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Abstract—The specification of Bluetooth and Bluetooth Low
Energy includes dedicated encryption key negotiation protocols
used by two parties to agree on the entropy of encryption keys. In
this work, we show that an attacker can manipulate the entropy
negotiation of Bluetooth and Bluetooth Low Energy to drastically
reduce the encryption key space. We call our attack the Key
Negotiation Of Bluetooth (KNOB) attack.

In the case of Bluetooth, we demonstrate that the entropy
can be reduced from 16 to 1 Byte. Such low entropy enables
the attacker to easily brute force the negotiated encryption keys,
decrypt the eavesdropped ciphertext, and inject valid encrypted
messages in real-time. For Bluetooth Low Energy, we show that
the entropy can still be downgraded from 16 to 7 Bytes, which
reduces the attacker’s effort to brute force the keys.

We implement and evaluate the KNOB attack on more than
17 Bluetooth chips (e.g., Intel Broadcom, Apple, and Qualcomm)
and 15 Bluetooth Low Energy devices (e.g., Lenovo, Garmin,
Samsung, Xiaomi, and Fitbit). Our results demonstrate that all
tested devices are vulnerable to the KNOB attack. We discuss
legacy and non-legacy compliant countermeasures to neutralize
or mitigate the KNOB attack.

I. INTRODUCTION

Bluetooth BR/EDR, referred in the rest of the paper as
Bluetooth, and Bluetooth Low Energy (BLE) are two widespread
wireless personal area network (WPAN) technologies used by
many devices such as smartphones, laptops, tablets, smart-
watches, cameras, thermostats, and cars. Despite being specified
in the same standard [8], Bluetooth and BLE are different
(incompatible) technologies, e.g., they use different physical
layers, link layers, and security architectures.

The standard for Bluetooth and BLE specifies a number
of authentication, confidentially, and integrity mechanisms for
Bluetooth [8, p. 1646] and for BLE [8, p. 2289]. The security
and privacy of Bluetooth has been attacked and fixed several
times, going all the way back to Bluetooth v1.0 [22], [46].
Several successful attacks on the (secure simple) pairing [41],
[17], [6] has resulted in substantial revisions of the standard.
Attacks on Android, iOS, Windows, and Linux implementations
of Bluetooth were discussed in [4]. BLE legacy security
mechanisms were successfully attacked [40], and while privacy
mechanism were improved [13], several implementations have
been attacked [3].

Bluetooth and BLE include dedicated encryption key ne-
gotiation protocols, that are used by two connecting devices
to negotiate the entropy of the shared encryption key. Little
attention has been given to the security of these protocols,

that were introduced to cope with international encryption
regulations, and to facilitate security upgrades [8, p. 1650].
To the best of our knowledge, all versions of the standard
(including v5.0) require to use entropy values between 1 and
16 bytes for Bluetooth [8, p. 1650] and between 7 and 16 bytes
for BLE [8, p. 2311]. The specification of both protocols does
not mandate the use of integrity protection and encryption to
negotiate entropy values.

Bluetooth’s encryption key negotiation protocol is run every
time two (already paired) devices want to establish a new
connection. The protocol is implemented in the firmware of
the devices’ radio chip. In particular, the initiator proposes
an entropy value N (an integer between 1 and 16), the other
party either accepts N , or proposes an integer value lower than
N , or aborts the protocol. If the other party proposes a value
lower than N , e.g., N − 1, then the initiator either accepts it,
or proposes a lower value, or it aborts the protocol. In contrast,
BLE’s encryption key negotiation is only performed once, while
the devices are pairing, and it is implemented by the devices’
OS. The initiator proposes N is the pairing request message,
the responder proposes N in the pairing response message,
and the lowest (yet standard compliant) value is chosen.

In this paper we describe, implement, and evaluate attacks
capable of making two (or more) victims use a Bluetooth
encryption key with 1 byte of entropy, and a BLE encryption
key with 7 bytes of entropy. Then, the attacker can brute force
the encryption keys, eavesdrop and decrypt the ciphertext,
and inject valid ciphertext without affecting the status of the
Bluetooth or BLE link. The attacker is not required to posses
any (pre-shared) secret material, and in case of Bluetooth he
does not even have to observe the pairing process of the victims.
The attack is effective even when the victims are using the
strongest security mode (e.g., Secure Simple Pairing and Secure
Connections). As a result of our attack, the attacker completely
breaks the security guarantees of Bluetooth and BLE. We call
our attacks Key Negotiation Of Bluetooth (KNOB) attacks.
In [2] we proposed the KNOB attack on Bluetooth, and this
paper extends the KNOB attack to Bluetooth Low Energy and
it compares the two attacks.

We demonstrate how to perform a KNOB attack on a
Bluetooth link, leveraging our development of several Bluetooth
security procedures to generate valid keys, and the InternalBlue
toolkit [30]. Then, we demonstrate the KNOB attack on a BLE
link, taking advantage of our custom Linux kernel and user



space stack. Finally, we present the result of our evaluation of
the KNOB attack involving more than 17 vulnerable Bluetooth
chips, and 15 vulnerable BLE devices. As the KNOB attack
is standard-compliant, it is expected to be effective on any
device implementing the specification of Bluetooth and BLE
(regardless of their version).

We summarize our main contributions as follows:
• We design and implement attacks on the encryption key

negotiation of Bluetooth and BLE, which we call the Key
Negotiation Of Bluetooth (KNOB) attacks. Our attacks
let two unaware victims negotiate and use Bluetooth en-
cryption keys with 1 byte of entropy, and BLE encryption
keys with 7 bytes of entropy. Such low entropy values can
be brute forced by an attacker to recover the ciphertext
and to inject valid ciphertext. As the KNOB attack is at
the architectural level of Bluetooth and BLE, all standard
compliant devices are potentially vulnerable to it.

• We demonstrate the practical feasibility of the KNOB
attacks by implementing them for Bluetooth and BLE.
Our implementations involve a man-in-the-middle attacker
capable of manipulating the encryption key negotiation
protocols, brute forcing the keys, and decrypting the traffic
exchanged by two victims.

• We test more than 17 different Bluetooth chips, and 15
BLE devices, and find all of them to be vulnerable to
the KNOB attack. We propose legacy and non legacy
compliant countermeasures to mitigate and counter the
KNOB attack on Bluetooth and BLE.

Our work is organized as follows: in Section II we introduce
Bluetooth and Bluetooth Low Energy. We introduce the KNOB
attack in Section III, and we explain the details of the attack
for Bluetooth in Section IV and Section V, and for BLE in
Section VI. We evaluate the KNOB attack in Section VII, and
we discuss our countermeasures in Section VIII. We present
the related work in Section IX. We conclude the paper in
Section X.

II. BACKGROUND

In this section we provide the necessary background infor-
mation on Bluetooth, both BR/EDR and BLE.

A. Bluetooth

Bluetooth BR/EDR, referred in this paper as Bluetooth, is
a widely used wireless technology for low-power short-range
communications maintained by the Bluetooth Special Interest
Group(SIG) [8]. Its physical layer uses the same 2.4 GHz
frequency spectrum of Wi-Fi and (adaptive) frequency hopping
to mitigate RF interference. A Bluetooth network is called a
piconet and it uses a master-slave medium access protocol,
and there is one master device per piconet. The devices are
synchronized by maintaining a reference clock signal, that
we indicate with CLK. Each device has a Bluetooth address
(BTADD) that consists of a sequence of six bytes. The first
two bytes (from left to right) are defined as non-significant

address part (NAP), the third byte as upper address part (UAP),
and the last three bytes as lower address part (LAP).

