot number, GT,ΘSlot sends
slcurr instead of the slot number given by A. Otherwise, it sends the adversarial slot number.
GT,ΘSlot updates the current slot number every T message from GrefRate.

We note GT,ΘSlot is less restrictive functionality than GClock because we model the functionality
in the partially-synchronized network (Section 3.2). It means that it always responds to a
party with a slot number. Differently than GClock, GT,ΘSlot does not access a global reference
clock GrefClock instead it access to GrefRate which actually define the rate of slot number change.
The description of GT,ΘSlot in Figure 3.

7

Functionality GT,Θ
Slot

GT,Θ
Slot is parameterized with T,Θ given by Z. GT,Θ

Slot first sends (Register, sid,GT,Θ
Slot) and receives back

(Registered, sid, P). Then, it sets slcurr = 0 and counter = 0.

• If GT,Θ
Slot receives an input (req slot, sid, P), it relays the input to the adversary and waits for the adver-

sary’s response. A replies with (new slot, sid, sl′, P ′). Given that the current slot number is slcurr,
if slcurr − sl′ ≥ Θ or slcurr < sl′, sl = slcurr. Otherwise, sl = sl′. GT,Θ

Slot sends (current slot, sid, sl)
to Pj .

• When GT,Θ
Slot receives (Continue, sid,GT,Θ

Slot), it increases counter. If counter mod T = 0, it increase
scurr.

Figure 3: The global functionality GTSlot

3.2 UC- Partially Synchronous Network Model

Our network model FDDiffuse is similar to the model of Ouroboros Praos [10, 17, 14]. Differ-
ently, it accesses to GrefRate in order to have the notion of relative time.
A can corrupt stakeholders P1, P2, ..., Pn or desynchronize them if Z permits it. When Z

permits a corruption of a party Pi, it sends the message (Corrupti, Pi). If a party is corrupted,
whenever it is activated, its current state is shared with A. If Z permits desynchronization of
Pi, it sends the message (Desync, Pi) to A. If Pi is desynchronized, Pi contacts with GSlot to
get the slot number1. This is the critical difference between the security model in Ouroboros
Praos [10] and our security model.

Now, we define the functionality FDDiffuse which models a partially synchronous network
which at most ∆-slots delay.

FTDDiffuse: The message handling functionality Diffuse first introduced by Garay et al. [14] in
the synchronous network. Then, David et al. [10] define a new functionality “delayed diffuse”
(DDiffuse) that realizes a partially synchronous network where the messages of a stakeholder
Pi read by others at most ∆-slots later. DDiffuse does not need the notion of relative time of
∆-slot while FTDDiffuse needs because slot is not defined based on time in DDiffuse. Therefore,
we combine DDiffuse with the GrefRate and obtain FTDDiffuse:
FTDDiffuse first registers to GrefRate and creates a local clock ` which is 0 at the beginning.

Whenever GrefRate sends a message with Continue, it increments `.
Each honest Pi can diffuse only one message in one slot. Pi can access its inbox anytime.

A can read all messages diffused by stakeholders and decide their delivery order before they
arrive to inboxes of uncorrupted stakeholders. For any message comes from an uncorrupted
stakeholder, A can label it as delayedi. When FTDDiffuse receives delayedi for a message to Pi,
it marks it with the current local time `i. A delayed message is not moved to the inbox of the
corresponding stakeholder until A let FTDDiffuse move it to the inbox or the local time reaches
`i + ∆T . When FDDiffuse receives (Create, P, C) from Z, it creates a new stakeholder P with
the initial chain C.

Before starting the next section, we give the q-bounded random oracle model [14].

1We note that desynchronization of a party is not related to network. It is related to notion of slot number.

8

FRO: FRO works different than the random oracle model. It bounds the number of queries
that an A can make in each slot. It is first introduce by Garay et al. [14] in q-bounded model.
Given a slot where A corrupts t stakeholders, FRO sets the parameter that defines the bound
as tq and sets the counter as 0. Whenever FRO receives an input ρ then it runs the following
algorithm:

GRO(ρ)
counter ← counter+1
if counter ≤ tq:

if (., ρ) ∈ T :
return r where (r, ρ) ∈ T

else:
r ←r U
add (r, ρ) to T
return r

else if:
return ⊥

Here, U is a uniform distribution.

4 Ouroboros Clepsydra

Ouroboros Clepsydra is a new version of Ouroboros Praos with stakeholders who do not
necessarily know what current slot number is. Ouroboros Clepsydra consists of sequential
non-overlapping epochs (e1, e2, ..., eE), each of which consists of a number of sequential block
production slots (ei = {sli1, sli2, . . . , sliR}) up to some bound R ∈ N.

We give the Ouroboros Clepsydra protocol in the hybrid model with the functionalities
FVRF, FKES, FDSIG, FRO, FP,Σlocal and GT,ΘSlot . An instance of this protocol is in Appendix A. We
believe that this instance makes the protocol more clear for ones who are not familiar with
the UC-model [4, 5].

Before giving the details of Ouroboros Clepsydra we define the probability of being se-
lected as a slot leader:

pi = φc(α
m
i) = 1− (1− c)αm

i

where αmi is the relative stake of the stakeholder Pi in an epoch em and c ∈ (0, 1) is a
constant parameter of the protocol that is chosen according to how frequently we want to have
slots with no slot leader. As it can be seen, each stakeholder is selected proportional to its
stake. Remark that the function φ has the “independent aggregation” property as remarked
in [10], which informally means the probability of being selected as a slot leader does not
increase as a stakeholder splits his stakes across virtual stakeholders.

φ is used to set a threshold τi for each stakeholder Pi.

τi = 2`vrfφc(α
m
i) (1)

where `vrf is the length of the unbiased random number outputted by VRF. The detailed
description of Ouroboros Clepsydra in the hybrid model is given in Figure 4. The overview
is as follows:

9

Overview of Ouroboros Clepsydra: It consists of three phases:
The first phase is the initialization phase which has two different modes. The first mode

continues until Z provides the genesis block. Z creates n stakeholder instances with some
amount of stakes. The parties who are activated before the genesis block contact with the
functionalities FVRF,FKES,FDSIG and obtain the public keys pkv, pke, pks, respectively. Then,
they register to Finit with the public keys and the stake. When Z commands Finit, Finit

creates the genesis block and gives it to the parties who has already registered. Similarly,
GT,ΘSlot starts to functioning. When a party receives the genesis block, it asks the current local

time t1 from FP,Σlocal and sets sl = sl11. It then stores Π = (sl11, t1) as a reference point for
its own slot counter. The second mode is for new parties who join after the genesis block.
They first register their public keys as in the first mode before the genesis released. After the
registration, they learn the current slot number. For this, they contact with GT,ΣSlot and obtain

the slot number slref . Immediately, they contact with FP,Σlocal to obtain the current local time
tref . As in the first mode, they store Π = (slref , tref) as a reference point to compute the
current slot number later.

The second phase is the chain extension phase where parties construct blocks if they are
the slot leaders, collect all chains arrive to their inbox, choose the best chain. A party in this
phase learns the current slot number slcurr by running the algorithm S Map(Π, tcur) where
tcur is the current local time obtained from FP,Σlocal.

