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Abstract. The goal of this paper is to investigate linear cryptanalysis of random
functions and permutations. Our motivation is twofold. First, before a practical
cipher can be distinguished from an ideal one, the cryptanalyst must have an accurate
understanding of the statistical behavior of the ideal cipher. Secondly, this issue has
been neglected both in old and in more recent studies, particularly when multiple
linear approximations are being used simultaneously. Traditionally, the models have
been based on the average behavior and simplified using other artificial assumptions
such as independence of the linear approximations. The new models given in this
paper are realistic, accurate and easy to use. They are backed up by standard
statistical tools such as Pearson’s χ

2 test and finite population correction and shown
to work well in small practical examples.
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1 Introduction

Modelling linear key-recovery attacks. Linear cryptanalysis is a statistical method used
for distinguishing a block cipher from a random permutation and can be extended to key
recovery attacks for practical block ciphers. It makes use of the nonrandom behavior of
linear approximations of the cipher. Linear approximations are single-bit values obtained
by exclusive-or summation of certain input bits and output bits of the block cipher, over
some rounds of the block cipher.

In the setting of linear key-recovery attacks, the traditional heuristic assumption is
that the cipher E(K, x) becomes a pseudorandom function or permutation if some of its
rounds are replaced by encryption using a wrong key. On the other hand, if the key is
correct, then the data is computed from the cipher. Distinguishing between these two
cases using statistical tests requires statistical models of the test statistic for both cases.
For a recent overview of the existing models, we refer to [BTV18]. Such statistical models
are always based on trade-offs between accuracy and feasibility. The traditional approach
has been to state some unproven assumptions, called as wrong-key hypothesis and right-key
hypothesis, which are desired to capture the statistical behavior, but still simple enough
to allow feasible computation of the model.

In all existing studies the wrong-key hypothesis in linear cryptanalysis, as well as in
other statistical attacks, is based on some understanding of the behavior of the family of
random permutations, when the target cipher is a block cipher, or the behavior of the
family of random functions in some other cases such as stream ciphers.

Then the main effort in the cryptanalytic attack is focused on identifying and demon-
strating evidence of nonrandom behavior in the target cipher. In linear cryptanalysis
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the problem is to find bit combinations that exhibit nonrandom behavior. The known
search algorithms for finding good linear approximations are based on Matsui’s seminal
work [Mat94], where strong linear approximations are found by identifying one ore more
strong linear approximation trails that the linear approximations is composed of. The
right-key hypothesis is then derived from a statistical model that captures the probability
distributions and their parameters of the linear approximations in the case of the cipher.

The success probability and the data complexity of the attack are then estimated
based on statistical distinguishing between the probability distributions in the right-key
case and the wrong-key case. It is clear that a proper understanding of random behavior
is in an essential role in statistical cryptanalysis.

Along the history of the linear cryptanalysis method the wrong-key hypothesis has
taken different forms and the main contributions are rather scattered in the literature.
The first goal of this paper is to give a concise presentation of random behavior under
the linear cryptanalysis. Our second goal is to present a new and more realistic model of
the wrong-key hypothesis for the multidimensional linear cryptanalysis. The statistical
behavior turns out to depend significantly on the structure of a multidimensional linear
approximation.

Existing wrong-key models in linear cryptanalysis. The understanding about the sta-
tistical behavior of linear approximations of random functions and permutations has de-
veloped a lot during the times. In early works, correlations of linear approximations of
random permutations were estimated to be negligible and equal to their expected value,
zero. While it was understood already in 1994 by O’Connor [O’C95] that the correlations
of linear approximations vary within the family of functions or permutations, it was not
until in 2006 this fact was examined in more detail by Daemen and Rijmen [DR07]. They
considered the probability distribution of correlations of linear approximations of random
functions and permutations and showed that they behave similarly and can be approxi-
mated using normal distributions with the same parameters with the distinction that the
interval of the discrete distribution for permutations can have only even values.

These advanced models of linear approximations of random functions and permuta-
tions led to the observation that if a linear approximation of a cipher has correlation equal
to zero for all keys then it is not random and can be distinguished from random [BR14].
Conversely, this means that, under the traditional hypothesis according to which corre-
lations of linear approximations of random permutations are equal to zero, even random
permutations will be identified as nonrandom given sufficient amount of data. This exam-
ple illustrates how important it is to state the wrong-key assumption accurately.

The model of [DR07] was extended to a wrong-key model by Bogdanov and Tis-
chhauser [BT13] by integrating data sampling to it. While being an important opening
to key-dependent models, it had two main drawbacks. First, the right-key model was still
based on the assumption that the correlation of the linear approximation is equally large
(in absolute value) for all keys. Secondly, the plaintexts were assumed to be drawn with
replacement. While giving realistic estimates for small sample sizes, this approach leads
to significant deviations from the true behavior when the sample size approaches the full
codebook. These two drawbacks lead to the unintuitive observation that in the context
of this model the success probability is not an increasing function of the data-complexity.
These problems were corrected in the model given in [BN17b] in the case of a single linear
approximation based on a single dominant trail.

With the goal of making the linear distinguishers more powerful, several authors have
proposed to use multiple linear distinguishers simultaneously. Before key-dependency of
the probability distributions was discovered to be a relevant issue, the wrong-key hypoth-
esis was always based on the assumption that in the wrong-key case, the expected correla-
tions, that is, the correlations of linear approximations computed for the full codebook of
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the cipher behave as on average, that is, are equal to zero [HCN19]. In the process of inte-
grating key-dependency into the models all works so far, see e.g. [BTV16,BN17a,BN17b],
adopted the simplifying assumption that the correlations of any set of multiple linear
approximations of a random permutation (that is, considered over the set of all permuta-
tions) are independent. A subsequent version [BTV18] of [BTV16], this assumption was
stated only for correlations of linearly independent linear approximations of a random
permutation. Whether this means a true theoretical improvement is not known.

In general, not much is known about the statistical independence of correlations con-
sidered as random variables over the key space. Only correlations of components of per-
mutations are known to be independent as they are always constants, that is, equal to
zero. A multidimensional approximation computed for a permutation is not in general a
balanced function. Hence the correlations of its components may not be equal to zero and
may have statistical dependencies.

The assumption about independence of correlations was needed to derive statistical
distributions of the sum of squares of the correlations, also called as capacity, of the
individual linear approximations. More specifically, the independence assumption has
been used for expressing the variance of the sum of squared correlations as the sum of the
variances of the squared correlations of the individual linear approximations. In this paper,
it will be shown that this result can be achieved without the independence assumption
for certain sets of linear approximations.

Our contributions. We start by deriving exact formulas for the mean and variance of
the capacity of the value distribution of a multinomially distributed variable and make
the observation that the variance of the capacity is additive, that is, it can be expressed
as the sum of the variances of the capacities of the individual variables in the case when
the expected distribution is uniform. This corresponds to the case of the expected value
distribution of a random function.

We continue by revisiting the distributions of correlations of single linear approxima-
tions of random functions and random permutations. As an addition to [DR07] we observe
that a linear approximation of a random Boolean function is also random, while the exact
distribution of a linear approximation of a random permutation can be given in terms of
a hypergeometric distribution.