To establish a secure Bluetooth connection two devices first
have to pair. This procedure results in the establishment of a
long-term shared secret defined as link key (KL). There are four
types of link key: initialization, unit, combination, and master.
In this paper we deal with authenticated combination link keys
because they are the most secure and widely used. In particular,
they are generated as part of Bluetooth Secure Simple Pairing
(SSP) that is a mechanism based on Elliptic Curve Diffie
Hellman (ECDH) on the P-256 curve and challenge-response
based authentication.

The specification defines custom security procedures to
achieve confidentiality, integrity and authentication. In the
specification their names are prefixed with the letter E. In
particular, a combination link key KL is mutually authenticated
by the E1 procedure. This procedure uses a public nonce
(AU RAND) and the slave’s Bluetooth address (BTADDS)
to generate a Signed Response (SRES) and a Authenticated
Ciphering Offset (ACO). SRES is used over the air to verify
that two devices actually own the same KL. The symmetric
encryption key KC is generated using the E3 procedure. When
the link key is a combination key, E3 uses ACO (computed by
E1) as its Ciphering Offset Number (COF), together with KL

and a public nonce (EN RAND). E1 and E3 use a custom hash
function defined in the specification with H. The hash function
is based on SAFER+, a block cipher that was submitted as an
AES candidate in 1998 [31].

There are two ways to encrypt the link-layer traffic. If
both devices support Secure Connections, then encryption
is performed using a modified version of AES CCM. AES
CCM is an authenticate-then encrypt cipher that combines
Counter mode with CBC-MAC, and it is defined in the IETF
RFC 3610 [21]. If Secure Connections is not supported, then
the devices use the E0 stream cipher. The cipher is derived
from the Massey-Rueppel algorithm, and it is described in the
specification [8, p. 1662]. E0 requires the Bluetooth’s clock
value (CLK) to synchronize the stream ciphers of the master
and the slaves.

B. Bluetooth Low Energy (BLE)

BLE is a technology for wireless personal area networks
(WPAN) standardized, together with Bluetooth, in the same
specification [8]. BLE was introduced in 2010 (Bluetooth v4.0)
to provide a technology that was simpler, and with lower
power consumption than Bluetooth. BLE and Bluetooth share
the same 2.4 GHz spectrum, however their implementations
are incompatible (e.g., they use different physical layers and
security architectures).

BLE is used to by many devices including laptops, tablets,
mice, keyboards, fitness band, smartwatches, smart locks,
thermostats, and smart TVs. Recently, it has been employed in
other use cases such as hardware security keys [42], vehicular
networks [28], secret handshakes [32], payment systems [16],
and biomedical applications [48]. As all those scenarios involve
the exchange of sensitive information, it is paramount that BLE



provides effective security mechanisms to protect its wide attack
surface.

BLE confidentially, authentication, and integrity mechanisms
are specified in the Security Manager (SM) component [8,
p. 2289]. Pairing, like for Bluetooth, is used to establish, and
optionally authenticate, a long term secret between two devices.
The specification defines the long term secret as the Long
Term Key (LTK). BLE specifies two types of pairings: legacy
and Secure Connections. Legacy pairing uses a custom key
establishment scheme, where the LTK is generated from Short
Term Key (STK) and Temporay Key (TK) short term secrets.
Legacy paring, unless performed with secure out of bound
(OOB) data, is not considered secure against eavesdropping
and man in the middle attacks, and it should not be used [40].
BLE pairing based on Secure Connections was introduced in
2014 (Bluetooth v4.2) to overcome the problems related to
legacy paring. Secure Connections pairing is considered secure
against eavesdropping and man in the middle attacks, as it
generates the LTK using ECDH on the NIST P-256 curve, and
it provides LTK’s authentication.

As different BLE applications might have different security
requirements, the BLE standard provides two security modes
with different security levels [8, p. 2067]:

Mode 1: Authenticated encryption (AES-CCM)
Level 1: No encryption and not authentication
Level 2: Unauthenticated pairing with encryption
Level 3: Authenticated pairing with encryption
Level 4: Authenticated LE Secure Connections, and

128-bit strength encryption key.
Mode 2: Data integrity (no confidentiality)

Level 1: Unauthenticated pairing with data signing
Level 2: Authenticated pairing with data signing

BLE’s strongest security mode (Mode 1 Level 4) uses
authenticated ECDH to establish a LTK with 16 bytes of
entropy, and AES-CCM to mac-then-encrypt [8, p. 2767].

C. Host Controller Interface

Modern implementations of Bluetooth and BLE provide
the Host Controller Interface (HCI). This interface allows to
separate each stack into two components: the host and the
controller. Each component has specific responsibilities, i.e.,
the controller manages low-level radio and baseband operations,
and the host manages high-level application layer profiles.
Typically, the host is implemented in the operating system
and the controller in the firmware of the Bluetooth chip. For
example, BlueZ and Bluedroid implement the HCI host on
Linux and Android, and the firmware of a Qualcomm or
Broadcom radio implements the HCI controller. The host and
the controller communicate using the Host Controller Interface
(HCI) protocol. This protocol is based on commands and events,
i.e., the host sends (acknowledged) commands to the controller,
and the controller uses events to notify the host. The HCI
protocol can use different physical transports such as UART,
SPI, and USB.

III. KNOB ATTACK INTRODUCTION

In this section we introduce the high level details of the
Key Negotiation Of Bluetooth (KNOB) attack. The technical
details for Bluetooth and BLE are presented respectively in
Sections IV and V, and Section VI.

A. System and Attacker Model

We assume a system composed of two or more legitimate
devices that communicate using either Bluetooth or BLE (as
described in Section II). Without loss of generality, we focus
on a piconet with a master (Alice) and a slave (Bob), and
we indicate their Bluetooth addresses with BTADDM and
BTADDS . The victims are capable of using Secure Simple
Pairing and Secure Connections. This combination enables
the highest security level of Bluetooth, and should protect
against eavesdropping and active man in the middle attacks.
The victims are synchronized using the master Bluetooth clock,
(CLK), and the clock does not provide any security guarantee.

The attacker (Charlie) wants to decrypt all messages ex-
changed between Alice and Bob, and inject valid encrypted
messages, without being detected. We define two attacker
models: a remote attacker and a local attacker. A remote
attacker controls a device that is in Bluetooth range with
Alice and Bob. He is able to capture public nonces, CLK,
and encrypted messages, actively manipulate unencrypted
communication, and to drop packets using techniques such as
network man-in-the-middle and manipulation of physical-layer
signals [45], [37]. The local attacker is able to compromise
the firmware of the Bluetooth chip or the OS of the BLE’s
device (e.g.,using backdoors [10], supply-chain implants [15],
and rogue chip manufacturers [38]). In both cases the attacker
has no access to any Bluetooth (pre-shared) secret quantity,
i.e., Bluetooth’s KL and BLE’s LTK.

B. KNOB Attack

The encryption key negotiation protocols of Bluetooth and
BLE serve to cope with international encryption regulations
and should facilitate security upgrades [8, p. 1650]. Those
protocols have three significant problems:

1) They allow to negotiate entropy values as low as 1 byte
for Bluetooth, and as low as 7 bytes for BLE.

2) They are neither encrypted nor authenticated.
3) They are transparent to the end users, and for Bluetooth

they are also transparent to the Bluetooth host (OS).
In this paper we demonstrate that an attacker can convince

any two Bluetooth and BLE victims to negotiate the lowest
possible, yet standard-compliant, encryption key entropy value.
We call our attacks Key Negotiation Of Bluetooth (KNOB)
attacks. For example, a (remote) attacker, without any knowl-
edge of the victims’ long term secret, can let two victims use
a Bluetooth encryption key with 1 byte of entropy, and then
brute force the key with minimal effort (i.e., find 1 key from
256 candidate keys).

