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Abstract. Secure Multiparty Computation (MPC) enables a group of n distrusting parties to jointly
compute a function using private inputs. MPC guarantees correctness of computation and confidentiality
of inputs if no more than a threshold t of the parties are corrupted. Proactive MPC (PMPC) addresses
the stronger threat model of a mobile adversary that controls a changing set of parties (but only up to t
at any instant), and may eventually corrupt all n parties over a long time.
This paper takes a first stab at developing high-assurance implementations of (P)MPC. We formalize
in EasyCrypt, a tool-assisted framework for building high-confidence cryptographic proofs, several
abstract and reusable variations of secret sharing and of (P)MPC protocols building on them. Using
those, we prove a series of abstract theorems for the proactive setting. We implement and perform
computer-checked security proofs of concrete instantiations of the required (abstract) protocols in
EasyCrypt.
We also develop a new tool-chain to extract high-assurance executable implementations of protocols
formalized and verified in EasyCrypt. Our tool-chain uses Why3 as an intermediate tool, and enables
us to extract executable code from our (P)MPC formalizations. We conduct an evaluation of the
extracted executables by comparing their performance to performance of manually implemented versions
using Python-based Charm framework for prototyping cryptographic schemes. We argue that the small
overhead of our high-assurance executables is a reasonable price to pay for the increased confidence
about their correctness and security.
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1 Introduction

Correctly designing secure cryptographic primitives and protocols is a non-trivial task. We argue that not
only is it hard to correctly design them, but so is it to correctly and securely implement them in software.
This issue is particularly amplified in settings where protocols involve multiple parties, and when they should
guarantee security against strong adversaries beyond passive ones4.

There are several efforts implementing (advanced) cryptographic primitives and protocols available to
developers, such as OpenSSL 5, s2n 6, BouncyCastle 7, Charm [2], SCAPI [34], FRESCO 8 [30], TASTY [49],
SCALE-MAMBA 9, EMP 10, Sharemind [22,23]. Such tools and libraries typically aim to improve usability,
software reliability, and performance. Some of them also target cloud-based and large distributed applications,
aiming to deploy secure and privacy-preserving distributed computations to address practical challenges. A
missing aspect of most of these efforts is the increased confidence obtained in security and correctness of

4 Often called honest-but-curious or semi-honest, we use those terms interchangeably in this paper.
5 https://www.openssl.org
6 https://github.com/awslabs/s2n
7 https://www.bouncycastle.org
8 https://github.com/aicis/fresco
9 https://github.com/KULeuven-COSIC/SCALE-MAMBA

10 https://github.com/emp-toolkit
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the design and implementation of such complex (cryptographic) algorithms and protocols when utilizing
computer-aided formal verification and synthesis. Because of this, subsequent work [3,14,20,19,24,41,10,4]
started tackling verification of cryptographic primitives and protocols, and software implementations thereof.
One notable example is Project Everest 11 which provides a collection of tools and libraries that can be
combined together and generate a mixture of C and assembly code that implements TLS 1.3, with proofs of
safety, correctness, security and various forms of side-channel resistance.

Several authors began exploring how such high-assurance design and implementation of cryptography
can be applied to more complex secure (two-party) computation and multiparty computation (MPC)
protocols [9,29,23,56,64,28,46,4]. Nevertheless, we identify a series of limitations of such efforts:

1) Limited number of parties - [29,4,56] such work typically considers the case of two-party computation.
2) Lack of security guarantees against strong adversaries - the work that goes beyond two parties [9,23,64,68,47]

typically focuses on the semi-honest adversary model.
3) Lack of high-assurance implementations for active adversaries - even when active adversaries and

multiple parties are considered [46,47], there are no automatically (and verifiably) synthesized executable
implementations from protocol specifications that were checked using computer-aided verification.

Table 1 summarizes the most relevant recent work on verification of complex cryptographic protocols
involving multiple parties and withstanding strong adversaries. A more detailed comparison with related
work is provided in Section 6.