Algorithm 1 S Map(Π, tcur)

1: Π = (slref , tref)

2: dif = b tcurr−trefT c
3: return slref + dif

When stakeholders receive blockchains, they check the validity of these blockchains as
described in Figure 4 and add all valid ones to the set C. After collecting all chains, they
choose the best chain among the all chains they received with following algorithm.

Algorithm 2 maxvalid(C, Cbest)
1: Cmax ← Cbest
2: for all Ccand ∈ C do
3: if Ccand > Cmax ∧ Cpk

best � Ccand then
4: Cmax ← Ccand
5: return Cmax

They also check if they are a slot leader by sending the input (rm||slcur) to FVRF. rm is
the randomness beacon of the current epoch m. We explain how the randomness beacon is
generated in the next phase. FVRF provides a random number d and a proof π. If d is less
than the threshold defined in Equation 5, then the party is selected as a slot leader of slcur.
Slot leaders generate a block B as described in Figure 4 and append it to their Cbest. Then,
they give Cbest||B to FTDDiffuse for the distribution.

The last phase is epoch formation. In this phase, stakeholders update the parameters the
randomness beacon and the stake distribution of the next epochs. The genesis block includes
the randomness beacon for the first two epochs e1 and e2 and the stake distribution for the
first three epoch e1, e2 and e3. The stake distribution of an epoch em where m > 3 can be

10

obtained from the blocks belong to epoch em−3. The randomness beacon of an epoch em
where m > 2 is obtained from the VRF values of blocks in epoch em−2. Each party sends the
VRF values ρm = d′1||d′2||...|d′` to FRO. The output of FRO is the randomness beacon rm of
the epoch em.

4.1 Security Analysis

Our security analysis of Ouroboros Clepsydra in hybrid model follows the same structure as
in Ouroboros Praos [10]. The critical difference of our security analysis is that we have two
type of honest parties: honest and synchronized parties and honest but late parties. Assume
that the current slot number is kept by GT,ΘSlot is slcurr which starts at counter = t and ends
when counter reaches t+ T .

• Honest and Synchronized Parties: We say that a party is synchronized if there exists
tx ∈ [t, t+T] such that the party outputs slcurr when the counter of GT,ΘSlot is equal to tx.

• Honest but Late Parties: These parties output sl where slcurr − Θ ≤ sl < slcurr in a
time interval between t and t+ T .

Remark that honest and synchronized parties do not have to output slcurr between whole
interval [t, t + T]. Only one moment that share the same slot number is sufficient in our
security analysis.

Before starting the security analysis, we remind that in Ouroboros Praos [10], Θ = 0 and in
Ouroboros [17], ∆ = Θ = 0. Therefore, we need to modify some definitions given by [10, 17].
One of these definitions is the notion of characteristic string. In order the differentiate, we call
our characteristic string unsynchronized characteristic string and the one in Ouroboros Praos
[10] synchronized characteristic string. Note that synchronization is not related here with the
network. It is related with the synchronization of slot numbers among honest parties.

Definition 6 (Unsynchronized Characteristic String). Assume that the set L =
{L1, L2, ..., Ln} has elements of which each one Li includes the slot leader(s) of each slot sli. A
unsynchronized character of an element in L is defined over a function fchr : L → {0s, 0`, 1,⊥}
as follows:

fchr(Li) =

⊥ if Li = ∅
0s if |Li| = 1 and the slot leader is in Hs
0` if |Li| = 1 and the slot leader is in H`
1 otherwise.

where H` is the set of honest but late parties and Hs is the set of honest and synchronized
parties.

The unsynchronized characteristic string of L is w = w1w2...wn where wi = fchr(Li).

A fork F is a directed graph which consists of vertexes (V) and edges (E). One of the
vertexes is a special vertex called root. All edges are directed from the root (similar to the
tree structure). We call each path from the root as tine. ∆Θ-fork is a specific fork which
consructed based on the rules derived from a characteristic string w ∈ {0s, 0`, 1,⊥}n. In the
following definition, we give these rules. ∆Θ-fork is very similar to the ∆-fork definition in
[10]. We have an extra property to capture 0` values in w.

11

Ouroboros Clepsydra in Hybrid Model

The protocol consists of sequential non-overlapping epochs (e1, e2, ..., eE), each of which consists of a number of
sequential block production slots (ei = {sli1, sli2, . . . , sliR}) up to some bound R. Stakeholders P = {P1, P2, ..., Pn}
send messages to each other with the functionality FT

DDiffuse and communicate with other functionalities

Finit,FVRF,FKES,FDSIG,FRO,FP,Σ
local and GT,Θ

Slot .
Phase 1: Initialization Phase

• A stakeholder Pj before starting sl11 (first slot of the first epoch) sends the message
(register, sid, Pj , pkvj , pkej , pksj , stj) where pkvj , pkej , pksj are the verification keys obtained from respectively
FVRF,FKES,FDSIG and stj is the stake of Pj . If the message of Pj is correct, Finit adds it to the genesis list.
After Z commands Finit to generate the genesis block, Finit does not accept any registration request and
creates the genesis block B0 = {r0, (P1, pkv1, pke1, pks1, st1), (P1, pkv2, pke2, pks2, st2), ..., (Pn, pkvn, pken, pksn, stn)}
where r0 is picked from a uniform distribution. When Pj is activated, it receives B0 from Finit and Pj set

sl = sl11. It also stores Π = (sl11, t1) as a reference point where t1 is obtained from FPi,Σ
local when it receives

the genesis block.
• If a new Pj is activated after the first slot, it first obtains pkvj , pkej , pksj from FVRF,FKES,FDSIG by sending

a message (KeyGen, sid, Pj), respectively. Then, it obtains the current slot number slmref from GT,Θ
Slot by

sending the message (req slot, sid, Pi). Then, it sets Π = (slmref , tref) as a reference point where tref is

obtained from FPi,Σ
local . The initial chain Cbest is ∅. Pj adds Cbest to the set Cj .

Phase 2: Chain Extension This phase is the same with Ouroboros Praos [10] except the first bullet.

• (Finding the current slot number) Pj runs S Map(Π, tcurr) and obtains the slot number sl where Π is the

reference point and tcurr is obtained from FPi,Σ
local .

• (Collecting other chains) Pj receives all chains sent to it from FDDiffuse. For each chain C, it checks the
validity of each block B = (sl′, H, (d, π), tx, σ) of C by following the following steps:

1. Pj sends the message (Verify, sid, (sl′, H, d, tx), sl, σ, sl′, σ, pkvi) to FKES. If FKES replies with
(Verified, sid, (sl′, H, d, tx, sl′, 1), then Pj follows the following step. Otherwise, ignores C

2. Pj sends the message (Verify, sid, rm||sl′, d, π, pkvi) to FVRF. If FVRF replies with the message
(Verified, sid, rm||sl′, d, π, pkvi , 1), then Pj follows the next step. Otherwise, it ignores C.

3. Pj runs the algorithm Validate(tx) (i.e., check the validity of the transactions). If Validate outputs
valid, Pj validates the block. Otherwise, it ignores C.