The KNOB attack on Bluetooth and BLE consists of the
following high level steps:



Fig. 1: Adversarial generation of a Bluetooth encryption key
(K ′C ). KC is generated from KL and other public parameters.
KC has 16 bytes of entropy, and it is not directly used as the
encryption key. K ′C , the actual encryption key, is computed by
reducing the entropy of KC to N bytes. Charlie (the attacker)
let Alice and Bob agree on N = 1, and as a result, K ′C has 1
byte of entropy. K ′C is then used for link layer encryption by
either the E0 or AES-CCM.

1) Alice and Bob (the victims) begin to establish a connection
using Bluetooth’s strongest security mode

2) Charlie makes the victims negotiate an encryption key
with low entropy (e.g., 1 byte for Bluetooth)

3) Charlie brute forces the encryption key using some
eavesdropped ciphertext as an oracle

4) Charlie decrypts all messages and injects valid ciphertext
KNOB attacks on Bluetooth and BLE exploit their respective

key negotiation protocols. The main differences between the
two are summarized below:
• Bluetooth’s key negotiation is performed by two already

paired devices every time they want to connect, while
BLE’s key negotiation is performed in the first phase of
pairing (i.e., the feature exchange phase).

• Bluetooth specifies that the key negotiation should be
managed by the HCI controller (implemented by the
firmware of the Bluetooth chip), while the key negotiation
of BLE should be managed by the HCI host (implemented
by the main OS of the device).

• Bluetooth’s key negotiation is carried using the LMP
protocol, while BLE uses the SMP protocol.

• Bluetooth’s key negotiation may involve more than a
request and a response packet, while BLE involves only
one request and one response packet.

IV. KNOB ATTACK ON BLUETOOTH

In this section we explain the technical details to conduct the
KNOB attack on Bluetooth. Our implementation is discussed
in Section V.

A. Negotiate Low Entropy Bluetooth Encryption Keys

Every time a Bluetooth connection requires link-layer
encryption, Alice and Bob compute an encryption key KC

based on KL, BTADDS , AU RAND, and EN RAND (see
top part of Figure 1). KL is the link key established during
secure simple pairing and the others parameters are public.

Alice (controller)

A

Charlie (attacker)

C

Bob (controller)

B

LMP: AU RAND LMP: AU RAND

LMP: SRESLMP: SRES

LMP encryption mode req: 1 LMP encryption mode req: 1

LMP acceptLMP accept

Negot’n

LMP K
′

C
entropy: 16 LMP K

′

C
entropy: 1

LMP acceptLMP K
′

C
entropy: 1

LMP accept

LMP start encryption: EN RAND LMP start encryption: EN RAND

LMP acceptLMP accept

Encryption key K
′

C
has 1 byte of entropy

Fig. 2: Adversarial manipulation of the Bluetooth entropy nego-
tiation protocol over LMP. The attacker (Charlie) manipulates
the entropy suggested by Alice from 16 to 1 byte. Bob accepts
Alice’s proposal, and Charlie changes Bob’s acceptance to
a proposal of 1 byte. Alice, accepts the standard-compliant
proposal of Bob, and Charlie drops Alice’s acceptance message
because Bob already accepted Alice’s proposal (adversarially
modified by Charlie). As a result, Alice and Bob use a K ′C
with 1 byte of entropy.

Assuming ideal random number generation, the entropy of KC

is always 16 bytes, however KC is not directly used as the
encryption key for the current session. The actual encryption
key, indicated with K ′C , is computed by reducing the entropy
of KC to N bytes, where N is the outcome of the Bluetooth
encryption key negotiation protocol (Entropy Negotiation in
Figure 1).

To understand how an attacker can set N equal to 1 (or
to any other standard-compliant value), we have to look at
the details of the encryption key negotiation protocol. The
protocol is run between the Bluetooth chip of Alice and Bob
using the Link Manager Protocol (LMP) protocol. LMP is
neither encrypted nor authenticated, and LMP packets do not
propagate to higher protocol layers. Hence, the hosts (OSes)
are not aware of the LMP packets exchanged over the air by
the Bluetooth controllers.

In the following, we provide an example where both Alice
(the master) and Bob (the slave) are able to support an entropy
value from 16 to 1 byte. The Bluetooth standard enables to
set the minimum and maximum entropy values by setting two
parameters defined as Lmin and Lmax. These values can be
set and read only by the Bluetooth chip (firmware). Indeed,
our scenario describes a situation where the firmwares of Alice
and Bob declare Lmax = 16 and Lmin = 1.

Charlie’s manipulation of N is described in Figure 2.
The first two messages allow Alice to authenticate that Bob
possesses the correct KL. Then, with the next two messages,
Alice requests to initiate Bluetooth link layer encryption and
Bob accepts. Now, the negotiation of N takes place (Negot’n
in Figure 2). Alice proposes 16 bytes of entropy, Charlie
manipulates this value to 1 and forwards it to Bob. Bob accepts
the proposal, and Charlie manipulates the message proposing



to Alice 1 Byte of entropy. Alice accepts the proposal, and
Charlie drops the message. As a result, of this negotiation
Charlie forces Alice and Bob to use a K ′C with 1 byte of
entropy (N = 1 = Lmin). The Bluetooth hosts of Alice and
Bob do not have access to KC and K ′C , as they are only
informed about the outcome of the negotiation. The same
adversarial negotiation can be performed when the negotiation
procedure is initiate by Bob (the slave).

It is reasonable to think that the victim could prevent or
detect this attack using a proper value for Lmin. However, the
standard does not state how to explicitly take advantage of
it, e.g., deprecate Lmin values that are too low. The standard
states the following: “The possibility of a failure in setting
up a secure link is an unavoidable consequence of letting the
application decide whether to accept or reject a suggested key
size.” [8, p. 1663]. This statement is ambiguous because it is
not clear what the definition of “application” is in that sentence.
As we show in Section VII, this ambiguity results in no-one
being responsible for terminating connections with low entropy
keys in practice. In particular, the entity who decides whether
to accept or reject the entropy proposal is the firmware of the
Bluetooth chip by setting Lmin and Lmax and managing the
entropy proposals.

The “application” (intended as the Bluetooth application
running on the OS using the firmware as a service) cannot
check and set Lmin and Lmax, and it is not directly involved
in the entropy acceptance/rejection choice (that is performed by
the firmware). The application can interact with the firmware
using the HCI protocol. In particular, it can use the HCI
Read Encryption Key Size request, to check the amount of
negotiated entropy after the Bluetooth connection is established
and theoretically abort the connection. This check is neither
required nor recommended by the standard as part of the key
negotiation protocol.

The adversarial low entropy negotiation in Figure 2 can
be performed by both attacker models that we specify in
Section III-A. The remote attacker has the capabilities of
dropping and injecting valid plaintext (the encryption key
negotiation protocol is neither encrypted nor authenticated).
The local attacker can modify few bytes in the Bluetooth
firmware of a victim to always negotiate 1 byte of entropy.

B. Brute Forcing the Low Entropy Bluetooth Encryption Key

Bluetooth has two link layer encryption schemes, one is
based on the E0 cipher (legacy), and the other on the AES-
CCM cipher (Secure Connections). Our KNOB attack works
in both cases. In particular, if the negotiated entropy for the
encryption key (K ′C) is 1 byte, then the attacker can trivially
brute force it trying (in parallel) the 256 K ′C’s candidates
against one or more cipher texts. The attacker does not have
to know what type of application layer traffic is exchanged,
because a Bluetooth packet contains well known fields, such
as L2CAP and RFCOMM headers, that the attacker can use
as oracles.