Finally, the semi-honest and active adversary models, while covering a large set of possible applications
of MPC, do not cover scenarios in which complex distributed systems are built and run for long durations,
and where strong persistent adversaries continuously attack them. For example, those two models do not
cover the case where adversaries can corrupt all parties over a long period of time. Proactive MPC (PMPC)
addresses the stronger threat model of a mobile adversary that controls a changing set of parties (but only
up to t at any instant), and may eventually corrupt all n parties over a long time throughout the course of a
protocol’s execution, or lifetime of confidential inputs. The main intuition behind proactive secret sharing
(that typically underlies PMPC) is to periodically re-randomize (refresh) shares of secrets and delete old ones,
thus preventing an adversary that collects all shares from different periods to combine them together. In
the proactive setting, parties are periodically reset (recovered) to a clean state to ensure that adversarial
corruptions are purged. Such reset parties have to run a recovery protocol to obtain their new non-corrupted
state (secret shares) and re-join the secure computation system.

To the best of our knowledge there are currently no publicly available high-assurance implementations of
formally verified and machine-checked (P)MPC withstanding active adversaries. By high-assurance we mean
automatically (and verifiably) synthesized from protocol specifications that were checked using computer-aided
verification. This paper takes a first stab at developing such high-assurance implementations of (P)MPC, and
as a side contribution performs the first computer-aided verification of a variant of the fundamental BGW [18]
MPC protocol for passive and static active adversaries using EasyCrypt (with computational security in the
latter case).

Below we discuss challenges facing our work, followed by details of our contributions addressing these
challenges. We finish this section with a brief description of our final verified (P)MPC evaluator (illustrated
in Figure 1).

1.1 Challenges

We face two main challenges: developing machine-checked specifications and proofs for (P)MPC and underlying
building block primitives, and obtaining automatically synthesized verified implementations of such protocols.

Machine-checked formalization and security proofs of MPC protocols (with multiple parties, sub-protocols,
and guaranteeing security against mobile active adversaries) is a complex task that involves knowledge
that spans cryptography, distributed computing and programming languages. Particularly, using a tool

11 https://project-everest.github.io
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Previous Protocol / Adversary E2E High-
Work Num. Parties Model Proof Assurance

[68] PCR [68] / Passive Yes No
3 Parties

[4] Yao [72] / Passive Yes Yes
2 Parties

[47] Maurer [58] / Active No* No
N Parties

Our BGW [18] / Passive & Yes Yes
Work N Parties (Pro)Active

Table 1: Comparison of the most relevant computer-aided verification and high-assurance implementations of
secure computation protocols. Private Count Retrieval (PCR) is an application-specific database querying
protocol involving 3 parties (client, server, and a trusted third party). *The authors in [47] prove that certain
properties are satisfied by the protocol in [58] is checked in EasyCrypt, then it is manually proven that a
simulator exists if these properties hold. Our work contains E2E proofs in EasyCrypt without any manual
steps.

like EasyCrypt to come up with a machine-checked proof is not easy, because one has to accommodate
complex cryptographic schemes and protocol using descriptions that can be used inside the EasyCrypt system.
Additionally, formalizing MPC protocols also involves formalizing the underlying mathematical structures
upon which they build. Despite EasyCrypt already providing a large set of mathematical constructions, we
still needed to formalize additional libraries, specially to deal with polynomials over finite fields.

There are currently no (publicly available) tools for automatically synthesizing verified implementations
of complex cryptographic (multiparty) protocols. Two possible approaches to tackle this objective consist
on either starting with a software implementation of the protocol and then attempt to prove properties
surrounding that implementation or starting with a proof script (with a formal specification and proofs) and
derive a concrete implementation from it. In this work, we generated a concrete verified correct-by-construction
executable software implementation from a proof script. Using our new EasyCrypt extraction tool-chain, we
were able to obtain such implementation of an MPC evaluator with (optional) proactive security guarantees.

1.2 Contributions

In this paper, we develop a high-assurance formally-verified proactive secure multiparty computation, (P)MPC,
evaluator based on machine-checked proactive (verifiable) secret sharing and the BGW [18] protocol. As a
side contribution we also perform the first computer-aided verification of a variant of the fundamental BGW
protocol for passive and static active adversaries (with computational security in the latter case). In what
follows, we outline the main contributions of this work.

Specification and computer-aided proofs of (P)MPC in EasyCrypt Our proof is performed in the
computation model, using the game-based infrastructure provided by EasyCrypt’s engine. We make use of the
real/ideal paradigm to specify our security notions. We define an environment that is able to select inputs for
each party involved in the protocol. The environment has the ability to trigger an adversary that actively
corrupts parties (change their inputs, remove them from the execution, etc.) via oracles. This adversary
interacts with an evaluator that either retrieves to the adversary information from a real execution of the
protocol or from an ideal and simulated one. The adversary redirects this information to the environment that
tries to distinguish between the two possibilities mentioned. The malicious setting requires a computational
bound in our proofs due to the use of the Decision Diffie-Hellman (DDH) assumption in the underlying
verifiable secret sharing (VSS).