If all blocks of the chain C passes the above steps, Pj adds C to C.
• (Updating the best chain) Pj runs the algorithm maxvalid(C, Cbest)→ C ′ and sets Cbest = C ′.
• (Checking being a slot leader) Pj sends message (EvalProve, sid, Pj , rm||sl) to FVRF and receives back

(Evaluated, sid, Pj , d, π). If d < τj , Pj creates a block for the best chain Cbest whose last block is B′. The
block creation consists of the following steps:

1. Pj sends (Hash, sid,B′) to FRO and receives back HB′ .
2. Let m = sl||HB′ ||d||π||tx. Pj sends (USign, sid, Pi,m, sl) to FKES and receives

(Signature, sid,m, sl, σ).

• Pj creates the new block B = sl||HB′ ||d||π||tx||σ and appends it to the best chain Cbest||B and lets
Cbest = Cbest||B. Finally, it sends Cbest to FDDiffuse to be added all other stakeholders’ inboxes.

Phase 3: Epoch Formation: Pj runs this phase before starting a new epoch em just after slm−1
R or just after

receiving the genesis block R is the epoch length.

If m ∈ {1, 2, 3}, then the stake distribution Pj remains the same with the stake distribution defined in the genesis
block. Otherwise, Pj retrieves the stake distribution Sj from the subchain between slot number slm−3

1 to slm−3
R .

If m ∈ {1, 2}, Pj sets rm = r0. Otherwise, Pj retrieves the VRF values of the blocks which belong to the epoch
em−2 in the current best chain. Then, it sends all these values ρm = d′1||d′2, ..., d′` to FRO and receives rm from
FRO.

Figure 4: Ouroboros Clepsydra the hybrid model

12

Definition 7 (∆Θ-Fork). Let a characteristic string w ∈ {0s, 0`, 1,⊥}n and ∆,Θ ∈ N. ∆-
fork is a fork F = (V, E) defined with rules based on w. Let the set L = {i : wi ∈ w} ∪ {0}
be a level set that defines levels of F . Each vertex has depth value defined with the function
d : V → L where d(v) is the number of edges that is directed from r to v. All levels are mapped
to some vertexes with map. map has the following properties:

1. Level 0 is mapped to the root.

2. If wi =⊥, the level i is not mapped to any vertex.

3. If wi = 0` or wi = 0s, then the level i is mapped to only one vertex.

4. For all i, j where wi = 0s and wj ∈ {0`, 0s}, if i+ ∆ ≤ j then d(i) ≤ d(j). This is called
as ∆-monotonicity.

5. For all i, j where wi = 0`, wj ∈ {0`, 0s}, if i+∆+Θ ≤ j then d(i) ≤ d(j). This is called
as ∆Θ-monotonicity.

We define also the labelling function ` : V → L ∪ {0} where `(v) is the level of the
vertex i.e., v ∈ map(`(v)). The notation F a∆Θ w represents a ∆Θ-fork F derived from a
characteristic string w.

0s ⊥ 0ℓ 1 1 ⊥ 0ℓ 0s⊥ ⊥ 1

root

Levels: 1 2 3 4 5 6 7 8 9 10 11

11 3

4

4

5

5 7 10

11

11

0

Figure 5: An example ∆Θ-fork. Each square is vertex and the values in vertexes are their
labels. Each level is mapped to the vertexes between two dot-lines e.g, map(4) is the vertexes
labelled with 4, map(2) is ∅.

∆Θ-fork defines all possible forks during the protocol execution where honest parties follow
the maxvalid (See Algorithm 2) chain-selection algorithm and construct only one block on top
of one chain during their slots (indexes). For instance, the properties 4 and 5 listed above are
always preserved during the execution of Ouroboros Clepsydra because honest parties always
construct a block on top of the longest chain. Consider i, j as slots and tines as chains in
Ouroboros Clepsydraİf an honest and synchronized party constructs a block on top of chain
C in slot i, then all honest parties receive it at latest at the beginning of slot i + ∆. So, an
honest block producer of the slot j ≥ i+ ∆ already has C. It means that he constructs either
on top of C or another chain longer than C. In either case, the depth of new block is greater
than the chain of honest and synchronized slot leader at i. The similar argument is valid for

13

an honest but late slot leader since its chain is received by all honest parties at latest in slot
i+ ∆ + Θ.

Now, we give the viability and divergence definition from [10] with ∆Θ-forks.

Definition 8 (∆-Viability [10]). Let the function length measure the length of a tine which
is the number of edges in that tine. We call a tine t of a ∆Θ-fork F is ∆-viable if length(t) >
max{d(h) : h ≤ `(t)−∆, wi ∈ {0`, 0s} st. map(i) = h} where `(t) is the label of the vertex on
tip of F .

∆-viable tine is a tine which has a possibility to be selected according to maxvalid algorithm
by honest parties.

Definition 9 (Divergence [17]). Consider a ∆Θ-fork F retrieved from w ∈ {0s, 0`, 1,⊥}∗.
The divergence value of F is defined as follows:

div∆(F) = max
t1,t2
{min length(t1), length(t2)− length(t1 ∩ t2)}

where t1, t2 are ∆-viable tines of F . Here, t1∩ t2 is the common prefix of t1 and t2. Given
div∆(F), we define divergence value of w which is equal to the maximum divergence value
among all divergence values of a ∆Θ-fork derived from w. In other words,

div∆(w) = max
Fa∆Θw

div∆(F)

We would like to have div∆Θ(w) small enough so that the common prefix property is not
violated.

In the following theorem, we restated a result from Ouroboros protocol [17] with ∆ =
Θ = 0.

Theorem 1 (Ouroboros Result [17]). Given R, k ∈ N and ε ∈ (0, 1), let w ∼ B(R, 1−ε
2) (B is

a binomial distribution). Then Pr[div0 ≤ k] ≤ 1− exp(lnR− Ω(k)).

Our aim next is to define a mapping from {0s, 0`, 1,⊥}n to {0, 1}n′ so that we can reduce
a fork F derived from w ∈ {0s, 0`, 1,⊥}n to another fork F ′ derived from w′ ∈ {0, 1}n′ . This
reduction helps us to use the result in Theorem 1.

The first map is from an unsynchronized characteristic string to a synchronized charac-
teristic string defined in [10].

Definition 10 (Reduction Mapping ρ∆,Θ). For ∆,Θ ∈ N, the function ρ∆,Θ : {0s, 0`, 1,⊥
}∗ → {0, 1,⊥}∗ maps an unsynchronized characteristic string to a synchronized characteristic
string as follows:

ρ∆,Θ(w) =

0||ρ∆,Θ(w′) if w = 0`||w′ and w′ ∈⊥∆+Θ ||{0s, 0`, 1,⊥}∗
1||ρ∆,Θ(w′) if w = 0`||w′ and w′ /∈⊥∆+Θ ||{0s, 0`, 1,⊥}∗
x||ρ∆,Θ(w′) if w = x||w′where x ∈ {0s, 1,⊥}.

and ρ∆,Θ(null) = null where null is the end of any characteristic string.

Remark that this map considers a uniquely honest but late slot sl as malicious if there
are not enough number of empty slots (i.e., ∆ + Θ) after sl. The intuition behind it is as
follows: A block generated by an honest but late party in sl arrives to the other parties at

14

latest ∆ + Θ slot later because the late party sends its block Θ slots later (since it is late)
and it may arrive ∆ slot later to other honest parties (because of the network delay). So, the
slot leaders between sl and sl+ ∆ + Θ continue to produce blocks without seeing the block in
sl. This causes that the block in sl may not be in the best chain. So, honest but late party
does not contribute the block production as described in Ouroboros Clepsydra if there are
not ∆ + Θ empty slots.