While multidimensional linear approximations of some functions can be modeled using
the multinomial distribution, this is never the case for a multidimensional linear approxi-
mation of permutations. Even in case of a single variable, the hypergeometric distribution
must be used instead of the binomial distibution. We leave it an open question whether
the multivariate hypergeometric distribution might give a feasible approach in this case,
and instead, use continuous approximations of the probability distributions to model the
statistical behavior of the capacity of a multidimensional linear approximation of a random
permutation. This leads us to the study of the χ2 distribution.

In many practical applications of multidimensional linear cryptananlysis, the linear
space of linear approximations contains many trivial approximations that have a constant
correlation zero. Their impact has been ignored in previous works. We show that they
may create a significant error factor if not treated properly. We conjecture a model of the
behavior of capacity under existence of trivial linear approximations and present experi-
mental evidence to support this conjecture. We also identify a type of multidimensional
linear approximation, which we call the Davies-Mayer approximation and prove that a
multidimensional linear approximation is a Davies-Mayer approximation if and only if it
does not contain trivial linear approximations.

Having found a realistic solution to the problem of how to model wrong-key behaviour
for multidimensional linear cryptanalysis, we apply the same approach for the recently
presented variant of linear cryptanalysis, named as affine multidimensional cryptanaly-
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sis [Nyb19].

Outline. The standard definitions of linear cryptanalysis are recalled in Section 2. Then
the mean and variance of capacity are computed for a general multinomial distribution
in Section 3 and then we recall the related discrete probability distributions and their
continuous approximations. In Section 4, the distributions of correlations of single linear
approximations are revisited. The new contributions of the structure and probability dis-
tributions of multidiemsional linear approximations are presented in Section 5 and applied
to an affine set of approximations in Section 6. The conclusions are drawn in Section 8.

2 Preliminaries and Notation

2.1 Correlations and Capacity

Let F be a function from S to F
s
2, where S is an arbitrary set and F

s
2 is a vector space

over F2 of dimension s. We focus on two ways of defining F . First, we can define it by
giving s Boolean functions f1, . . . , fs, that is, s coordinate functions of F , and their values
fi(x), x ∈ S, i = 1, . . . , s. Given α = (α1, . . . , αs) ∈ F

s
2, we denote by α · F the linear

combination of the coordinate functions of F = (f1, . . . , fs) determined by α, that is,

α · F = α1f1 + . . . + αsfs,

and call α ·F a component of F . We say that t components αi ·F , i = 1, . . . , t, are linearly
independent if the vectors αi, i = 1, . . . , t, are linearly independent. The second way of
defining F is just by giving the (indexed) set of its values F (x), x ∈ S.

Functions are in general imbalanced, that is, all values in the image space are not taken
equally often. Related to the two ways of defining F , we have two ways of measuring
the imbalance of F . First, we can determine the imbalance of its components using
correlations. Let f be a F2-valued function in S. Then its correlation cor(f) is given by

cor(f) = 2−n(#{x ∈ S | f(x) = 0} − #{x ∈ S | f(x) = 1}). (1)

Secondly, we can determine the imbalance of F by measuring the uniformity of its value
distribution. Given η ∈ F

s
2 let us denote by pη its probability, that is,

pη = 2−n#{x ∈ S | F (x) = η }.

Then the imbalance of this distribution is measured using capacity

Cap(F ) = 2s
∑

η∈F
s
2

(pη − 2−s)2. (2)

It is well-known that these two approaches to measuring imbalance are related due to the
following equality,

pη = 2−s
∑

α∈F
s
2

(−1)α·ηcor(α · F ), for all η ∈ F
s
2, (3)

or equivalently,

cor(α · F ) =
∑

η∈F
s
2

(−1)α·ηpη, for all α ∈ F
s
2. (4)

Then we can express Cap(F ) also as

Cap(F ) =
∑

α∈F
s
2
,α6=0

cor(α · F )2. (5)
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3 Capacity of Random Function

In particular, a random function F : S → F
s
2 can be generated either by selecting s Boolean

functions randomly and independently, or by picking its values F (x) randomly and inde-
pendently from F

s
2. The value distribution of a random function F is a multinomial

distribution. By Equation 5 the expected value of the capacity of the value distribution
of a random function is the sum of the expected values of the squared correlations taken
over the non-trivial components of F . We are also interested to determine the variance of
the capacity for random functions. The problem is not trivial, since we can neither assume
all non-trivial components of F to be independent, nor to have independent correlations.
Nevertheless, it will be shown that, based solely on the properties of the multinomial value
distribution of a random function F , the variance of its capacity is obtained as the sum
of the variances of the squared correlations of its non-trivial components.

3.1 Capacity of General Multinomial Distribution

We first give the mean and variance of capacity for a general multinomial distribution and
then obtain these parameters for the uniform expected distribution as a special case.

Let x1, . . . , xk be a set of k, k ≥ 2, stochastic variables that follow a multinomial
distribution with expected probabilities pi, . . . , pk and number of trials m. The density
function of this distribution is given by

f(x1, . . . , xk) =
m!

x1! · · · xk!
px1

1 · · · pxk

k .

Then x1 + · · · + xk = m and the capacity of this distribution is given by

C =
k

m2

k∑

i=1

(xi −
m

k
)2.

Hence the capacity is also a stochastic variable. The proof of the following result is given
in Appendix A.

Theorem 1. Let C be the capacity of a multinomial distribution with parameters p1, . . . ,
pk and m. Then

Exp C =
k − 1

m
+

(m − 1)k

m

k∑

i=1

(pi −
1

k
)2

Var C =
(m − 1)k2

m3

(
(4m − 8)P3 − (4m − 6)P 2

2 + 2P2

)
,

where

P2 =

k∑

i=1

p2
i and P3 =

k∑

i=1

p3
i .

Note that in the expression of the expected capacity we have

k
∑

η∈F
s
2

(pi −
1

k
)2 = kP2 − 1,

which is the capacity of the expected distribution pi, i = 1, . . . , k.
If the expected distribution is uniform, that is, pi = 1

k , for all i = 1, . . . , k, then
P2 = 1/k and P 2

2 = P3 = 1/k2, and the capacity parameters are as follows.
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Corollary 1. Let C be the capacity of a multinomial distribution with parameters pi = 1
k ,

for all i = 1, . . . , k, and m. Then

Exp C =
k − 1

m

Var C =
2(k − 1)(m − 1)

m3
.