To accomplish the computer-aided verification we start by identifying appropriate levels of abstraction for
MPC protocols (in terms of specification, security and composition) to allow the simplification and reuse of
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Fig. 1: Overview of the verified (P)MPC evaluator; verified sub-protocols are highlighted in blue. Parties
first share their private inputs (via the Share protocol) which are then passed to the evaluator. The
evaluator interprets computation as an arithmetic circuit using verified implementations of addition (π+) and
multiplication (πx) protocols based on the BGW [18] protocol. Parties locally compute additions and halt on
every multiplication, where they synchronize executions. These protocols can be sequentially composed with
the Refresh (πrefresh ) and Recover protocols (πrecover) to provide proactive security. At the end of the
evaluation, the result of the computation is obtained by reconstructing the output shares via a Reconstruct

protocol.

proof steps across the main proof. This abstract structure is an interesting side contribution of this work. It
is general enough to be reused since it accommodates many possible instantiations of both MPC and secret
sharing protocols. It can be a starting point for other machined-checked MPC proofs to be performed in the
future. We also provide a collection of useful lemmas proven in the abstract (such as composition lemmas);
this means that any user that wants to leverage advantage of our abstract architecture already has a set of
lemmas that can be carried out to concrete instantiations with very little effort and in a mechanical way.
Our abstract structure can then be used in other MPC proofs and/or can be tested with different concrete
implementations of MPC protocols, other than the ones we provide. We succinctly show how the abstract
framework can be reused in Section 3. The proof is completed by providing concrete instantiations that match
the abstract definitions, e.g., a variant of the BGW [18] protocol in case of MPC, and in addition to standard
and proactive secret sharing, proactive secret sharing for dishonest majorities [32,35,12].

Verified extraction tool-chain In order to obtain a verified implementation of the concrete protocol
instantiations defined in EasyCrypt, we developed a new extraction tool-chain for EasyCrypt. We use the
Why3 framework [39,38] as an intermediate layer in the extraction process; this allows us to use Why3’s new
powerful extraction mechanism [60] to obtain verified implementations of EasyCrypt descriptions in multiple
target languages. In this work we only extract executable OCaml code, but our pipeline can be extended to
extract C code with some additional work.
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As a side, an important feature of our verified MPC evaluator, or the (proactive) secret sharing components
thereof, is the possibility of applying it in other contexts and in other projects. For example, it can be
composed with a verified arithmetic circuit generator to build a verified MPC stack similarly to that for the
two-party case in previous work [4].

A Note on Universal Compostability (UC) Our EasyCrypt formalizations are not in the UC framework. In
parallel to our work, Stoughton et al. formalized in EasyCrypt a UC proof of security of secure message
communication using a one-time pad generated using the Diffie-Hellman key exchange 12. To the best of our
knowledge their work does not cover (P)MPC. Extending our work to the UC framework (possibly using the
framework of Stoughton et al.) is an interesting avenue for future work but outside the scope of this paper.

1.3 Overview of Operation of the Verified (P)MPC Evaluator

The architecture of our evaluator is shown in Figure 1, where verified sub-protocols are highlighted in blue.
Computing parties start by sharing their private inputs (via the Share protocol), shares are then passed to
our evaluator which is running on each party. The evaluator is able to interpret arithmetic circuits using
verified implementations of an addition (add or π+) and multiplication (mul or πx) protocols based on a
variant of the BGW protocol; in this variant of BGW we use a computationally secure verified secret sharing,
VSS, scheme. Parties can locally compute additions and will halt on every multiplication protocol, where
they synchronize executions. These protocols can then be combined with the refresh (or πrefresh) and
recover protocols (or πrecover) to achieve proactive security. At the end of the evaluation, the result of the
computation can be obtained by reconstructing the output shares of the verified secure evaluator via the
Reconstruct protocol.