It is clear to see that div∆(w) ≤ div∆(ρ∆,Θ(w)) because ρ∆,Θ(w) has more 1’s than w and
the ⊥ values are in the same indexes.

Definition 11 (Reduction Mapping ρ∆ [10]). For ∆ ∈ N, the function ρ∆ : {0, 1,⊥}∗ →
{0, 1}∗ maps a synchronized characteristic string as follows:

ρ∆(w) =

1||ρ∆(w′) if w = 1||w′
1||ρ∆(w′) if w = 0||w′ and w′ /∈⊥∆ ||{0, 1,⊥}∗
0||ρ∆,Θ(w′) if w = 0||w′ and w′ ∈⊥∆ ||{0, 1,⊥}∗
ρ∆,Θ(w′) if w =⊥ ||w′.

Lemma 1. For all w ∈ {0s, 0`, 1,⊥}, div∆(w) ≤ div0(ρ∆(ρ∆,Θ(w))).

Proof. It has been shown in [10] that for all w′ ∈ {0, 1,⊥}, div∆(w′) ≤ div0(ρ∆(w′)). We
also know that for all w ∈ {0s, 0`, 1,⊥}, div∆(w) ≤ div∆(ρ∆,Θ(w)). Let us assume that
w′ = ρ∆,Θ(w), then div∆(w) ≤ div∆(ρ∆,Θ(w)) ≤ div0(ρ∆(w′)) = div0(ρ∆(ρ∆,Θ(w)))

Definition 12 (Relative Stake). Given st =
∑

Pi∈P sti (the total stake) where P is a set

of all stakeholders, a relative stake of a party Pi is αi = sti
st . The relative stake of honest

and synchronized parties is αs =

∑
Pi∈Hs

sti

st and the relative stake of honest but late parties is

α` =

∑
Pi∈H`

sti

st .

Definition 13 (Characteristic String Distribution (Dchr)). Given parameters αs, α` and c,
we define the distribution Dchr on strings w = w1w2, ..., wR ∈ {0s, 0`, 1,⊥}R

p⊥ = Pr[wi = ⊥] =
∏
i∈P

1− φ(αi) =
∏
i∈P

(1− c)αi = 1− c

p0` = Pr[wi = 0`] =
∑
i∈H`

φ(αi)(1− φ(1− αi))

=
∑
i∈H`

(1− (1− c)αi)(1− c)1−αi

= (1− c)
∑
i∈H`

φ(αi)

1− φ(αi)

≥ p⊥φ(α`)

similarly,
p0s = Pr[wi = 0s] ≥ p⊥φ(αs)

and
p1 = Pr[wi = 1] = 1− p⊥ − p0` − p0s

15

Given a characteristic string w ∈ {0s, 0`, 1,⊥}, we want to find to find Pr[div∆(w) ≤ k].
This is equivalent to find Pr[div0(ρ∆(ρ∆,Θ(w))) ≤ k] thanks to Lemma 1. Therefore, we
analyze the distribution of 0’s in ρ∆(ρ∆,Θ(w)) where w ← Dchr in the following lemma.

Lemma 2. Let w ← Dchr, z = ρ∆(ρ∆,Θ(w))p∆+Θ and z = ||∀i:wi∈w∧wi 6=⊥zi. Each zi ∈ z is
selected from a binomial distribution with the probability

Pr[zi = 0] ≥ αs(1− c)∆+1 + α`(1− c)∆+Θ+1

.

Proof. We consider only the distribution of 0’s in the trimmed ρ∆(ρ∆,Θ(w)) because the last
∆ + Θ values in ρ∆(ρ∆,Θ(w)) do not have the same probability of being 0 with the previous
ones i.e., if the last ∆ + Θ values in w are not ⊥, then the last ∆ + Θ values in z are 1.

Pr[zi = 0] = Pr[wi = 0s|wi 6=⊥]Pr[wi+1||...||wi+1+∆ =⊥∆]

+ Pr[wi = 0`|wi 6=⊥]Pr[wi+1||...||wi+1+∆+Θ =⊥∆+Θ]

≥ φ(αs)(1− c)∆+1 + φ(α`)(1− c)∆+Θ+1

c

≥ αs(1− c)∆+1 + α`(1− c)∆+Θ+1

The last inequality comes from the fact that φ(α) ≥ cα.

Now, we prove that CP, CG, CQ properties are preserved in the first two epochs. Remark
that the randomness and the stake distribution of the epoch e1 and e2 are defined in the
genesis block.

Theorem 2 (CP Property). Let k,∆,Θ ∈ N and ε ∈ (0, 1). Let α(1−c)∆+1(γ+(1−c)Θβ) ≥
(1 + ε)/2 where α = αs +α` = γα+βα is the relative stake of honest parties. The probability
of an adversary A whose relative stake is at most 1− α violating the common prefix property
with the parameter k in the first or second epoch is pcp ≤ exp(lnR+ Ω(k −∆−Θ)).

Proof. The proof is very similar to the proof of the CP property in Ouroboros Praos [10].
The proof based on the value of div∆ because if div∆(F) > k, then the CP property is broken.
Therefore, we first determine the probability of having div∆(w) > k for all w ← Dchr, |w| = R.
We know the following:

div∆(w) ≤ div0(ρ∆(ρ∆,Θ(w)))
∗
≤ div0(ρ∆(ρ∆,Θ(w))p∆+Θ) + ∆ + Θ

The inequality ∗ comes from “Lipshitz property” stated in Theorem 4 of [10]. Given that
z = ρ∆(ρ∆,Θ(w))p∆+Θ is as described in Lemma 2,

Pr[zi = 0p∆+Θ] ≥ α(1− c)∆+1(γ + (1− c)Θβ) ≥ (1 + ε)/2.

Therefore, we can directly apply Theorem 1 and have

Pr[div0(ρ∆(ρ∆,Θ(w))p∆+Θ) > k −∆−Θ] ≤ exp(lnR− Ω(k −∆−Θ)).

As a result of this, for all F a∆Θ w,

Pr[div∆(F) > k] ≤ exp(lnR− Ω(k −∆−Θ)).

16

Before proving the chain growth, we define two types of special slots: ∆-right isolated and
∆ + Θ-right isolated slots. We basically extend the definition of ∆-right isolated slot given in
[10]. We call a slot ∆+Θ-right isolated if the slot leader is one late party and the next ∆+Θ
slots are empty. We call a slot ∆-right isolated if the slot leader is only one synchronized
honest party and the next consecutive ∆ slots are empty. These slots are very critical in
chain growth because honest and synchronized party’s block will be in the best chain for sure
if there are at least ∆ empty slots after. Similarly, a block of honest but late party will be
in the best chain if there are at least ∆ + Θ empty slots after. The reason behind it that an
honest block arrives to other honest parties at most ∆ slots later after it is released. If this
honest block is late then it arrives at most ∆ + Θ slots later. Therefore, in order to guarantee
the chain growth, we need to have more than half ∆-right isolated and ∆ + Θ-right isolated
slots so that the best chain includes more honest blocks.