3.2 Standard probability distributions

The multinomial distribution with k = 2 is the binomial distribution which we will denote
by B(m, p), where p = p1 and 1 − p = p2. The mean and variance of this distribution
are mp and mp(1 − p), respectively. The binomial distribution corresponds to random
sampling with replacement from a set S where we have two types of elements, denoted by
0 and 1. If the sampling is without replacement then the number of outcomes of type 0
follows the hypergeometric distribution HG(|S|, K, m), where K is the number of elements
of kind 0 in the entire S. The mean and variance of the hypergeometric distribution are

m
K

|S|
= mp and m

K

|S|

|S| − K

|S|

|S| − m

|S| − 1
= mp(1 − p)

|S| − m

|S| − 1
,

where we denoted by p the probability of outcomes of type 0 in the entire set S, that is,
p = K

|S| . The variances of the binomial and hypergeometric distributions differ by a factor,

whose close estimate

B =
|S| − m

|S|
, (6)

is called the finite population correction coefficient [RT89]. For sufficiently large S, both
distributions can be approximated by the normal distribution N (µ, σ2), where µ is the
mean and σ2 is the variance, as follows:

B(m, p) ≈ N (mp, mp(1 − p)) and HG(|S|, K, m) ≈ N (mp, mp(1 − p)B). (7)

The distribution of the sum of squares of ℓ independent standard normal deviates is called
the chi-squared distribution and denoted by χ2

ℓ(δ), where ℓ is the degree of freedom and
δ is the non-centrality parameter computed as the sum of squares of the means of the
said normally distributed variables. The mean of the χ2

ℓ(δ) distribution is ℓ + δ and its
variance is 2(ℓ + 2δ).

The well-known Pearson’s chi-squared test is defined in the same setting as the multi-
nomial distribution Subsection 3.1. The test statistic defined as

T =
k∑

i=1

(xi − mpi)
2

mpi
(8)

follows the χ2
k−1(δ) distribution, where

δ =

k∑

i=1

(mpi)
2. (9)

Then T = mC, and the chi-squared distribution of T gives a continuous approximation of
the discrete probability distribution of C. In the case where pi = 1/k for all i = 1 . . . , k
the mean of C obtained from the χ2 distribution of T is (k − 1)/m which is the same as
the mean given by Corollary 1, while the variances differ by a negligble term 2(k − 1)/m3.
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The multinomial distribution and the related Pearson’s χ2 distribution apply to the
case when the values xi are obtained by drawing samples of m elements from S with
replacement. If sampling is without replacement then the multivariate hypergeometric
distribution shall be used instead of the multinomial distribution. Then the statistic T
given in Equation 8 must be multiplied by the inverse of the finite population correction
coeffifient to get a χ2-distributed variable [RT89]. We state this result for further reference
as follows.

Lemma 1. Let T be given by Equation 8 where the values of variables xi, i = 1, . . . , k are
obtained by sampling m elements from S without replacement and the initial probabilities
pi are as defined in the setting of the multinomial distribution. Then the variable

B−1T,

where B is given by Equation 6, approximately follows χ2
k−1(δ) distribution, where δ is

given by Equation 9.

4 Probability Distribution of Single Linear Approximation

We first derive the distributions of linear approximations of random Boolean functions
and random balanced Boolean functions.

4.1 Zeroes of Boolean functions

Let f be a Boolean function in F
n
2 . We say that x ∈ F

n
2 is a zero of f if f(x) = 0 and

denote by N0 the set of the zeroes of f . Given a vector a ∈ F
n
2 the Boolean function

g(x) = f(x) + a · x is called a linear approximation of f . To compute the correlation of
g(x) = f(x) + a · x let us first determine the number of its zeroes.

Lemma 2. Let a · x be a linear function in F
n
2 . Then the number of zeros of the linear

approximation g(x) = f(x) + a · x is equal to

#{x ∈ F
n
2 | f(x) = 0, a · x = 0} + #{x ∈ F

n
2 | f(x) = 1, a · x = 1} = 2n−1 − N0 + 2z,

where we denoted

z = #{x ∈ F
n
2 | f(x) = 0, a · x = 0} (10)

Proof. Clearly

#{x ∈ F
n
2 | f(x) = 1, a · x = 1} = 2n−1 − (N0 − z).

The following lemma gives the distribution z.

Lemma 3. Let Boolean function f in F
n
2 be chosen randomly and equiprobably from the set

of all Boolean functions with a fixed number N0 of zeroes and a·x be a fixed linear function.
Then z defined by Equation 10 follows the hypergeometric distribution HG(2n, 2n−1, N0).

Proof. Given a fixed linear function a · x, the N0 zeros of f are chosen by choosing z
zeros among the 2n−1 zeros of a · x and N0 − z zeros among the 2n−1 inputs x such that
a · x = 1.
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4.2 Random function

Let us first consider random Boolean functions. For a random Boolean function the
number of its zeros follow the binomial distribution B(2n, 1

2 ).

Theorem 2. Let f be selected randomly and equiprobably from the set of all Boolean
functions of n variables. Then for any fixed a ∈ F

n
2 the number of zeros of the linear

approximation a · x + f(x) follows a binomial distribution B(2n, 1
2 ). In other words, any

linear approximation of a random Boolean function is a random Boolean function.

Proof. For any fixed linear Boolean function g(x) = a · x, the mapping which maps a
Boolean function f to the function f + g is a bijection in the set of all Boolean functions.
Hence the distribution of the number of zeroes of f + g follows the same distribution as
the number of zeroes of f when f is drawn uniformly at random from the set of Boolean
functions.

For an alternative proof that computes the distribution of the zeroes of the linear
approximation, see Appendix B.

By application of Corollary 1 for k = 2 we get the following result.

Corollary 2. The distribution of a correlation c of a linear approximation of a random
Boolean function of n variables has the following parameters:

Exp(c) = 0

Var(c) = Exp(c2) = 2−n

Var(c2) = 21−2n − 21−3n.

The distribution of 2n/2c can be approximated by the standard normal distribution, and
the distribution of its square 2nc2 by the χ2 distribution with one degree of freedom.

4.3 Balanced random function

From Lemma 2 and Lemma 3 we get the following result.

Theorem 3. Let f be selected randomly and equiprobably from the set of all balanced
Boolean functions of n variables. Then for any fixed a ∈ F

n
2 the number of zeros of the

linear approximation f(x) + a · x is an even integer 2z where z ∼ HG(2n, 2n−1, 2n−1).

Corollary 3. The distribution of a correlation c of a linear approximation of a random
balanced Boolean function of n variables has the following parameters:

Exp(c) = 0 and Var(c) = Exp(c2) =
1

2n − 1
.

Proof. We have c = 22−nz − 1, where

Exp(z) = 2n−2 and Var(z) =
(2n−2)2

2n − 1
.

For the values of n typically used in block ciphers, the distribution of 2n/2c can be
approximated using the standard normal distribution, and the distribution of its square
2nc2 using χ2 distribution with one degree of freedom. By [DR07], it suffices to have
n ≥ 5.

Our derivations of the distributions of correlations of linear approximations of random
and random balanced Boolean functions are essentially the same as those given by Daemen
and Rijmen in [DR07]. In this section, we completed their work by giving the exact
distributions in both cases and the observation that a linear approximation of a random
Boolean function is itself a random Boolean function.
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4.4 Random vectorial function and random permutation

A single linear approximation of a random vectorial Boolean function is a random Boolean
function and hence the number of its zeros is binomially distributed as given by Theorem 2.
Since a single component of a random permutation is a balanced random Boolean function,
the distribution of the zeros of a single linear approximation is given by Theorem 3.

5 Multidimensional Linear Approximation

5.1 Multidimensional linear approximation as a vectorial Boolean func-

tion

In this section we give a description of a multidimensional linear approximation as a
vectorial Boolean function.