The Share, Reconstruct and the subsequent protocols for evaluating arithmetic gates are implemented
and machine-checked in EasyCrypt. Our specifications and proofs for proactive secret sharing are based on the
work by Dolev et al. [32], Eldefrawy et al. [35] and Baron et al. [12] for the dishonest majority setting. When
we extend the protocols to MPC, we follow the BGW [18] protocol which only deals with honest majority.
One of the important contributions of our work is completing the first computer-aided verification of a variant
of the BGW protocol for passive and (static) active adversaries.

Limitations Formalization of underlying mathematical structures and basic components (i.e., finite fields and
cyclic groups and randomness generation), as well as the formalization of a Reed-Solomon decoder (e.g., the
Berlekamp-Welch algorithm), is out of scope of this work and is left abstract in our EasyCrypt code. Our
Trusted Computing Base (TCB) includes precisely the tools used to instantiate these abstract components:
Cryptokit, used to instantiate randomness generation, the OCaml zarith library, used to instantiate finite
fields and cyclic groups and finally ocaml-reed-solomon-erasure, an OCaml implementation of a Reed-Solomon
decoder.

1.4 Paper Outline

In Section 2, we provide informal descriptions of the cryptographic primitives and protocols that are used
in this paper. Section 3 describes how EasyCrypt is used to obtain a concrete proof of security for the
aforementioned primitives and protocols. We describe in Section 4 our EasyCrypt extraction tool-chain and
how it is used to synthesize a concrete implementation of the evaluator. Performance of the extracted
implementations is in Section 5. We finish up by summarizing related work in Section 6, and concluding the
paper with a discussion of future research directions in Section 7.

12 https://github.com/easyuc/EasyUC
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2 Preliminaries: (Proactive) Secret Sharing and MPC

Secret sharing In secret sharing [66,21], a secret s is shared among n parties such that an adversary corrupting
up to t parties cannot learn s, while any t+ 1 parties can recover s. A secret sharing protocol consists of two
sub-protocols: Share and Reconstruct. Initially, secret sharing schemes only considered (exclusively) passive
or active adversaries, and later work [52] generalized this to mixed adversaries.

Proactive secret sharing (PSS) The security of secret sharing should be guaranteed throughout the entire
lifetime of the secret. The notion of proactive security was first suggested by Ostrovsky and Yung [59],
and applied to secret sharing in [50]. It protects against a mobile adversary that can change the subset of
corrupted parties over time. Such an adversary could eventually gain control of all parties over a long enough
period, but is limited to corrupting less than t parties during the same period. In this work, we use the
definition of PSS from [52,33]: in addition to Share and Reconstruct, a PSS scheme contains a Refresh and
a Recover sub-protocols. Refresh produces new shares of s from an initial set of shares. An adversary that
controls a subset of the parties before the refresh and the remaining subset of parties after, will not be able to
reconstruct the value of s. Recover is required when one of the participant is rebooted to a clean initial state.
In this case, the Recover protocol is executed by all other parties to provide shares to the rebooted party.
Ideally such rebooting is performed sequentially for randomly chosen parties at a predetermined rate – hence
the “proactive” security idea. In addition, Recover could be executed after an active corruption is detected.
While most of the literature on PSS focuses on the honest majority setting [59,50,71,73,25,11,13,65], the first
PSS with dishonest majority was proposed by Dolev et al. in [33]. Standard (linear) secret sharing schemes
store the secret in the constant coefficient of a polynomial of degree < n/2, an adversary that compromises a
majority of the parties would obtain enough shares to reconstruct the polynomial and recover the secret.
Instead, [33] leverages the gradual secret sharing scheme of [52] constructed against mixed (passive and active)
adversaries, and introduces a PSS scheme robust and secure against t < n− 2 passive adversaries, or secure
but not robust (with identifiable aborts) against either t < n/2− 1 active adversaries or mixed adversaries
(k active corruptions out of n− k − 1 total corruptions). As part of our work we implement and verify two
versions of PSS. The first PSS is based on the standard Shamir scheme for honest majorities and serves as a
foundations for our BGW-based MPC. The second PSS is one for dishonest majority based on gradual secret
sharing [33]. However, we stress that we do not have an MPC evaluator for a dishonest majority based on the
latter secret sharing scheme.