Theorem 3 (Chain Growth). Let k,R,∆,Θ ∈ N and let α = αS + αL = γα + βα is
the total relative stake of honest parties. Then, the probability that an adversary A violates
the chain growth property for all y > 1 with parameters s ≥ 2(∆+Θ)y

y−1 and τ = p
2y in the

first epoch or the second epoch is pcg ≤ (∆ + Θ + 1)(R − s)p exp(− (s−3(∆+Θ+1))p
8(∆+Θ+1)) where

p = (1− c)∆+1cα(γ + (1− c)Θβ)

Proof. We follow the similar proof technique given for the chain growth in Ouroboros Praos
[10] with different assumptions. We have tighter security bound than the proof in [10].

Consider a chain owned by an honest party in slu in epoch e1 or e2 and a chain owned by
an honest party in slv ≥ slu + s. We need to show that there are τs slots between slu and slv
such that the blocks produced in these slots are available to the next slot leaders just before
their slot begins. Therefore, we need to find the expected number of ∆ + Θ-right isolated
slots between slu and slv given that the relative stake of late parties is αL = βα and expected
number of ∆-right isolated slots given that the relative stake of synchronized honest parties
is αS = γα. Remark that a slot can be either ∆ + Θ-right isolated or ∆-right isolated or
neither of them.

Consider chains Cu and Cv in slots slu and slv owned by the honest parties, respectively
where slu is the first slot of the epoch e1. We can guarantee that Cu is one of the chains of
all parties in slu + ∆ + Θ and the chain Cv is one of the chains of all parties if it is sent in
slot slv −∆−Θ. Therefore, we are interested in slots between slu + ∆ + Θ and slv −∆−Θ.
Let us denote the set of these slots by S = {slu + ∆ + Θ, slu + ∆ + Θ + 1, ..., slv −∆ − Θ}.
Remark that |S| = s− 2∆− 2Θ.

Now, we define a random variable Xt ∈ {0, 1} where t ∈ S. Xt = 1 if t is ∆+Θ or ∆-right
isolated with respect to the probabilities p⊥, p0` , p0s . Remark that Xt’s are not independent.
Therefore, we divide them into groups where they are independent. Observe that Xt and
Xt′ are independent if |t − t′| ≥ ∆ + Θ + 1 . We define each group as Sz = {t ∈ S : t ≡
z mod ∆ + Θ + 1}. Each element of Sz is a Bernoulli random variable with the probability

p = p0sp
∆
⊥ + p0`p

∆+Θ
⊥ ≥ αsc(1− c)∆+1 + α`c(1− c)∆+Θ+1 = (1− c)∆+1cα(γ + (1− c)Θβ)

.
The size of each group is |Sz| = b s−2∆−2Θ

∆+Θ+1 c >
s−3(∆+Θ+1)

∆+Θ+1 . Given this, we apply the
Chernoff lower bound to each Sz with δ = 1/2 and µ = |Sz|p.

17

Pr[
∑
t∈Sz

Xt < |Sz|p/2] ≤ e−
|Sz |p

8 ≤ e−
(s−3(∆+Θ+1))p

8(∆+Θ+1)

Then, we can conclude that

Pr[X =
∑
t∈S

Xt ≤
|S|p

2
] ≤ (∆ + Θ + 1)e

− (s−3(∆+Θ+1))p
8(∆+Θ+1) (2)

We bound in Equation (2) the probability of having less than or equal to (s−2(∆+Θ))p
2

number of ∆ + Θ and ∆-right isolated slots. Remark that

|S|p
2

=
(s− 2(∆ + Θ))p

2
≥

(2(∆+Θ)y
y−1 − 2(∆ + Θ))p

2
=
p(∆ + Θ)

y − 1
= τs

Let’s denote by H the number of ∆ + Θ and ∆-right isolated slots between slu and slv.

Pr[H < τs =
|S|p

2
] < Pr[X <

|S|p
2

] ≤ (∆ + Θ + 1) exp(−(s− 3(∆ + Θ + 1))p

8(∆ + Θ + 1)
). (3)

We find that in the first s slot of an epoch the chain grows τs block with the probability
given in the Equation (3). Now, consider the chain growth from slot slu+1 to slv+1. We know
that the chain grows at least τs−1 blocks between slu+1 to slv. So, the chain grows one block
for sure if slv+1 is ∆ or 2∆-right isolated which with probability p. If we apply the same for
each slu < sl < slR−s we obtain

(∆ + Θ + 1)(R− s)p exp(−(s− 3(∆ + Θ + 1))p

8(∆ + Θ + 1)
)

Theorem 4 (Chain Quality). Let k,∆,Θ ∈ N and ε ∈ (0, 1). Let α(1−c)∆+1(γ+(1−c)Θβ) ≥
(1 + ε)/2 where α = αS + αL = γα + βα is the relative stake of honest parties. Then,
the probability of an adversary A whose relative stake is at most 1 − α violates the chain
growth property in epoch e1 or e2 with parameters k and µ = 1/k in R slots with probability
pcq ≤ Re−Ω(k).

Proof. The proof is very similar to the proof in [10]. It is based on the fact that the number
of ∆ + Θ and ∆-right isolated slots between slots that corresponds the blocks of any k length
portion of the best chain are more than normal slots because of the assumption α(1−c)∆+1(γ+
(1− c)∆+1β) ≥ (1 + ε)/2. Remark that probability of having ∆ + Θ-right isolated slot given
that the slot is not empty is αβ(1−c)∆+Θ+1, having ∆-right isolated slot given that the slot is
not empty is αγ(1−c)∆+1 and sum of them are greater than 1

2 because of the assumption.

Theorem 5 (CP, CQ, CG in e3 and e4). Fix parameters k,R,∆, θ ∈ N, ε ∈ (0, 1), y > 1, t
and q. Let R ≥ 8yk/c(1 + ε) be the epoch length, and

α(1− c)∆+1(γ + (1− c)Θβ) ≥ (1 + ε)/2.

18

The epochs e3 and e4 satisfy the CP property with the parameter k, CG property with the
parameter s ≥ 2(∆+Θ)y

y−1 and τ = p
2y and CQ property with the parameters k and µ = 1/k with

probability 1− 3Rtq(pcq + pcp + pcg). Here, t is the number of malicious stakeholders and q is
the bound in the random oracle model.

Proof. We prove in Theorem 2, 3 and 4 that we have CP, CG and CQ properties in the first
two epochs of Ouroboros Clepsydra. The difference of e1 and e2 from other epochs comes
from the fact that the unbiased randomness beacon and the stake distribution are defined in
the genesis block while these values are retrieved from the blockchain in other epochs. Now,
we show that given an unbiased randomness beacon in epoch e1 and e2 and a static stake
distribution in epochs e1, e2 and e3, we have an epoch e4 which is indistinguishable from e1

and e2. It implies that all epochs are indistinguishable from e1 and e2.
According to Ouroboros Clepsydra the randomness beacon generated in e1 is used as a

randomness beacon in epoch e3 and the stake update in e1 is valid from the beginning of e4.
So, we need to show that the stake update in e1 becomes static before starting e4 and the
randomness beacon from e1 is not biased.

We prove the indistinguishably between e1, e2 and e3, e4 with the following game. The
probability of an adversary win a game i is denoted by pi.