In the context of linear cryptanalysis, a linear approximation (a, b) of an n-bit permu-
tation P can also be identified with an n-variable Boolean function defined as

x 7→ a · x + b · P (x).

The multidimensional linear cryptanalysis method considers a number of linear approxi-
mations (a, b) that form a linear subspace in the vector space of 2n-bit vectors. We denote
this subspace by L and its dimension by t. Then a multidimensional linear approximation
can be identified with a vector-valued Boolean function, where the inputs are n-bit vectors
and outputs are t-bit vectors. We denote this vector-valued Boolean function by Λ. Then
the components of Λ are the linear approximations (considered as Boolean functions) with
masks in L. It means that for each (a, b) ∈ L there is a unique t-bit vector β such that
the equality

a · x ⊕ b · P (x) = β · Λ(x), (11)

holds for all n-bit inputs x.
By Equation 2 and Equation 5 the capacity of Λ is given as

Cap(Λ) =
∑

(a,b)∈L,(a,b) 6=0

cor(a, b)2 =
∑

β 6=0

cor(β · Λ)2 = 2t
∑

η

(pη − 2−t)2, (12)

where the second sum is taken over all t-bit vectors η of the value space of Λ. One
known consequence of this result is that the value distribution of a multidimensional
linear approximation is uniform if and only if the correlations of all its non-zero linear
approximations are equal to zero.

5.2 Structure of a multidimensional linear approximation

A multidimensional linear approximation L may contain mask pairs of the form (a, 0) and
(0, b). We call the corresponding linear approximations trivial. Let us now examine their
effect on the distribution of the capacity Cap(Λ). Let us denote by U the linear subspace
of the multidimensional approximation consisting of the approximations of the form (a, 0)
and let u be its dimension. Similarly, we denote by V the subspace of the masks of the
form (0, b) and by v its dimension. Often such spaces span the whole multidimensional
approximation, that is, all masks are of the form (a, b), where (a, 0) ∈ U and (0, b) ∈ V ,
but in general, there may exist a linear subspace W such that the entire mask space of
the multidimensional approximation L can be written as a direct sum

L = U ⊕ V ⊕ W, (13)
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where W is such that a and b are nonzero for all (a, b) ∈ W , (a, b) 6= (0, 0), which implies
that U ∩ W = V ∩ W = {(0, 0)}.

Let us denote by Λ1, Λ2 and Λ3 the multidimensional linear approximations determined
by the mask sets U , V and W , respectively. Then the values of Λ1 are u-bit vectors, the
values of Λ2 are v-bit vectors, and the values of Λ3 are (t − u − v)-bit vectors, and
Λ = (Λ1, Λ2, Λ3). Since all linear approximations in U and V are balanced, the value
distributions of Λ1 and Λ2 are uniform. Considering this property for Λ1 we get 2u

conditions for the value distribution of Λ as follows

∑

η,ν

Pr(Λ(x) = (ξ, η, ν)) = Pr(Λ1(x) = ξ) = 2−u, for all u-bit vectors ξ.

From these conditions 2u − 1 are independent, since

∑

ξ

Pr(Λ1(x) = ξ) = 1.

Similarly, by the uniformity of the value distribution of Λ2, we get the following conditions
from which 2v − 1 are independent.

∑

ξ,ν

Pr(Λ(x) = (ξ, η, ν)) = Pr(Λ2(x) = η) = 2−v, for all v-bit vectors η.

We conclude that the degree of freedom of the full-codebook value distribution of a mul-
tidimensional linear approximation Λ of a permutation, as considered above, is bounded
from above by

2t − 1 − (2u − 1) − (2v − 1) = 2t − 2u − 2v + 1.

Let us now consider Λ and the probabilities pζ of its t-bit values as statistical variables
over the space of all permutations. We apply Pearson’s χ2 test and compute the test
variable as

T (Λ) = 2n
∑

ν

(pζ − 2−t)
2

2−t
= 2nCap(Λ). (14)

Then T (Λ) follows the χ2 distribution. For linear approximations of random permutations
the expected value for each correlation cor(a, b), with (a, b) 6= 0, is equal to zero, also for
those where a 6= 0 and b 6= 0. Hence the expected value of each pζ is equal to 2−t. Thus
we have proved the following result.

Theorem 4. Let the multidimensional linear approximation have dimension t and the
linear subspaces of trivial masks of the form (a, 0) and (0, b) have dimensions u and v,
respectively. Then for a random permutation of n-bit vectors the capacity of this multidi-
mensional linear approximation follows, when multiplied by the factor 2n, the central χ2

distribution with at most 2t − 2u − 2v + 1 degrees of freedom.

Based on this result, we conjecture that the value distribution of a multidimensional
linear approximation of a random permutation with mask subspaces U and V of dimen-
sions u and v, respectively, has the maximum degree of freedom, that is, 2t − 2u − 2v + 1.

Conjecture 1. For permutations in {0, 1}n drawn uniformly at random the capacity of a
multidimensional linear approximation with dimension t and the linear subspaces of trivial
masks with dimensions u and v follows, when multiplied by 2n, the χ2 distribution with
2t − 2u − 2v + 1 degrees of freedom.
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5.3 Experiments

We performed some experiments to check the validity of Conjecture 1. The first set
of experiments is performed to illustrate the mean and variance of a multidimensional
approximation defined by a mask space of the form U × V where the dimension of U is 6
and the dimension of V varies from 1 to 6. We used multiple rounds of Smallpresent-
[4] with 214 random keys to simulate the family of random permutation. The test cipher
Smallpresent-[4] is an iterated block cipher with 31 rounds and block size 16 bits [Lea10].
The state bits at input and output to each round are numbered from 0 to 15 from right
to left. For each key and for a fixed number of rounds the distribution of the capacity
is computed. Then the mean and the variance over the 214 keys is computed. In the
Figures 1 – 6 the negatives of the base 2 exponents, that is − log2, of the mean and
variance are plotted as the number of rounds increases. In each case the hypothetical
value given by Conjecture 1 is depicted using a horisontal line.
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Figure 1: Mean and variance of capacity of multidimensional linear approximation of
dimension 7. Input masks spanned by bits 9, 10, 11, 13, 14, 15. Output masks spanned by
bit: 9.
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Figure 2: Mean and variance of capacity of multidimensional linear approximation of
dimension 8. Input masks spanned by bits 9, 10, 11, 13, 14, 15. Output masks spanned by
bits: 9, 10.

We see that the results of the experiments support Conjecture 1 perfectly. Finally
we also show an example of the full experimental probability distribution of the capacity
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Figure 3: Mean and variance of capacity of multidimensional linear approximation of
dimension 9. Input masks spanned by bits 9, 10, 11, 13, 14, 15. Output masks spanned by
bits: 9, 10, 11.
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Figure 4: Mean and variance of capacity of multidimensional linear approximation of
dimension 10. Input masks spanned by bits 9, 10, 11, 13, 14, 15. Output masks spanned
by bits: 9, 10, 11, 13.

plotted in Figure 7. It is computed for 20 rounds of Smallpresent-[4] for subspaces U
and V of dimension 4. Both U and V are spanned by bits in positions 5, 6, 9, and 10,
where we denoted by ej the bit vector with a single 1-bit in position j. It is compared
with the χ2 distribution with 28 − 24 − 24 + 1 = 225 degrees of freedom plotted as a solid
curve.