Secure Multiparty Computation (MPC) The BGW protocol [18] is one of the first MPC protocols and can
be used to evaluate an arithmetic circuit (over a field F) consisting of addition and multiplication gates.
The protocol is mainly based on Shamir’s secret sharing, where parties share their inputs. Addition can be
performed locally, with each party adding its shares bu multiplication requires communication. To evaluate
multiplication, parties locally multiply the shares they hold to obtain a 2t sharing of the product, then
perform a degree reduction by using Lagrange coefficients (this only requires linear operations) to obtain the
sharing of the free term of that polynomial.

Proactive MPC (PMPC) PMPC can be regarded as special case of MPC that remains secure in the proactive
security model [59]. In [11], Baron et al. constructed the first (asymptotically) efficient PMPC protocol by
using an efficient PSS as a building block. The key idea consists in dividing the protocol execution into a
succession of two kinds of phases: operation phases (the computation of a circuit’s layer with addition and
multiplication gates, e.g., as in BGW) and refresh phases.

3 Machine-checked security proofs for Secret Sharing & MPC

In this section, we first describe what we prove in EasyCrypt, which represents the first step in achieving a
verified implementation of an MPC evaluator. Our proof approach consists of two main steps: 1) formalizing
in EasyCrypt an abstract framework that captures the desired behavior that we aim for our evaluator; and
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2) an instantiation step that provides concrete realizations (also in EasyCrypt) of the protocols and primitives
defined in the abstract setting. The intuition is that we will use the abstract framework to perform proofs at
a high and modular level, and then propagate those results downwards to concrete implementations with
little (proof) overhead. In fact, our abstract framework is modular enough to be reused and applied to other
MPC instantiations. We provide a concrete example of this later (see subsection 3.4).

We start the presentation of our EasyCrypt implementation with the description of the abstract framework
(∼ 2K LoC), that can be subdivided into two independent modules, one for secret sharing and one for MPC
protocols. We want to establish a relation between both in order to reduce the security of the overall evaluator
to the security of an arbitrary secret sharing scheme and to the security of an arbitrary PMPC protocol, as
shown in Theorem 1. We end the section with an explanation of the instantiation step, accounting for 7K
LoC, of which 1K comprises protocol specifications.

3.1 Proof overview

We first give an overview of the proving process, giving a high-level outline of it. As already mentioned, we first
modeled the desired behaviour of our evaluator by means of an abstract and modular setting, encompassing
the abstract framework to specify abstract functional definitions and security properties for all cryptographic
constructions (primitives, algorithms, and protocols) that are used in this work. Since it does not take into
account any functional specification of the components involved, it makes sense to use it to establish as much
results as possible. Concretely, many results (such as composition theorems) can be obtained by reasoning
at an abstract level, which can then be easily carried out to concrete instantiations. For example, one can
prove that two primitives (that match some security definitions) can be composed to yield another primitive
with a powerful security definition. The construction of a CCA-secure encryption scheme via a CPA-secure
encryption scheme and an UF-secure MAC scheme, without specifying any of the two, is a good example of
this approach [54].

Our abstract framework is comprised of two abstract modules: one for secret sharing and another for
MPC protocols. The first one defines an abstract construction of a secret sharing scheme and specifies three
security definitions for it: passive (honest-but-curious), integrity, and malicious (verifiable) secret sharing. At
this level, we prove that security of a verifiable secret sharing scheme can be reduced to security of a passive
secret sharing scheme that ensures integrity of the shares (i.e., any modification of the shares is detectable by
the parties involved in the protocol). We also prove that share integrity can be ensured if a commitment
scheme is used along side a secret sharing scheme, thus proving that an honest-but-curious secret sharing
scheme can be composed with a commitment scheme in order to build a verifiable secret sharing scheme.

The second one provides an abstract formulation of MPC protocols and four security definitions: passive,
malicious, random, and proactive. The two latter security definitions are enough to accommodate the desired
behavior of the refresh and recover protocols of the proactive model, respectively. We define a series of
(sequential) composition lemmas involving the security notions above, from which we highlight three:

(1) malicious ◦ malicious ⇒ malicious

(2) random ◦ malicious ⇒ random

(3) proactive ◦ random ⇒proactive.

Armed with these three lemmas, we can state that one is able to achieve a proactive secure MPC protocol
by combining smaller malicious MPC protocols with a random and a proactive protocol. Concretely to
our case, we want to have a sequence of add and mul protocols (that perform the evaluation of the desired
arithmetic circuit) ending with a refresh and a recover protocol to wrap the security of the execution.