Game 1: In this game, the adversary wants to break one of the security properties CP,
CG or CQ in epoch e3 and e4 in the Finit,FRO,FVRF,FDSIG,FKES,FP,Σlocal,G

T,Θ
Slot - hybrid world.

Its success probability in this game is p1.
Game 2: The Game 2 is the same with Game 1 except that the honest chains grows at

least 2k blocks in every R ≥ 8yk/c(1+ε) slots during e1 and e2. We know that in Game 1, the

chain growth property is violated for e1 or e2 at most with probability pcg when s ≥ 2(∆+Θ)y
y−1

and τ = p
2y . As a result of it, we can conclude that in Game 1, the chain grows at least 2k

blocks in every R ≥ 8yk/c(1 + ε) slots except with probability pcg as shown below:

τR =
p

2y

8yk

c(1 + ε)
≥ 2k

Remark that Game 1 and Game 2 are the same unless the chain growth property is not
violated during epochs e1 or e2 in Game 1. So, we can conclude that |p2 − p1| ≤ pcg with
using the difference lemma.

We note that in half of the epoch which is R/2 slots, the chain of honest parties grows at
least k blocks in Game 2.

Game 3: Game 3 is the same with Game 2 except that when a malicious party sends a
chain which breaks the common prefix property with the parameter k in e1 and e2, the honest
parties do not take it into account in the maxvalid algorithm. So, in Game 3, the adversary
cannot break the common prefix property in epochs e1 and e2. Since, the probability of
breaking CP property is at most pcp in Game 2, |p3 − p2| ≤ pcp ⇒ |p3 − p1| ≤ pcp + pcg.

Remark that in Game 3, the valid blocks generated in e1 will be in the best chain of all
honest parties in the middle of epoch e2 since the chain grows at least k blocks in half epoch.
These blocks are finalized meaning that they cannot be removed from the blockchain. This
guarantees that all honest parties obtain the same randomness beacon of e3 before starting
e3.

Game 4: Game 4 is the same with Game 3 except that we have at least one honest block
in every k block of the chains of honest parties in e1 and e2. Thanks to the chain quality
property shown in Theorem 4, we know that there is at least one honest block in the best

19

chain of every k blocks except with the probability pcq. It means that |p4−p1| ≤ pcq+pcp+pcg.
Clearly, the adversary cannot break the CP, CG, CQ properties of the block chain in e1 and
e2 in Game 4.

This implies that the randomness beacon of e4 (resp. e3) which is generated from the
blocks of e2 (resp. e1) starts to leak after the last honest block is generated during the second
half of an epoch. So, the leakage starts at earliest in slot number R/2 ≥ 4yk/c(1 + ε) of an
epoch e2 (resp. e1). Here, leakage means that the adversary starts to learn the randomness
beacon candidates at earliest after slot R/2 of e1 and e2.

Game 5: Game 5 is the same with Game 4 except that FRO replies to only slot leaders
during the right slot time and only one time in each slot if the input is a valid block between
slot numbers sl1R/2 and sl1R and between slot numberssl2R/2 and sl2R. In the worst case, in Game
4 the following scenario happens: In the second half of e1 or e2, the chain grows only k blocks,
the only honest block among the last k blocks is generated in slot sl1R/2 or sl2R/2. It means
that the adversary has a chance to decide to produce or not to produce the rest of slots in the
corresponding epoch. Therefore, the adversary can obtain at least Rtq/2 randomness beacon
candidate from FRO and select one of them in Game 4. Clearly, the success probability of an
adversary in Game 5 is p5 = 2p4

Rtq because the adversary in Game 5 does not have randomness

beacon candidates as in Game 4. Therefore |p5 − p1| ≤ Rtq
2 (pcq + pcp + pcg).

Now, we show that the adversary in e1 and e2 in Game 1 and the adversary in Game 5
against e3 has the same success probabilities because the randomness beacon used in e3 is
unbiased and the stake distribution in e3 is static by genesis. In more detail, in Game 5,

• the randomness beacon of e3 selected from a uniform distribution as the randomness
beacon of the genesis block.

• the randomness beacon of e3 is generated in epoch e1 and finalized in the middle of e2.
So, it cannot be changed after.

Since the stake distribution is static in e3 by the genesis and the randomness beacon is from
a uniform distribution in Game 5, we can conclude that e3 has the same security properties
as in e1 and e2 in Game 5.

Game 6: Game 6 is the same as Game 5 except that we apply the same reductions to e3

in Game 1-4. So, |p6 − p1| ≤ Rtq(pcq + pcp + pcg).
Now, in Game 6, we can show that the adversary against e1, e2 and e3 in Game 5 and the

adversary in Game 6 against e4 has the same success probabilities because the randomness
beacon used in e4 is unbiased and the stake distribution update in e4 becomes static before
the randomness beacon leakage. In more detail, in Game 6,

• the bullet points in Game 5 is valid here if we replace e3 with e4, e1 with e2 and e3 with
e4.

• the stake distribution update which is done in e1 is finalized in the middle of epoch
e2 before the leakage of randomness beacon of e4. Remember that the leakage starts
after half of the slots passed. This means that the stake-distribution update and the
randomness beacon do not have any correlation. So, the stake distribution becomes
static before e4.

Game 7: Game 7 is the same as in Game 6 except that we apply the same reductions to
e4 in Game 1-4. So, |p7 − p1| ≤ 3

2Rtq(pcq + pcp + pcg).

20

Since the adversary cannot break CP, CQ, CG properties in epoch e3 and e4 in Game 7,
p7 = 0. So.

p1 ≤
3

2
Rtq(pcq + pcp + pcg)

Theorem 6 (Security of Ouroboros Clepsydra). Fix parameters E, k,R,∆, θ ∈ N, ε ∈ (0, 1),
y > 1, t and q. Let E is the total number of epochs during the life time of Ouroboros Clepsydra,
R ≥ 8yk/c(1 + ε) be the epoch length, and

α(1− c)∆(γ + (1− c)Θβ) ≥ (1 + ε)/2.

All epochs of the protocol satisfy the CP property with the parameter k, CG property with the
parameter s ≥ 2(∆+Θ)y

y−1 and τ = p
2y and CQ property with the parameters k and µ = 1/k with

probability 1− (E − 1)Rtq(pcq + pcp + pcg + negl) where t is the number of adversaries.

Proof. We apply the same reductions in the proof of Theorem 5 for each epoch ei and ei+1

where 3 < i ≤ E − 2 and obtain that ei+2 and ei+3 satisfies all the security properties.
Therefore, the probability that all epochs satisfy the security properties is

1− (E − 1)

2
Rtq(pcq + pcp + pcg)

5 The Relative Time Protocol

The Relative Time is a protocol that let the stakeholders adjust their local clock. A stake-
holder who wants to synchronize its clock does not have to send or receive a specific message
to/from other stakeholders. It only needs to watch the arrival time of the blocks.

The relative time protocol works as follows: The newly joined stakeholder P collects the
arrival time of n blocks. Whenever it receives a new valid block B′i, it sends (Get Clock, sid, P)

to FΣ,P
local and obtains the arrival time ti of B′i. Let us denote the slot number of B′i by sl′i.