We now describe how to compute all 1 byte entropy keys
when E0 and AES-CCM are in use. Each encryption mode

involves a specific entropy reduction procedure that takes N and
KC as inputs and produces K ′C as output (Entropy Reduction
in Figure 1). The specification calls this procedure Encryption
Key Size Reduction [8].

K ′C = g
(N)
2 ⊗

(
KC mod g

(N)
1

)
(Es)

In case of E0, K ′C is computed using Equation (Es), where
N is the negotiated integer between 1 and 16 (see Section IV-A).
g
(N)
1 is a polynomial of degree 8N used to reduce the entropy

of KC to N bytes. The result of the reduction is encoded with a
block code g

(N)
2 , a polynomial of degree less or equal to 128−

8N . The values of those polynomials depend on N , and they
are tabulated in [8, p. 1668]. When N = 1, we compute the 256
candidate K ′C by multiplying all the possible 1 byte reductions
KC mod g

(1)
1 (the set 0x00. . .0xff) with g

(1)
2 (that equals

to 0x00e275a0abd218d4cf928b9bbf6cb08f).
In case of AES-CCM the entropy reduction procedure is

simpler than the one of E0. In particular, the 16 − N least
significant bytes of KC are set to zero. For example, when
N = 1 the 256 K ′C candidates for AES-CCM are the set
0x00. . .0xff.

In the implementation of our KNOB attack brute force logic,
we pre-compute the 512 keys with 1 byte of entropy and we
store them in a look-up table to speed-up comparisons. More
details about the brute force implementation are discussed in
Section V.

C. KNOB Attack Root Causes for Bluetooth

The root causes of the KNOB attack are shared between the
specification and the implementation of Bluetooth confidentially
mechanisms. On one side the specification is defining a
vulnerable encryption key negotiation protocol that allows
devices to negotiate low entropy values. On the implementation
side (see Section VII), the Bluetooth applications that we
test fails to check the negotiated entropy in practice. This is
understandable because they are implementing a specification
that is not mandating or recommending an entropy check.

We do not see any reason to include the encryption key
negotiation protocol in the specification of Bluetooth. From
our experiments (presented in Section VII) we observe that
two devices, unless under attack, are always negotiating 16
bytes of entropy. Furthermore, the entropy reduction performed
as part of the protocol does not improve runtime performances
because the size of the encryption key is fixed to 16 bytes
even when its entropy is reduced.

V. KNOB ATTACK IMPLEMENTATION FOR BLUETOOTH

We now discuss how we implement the KNOB attack using
a reference attack scenario. We explain how we manipulate the
key negotiation protocol, brute force the encryption key (K ′C )
using eavesdropped traffic, and validate K ′C by computing it
from KL (as in Figure 1). As a result, the attacker is able to
decrypt the content of a link-layer encrypted file sent from
a Nexus 5 to a Motorola G3 using the Bluetooth OBject
EXchange (OBEX) profile. A Bluetooth profile is the equivalent



Fig. 3: Transmission and reception of an E0 encrypted payload.
The concatenation of the payload and its CRC (PTx) is
encrypted, whitened, encoded and then transmitted. On the
receiver side the steps are applied in the opposite order. RF is
the radio frequency wireless channel.

of an application layer protocol in the TCP/IP stack. We use our
implementation to conduct successful KNOB attacks on more
than 17 different Bluetooth chips, the attacks are evaluated in
Section VII.

A. Attack Scenario

To describe our implementation we use a reference at-
tack scenario where the victims are a Nexus 5 and a Mo-
torola G3(Table I lists their relevant specifications). We use the
Nexus 5 also as a man-in-the-middle attacker by patching
its Bluetooth firmware. This setup allows us to reliably
simulate a remote man-in-the-middle attacker (more details in
Section V-B).

The victims use Secure Simple Pairing to generate KL (the
link key) and authenticate the users, the entropy reduction
function from Equation (Es), and E0 legacy encryption. The
victims use legacy encryption because the Nexus 5 does not
support Secure Connections. Nevertheless, the KNOB attack
is effective also with Secure Connections.

Every data packet encrypted with E0is transmitted and
received as in Figure 3. A cyclic redundancy checksum
(CRC) is computed and appended to the payload (PayTx).
The resulting bytes (PTx) are encrypted with E0 using K ′C .
Then, the ciphertext is whitened, encoded, and transmitted over
the air. On the receiver side the following steps are applied
in sequence: decoding, de-whitening, decryption, and CRC
check. As E0 is a stream cipher, the encryption and decryption
procedures are the same, i.e., the same synchronized keystream
is XORed with the sent plaintext and the received ciphertext.
The whitening and encoding procedures do not add any security
guarantee.

B. Manipulation of the Bluetooth Entropy Negotiation

We implement the manipulation of the encryption key
negotiation protocol (presented in Section IV-A) by extending
the functionality of InternalBlue v0.1 [30], and using it to
patch the Bluetooth firmware of the Nexus 5. Our InternalBlue
modifications allow to manipulate all incoming LMP messages
before they are processed by the entropy negotiation logic, and
all outgoing LMP messages after they’ve been processed by
the entropy negotiation logic. The entropy negotiation logic is
the code in the Bluetooth firmware that manages the encryption

key negotiation protocol, and we do not modify it. As a result,
we can use a Nexus 5 (or any other device supported by
InternalBlue) both as a victim and a remote KNOB attacker,
without having to deal with the practical issues related with
packet manipulation attacks over-the-air.

InternalBlue is an open-source toolkit capable of interfacing
with the firmware of the BCM4339 Bluetooth chip in Nexus 5
phones. As InternalBlue v0.1 is not providing a way to directly
hook the firmware’s key negotiation logic, we extend it to
enable two victims (one is always the Nexus 5) to negotiate
one (or more) byte of entropy. InternalBlue requires a rooted
Nexus 5, and to compile and install an Android Bluetooth
stack (bluetooth.default.so) with debugging features
enabled. InternalBlue allows to patch the BCM4339 Bluetooth
firmware using dedicated hooks, and read the ROM and the
RAM of firmware at runtime.

Our manipulation of the entropy negotiation works regardless
the role of the Nexus 5 in the piconet, and it does not require to
capture any information about SSP. Assuming that the victims
are already paired, we test if two victims are vulnerable to the
KNOB attack as follows:

1) We connect over USB the Nexus 5 with the X1 laptop,
we run our version of InternalBlue, and we activate LMP
and HCI monitoring.

2) We connect and start the Ubertooth One capture over the
air focusing only on the Nexus 5 piconet (using UAP and
LAP flags).

3) We request a connection from the Nexus 5 to the other
victim (or vice versa) to trigger the encryption key
negotiation protocol over LMP.

4) Our InternalBlue patch changes the LMP packets as
Charlie does in Figure 2.

5) If the victims successfully complete the protocol, then they
are vulnerable to the KNOB attack, and we can decrypt
the ciphertext captured with the Ubertooth One.

We now describe how we extend InternalBlue v0.1
to manipulate the LMP negotiation packets. The
internalblue/fw_5.py file contains several information
about the (reversed) BCM4339 firmware, and it provides
two hooks into the firmware, defined by Mantz (the
main author of InternalBlue) as LMP_send_packet and
LMP_dispatcher. The former hook allows to execute code
every time an LMP packet is about to be sent, and the latter
whenever an LMP packet is received. The hooks are intended
for LMP monitoring, and we extend them to also perform
LMP manipulation.