Finally, we use these two abstract constructions to specify Theorem 1 that upper bounds the (proactive)
security of the evaluator with the security of the cryptographic constructions it encompasses without
considering concrete realizations.
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Theorem 1. For all ProAct adversaries A against the EasyCrypt implementation Evaluator, there exist
efficient simulator S and adversaries BVSS and BProactive−MalSS, such that:

AdvProactiveEvaluator,S(A) ≤AdvVSS(BVSS) +

AdvProactive−MPC(BProactive−MPC)

where AdvVSS(BVSS) and AdvProactive−MPC(BProactive−MPC) represent the advantages against the (verifiable)
secret sharing scheme and against the proactive MPC protocol to be executed.

Our EasyCrypt proof ends with the instantiation step, where concrete realizations of a secret sharing
scheme, commitment scheme, and MPC sub-protocols are specified and tied to the abstract definitions.
The main challenge in the instantiation step is to prove that the concrete definitions are actually valid
instantiations of the desired primitives, since all results obtained in the abstract framework (namely Theorem
1), are easily carried out to the concrete constructions once they are proven to be valid instantiations of
primitives.

An important component of this work was the development of a verified EasyCrypt polynomial library,
that provides a series of types and operators that deal with polynomials defined over a finite field. We include
a description of such library in Appendix Appendix A.

In what remains of this section, we will detail our EasyCrypt implementation, explaining the intermediate
steps that were followed in order to derive Theorem 1, namely how to build the two cryptographic primitives
that define the security of the evaluator. We will also provide EasyCrypt code snippets for relevant components
of this work. Due to space constrains, we will not be able to provide an extensive explanation of the proof,
as we will focus on just concrete instantiations of secret sharing schemes or MPC protocols. We refer the
reader to the full version of this paper [36] for a more detailed and complete description of our EasyCrypt
deployment.

3.2 Secret Sharing in EasyCrypt

Secret sharing, and its verifiable and proactive variations, plays a central role in our (proactive) secure
evaluator. It is the first primitive to be executed and any security violation in this component can compromise
the entire security of the evaluator. Different shares of different secrets must be indistinguishable and should
also be non-corruptible. Our first goal is to formally represent a verifiable secret sharing scheme and to derive
a concrete EasyCrypt implementation of it that could be extracted to executable code via our extraction
tool-chain.

We first describe our abstract secret sharing framework, pointing out how it can simplify the proofs that
could be much more complex if they were to be carried out considering concrete realizations of the involved
primitives. We then show how the abstract secret sharing primitives can be instantiated, and how the results
proven in the abstract setting are naturally propagated (down) to concrete instantiations of these schemes.

Abstract Secret Sharing The structure of the abstract secret sharing framework is shown in Figure 2. In
this figure, we depict abstract cryptographic primitives as rounded rectangles and security definitions as red
rectangles. If some security notion applies to some primitive, then the two are connected by a solid arrow.
The same way, if a primitive is used as an abstract building block in the security of another primitive, it will
be enclosed inside its rounded rectangle as a green circle. Security proofs are represented as dashed arrows.
Labeled arrows represent proofs that are propagated to the concrete instantiation of the abstract modular
framework.

The main result shown in Figure 2 is the definition of a verifiable secret sharing scheme as the composition
of an honest-but-curious secret sharing scheme with an unforgeable commitment scheme. Our formalization
of such results starts with the abstract definition of a secret sharing scheme structure, illustrated in Figure 3.
A secret sharing scheme is parameterized by 4 integers: i. n - number of parties involved in the protocol;
ii. k - number of secrets to be shared; iii. d - number of parties needed to reconstruct the secret; and iv. t
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Fig. 2: Secret sharing abstract framework. We define two cryptographic primitives and provide three security
definitions, one for commitment schemes and two for secret sharing schemes. The same secret sharing
abstraction can be used for both security definitions.

- corruption threshold. The addition of the k parameter may be an exaggeration for most secret sharing
protocols but it allows the specification of batch secret sharing schemes [42].