Here, a valid block means that a block which is valid as described in Ouroboros Clepsydra
and which is not equivocated. We note that these blocks do not have to be in a certain
order. After collecting n arrival times, P chooses a slot number sl ≥ slmax where slmax is
the greatest slot number among these n valid blocks. Then, P runs the median algorithm
(Algorithm 3). The median algorithm finds candidate arrival times of sl according to each
arrival time and then picks the median of them.

Algorithm 3 Median(sl)

1: lst← ∅
2: for i = 0 to n do
3: ai ← sl − sl′i
4: store (ti + aiT) to lst

5: lst← sort(lst)
6: return median(lst)

21

Assume that tsl is the output of the median algorithm. Then, P considers tsl is the
start of the slot sl and find the current slot number with the algorithm S Map((sl, tsl), tcurr)
(Algorithm 4) where tcurr is the current time.

Theorem 7. Assuming that αγ ≥ (1 + ε)/2 where αγ is the relative stake of honest and
synchronized parties, the relative time protocol in FDDiffuse,FVRF,FKES,FDSIG,FT,Σlocal and FRO

hybrid models realizes GT,ΘSlot where Θ = ∆ + 1 and |Σ| < T .

Proof. In order to prove the theorem, we construct a simulator S where S emulates
FDDiffuse,FVRF,FKES,FDSIG,FT,Σlocal and FRO.

When a party P contacts with GT,ΘSlot with the message (Sync, sid, P), GT,ΘSlot relays it to S.
P in the real protocol supposed to run the Relative time protocol so S simulates P in the
real protocol by running the Relative time protocol. The simulation is straightforward. S
sends (Register, sid, P) to GrefRate in order to emulate FΣ,P

local and behave as same as FΣ,P
local. S

simulates the honest parties in Ouroboros Clepsydra as well. For each active party Pj , it

retrieves Ti from localclockZ of FΣ,Pj

local . Then, it learns the slot sl = S Map(Πj , Ti) for Pj and
checks if it is the slot leader. If Pj is the leader, it produces the block according to Ouroboros
Clepsydra. S sends the block of Pj to A (since S emulates FDDiffuse). If A moves the block
to the inbox of P , S stores the time that the block moved to the inbox of P as a arrival time
of this block. If the block is delayed by A, S waits until A permits the block move to the
inbox of P . If the permission is not received ∆ slots later, S moves the block to the inbox of
P . In either case, it stores the arrival time of the block in the inbox of P from localclockZ
of FΣ,P

local. Remark that S know the duration of ∆-slot because it receives the exact rate from
GrefRate while simulating the local clocks.

After collecting n arrival times, S runs the median algorithm with a slot number sl. It
adjusts S Map by referencing that sl starts at the output of the median algorithm t. Then,
S computes the current slot number sl′ − 1 = S Map((sl, t), tcurr) where tcurr is the current
time according to FP,Σlocal. When the local time reaches the start time of sl′, it sends sl′ to FSlot

and outputs sl′ as an output of P in the real protocol. In the ideal functionality P does not
output sl′ if slcurr − sl′ > Θ or slcurr < sl′. Now, we show that one of these happens with

the probability exp(− δ2µ
2) where ε

1+ε ≤ δ ≤ 1 and µ = n(1 + ε)/2.
We first show that more than half of n arrival times are computed based on honest and

synchronized parties except with the probability exp(δ
2µ
2). We define a random variable

Xv ∈ {0, 1} which is 1 if tv is the arrival time of an honest and synchronized block. Then
the expected number of honest and synchronized blocks among n blocks is µ = n(1 + ε)/2
because αγ ≥ (1 + ε)/2. We bound this with the Chernoff bound:

Pr[
n∑
v=1

Xv ≤ µ(1− δ)] ≤ exp(−δ
2µ

2
)

Given that ε
1+ε ≤ δ ≤ 1, µ(1 − δ) ≤ n/2. So, the probability of having more than half

honest and synchronized block out of n blocks is 1− exp(− δ2µ
2).

Now, we do the analysis of the algorithm assuming that more than half of the blocks
among n blocks are sent by honest and synchronized parties. Let us assume that the median
is t = ti + aiT . If a block of sl′i is sent by an honest and synchronized party, the t′i ≤ ti ≤
t′i + ∆T + Σ where t′i is the time that honest and synchronized party sends the block of sl′i.

22

All these times are with respect to the local clock of P . Given this, the correct slot number
number at time t is slcorr which is bounded as follows:

slcorr = sl′i + d t− t
′
i

T
c

= sl′i + d ti + aiT − t′i
T

c

≤ sl′i + d ti + aiT − ti −∆T − Σ

T
c

= sl + ∆ + d−Σ

T
c

≤ sl + ∆ + 1 (4)

Remark that this inequality holds for all slot numbers that are computed with using one
of the honest and synchronized parties’ blocks. This shows that more than half of the time
values in sorted lst is between the time that corresponds slcorr − ∆ − 1 and slcorr because
more than half of the blocks among n blocks are sent by honest and synchronized parties.
Therefore, if the median t = ti + aiT corresponds to time derived from a malicious parties’
block, this time should be between slcorr −∆− 1 and slcorr.

6 Conclusion

In this paper, we designed Ouroboros Clepsydra which is a modified version of Ouroboros
Praos [10]. The stakeholders Ouroboros Clepsydra can learn the slot number when they lose
this information. However, the obtained slot time may not be the correct slot number, but
we assumed that it can be at most Θ slot behind the real one. Based on this assumption, we
proved that Ouroboros Clepsydra satisfies the CP, CG and CQ properties.

We also constructed a new GUC model to capture the notion of relative time. In this
model, we constructed a general functionality which informs other functionalities whenever
their clock should progress. This functionality is realizing the rate of clocks in real life.
Besides, we constructed a new functionality for local clocks which may not follow the real
clock rate. This functionality realizes the local clocks in real life which may be drifted.

In the end, we proposed an algorithm that realizes Θ-slot behind assumptions. We proved
that this algorithm is GUC-secure in our relative time model with Θ = ∆+1 and the maximum
drift is equal to at most T which is the slot time. Remark that if there is not any drift in
the local clock during the relative time protocol, Θ = ∆. Our protocol does not depend on
any central clock and it can be adapted in any proof-of-stake blockchain algorithm similar to
Ouroboros Clepsydra.

References

[1] Proof of authority. .https://github.com/paritytech/parity/wiki/

Proof-of-Authority-Chains.

[2] G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi. Proofs of space: When space is of
the essence. In International Conference on Security and Cryptography for Networks,
pages 538–557. Springer, 2014.

23

. https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
. https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains

[3] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Ouroboros genesis: Com-
posable proof-of-stake blockchains with dynamic availability. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 913–930.
ACM, 2018.

[4] R. Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. Cryptology ePrint Archive, Report 2000/067, 2000. https://eprint.iacr.org/

2000/067.

[5] R. Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In Proceedings 2001 IEEE International Conference on Cluster Computing, pages
136–145. IEEE, 2001.

[6] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with
global setup. In Theory of Cryptography Conference, pages 61–85. Springer, 2007.

[7] R. Canetti, K. Hogan, A. Malhotra, and M. Varia. A universally composable treatment
of network time. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF),
pages 360–375. IEEE, 2017.

[8] J. Chen and S. Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.