Listing 1 shows three ARM assembly code blocks that we
add to fw_5.py to let the Nexus 5 and the Motorola G3
negotiate arbitrary entropy values (e.g.,1 byte). This code works
when the Nexus 5 is the master, and it initiates the encryption
key negotiation protocol. The first block translates to: if the
Nexus 5 is sending an LMP K ′C entropy proposal then change
it to 1 byte. This block is executed when the Nexus 5 starts
an encryption key negotiation protocol. The code allows to
propose any entropy value by moving a different constant into
r2 in line 5.



Bluetooth

Phone OS Version MAC SC Chip

Nexus 5 Android 6.0.1 4.1 48:59:29:01:AD:6F No Broadcom BCM4339
Motorola G3 Android 6.0.1 4.1 24:DA:9B:66:9F:83 Yes Qualcomm Snapdragon 410

TABLE I: Relevant technical specifications of Nexus 5 and Motorola G3 devices used to describe our attack implementation.
The SC column indicates if a device supports Secure Connections.

Listing 1 We add three ARM assembly code blocks to
internalblue/fw_5.py to negotiate K ′C with 1 byte of
entropy. In this case the Nexus 5 is the master and it initiates
the encryption key negotiation protocol.
1 # Send LMP Kc' entropy 1 rather than 16
2 ldrb r2, [r1]
3 cmp r2, #0x20
4 bne skip_sent_ksr
5 mov r2, #0x01
6 strb r2, [r1, #1]
7 skip_sent_ksr:
8

9 # Recv LMP Kc' entropy 1 rather than LMP accept
10 ldrb r2, [r1]
11 cmp r2, #0x06
12 bne skip_recv_aksr
13 ldrb r2, [r1, #1]
14 cmp r2, #0x10
15 bne skip_recv_aksr
16 mov r2, #0x20
17 strb r2, [r1]
18 mov r2, #0x01
19 strb r2, [r1, #1]
20 skip_recv_aksr:
21

22 # Send LMP_preferred rate rather than LMP accept
23 # Simulate an attacker dropping LMP accept
24 ldrb r2, [r1]
25 cmp r2, #0x06
26 bne skip_send_aksr
27 ldrb r2, [r1, #1]
28 cmp r2, #0x10
29 bne skip_send_aksr
30 mov r2, #0x48
31 strb r2, [r1]
32 mov r2, #0x70
33 strb r2, [r1, #1]
34 skip_send_aksr:

The second block from Listing 1 translates to: if the Nexus 5
is receiving an LMP accept (entropy proposal), then change
it to an LMP K ′C entropy proposal of 1 byte. This code is
used to let the Nexus 5 firmware believe that the other victim
proposed 1 byte, while she already accepted 1 byte. The third
blocks translates to: if the Nexus 5 is sending an LMP accept
(entropy proposal), then change it to an LMP preferred rate.
This allows to obtain the same result of dropping an LMP
accept packet, because the LMP preferred rate packet does not
affect the state of the encryption key negotiation protocols.

We develop and use similar patches to cover all the attack
cases: Nexus 5 is the master and does not initiate the connection,
Nexus 5 is the slave and initiates the connection, and Nexus 5
is the slave and does not initiate the connection.

Fig. 4: Implementation of the KNOB attack on the E0 cipher.
The attacker makes the victims agree on a K ′C with one byte
of entropy (N = 1) and then brute force K ′C , without knowing
KL and KC .

C. Brute Forcing the Encryption Key

Once the attacker is able to reduce the entropy of the
encryption key (K ′C) to 1 byte, he has to brute force it (key
space is 256). In this section we explain how we brute force,
validate, and use a K ′C with 1 byte of entropy (E0 encryption).

The details about the E0 encryption scheme are presented
in Figure 4, we describe them backwards starting from the E0

cipher. E0 takes three inputs: BTADDM , CLK26-1, and K ′C .
CLK26-1 are the 26 bits of CLK in the interval CLK[25:1]
(assuming that CLK stores its least significant bit at CLK[0]).
The BTADDM is the Bluetooth address of the master, and it
is a public parameter.

For E0 we use an open-source implementation [11], that we
correctly verify first against the specification. To provide valid
K ′C candidates to E0 we implement the Es entropy reduction
procedure, that takes an input with 16 bytes of entropy (KC)
and computes an output with N bytes of entropy (K ′C). Es

involves modular arithmetic over polynomials in Galois fields,
and we use the BitVector [24] Python module to perform such
computations.

We use a Python brute force script to compute the correct K ′C
by testing the decryption of one (or more) ciphertext against the
256 K ′C ’s candidates. We validate our brute force script by de-
crypting the content of a file (in ASCII aaaabbbbccccdddd)
sent from the Nexus 5 to the Motorola G3 using the OBEX
Bluetooth profile, after the negotiation of a K ′C with 1 byte of
entropy.

We verify that the brute forced K ′C is effectively the one in



Fig. 5: Bluetooth defines H a custom hash function based on
SAFER+ and SAFER+’. H is used to compute KC from KL,
EN RAND, and COF (see Equation E3).

use, by implementing E1 and E3, and use them to compute
K ′C as a victim. In particular, we use the necessary parameters
from Figure 4 to compute K ′C from KL. We capture those
parameters using the Bluetooth logging capabilities offered
by Android. Table II shows an example of actual public and
private values from a KNOB attack.

E1 computes the Ciphering Offset Number (COF), while E3

computes KC (see Figure 4). Both procedures use a custom
hash function defined in the specification with H. We write E1

and E3 equations and label them with their respective names
as follows:

SRES‖ACO = H(KL,AU RAND,BTADDS, 6) (E1)
KC = H(KL,EN RAND,COF, 12) (E3)

Figure 5 shows how E3 uses the H hash function. H internally
uses SAFER+, a block cipher submitted as an AES candidate
in 1998 [31] and SAFER+’ (SAFER+ prime). The specification
indicates them with Ar and Ar’ [8, p. 1676]. SAFER+’ is a
modified version of SAFER+ such that the input of the first
round is added to the input of the third round. This modification
was introduced in the specification to avoid SAFER+’ being
used for encryption [8, p. 1677]. The specification uses SAFER+
and SAFER+’ with 128 bit block size (8 rounds), in ECB mode,
and only for encryption.

We implement in Python both SAFER+ and SAFER+’
including the round computations and the key scheduling
algorithm. We test the two against the specification. We also
implement in Python the E and O blocks (see Figure 5), and we
test them against the specification. The E block is an extension
block that transforms the 12 byte COF into a 16 byte sequence
using modular arithmetic. The E block is also applied to the
6 byte BTADDS in E1. The O block is offsetting KL using
algebraic (modular) operations and the largest primes below
257 for which 10 is a primitive root. Finally, with all code
blocks in place, we implement H, and use it to implement and
test E3 and E1. We plan to release our code implementing Es,
E1, and E3 as open-source1.

1See https://github.com/francozappa/knob

Name Value

Public
BTADDM 0xccfa0070dcb6
BTADDS 0x829f669bda24
AU RAND 0x722e6ecd32ed43b7f3cdbdc2100ff6e0
EN RAND 0xd72fb4217dcdc3145056ba488bea9076
SRES 0xb0a3f41f
N 0x1

Secret
KL 0xd5f20744c05d08601d28fa1dd79cdc27
COF=ACO 0x1ce4f9426dc2bc110472d68e
KC 0xa3fccef22ad2232c7acb01e9b9ed6727
K′C 0x7fffffffffffffffffffffffffffffff

TABLE II: Public and secret values (in hexadecimal) collected
during a KNOB attack involving authenticated SSP and E0

encryption. The encryption key (K ′C) has 1 byte of entropy.