Next, the interface defines both the types and operations involved in the sharing protocol, including party
identifiers, secrets, shares and randomness types and, finally, the actual share and reconstruct operators. We
highlight the inclusion of p id set, which will contain all party identifiers. This parameter will be very useful
when proving correctness properties of both secret sharing and subsequent MPC protocols.

theory SecretSharingScheme.

op n : int. (* Number of parties *)

op k : int. (* Number of secrets *)

op d : int. (* Number of parties needed to reconstruct *)

op t : int. (* Corruption threshold *)

type p_id_t. (* Party identifier *)

op p_id_set : p_id_t list. (* Set of parties involved *)

type secret_t. (* Secret type *)

type share_t. (* Share type *)

type shares_t = (p_id_t * share_t) list. (* Set of shares *)

op dshare : share_t distr. (* Share distribution *)

type rand_t. (* Randomness *)

(* Share operation *)

op share : rand_t -> secret_t -> shares_t.

(* Reconstruct operation *)

op reconstruct : shares_t -> secret_t option.

end SecretSharingScheme.

Fig. 3: Abstract secret sharing scheme

Randomness is modeled as an explicit operator parameter. This allows us to write probabilistic operations
with deterministic flavour. For example, we define the share operator as op share : rand t → secret t → shares t,
which is a deterministic operator. Nevertheless, the sharing procedure of a secret sharing scheme is, naturally,
a probabilistic algorithm. Lifting it to a probabilistic operator would involve writing it as op share : secret t

→ shares t distr. Semantically, it means that the operator would be outputting probability distribution on
shares and that one would need to sample from this distribution in order to get a valid set of shares. This lift
would have very little effect on the proof but would, however, impact the code extraction process as it would
be infeasible to extract such probabilistic operators.
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We define three security requirements for secret sharing: honest-but-curious, integrity and verifiable. For a
full description of these security definitions, we refer the reader to Appendix B for their details.

Abstract commitment scheme To guarantee integrity of generated shares, a dealer needs to commit to them.
A commitment scheme can be defined based on the type of randomness used, the type of messages and the
type of the commits it produces. Figure 4 shows the abstraction of a commitment scheme. Interestingly, the
same abstraction could also be used to define other integrity mechanisms, e.g., message authentication codes.

theory CommitmentScheme.

type rand_t. (* Randomness *)

type msg_t. (* Message type *)

type commit_t. (* Commit type *)

(* Mac operation *)

op commit : rand_t -> msg_t -> commit_t.

(* Verify operation *)

op verify : msg_t -> commit_t -> bool.

end CommitmentScheme.

Fig. 4: Abstract commitment scheme

Nonetheless, such abstraction is not enough for the construction of a verifiable secret sharing scheme. In
fact, the way the commitment scheme is written, it only works for a single share, instead of multiple shares
as desired in our composition proof. We thus define a list variation of a commitment scheme that applies the
commitment scheme to a list of messages in order to smooth the composition with an honest-but-curious
secret sharing scheme. With this purpose, we defined a new theory ListCommitmentScheme (Figure 5) which
is parameterized by any commitment scheme. This means that, in order to come up with a list variation of a
given commitment scheme, one only needs to plug the single version of the commitment scheme to theory
ListCommitmentScheme. The modularity of the secret sharing abstract framework can also be verified here, as
the described list version will work for any commitment scheme that is plugged to it.

theory ListCommitmentScheme.

(* Abstract commitment scheme *)

clone import CommitmentScheme as CS.

clone import CommitmentScheme as ListCS with

type rand_t = CS.rand_t,

type msg_t = CS.msg_t list,

type commit_t = CS.commit_t,

op commit (r : rand_t) (m : msg_t) =

map (CS.commit r) m,

op verify (m : msg_t) (c : commit_t) =

all ((=) true) (map2 CS.verify m c).

end ListCommitmentScheme.

Fig. 5: Abstract list commitment scheme

We specify an unforgeability security definition for commitment schemes that can be consulted in Figure 32
in Appendix B.
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theory AbstractVerifiableSecretSharing.

...

clone import SecretSharingScheme as AVSS with

...

type share_t = SS.share_t * CS.commit_t,

type rand_t = SS.rand_t * CS.rand_t,

op share (r : rand_t) (s : secret_t) =

let (rs,rc) = r in

let ss = SS.share rs s in

let cs = LCS.commit rc ss in

merge ss cs,

op reconstruct (css : shares_t) =

let ss = unzip1_assoc css in

let cs = unzip2_assoc css in

if LCS.verify ss cs then SS.reconstruct ss else None.

...

end AbstractVerifiableSecretSharing.

Fig. 6: Abstract verifiable secret sharing scheme in EasyCrypt.