5.4 Special case u = v = 0

Let us start by defining a special type of multidimensional linear approximation, which
we call a Davies-Mayer approximation for reasons to be explained in this section.

Definition 1. A multidimensional linear approximation L is called a Davies-Mayer ap-
proximation if given any linearly independent set of mask pairs (ai, bi), i = 1, . . . , t, which
span L, the set of input masks ai, i = 1, . . . , t, and the set of output masks bi, i = 1, . . . , t,
are linearly independent.

Given a Davies-Mayer approximation, we can define a linear bijection A from the set

12
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Figure 5: Mean and variance of capacity of multidimensional linear approximation of
dimension 11. Input masks spanned by bits 9, 10, 11, 13, 14, 15. Output masks spanned
by bits: 9, 10, 11, 13, 14.
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Figure 6: Mean and variance of capacity of multidimensional linear approximation of
dimension 12. Input masks spanned by bits 9, 10, 11, 13, 14, 15. Output masks spanned
by bits: 9, 10, 11, 13, 14, 15.

of input masks of L to the set of output masks of L by setting

A(ai) = bi, , i = 1, . . . , t.

Then a linear approximation (a, b) ∈ L can be expressed as

a · x + b · P (x) = a · x + a · (At ◦ P )(x) = a · (x + (At ◦ P )(x)). (15)

If P is a random permutation, that is, picked uniformly at random for the set of all
permutations, then the same holds for the permutation (At ◦ P ). The function

x 7→ x + (At ◦ P )(x)

is the well-known Davies-Mayer construction which is indistinguishable from random func-
tions. By Equation 15 the linear approximations in L form a linear subspace of the com-
ponents of the Davies-Mayer function, and hence is also a random function.

Theorem 5. If a multidimensional linear approximation of a permutation P does not
contain any mask pair of the form (a, 0) or (0, b), where a 6= 0, b 6= 0, then it is a Davies-
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Figure 7: Probability distribution of capacity C of the distribution of 8 bits multiplied by
216. Input masks spanned by bits 5, 6, 9, 10. Output masks spanned by bits 5, 6, 9, 10.

Mayer approximation and is indistinguishable from a random function when P is selected
uniformly at random.

Proof. It remains to show that if a multidimensional linear approximation L does not
contain any trivial approximations, that is, mask pairs of the form (a, 0) or (0, b), where
a 6= 0, b 6= 0, then L is a Davies-Mayer approximation.

Let us suppose that L is not a Davies-Mayer approximation. Then L has a basis (ai, bi),
i = 1, . . . , t, where either the set ai, i = 1, . . . , t, or bi, i = 1, . . . , t, is linearly independent.
Assume ai, i = 1, . . . , t, are not linearly independent and let aij

, j = 1, . . . , k, be a subset
such that

k∑

j=1

aij
= 0.

Since (ai, bi), i = 1, . . . , t, are linearly independent, it must be the case that

k∑

j=1

aij
6= 0.

Then L contains a mask pair of the form (a, 0), which contradicts the assumption.

Let us note that, a Davies-Mayer approximation does not contain any trivial approx-
imation. Hence in the presentation (13) of L as L = U ⊕ V ⊕ W , the multidimensional
approximation W is a Davies-Mayer approximation. Also we see that L is a Davies-Mayer
approximation if and only if U = V = {(0, 0)}. If P is a permutation, then x+(At ◦P )(x)
has the known fixed point x0 = (At ◦ P )−1(0), but this property is not known to be de-
tected from the statistical behavior of the linear approximations of a random permutation
P .

14



To illustrate the distribution of such a linear approximation we depict the distribu-
tion of capacity over 214 random keys in Figure 8. The capacity is computed for the 6-
dimensional linear approximation over 20 rounds of Smallpresent-[4] spanned by mask
pairs (e9, e9), (e10, e10), (e11, e11), (e13, e13), (e14, e14), and (e15, e15), where we denoted
by ej the bit vector with a single 1-bit in position j.
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Figure 8: Probability distribution of 216C for capacity C of a 6-dimensional linear approx-
imation with no mask pairs of the form (a, 0) or (0, b), a 6= 0, b 6= 0

5.5 Multidimensional linear approximation of Serpent

Some of the first applications of multidimensional linear cryptanalysis used block cipher
Serpent [HCN09]. The multidimensional approximation L for Serpent was built by taking
the linear space spanned by a linearly independent set of m strong base approximations of
the form (a1, b), . . . , (am, b) all with the same output mask b. Then L is of the form U ⊕V ,
where u = m and v = 1. Moreover, the Davies-Mayer part W was non-existent. It means
that all the linear combinations of the base approximations involving an even number of
base approximations had output mask equal to zero, and hence, correlation zero. In the
cryptanalysis all 2m+1 − 1 non-zero approximations were involved including those 2m − 1
of the form (a, 0) with correlation zero. It was mentioned that such approximations can
be ignored in the computation of the empirical correlation. Nevertheless they cannot be
ignored when the degree of freedom of the sampled χ2 statistic is determined as will be
explained in Subsection 7.2.

Recently it was proposed by Nyberg to remove the subspace of trivial linear approxi-
mations and consider only the remaining set that forms an affine subspce [Nyb19]. Let us
apply this idea to the multidimensional approximation of Serpent discussed above. Take
the m−1 dimensional subspace spanned by masks (a2 ⊕a1, 0), . . . , (am ⊕a1, 0) and denote
it by H . Then the affine subspace (a1, b) ⊕ H is only a half of the size of the original
linear space and still contains all m strong base approximations. Moreover, for each key,
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the full codebook capacity of the affine set of approximations is exactly the same as the
full codebook capacity of the original set, while the degrees of freedom of the χ2 statistic
is reduced by one half.

To conclude this section let us mention that the structure of multidimensional linear
approximation must be taken in consideration also for non-bijective functions. Then only
the mask pairs of the form (a, 0) are trivial with mean and variance of the correlation
equal to zero. For example, if in the above example the block cipher Serpent is replaced
by some non-bijective function but the same set of linear approximations are used, then
removing the trivial approximations leads to an affine set of approximations.

Next we study the distribution of the full codebook capacity for an affine set of linear
approximations of a random permutation. In Subsection 7.3 we will recall the sampled
χ2 statistic from [Nyb19] with the following essential improvements: sampling without
replacement and key-dependent capacity. The full distribution is then given by integration
of the probability distribution of the key-dependent capacity to the sampled χ2 statistic.