D. Implementation for Bluetooth Secure Connections

The specification allows to perform the KNOB attack even
when the victims are using Secure Connections. We implement
the entropy reduction function of the brute force script over
AES–CCM. However, InternalBlue v0.1 is not capable of
patching the firmware of a Bluetooth chip that supports Secure
Connections, indeed we are not able to implement the low
entropy negotiation part of the attack using InternalBlue.

VI. KNOB ATTACK ON BLUETOOTH LOW ENERGY

In this section we explain how to conduct the KNOB attack
on BLE, regardless its security mode. The details of the KNOB
attack on Bluetooth are presented in Section IV and Section V.

A. Negotiate Low Entropy BLE Encryption Keys

The encryption key negotiation of BLE is part of its pairing
process. BLEpairing has three phases feature exchange (that
includes key negotiation), key establishment and optional
authentication, and key distribution (over encrypted link) [8,
p. 2296]. BLE key negotiation allows entropy values between
7 and 16 bytes, while Bluetooth allows values between 1 and
16 bytes.

As the BLE specification does not require to protect the
integrity of the feature exchange phase, that includes key
negotiation, we are capable of reducing the entropy of any
BLE encryption key (LTK) to 7 bytes, regardless the usage
of authenticated Secure Connections. The KNOB attack on
BLE is conceptually similar to one on Bluetooth (introduced
in Section IV), with the exception that, in case of BLE, the
attacker can downgrade the key’s entropy as low as 7 bytes,
rather than 1 byte.

In Figure 6, we demonstrate how Charlie (the attacker) can
manipulate the encryption key negotiation of a BLE connection
between Alice and Bob. Alice (the master) always initiates the
pairing session by sending a pairing request to Bob (the slave).
The pairing request contains Alice’s capabilities including
input-output (IO), authentication requirements (AuthReq), and
proposed encryption key size (KeySize).

In Figure 6, Charlie manipulates Alice’s paring request by
changing her proposed key size (KeySize) from 16 to 7 bytes



Alice (master)

A

Charlie (attacker)

C

Bob (slave)

B

IO, AuthReq, KeySize: 16, . . . IO, AuthReq, KeySize: 7, . . .

IO, AuthReq, KeySize: 16, . . .IO, AuthReq, KeySize: 7, . . .

Phase 1: feature exchange

Phase 2: key establishment and optional authentication

Phase 3: key distribution (over encrypted link)

Fig. 6: Adversarial manipulation of the BLE feature exchange
phase. Charlie let Alice and Bob negotiate a LTK with 7 bytes
of entropy (KeySize: 7). As the feature exchange phase is not
integrity protected, the attacker can spoof all the capabilities
declared by Alice and Bob including LTK’s entropy.

(i.e., from the maximum to the minimum value allowed by the
BLE specification). Then, Bob answers with a pairing response
containing his capabilities, including his KeySize, and Charlie
changes it from 16 to 7 bytes. As a result, the LTK (and all
the secrets computed from it) have 7 bytes of entropy.

Additionally, Charlie, using the same technique described
in Figure 6, can adversarially manipulate other capabilities
declared by the victims during the feature exchange phase. For
example, Charlie by manipulating AuthReq, can disable Secure
Connections and the man-in-the-middle protection flags, and,
by manipulating the victims’ IO capabilities, can establish a
link with a LTK that is not authenticated. Similar attacks can
also be performed on Bluetooth [17].

The specification comments on the security of the feature
exchange (phase 1) and key establishment and optional
authentication (phase 2) saying that: “phase 1 and phase 2
may be performed on a link which is either encrypted or
not encrypted” [8, 2296]. However, the specification is not
considering integrity protection at all, and it is not specifying
how two devices should encrypt the link before pairing. In
our BLE experiments, that we present in Section VII-C, none
of the devices that we test is encrypting phase 1 and 2. As
two unpaired BLE devices are not required to share any secret
key, we are not surprised by this outcome. Furthermore, even
if a pre-shared key is available before pairing, the encryption
of phase 1 and 2 would only partially solve the problem,
because if the cipher in use is malleable, then Charlie is able
to downgrade the LTK’s entropy anyway. What is needed in
this case is data integrity, and the problem can be solved by
using standard message authentication codes (e.g., HMAC).

B. Brute Forcing the Low Entropy BLE Encryption Key

Once Charlie is able to reduce the entropy of LTK to 7 bytes,
he has to brute force it. BLE uses AES-CCM for encryption,
and its entropy reduction function zeros the most significant
bytes (MSB) of LTK according to the negotiated entropy

value. The attacker’s brute force effort for BLE is greater than
Bluetooth (e.g., 7 bytes vs. 1 byte). However, we argue that
7 bytes of entropy is still insufficient for a secure connection.
Prior work has sucseeded in brute forcing keys of this size by
utilizing cloud computational power [47].

Additionally, we expect that (low end) BLE devices might
be susceptible to low entropy boot attack [27], where a device
at boot time is not capable of offering enough entropy for
key generation, and ends up quietly using keys that have less
entropy then expected. Considering current best practices at
the time of writing, any entropy value lower than 14 bytes
could be considered not secure for symmetric encryption [5].

C. KNOB Attack Root Causes for BLE

The root causes of the KNOB attack on BLE are similar to
the ones of Bluetooth (see Section IV-C). The responsibility
is shared between the specification of a key negotiation
protocol that allows a remote attacker to downgrade the key’s
entropy to 7 bytes, and the lack of proper checks on the BLE
implementation side. Compared to Bluetooth, BLE specifies
an higher (better) minimum entropy value (7 bytes rather than
1). As for Bluetooth, we do not see a strong reason to include
the possibility of downgrading the key’s entropy for BLE.
The entropy reduction is not improving runtime performances,
and in our evaluation, presented in Section VII-C, there is
no legitimate device taking advantage of this feature, e.g.,
proposing an entropy value lower than 16 bytes.

D. KNOB Attack Implementation for BLE

BLE’s security mechanisms are implemented by the device’s
OS (BLE host) in a module called Security Manager (SM). By
modifying the OS of a victim device we are able to simulate,
among others, the effect of a remote KNOB attack without
having to perform it over the air. For our implementation, we
use a laptop running Linux as the victim, because we can
inspect and modify Linux’s Bluetooth host implementation
(e.g., via bluez and the kernel) and optionally provide our own
custom Bluetooth user space BLE stack.

The main advantage of the Linux stack over a custom user
space one is that it offers a solid and tested implementation
of the full BLE specification. In contrast, a user space stack
is easier and faster to modify and use than the Linux stack
(e.g., Python rather than C code, no kernel recompilations and
reboots across code modifications). To perform the KNOB
attack on BLE we take advantage of both functionalities by
implementing the following tools:

1) Custom linux-4.14.111 kernel. The linux kernel
contains an open source implementation of the
BLE encryption key negotiation protocol (i.e.,
net/bluetooth/smp.c). We modify it such
that our laptop is always proposing 7 bytes of entropy
by changing line 3424 of net/bluetooth/smp.c
to SMP_DEV(hdev)->max_key_size = 7; and
recompiling the kernel2.

2Unmodified code: https://elixir.bootlin.com/linux/v4.14.111/source/net/
bluetooth/smp.c#L3424



Fig. 7: Our evaluation setup. In the Bluetooth case, we use a
Nexus 5 both as a victim and the attacker, a Motorola G3 as
a victim, and a Thinkpad X1 laptop to patch the Nexus 5’s
Bluetooth firmware. In the BLE case, we use a Thinkpad X1
both as the attacker and as a victim. The laptop runs our custom
Linux kernel and user space stack. In both cases, we eavesdrop
the packets using an Ubertooth One.