[9] P. Daian, R. Pass, and E. Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proofs of stake. Cryptology ePrint Archive, 2017.

[10] B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 66–98. Springer, 2018.

[11] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys.
In International Workshop on Public Key Cryptography, pages 416–431. Springer, 2005.

[12] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak. Proofs of space. In Annual
Cryptology Conference, pages 585–605. Springer, 2015.

[13] B. Fisch. Tight proofs of space and replication. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 324–348. Springer,
2019.

[14] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281–310. Springer, 2015.

[15] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 51–68. ACM, 2017.

[16] T. Hanke, M. Movahedi, and D. Williams. Dfinity technology overview series, consensus
system. arXiv preprint arXiv:1805.04548, 2018.

[17] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Annual International Cryptology Conference, pages
357–388. Springer, 2017.

24

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067

[18] R. Pass and E. Shi. The sleepy model of consensus. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 380–409. Springer,
2017.

A An Instantiating of Ouroboros Clepsydra

Ouroboros Clepsydra consists of sequential non-overlapping epochs (e1, e2, . . .), each of which
consists of a number of sequential block production slots (ei = {sli1, sli2, . . . , sliR}) up to
some bound R. At the beginning of an epoch, stakeholders are assigned to a slot as a slot
leader, often one party or no party, but sometimes more than one party. These assignments
are initially secrets known only to the assigned slot leader themselves, but eventually they
publicly claim their slots when they produce a new block in one.

Each stakeholder Pj has a key containing two types of secret/public key pair:

• a verifiable random function (VRF) key (skvj , pkvj), and

• a signing key for blocks (sksj , pksj)

Each stakeholder Pj keeps a local set of blockchains Cj = {C1, C2, ..., Cl}. All these chains
have some common blocks, at least the genesis block, up until some height. We assume that
each stakeholder has a local transaction list that contains the transactions to be added to
blocks. All transactions in a block is validated with a transaction validation function. A
transaction is a basically signature signed by a signing key.

Before giving the details, we define the probability of being selected as a slot leader:

pi = φc(αi) = 1− (1− c)αi

where αi is the relative stake of the stakeholder Pi and c is a constant. So, each stakeholder
is selected proportional to its stake. Remark that the function φ is that it has the “independent
aggregation” property as remarked in [10], which informally means the probability of being
selected as a slot leader does not increase as a stakeholder splits his stakes across virtual
stakeholders.

φ is used to set a threshold τi for each stakeholder Pi:

τi = 2`vrfφc(αi) (5)

where `vrf is the length of the VRF’s first output.
There are three phases in Ouroboros Clepsydra.

Phase 1: Initialization Phase This phase differs according to being at the beginning of
the first epoch and the other epochs.

In the beginning of the first epoch, the genesis block released. As soon as a stakeholder
receives it, it marks the arrival time of the genesis block as the start of sl11 (the first slot of
the first epoch).

The genesis block contains two random number (r1, r2) for use during the first
and the second epoch for slot leader assignments, the initial stake’s of stake holders
(st1, st2, ..., stn) valid in first three epochs (e1, e2, e3) and their corresponding session pub-
lic keys (pkv1, pkv2, ..., pkvn)), ((pks1, pks2, ..., pksn).

25

After the beginning of the first epoch, the initialization phase corresponds to a phase for
a newly joining party to obtain the up to date chain (best chain) and synchronizing the slot
time with its local time. A newly joining stakeholder Pj first signs its stake stj with its secret
key sks and sends it to other stakeholders as a transaction. Next, Pj obtains the current
valid blockchain from an authority that provides the current best chain2. In addition, Pj
runs the algorithm Get Time(sl)→ τ in order to learn its local time that corresponds sl and
synchronize its local clock according to τ (i.e., if sl starts at τ , sl + t starts at τ + tT). We
give an example Get Time algorithm in Section 5.

We note that instead of using a trusted authority to obtain the best chain, we could also
use maxvalid-mc algorithm from Ouroboros Genesis [3]. However, this may complicate the
security proof. Therefore, we decide to use a trusted authority which is the case in the real
life.

Phase 2: Chain Extension In this phase, each slot leader should produce and publish
a block. All other stakeholder attempt to update their chain by extending with new valid
blocks they observe. This phase is identical with Ouroboros Praos [10].

We assume each stakeholder Pj has a set of chains Cj in the current slot slmk of the epoch
em. Each has a best chain C selected in slmk−1 by maxvalid algorithm (Algorithm 2), and the
length of C is `-1. We call that Pj is a slot leader of the slot slmk if the first output (d) of the
VRF evaluated as below is less than the threshold τj (See Equation 5).

VRFskvj
(rm||slmk)→ (d, π)

where rm is the epoch randomness. If Pj is a slot leader of slot slmk then it produces a
block of slmk . Remark that the more Pj has stake, the more he has a chance to be selected as
a slot leader.

If Pj is the slot leader of skmk , it generates a block to be added on C. The block B`
should contain the slot number slmk , the hash of the previous block H`-1, the VRF output
d, π, transactions tx, and the signature σ = Signsksj

(slmk ||H`-1||d||pi||tx)). Pi add the new

block on top of C and sends B`.
In any case (being a slot leader or not being a slot leader), when Pj receives a block B =

(sl,H, d′, π′, tx′, σ′) produced by any stakeholder Pt, it validates the block with Validate(B).
Validate(B) should check the followings in order to validate the block:

• if the signature is valid (i.e., if Verifypkst
(σ′)→ valid),

• if the stakeholder is the slot leader (i.e, Verifypkvt
(π′, rm||sl)→ valid and d′ < τt),

• if Pt did not produce another block for another chain in slot sl (no equivocation),

• if there exists a chain C ′ with the header H.

If a block passes all the validation steps, Pj adds B to C ′. Otherwise, it ignores the block.
At the end of the slot, Pj decides the best chain with the algorithm maxvalid(C, C, C ′)

where C is the the best chain selected by maxvalid (Algorithm 2) in the last run and C ′ is the
new chain generated in slmk .

2These authorities exist in real life. They are trusted because they have a good incentive (e.g. earn money)
to act honestly. Remark that their malicious action can be easily proven and they directly lose their reputation

26

Phase 3: Epoch Formation Stake distribution and the randomness beacon form an
epoch.

Before starting a new epoch em, a stakeholder Pj has to complete updating its stake (if it
needs). For this, it should sign its stake with the current epoch number em and publish it as
a transaction. The new stake update is going to be valid in epoch em+3. Therefore, the new
stake distribution of an epoch em+3 is retrieved from em.

The randomness for an epoch em+2 is computed as follows: Concatenate all the VRF
outputs of blocks in the current epoch em (let us assume the concatenation is ρ). The
randomness in epoch em+1:

rm+1 = H(rm||m+ 2||ρ)

Therefore, a randomness beacon of epoch em+2 is retrieved from an epoch em.

27

	Introduction
	Preliminaries
	Universally Composable (UC) Model:
	Primitives
	Blockchain

	UC-Model for Ouroboros Clepsydra
	GUC-Model of Relative Time
	UC- Partially Synchronous Network Model

	Ouroboros Clepsydra
	Security Analysis

	The Relative Time Protocol
	Conclusion
	An Instantiating of Ouroboros Clepsydra