6 Capacity of an affine space of linear approximations

The approach for constructing an affine set of linear approximations which does not con-
tain trivial approximations but has a statistical model without artificial independence
assumptions, was proposed by Nyberg [Nyb19]. Such a set can be constructed, for exam-
ple, by taking an affine subspace of input masks and an affine subspace of output masks
to get a set of the form

A = (a0 ⊕ U ′) × (b0 ⊕ V ′) = (a0, b0) ⊕ (U ′ × V ′),

where the dimensions of U ′ and V ′ are positive, a0 /∈ U ′ and b0 /∈ V ′. We denote

U = {(a, 0) | a ∈ U ′} and V = {(0, b) | b ∈ V ′}. (16)

Then the smallest linear space that contains A is

U ⊕ V ⊕ {(0, 0), (a0, b0)} = (U ⊕ V ) ∪ A,

that is, the space W in the expression (13) has dimension one. But using the multidi-
mensional linear approximation defined by this set of masks instead of using only the set
A would add all trivial linear approximations from U and V to this set and reduce the
strength of the attack. To avoid wasting attack resources, such as memory and time, we
want to exclude the linear approximations with masks in U ⊕ V .

More generally, let us consider such a statistic T (A) for any affine set of the form
A = (a0, b0) ⊕ H where H is a linear subspace of masks and (a0, b0) /∈ H . Moreover,
we assume that A does not contain trivial masks. Let Λ be the multidimensional linear
approximation defined by the linear space of masks L = {(0, 0), (a0, b0)} ⊕ H . Let Λ′ the
multidimensional linear approximation defined by H and Λ′ = U ⊕V W be its presentation
in the form (13). We define the affine test statistic as follows

T (A) = 2n
∑

(a,b)∈A

cor(a, b)2 = T (Λ) − T (Λ′). (17)

We denote the dimension of Λ by t. Hence we can express Λ as Λ = (f0, Λ′), where f0 is
the Boolean function f0(x) = a0 · x + b0 · P (x). Then the values of Λ are given as (δ, η),
where δ is a bit and η is a (t − 1)-bit vector.

Since the correlations of the linear approximations are not independent, we cannot
examine the distribution of T (A) directly from its expression as a sum of squared correla-
tions. We can, however, do this if instead we express T (A) in terms of value distribution
p(δ,η) of Λ as given by the following lemma.
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Lemma 4. In the setting defined above, we have

T (A) = 2n2t−1
∑

η

(p(1,η) − p(0,η))
2. (18)

Proof. By applying (14) to T (Λ′) we obtain

2n2t−1
∑

η

(p(1,η) − p(0,η))
2 + T (Λ′)

= 2n2t−1
∑

η

(
p(1,η) − 2−t) − (p(0,η) − 2−t)

)2

+2n2t−1
∑

η

(
p(1,η) + (p(0,η) − 2−(t−1))

)2

= 2n2t−1
∑

η

(
p(1,η) − 2−t) − (p(0,η) − 2−t)

)2

+2n2t−1
∑

η

(
p(1,η) − 2−t) + (p(0,η) − 2−t)

)2
,

which simplifies to the expression of T (Λ) given by Equation (14).

To compute T (A) according to Equation (18) for a random permutation, all n-bit
inputs x are distributed to 2t−1 categories according to the value η of Λ′(x). Further,
within each category the inputs x are divided into two subsets according to their value
f0(x). The resulting value in category η is the difference of the sizes of its two subsets.

Since the expected distribution of the values (δ, η) of Λ is uniform, the expected value
of the differences p(1,η) − p(0,η) is zero. Hence we propose to use Pearson’s χ2 test for the
values obtained in this way in 2t−1 categories. The related χ2 test statistic is T (A).

To determine the degree of freedom of T (A), we observe that, taken together, the 2t−1

variables p(1,η) + p(0,η) and the 2t−1 variables p(1,η) − p(0,η), where η is a t − 1-bit vector,
uniquely determine the value distribution of Λ with probabilities pδ,η, where δ is a bit and
η is a t − 1-bit vector, which by Conjecture 1 has 2t − 2u − 2v + 1 free variables. Since the
masks in U ⊕ V (if any) belong also to the multidimensional linear approximation Λ′, the
value distribution of Λ′ has 2t−1 − 2u − 2v + 1 free variables, also by Conjecture 1. Since
T (A) + T (Λ′) = T (Λ), it follows that T (A) must have at least 2t−1 degrees of freedom.
On the other hand, by its expression (18) T (A) has at most 2t−1 degrees of freedom, and
hence exactly 2t−1 degrees of freedom.

We conclude that under Theorem 4 and Conjecture 1 for random permutations, T (A)
is χ2 distributed with 2t−1 degrees of freedom and summarize the result as follows.

Theorem 6. Let A = (a0, b0) ⊕ H be an affine subspace of linear approximations of a
random permutation such that it does not contain any trivial linear approximations and
assume that the multidimensional linear approximations defined by the linear spaces H
and L = {(0, 0), (a0, b0)} ⊕ H satisfy Conjecture 1. Then the statistic

T (A) = 2nCap(A) = 2n
∑

(a,b)∈A

cor(a, b)2

follows χ2 distribution with |A| degrees of freedom.

7 Data Sampling

A linear attack can be seen as composed of two parts: (i) finding an approximation with
good correlation and (ii) detecting this correlation in a collection of input-output pairs.
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When viewed this way, linear cryptanalysis is mainly a parameter estimation problem
and the influence of data sampling is only on the second part. The distribution of the
correlation over the keys is determined by the structure of the block cipher.

Using a sample of the codebook introduces an error to this parameter estimation
problem. The empirical correlation is therefore a random variable in the key and the
choice of the sample of plaintexts

In Sections 5 and 6 we presented the probability distributions of correlations and
capacities computed over the full codebook for random functions and premutations. The
goal of this section is to integrate a random variate data sample of fixed size to these
probability distributions.

7.1 Sampling single linear approximation

In classical studies on linear cryptanalysis the plaintext is assumed to be drawn randomly
and independently, which implies sampling with replacement. This convention was also
adopted in [Nyb19] where the first model on affine multidimensional linear cryptanalysis
was given. In this paper, we give a statistical model of affine cryptanalysis for random
sampling of plaintext without replacement. There are two main reasons for doing this.
First, duplicated plaintexts do not give new information. Secondly, we want our model
to be valid also for large sample sizes and ultimately also for the full codebook without
duplications.

Given a linear approximation (a, b) and a data sample S of size N drawn for a random
function F : Fn

2 → F
s
2, let us denote by ŵ(a, b) the number of inputs x ∈ S for which the

linear approximation a · x + b · F (x) takes the value zero. Let w(a, b) be the number of
zeros of a · x + b · F (x) over all inputs x ∈ F

n
2 . Then

ŵ(a, b) ∼ HG(2n, w(a, b), N).

For a random F , we know by Theorem 2 that for b 6= 0

w = w(a, b) ∼ B(2n, 1/2).

Then the distribution of ŵ(a, b) taken over random permutations and random data samples
S of size N has the following probability distribution

Pr(ŵ(a, b) = k) =

2n∑

w=0

(
1

2

)2n (
2n

w

)
(

w
k

)(
2n − w
N − k

)

(
2n

N

)

= (
1

2
)N

(
N
k

)
.

Let us denote by ĉor(a, b) the sampled correlation, that is,

ĉor(a, b) =
1

N
(2ŵ(a, b) − N).

We have shown that ŵ(a, b) follows the binomial distribution. By normal approximation,
we obtain the following result.