2) Custom user space stack. As Linux offers the possibility
to manage BLE from user space, we develop a custom
BLE stack based on PyBT [39], an open-source Python
package built on top of scapy [7]. PyBT provides a
minimal stack, and we extend it with an API to perform
adversarial manipulation of BLE pairing, including the
feature exchange phase used to negotiate LTK’s entropy.

VII. EVALUATION

We use our implementations of the KNOB attack to suc-
cessfully attack more than 17 Bluetooth chips, and 15 BLE
devices. In this section we present our evaluation setup and
results.

A. Evaluation Setup

Figure 7 shows the experimental setup that we use to
perform our KNOB attacks on Bluetooth and BLE devices.
In the Bluetooth case, we use a Nexus 5 both as a victim
and the attacker, a Motorola G3 as a victim, and a Thinkpad
X1 laptop to patch the Nexus 5 Bluetooth firmware. In the
BLE case, we use the Thinkpad X1 both as a victim and the
attacker. The laptop runs our custom Linux kernel and user
space stack. In both cases, we eavesdrop the packets using an
Ubertooth One [35] (firmware version 2017-03-R2). To the
best of our knowledge, Ubertooth One does not capture all
Bluetooth packets, but it is the only open-source, low-cost, and
practical eavesdropping solution for Bluetooth, and it works
well for BLE.

As our evaluation setup does not require expensive hardware,
over the air manipulations, and uses open-source software, it
is simple, low cost, and extendible. Each KNOB attack is easy
to reproduce, and testing if a device is vulnerable is a matter
of seconds. We would like to see other researchers evaluating
more Bluetooth and BLE devices that currently we do not
posses.

Bluetooth chip Device(s) Vuln?

Bluetooth version 5.0
Snapdragon 845 Galaxy S9 X
Snapdragon 835 Pixel 2, OnePlus 5 X
Apple/USI 339S00428 MacBookPro 2018 X
Apple A1865 iPhone X X
Snapdragon 660 Xiaomi MI A2 X

Bluetooth version 4.2
Intel 8265 Thinkpad X1 6th X
Intel 7265 Thinkpad X1 3rd X
Unknown Sennheiser PXC 550 X
Apple/USI 339S00045 iPad Pro 2 X
BCM43438 RPi 3B, RPi 3B+ X
BCM43602 iMac MMQA2LL/A X
Cambridge Silicon Unknown Sony WH-100XM3 X
Unknown Bose SoundLink revolve X

Bluetooth version 4.1
BCM4339 (CYW4339) Nexus 5, iPhone 6 X
Snapdragon 410 Motorola G3 X

Bluetooth version ≤ 4.0
Snapdragon 800 LG G2 X
Intel Centrino 6205 Thinkpad X230 X
Chicony Unknown Thinkpad KT-1255 X
Broadcom Unknown Thinkpad 41U5008 X
Broadcom Unknown Anker A7721 X
Apple W1 AirPods *

TABLE III: List of more than 17 Bluetooth chips (24 devices)
that are vulnerable to the KNOB attack. Xindicates that a chip
accepts 1 byte of entropy. * indicates that a chip accepts at
least 7 bytes of entropy.

B. Bluetooth Evaluation

We conduct KNOB attacks on more than 17 Bluetooth chips
from Broadcom, Qualcomm, Apple, Intel, and Chicony (by
attacking 24 different devices). For each chip we conduct the
KNOB attack according to Figure 7, and by following the
five steps that we describe in Section V-B. For each attack we
record the manipulated encryption key negotiation protocol in a
pcapng file, and we manually verify the negotiation’s outcome
with Wireshark.

Table III shows our evaluation results. The first column
contains the Bluetooth chip names. We fill the entries of this
column with “Unknown” when we cannot find information
about the chip manufacturer and/or model number. The second
column lists the devices grouped by chip, e.g., the Snapdragon
835 is used both by the Pixel 2 and the OnePlus 5. The third
column contains a X if the Bluetooth chip accepts 1 byte of
entropy, and a * if it accepts at least 7 bytes. We group the
rows by Bluetooth version number: v5.0, v4.2, v4,1 and version
lower than 4.1.

From the third column of Table III we see that all the chips
accept 1 byte of entropy (X), except the Apple W1 chip (*)
that requires at least 7 bytes of entropy. Apple W1 and its
successors are used in devices such as AirPods, and Apple
Watches. Table III also demonstrates that the vulnerability spans
across different Bluetooth versions, including the latest ones
(v5.0 and v4.2). Hence, the KNOB attack is a significant threat
for all Bluetooth users, and we believe that the specification
has to be fixed as soon as possible.



Device Vuln?

BLE Secure Connections
Thinkpad X1 6rd X
Thinkpad X1 3rd X
Garmin Vivoactive 3 X
Samsung Gear S3 X

BLE legacy security
Nexus 5 X
Motorola G3 X
Mi band X
Mi band 2 (x2) X
Fitbit Charge 2 X
ID115 HR Plus X
Comet Blue thermostat X
Samsung TV UE48J6250 X
EDIFIER R1280DB speaker X
MX Anywhere 2S X

TABLE IV: List of 15 BLE devices that are vulnerable to the
KNOB attack. X indicates that the device accepts 7 bytes of
entropy.

Based on our experiments, we conclude that there are no
differences between the specification and the implementation
of both the Bluetooth controller (implemented in the firmware)
and the Bluetooth host (implemented in the OS and usable as
an interface by a Bluetooth application). In the former case,
the specification is not enforcing any minimum Lmin, and it is
not protecting the entropy negotiation protocol. The firmware’s
implementers (to provide standard-compliant products) are
allowing the negotiation of 1 byte of entropy with an insecure
protocol. The only exception is the Apple W1 chip, where
an attacker can reduce the entropy to 7 bytes. In the latter
case, the Bluetooth specification is providing an HCI Read
Encryption size API, but it is not mandating or recommending
its usage, e.g., a mandatory check at the end of the LMP
entropy negotiation. The host’s implementers are providing
this API, and the applications that we test are not using it.

C. Bluetooth Low Energy Evaluation

In Table IV we present our evaluation of the KNOB attack
on 15 BLE devices. The devices are grouped in two blocks: the
first block includes devices supporting BLE Secure Connections
(available since Bluetooth v4.2) and the second block includes
devices that are using legacy BLE security (available in
Bluetooth v4.0 and 4.1. A X in the second column of Table IV
indicates that a device accepts 7 bytes of entropy.

As we can see from Table IV, all devices are vulnerable to
the KNOB attack (i.e., in all cases we are able to downgrade
LTK’s entropy to 7 bytes). The tested devices include fitness
bands, smart watches, laptops, and IoT devices. For each attack
we record the manipulated encryption key negotiation protocol
in a pcapng file, and we manually verify the negotiation’s
outcome with Wireshark.

Additionally, our experiments uncover a problem related to
BLE’s strongest security mode. In particular, BLE specifies
security mode 1 with level 4 as its most secure configuration,
and this mode mandates authenticated Secure Connections and
a LTK with 16 bytes of entropy [8, p. 2067]. However, from

our experiments we can deduce that even if a device is using
security mode 1 with level 4, the LTK’s entropy can still be
downgraded to 7 bytes. For example, we are able to set LTK’s
entropy to 7 bytes even when the Linux kernel is compiled
with security mode 1 with level 4 (i.e., its security level is set
to BT_SECURITY_FIPS).

VIII. COUNTERMEASURES

In this section we propose legacy and non legacy compliant
countermeasures to our KNOB attacks on Bluetooth and
Bluetooth Low Energy.

A. Bluetooth Countermeasures
a) Legacy compliant.: Our first proposed legacy compli-

ant countermeasure is to require a minimum and maximum
amount of negotiable entropy that cannot be easily brute forced,
e.g., require 16 bytes of entropy. This means fixing Lmin and
Lmax in the Bluetooth controller (firmware), and results in
the negotiation of proper encryption keys. Another possible
countermeasure is to automatically have the Bluetooth host (OS)
check the amount of negotiated entropy each time link layer
encryption is activated, and abort the connection if the entropy
does not meet a minimum requirement. The entropy value can
be obtained by the host using the HCI Read Encryption Key
Size Command. This solution requires to modify the Bluetooth
host, and it might be suboptimal because it acts on a connection
that is already established and possibly in use, and not as part of
the entropy negotiation protocol. A third solution is to distrust
the Bluetooth link layer, and provide the security guarantees
at the application layer.

b) Non legacy compliant.: A non legacy compliant
countermeasure is to secure the encryption key negotiation
using the link key (KL). The link key is a shared, and possibly
authenticated, secret that should be always available before
starting the entropy negotiation protocol. As the attacker should
not be able to modify the victims’ entropy proposals, the new
encryption key negotiation protocol must provide message
integrity and optional message confidentiality generating fresh
keys from the link key. Preferably, the specification should
get rid of the entropy negotiation protocol, and always use
encryption keys with a fixed amount of entropy, e.g., 16 bytes.
The implementation of these countermeasures only requires
the modification of the Bluetooth controller component.

B. Bluetooth Low Energy Countermeasures
a) Legacy compliant.: Like for Bluetooth, a straightfor-

ward legacy compliant countermeasure for Bluetooth Low
Energy is to require an higher minimum entropy value for
the encryption key (LTK). For example, pairing can be aborted
if the KeySize parameter is lower than 16 (see Figure 6).
This modification requires minimal changes to the entropy
negotiation’s implementation (BLE host). In the case of Linux,
a developer could set SMP_MIN_ENC_KEY_SIZE = 16 in
net/bluetooth/smp.h, and recompile the kernel. An
alternative solution is to distrust the link layer and provide
the security guarantees at the application layer using protocols
such as BALSA [34] and TLS.



b) Non legacy compliant.: A straightforward non legacy
compliant solution is to remove the possibility of negotiating
the LTK’s entropy while pairing, and fixing the entropy to
a secure value. In particular, the KeySize parameter can be
removed from the feature exchange phase, and the LTK shall
always use 16 bytes of entropy. Otherwise, BLE pairing might
be augmented with an initialization phase (Phase 0), where
the master and the slave are establishing and authenticating a
shared secret key. Then, this key can be used to protect the
integrity of the feature exchange phase (including KeySize).
The implementation of both countermeasures only requires the
modification of the BLE host.

IX. RELATED WORK

The most up to date survey about Bluetooth security is from
NIST [36], and it recommends to use keys with 16 bytes of
entropy. It also describes the key negotiation protocol, and
considers it as a security issue when one of the connected
devices is malicious (and not a third party). Prior surveys
do not consider the problem of encryption key negotiation at
all [12] or superficially discuss it [43].

The security and privacy guarantees of Bluetooth were
studied since Bluetooth v1.0 [22], [46]. Particular attention
was given to Secure Simple Pairing (SSP), a mechanisms that
Bluetooth uses to generate and share a long term secret. Several
attacks on the SSP protocol were proposed [41], [20], [17],
[6]. The Key Negotiation Of Bluetooth (KNOB) attack works
regardless of security guarantees provided by SSP such as
mutual user authentication and the attacker is not required to
observe the SSP phase.

The various implementation of Bluetooth were also analyzed
and several attacks were presented on Android, iOS, Windows
and Linux implementations [4]. The KNOB attack works
regardless of the implementation details of the target platform,
because if any implementation is standard-compliant then it is
vulnerable to the KNOB attack.

The security of the ciphers used by Bluetooth was exten-
sively discussed by cryptographers. For example, the SAFER+
cipher, used by Bluetooth for authentication purposes, was
analyzed [25] and the E0 cipher, used by Bluetooth for
encryption, was also analyzed [14]. Our attack works even
with perfectly secure ciphers.

For our implementation of the custom Bluetooth security
procedures (presented in Section V) we used as main refer-
ences the specification [8], and third-party hardware [26] and
software [29] implementations.

Prior work about BLE security (Bluetooth v4.0 and v4.1)
already uncovered several flaws in the design of the pairing
phase. In [40] Mike Ryan demonstrated how to eavesdrop
a BLE connection, and inject packets to break BLE legacy
pairing. In [34], BALSA was proposed as an application
layer security mechanisms alternative to BLE legacy security
mechanisms. The Bluetooth v4.2 standard was updated with
Secure Connection to address major weaknesses of legacy BLE
security. In our work we demonstrate an attack that affects
both legacy and Secure Connections BLE links. Application

layer attacks on BLE were also demonstrated [23], our KNOB
attack targets the BLE link layer, and its effects propagates to
upper layers.

Detailed analysis of different BLE devices such as smart
locks [19], and wearable devices [9] uncovers potential flaws
in specific BLE’s use cases. Our KNOB attack is generic i.e.,
agnostic to the specific use case. Proprietary protocols based on
BLEwere also analyzed for security [1] and privacy [18] issues.
Implementations of BLE were also found to be vulnerable [3].
The KNOB attack affects both proprietary protocols building
on top of BLE and standard compliant implementations of the
specification.

Third-party manipulations of key negotiation protocols were
discussed in the context of Wi-Fi, for example key reuse
in [44]. Compared to those attacks, our attack exploits not only
implementation issues, but a standard-compliant vulnerability
of the specification. Downgrade attacks were discussed in the
context of TLS [33]. We note that in contrast to our scenario,
the TLS developers have direct control over the cipher suite
offered during a TLS handshake, hence they can prevent a
cipher suite downgrade attack. To the best of our knowledge,
this is not the case for Bluetooth, as the protocol does not
enforce any mandatory checks on the (downgraded) encryption
key’s entropy.

X. CONCLUSION

In this paper we demonstrate that the entropy of any
Bluetooth and Bluetooth Low Energy encryption key can be
easily downgraded by a (remote) attacker to 1 byte and 7 bytes,
respectively. Then, the attacker can brute force the encryption
key, and break the security guarantees of affected Bluetooth or
BLE link. We call our attack the Key Negotiation Of Bluetooth
(KNOB) attack.

We discover the KNOB attack by finding vulnerabilities
in the specifications of Bluetooth and BLE encryption key
negotiation protocols. In particular, these protocols allow to
insecurely negotiate low entropy values for their encryption
keys. The KNOB attack is at the architectural level, hence
any standard compliant Bluetooth and BLE device should be
vulnerable. The attacker is not required to know any (pre)
shared secrets to conduct the attack. The KNOB attack can
be mounted in parallel, e.g., it can affect at the same time
multiple victims even in different piconets.

We uncover the root causes of the KNOB attack, and
we show how to implement the it on Bluetooth and BLE.
Our implementations involve manipulations of the Bluetooth
controller (implemented by the Bluetooth firmware), and the
BLEhost (implemented by the OS).

To confirm that the KNOB attack is a real threat, we present
the result of our large scale evaluation. We test 24 Bluetooth
devices and 15 BLE devices, and all of them are vulnerable
to the KNOB attack. To address the severity of the KNOB
attack, we propose effective legacy and non legacy compliant
countermeasures capable of neutralizing or mitigating the
attack.
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