Theorem 7. Let ĉor(a, b) be the correlation of the sampled linear approximation of a
random function considered over all data samples of size N (of distinct plaintexts) and
random functions from F

n
2 to F

s
2, where 2n ≥ N . The probability distribution of ĉor(a, b)

can be approximated by the normal distribution N (0, 1/N).
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To prove the corresponding result for random permutations we use the normal approx-
imation from the beginning.

Theorem 8. Let ĉor(a, b) be the correlation of the sampled linear approximation of a
random permutation considered over all data samples of size N (of distinct plaintexts)
and random permutations from F

n
2 to F

n
2 , where 2n ≥ N . The probability distribution of

ĉor(a, b) can be approximated by the normal distribution N (0, 1/N).

Proof. Given a linear approximation (a, b) and a data sample S of size N drawn for a
permutation P : Fn

2 → F
n
2 , the sampled correlation is ĉor(a, b) = 1

N (2ŵ(a, b) − N) where
ŵ(a, b) ∼ HG(2n, w(a, b), N). Then by normal approximation

ĉor(a, b) ∼ N

(
cor(a, b),

B

N
(1 − cor(a, b)2

)
,

where cor(a, b) = 2−n(2w(a, b) − 2n). By Corollary 3 we have

cor(a, b) ∼ N (0, 2−n).

Then the distribution of ĉor(a, b) taken over all permutations and samples of size N is
approximately normal with mean Exp cor(a, b) = 0 and variance equal to

Var (cor(a, b)) + Exp (Var(ĉor(a, b)) = 2−n +
B

N
−

B

N
2−n ≈

1

N
.

7.2 Sampling multidimensional linear approximation

Let us now recall the sampled test statistic of a multidimensional linear approximation Λ.
It is obtained by taking (14) and replacing 2n by N and correlations cor (a, b) by sampled
correlations ĉor (a, b) as follows

TN(Λ) = N
∑

(a,b)∈L,(a,b) 6=0

ĉor (a, b)
2

. (19)

Let us first derive the probability distribution of TN(Λ) for an arbitrary fixed key and
randomly chosen sample of distinct plaintexts. The corresponding probability distribution
for TN (Λ) is given by the following result originally stated in [BN17b]. The proof given
in [BN17b] assumed independent hypergeometric distributions. In [BTV18] the validity
of this result was questioned due to the artificial assumption of independence. Therefore
another proof will be given here by applying the standard statistical argument of finite
population correction to the χ2 distributed variable as given by Lemma 1. In our context,
the size of the population is 2n and the size of the random sample of distinct elements
from the population is N .

Theorem 9. Let Λ be a multidimensional linear approximation of dimension t applied
to a permutation of the space of n-bit vectors. Let TN (Λ) be the statistic defined by Equa-
tion (19) computed for a sample of size N of distinct plaintexts. Then B−1TN (Λ) follows
non-central χ2 distribution with 2t − 1 degrees of freedom and non-centrality parameter
B−1NCap(Λ), where B is as defined by (6).

Proof. We denote by p̂ζ the probabilities of the distribution of the t-bit values ζ ∈ Λ
computed for a sample of size N of inputs x. We apply Equation (12) to this distribution
to write TN(Λ) as follows

TN(Λ) = N2t
∑

ζ

(p̂ζ − 2−t)2 =
∑

ζ

(Np̂ζ − N2−t)2

N2−t
. (20)
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Then TN(Λ) is Pearson’s χ2-test statistic with 2t −1 degrees of freedom. Since the sample
is without replacement we apply Lemma 1 and get that B−1TN(Λ) is non-centrally χ2

distributed and has expected value equal to 2t − 1 + δ, where δ is the non-centrality
parameter. Then the expected value of TN(Λ) is equal to B(2t − 1) + Bδ. To determine δ
we compute the expected value of TN(Λ) directly. Expanding the expression (20) we get

TN(Λ) =
∑

ζ

(Np̂ζ − Npζ)2

N2−t
(21)

+ N2t
∑

ζ

(pζ − 2−t)2 (22)

+ N2t+1
∑

ζ

pζ(p̂ζ − pζ), (23)

where pζ is the full codebook probability of the t-bit value ζ in the image space of Λ. Note
that in the expansion (21-23) the term N2t+1

∑
ζ(p̂ζ −pζ) was omitted because it is equal

to zero. Now expression (21) is Pearson’s χ2-test statistic with 2t − 1 degrees of freedom
by using the standard approximation Npζ ≈ N2−t in the denominator. Moreover it is
central, since for each ζ the expected value of p̂ζ is equal to pζ . Since the sampling is
without replacement, we get that the expected value of (21) is equal to B(2t − 1). The
expression (22) is constant and equal to NCap(Λ), and the expected value of (23) is equal
to zero. Solving δ from the equation

B(2t − 1) + Bδ = B(2t − 1) + NCap(Λ)

gives the non-centrality parameter as claimed.

As the sample size N grows, the sampled statistic TN(Λ) approaches the full-codebook
statistic T (Λ). In general, the χ2-variables computed for the full-codebook may not have
the same degree of freedom as we saw in Subsection 5.2, which complicates the analysis
of the joint distribution of the statistic TN(Λ) considered over random permutations and
random samples of size N . In the case when Λ does not contain any trivial approximations
we get the following result. The proof is similar to the proof of Corollary 4 and is omitted
here.

Theorem 10. Let Λ be a Davies-Mayer approximation applied to a random permutation
of the space of n-bit vectors. Let TN(Λ) be the statistic defined by Equation (19) computed
for a sample of size N of distinct plaintexts and considered as a random variable over the
random permutations and random samples of size N . Then the mean of TN (Λ) is |Λ| − 1
and the variance is 2 (|Λ| − 1).

We have seen that constructions of multidimensional and affine linear approximations
that do not contain any trivial approximations have a simple and clear theory for random
permutations. Also for approximations that contain trivial approximations it is quite
straightforward to derive the mean and the variance of the sampled statistic. For per-
mutations originating from ciphers the theory is not that clear. The least one can say is
that linear approximations of permutation ciphers have the same trivial linear approxima-
tions as for random permutations. The problem of trivial approximations was observed
also in [HCN09] where it was recommended to exclude them in the computation of the
empirical correlation. While this helps in speeding up the cryptanalysis, the problem of
accuracy still remains. By constructions that do not contain trivial approximations, the
degrees of freedom of the χ2 distribution originate only from linear approximations with
potentially significant correlations. In the case of [HCN09] the trivial linear approxima-
tions could have been easily excluded by considering the related affine set as discussed in
Subsection 5.5.
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7.3 Sampling affine approximation

Given an affine subspace A of linear approximations defined by two multidimensional
linear approximations Λ and Λ′ of dimensions t and t − 1 respectively, we define the
sampled test statistic TN(A) analogically to (17) as follows

TN(A) = N
∑

(a,b)∈A

ĉor (a, b)
2

= TN (Λ) − TN(Λ′). (24)

By repeating the derivations of Section 6, but now for the sampled statistic TN (A) and
using Theorem 9 we get the following result.

Theorem 11. Let A be an affine set of linear approximations applied to a permutation
of the space of n-bit vectors and assume it does not contain trivial approximations. Let
TN (A) be the statistic defined by Equation (24) computed for a sample of size N of distinct
plaintexts. Then B−1TN (A) follows the non-central χ2 distribution with |A| degrees of
freedom and non-centrality parameter B−1NCap(A), where B is as defined by (6).

The noncentrality parameter B−1NCap(A) of the distribution of TN (A) depends on
the permutation that is used to compute the outputs for the linear approximations in A. If
the permutation is chosen randomly from the set of all permutations of n-bit vectors, the
distribution of T (A) = 2nCap(A) is given by Theorem 6. We get the following corollary.

Corollary 4. Let A be an affine set of linear approximations applied to a random per-
mutation of the space of n-bit vectors and let us assume that A does not contain trivial
approximations. Let TN(A) be the statistic defined by Equation (24) computed for a sam-
ple of size N of distinct plaintexts and considered as a random variable over the random
permutations and random samples of size N . Then the mean of TN(A) is |A| and the
variance is 2|A|.

Proof. Using the non-central χ2 distribution of B−1TN (A) for a fixed permutation with
capacity Cap(A) given by Theorem 11, we get that the mean of TN(A) is equal to

B|A| + NCap(A) = B|A| + N2−nT (A). (25)

By taking the mean over random permutations, we get the mean |A| as claimed.
Similarly, by Theorem 11, we get that the variance of TN (A) is equal to

B2
(
2|A| + 4B−1NCap(A)

)
. (26)

Then the total variance over random permutation is computed as the sum of the mean of
(26) and the variance of (25) to get

B2
(
2|A| + 4B−1N2−n|A|

)
+
(
N2−n

)2
·2|A| = 2B2|A|+4B(1−B)|A|+2(1−B)2|A| = 2|A|.

Based on these considerations one can argue that, when considered as a random vari-
able over random permutations and random samples of N distinct plaintexts, the test
statistic TN(A) follows the χ2

|A| distribution.

8 Conclusion

In this paper we presented a model which captures the statistical behavior of the capacity
of multidimensional linear approximations computed for a permutation and a sample of
plaintext, when the permutation and the sample of distinct plaintext of fixed size are
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selected uniformly at random. The additivity of the variances of squared correlations
is achieved without any assumptions of statistical independence based only on standard
statistical tools such as Pearson’s χ2 test and the finite population correction coefficient.

We showed for the first time that the degree of freedom of the related χ2 distribution
over the distribution depends on the structure of the multidimensional linear approxi-
mation and that it can be significantly smaller than assumed in previous works due to
the existence of trivial approximations. We identify two types of sets of multiple linear
approximations, the Davies-Mayer approximation and the affine approximation which do
not have trivial approximations. Such types of approximations offer the most efficient
χ2-based linear attacks due to optimal degrees of freedom. When selecting sets of strong
multiple linear approximations for actual ciphers such structures are recommended for
consideration if possible. As an example, we mention the first multidimensional linear
cryptanalysis on Serpent where restricting to an affine set of approximations could poten-
tially improve the attack.
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A Proof of Theorem 1

Lemma 5. Multinomial variables xi and xj and some of their first powers and products
have the following expected values taken over the multinomial distribution.

Exp(xi) = mpi

Exp(xixj) = m(m − 1)pipj

Exp(x2
i ) = mpi + m(m − 1)p2

i

Exp(x2
i xj) = m(m − 1)pipj + m(m − 1)(m − 2)p2

i pj

Exp(x3
i ) = mpi + 3m(m − 1)p2

i + m(m − 1)(m − 2)p3
i

Exp(xixjxℓxt) = m(m − 1)(m − 2)(m − 3)pipjpℓpt

Exp(x2
i xjxℓ) = m(m − 1)(m − 2)pipjpℓ + m(m − 1)(m − 2)(m − 3)p2

i pjpℓ

Exp(x2
i x2

j ) = m(m − 1)pipj + m(m − 1)(m − 2)(p2
i pj + pip

2
j)

+ m(m − 1)(m − 2)(m − 3)p2
i p2

j

Exp(x3
i xj) = m(m − 1)pipj + 3m(m − 1)(m − 2)p2

i pj

+ m(m − 1)(m − 2)(m − 3)p3
i pj

Exp(x4
i ) = mpi + 7m(m − 1)p2

i + 6m(m − 1)(m − 2)p3
i

+ m(m − 1)(m − 2)(m − 3)p4
i

Next we give the proof of Theorem 1.

Proof. Let us start by writing the capacity C in the form

C =
k

m2

k∑

i=1

(xi −
m

k
)2 =

k

m2

k∑

i=1

x2
i − 1.
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To compute the variance of the capacity it suffices to do it for the sum
∑k

i=1 x2
i . We write

Var
∑

i

x2
i = Exp

(∑

i

x2
i

)2

−

(
Exp

∑

i

x2
i

)2

(27)

= Exp

(∑

i

x4
i

)
(28)

+ Exp


∑

i

∑

j 6=i

x2
i x2

j


 (29)

−

(
Exp

∑

i

x2
i

)2

. (30)

By Lemma 5 (28) can be expressed as

1

m3
+

7(m − 1)

m3
P2 +

6(m − 1)(m − 2)

m3
P3 +

(m − 1)(m − 2)(m − 3)

m3
P4,

where we have denoted

P4 =

k∑

i=1

p4
i .

Similarly, (29) can be expressed as

m − 1

m3
+

(2m − 5)(m − 1)

m3
P2 +

(m − 1)(m − 2)(m − 3)

m3
P 2

2 −
2(m − 1)(m − 2)

m3
P3

−
(m − 1)(m − 2)(m − 3)

m3
P4,

and (30) as

1

m2
+

2(m − 1)

m2
P2 +

(m − 1)2

m2
P 2

2 .

By combining these expressions, we get the claimed result. The derivation of the mean is
similar, but simpler.

B Number of zeroes of linear approximation of random

Boolean function

.

Proof. The number of zeros of a · x + f(x) can be written as

#{x ∈ F
n
2 | f(x) = 0, a · x = 0} + #{x ∈ F

n
2 | f(x) = 1, a · x = 1},

where by Lemma 3, the number z = #{x ∈ F
n
2 | f(x) = 0, a·x = 0} follows HG(2n, 2n−1, N0).

As f varies over all Boolean function, the number of zeros N0 follows the binomial distri-
bution B(2n, 1

2 ). That is

Pr(N0 = w) = (
1

2
)2n

(
2n

w

)
.

Then
Pr(z = k) =

∑

w

Pr(N0 = w) Pr(z = k | N0 = w),
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where the bounds for w and k are as follows

k ≤ w ≤ 2n−1 + k and 0 ≤ k ≤ 2n−1.

We get

Pr(z = k) =

(
1

2

)2n (
2n−1

k

) 2n−1+k∑

w=k

(
2n−1

w − k

)

=

(
1

2

)2n−1 (
2n−1

k

)
,

that is, z ∼ B(2n−1, 1
2 ). Similarly, it can be shown that

#{x ∈ F
n
2 | f(x) = 1, a · x = 1} ∼ B(2n−1,

1

2
).

As the sum of two B(2n−1, 1
2 )-variables, the number of zeros of the linear approximation

a · x + f(x) follows B(2n, 1
2 ).
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