Abstract verifiable secret sharing We conclude our description of the abstract secret sharing framework
by describing our modular composition proof of a semi-honest secret sharing scheme with an unforgeable
commitment scheme, yielding a verifiable secret sharing scheme. We do not claim any novelty here, this is a
standard technique in previous verifiable secret sharing articles [1,26,37,40,43,44,51,53,55,61,62,63,8,27].

The primitives can be composed as shown in Figure 6. Our composition proof proceeds similar to the
encrypt-then-MAC for CCA-secure encryption schemes. We leave the passive secret sharing scheme abstract
but we force some types of the commitment scheme, namely that it produces commits to associations between
a party identifier and its respective share. Thereby, the list variation of this commitment scheme would
be producing commits to a map between party identifiers and shares, which is precisely the type of values
outputted by algorithm share presented in Figure 3.

The composition of the two primitives is a new secret sharing scheme where shares now carry a commitment
with them. Protocols share and reconstruct are specified in the expected way: i. share first shares the secret
according to the honest-but-curious secret sharing scheme, before producing commits to the generated shares;
and ii. reconstruct first verifies the integrity of the shares (if there was some malicious modifications). If no
integrity breach was found, it proceeds with the reconstruction of the secret according to the passive secret
sharing scheme. If it was unable to attest the validity of some share, the algorithm fails and produces no
output.

Theory AbstractVerifiableSecretSharing also includes a series of security instantiations. The goal is to prove
that malicious security for AVSS can be obtained as a combination of other security guarantees, namely the
unforgeability of the commitment scheme and the indistinguishability of the passive secret sharing scheme.

The security proof of the verifiable secret sharing construction in Figure 6 was done in two steps. We
start by showing that malicious security of AVSS can be reduced to its passive security and its integrity.
Finally, we individually show that passive security of the verifiable secret sharing scheme can be reduced to
the passive security of the underlying secret sharing scheme and that share integrity can be reduced to the
unforgeability of the underlying commitment scheme.

Concrete secret sharing We now show how to make use of the modular abstract framework to produce
concrete instantiations of cryptographic primitives that are compatible with our EasyCrypt extraction tool,
focusing on the achievement of a verifiable secret sharing scheme. Based on the afore described modular
proof, one only needs to provide a valid realization of an honest-but-curious secret sharing scheme and of an
unforgeable commitment scheme. The verifiable secret sharing scheme is derived easily via specifications in
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Figure 6, as presented in Figure 7. In the figure, if some arrow is labeled, it means that the result is already
proven in the abstract framework and that it can be reused here (hence it does not represent any significant
verification overhead). The proofs that were made in this phase (proofs that concrete implementation of a
primitive achieves the desired security) are represented as solid arrows.

Shamir’s Secret

Pedersen’s Commitment
Scheme

Sharing Scheme

Shamir’s Verifiable
Secret Sharing Scheme

UF-SEC

Honest-but-curious

Verifiable

(1)

(2
)

(1),(2)

(1)

(2)

Fig. 7: Concrete instantiation of the secret sharing framework. Concrete Shamir’s verifiable secret sharing
scheme is easily obtained via a concrete instantiation of Shamir secret sharing scheme and of Pedersen’s
commitment scheme. The major challenges in this step are the security proofs of Shamir secret sharing schem
and of Pedersen’s commitment scheme.

For our proactive secure evaluator, we choose to implement the verifiable version of Shamir’s secret sharing
scheme [67] combined with Pedersen’s commitment scheme [62]. The EasyCrypt implementation of Shamir’s
secret sharing scheme is detailed in Figure 8, where F.t represents the type of elements of a finite field.

theory ShamirSecretSharingScheme.

...

clone import SecretSharingScheme as Shamir with

type secret_t = F.t,

type share_t = F.t,

type rand_t = polynomial,

op share (r : rand_t) (s : secret_t) =

map (fun x => (x,eval x r)) p_id_set.

op reconstruct (ss : (p_id_t * share_t) list) =

Some (interpolate CyclicGroup.FD.F.zero ss).

...

end ShamirSecretSharingScheme.

Fig. 8: Shamir secret sharing scheme

The next step was to specify a concrete commitment scheme. Because we were interested in exploring the
homomorphic properties of commitments, we chose to implement Pedersen’s commitment scheme, reproduced
in Figure 9.
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theory PedersenCommitmentScheme.

...

op multiplicator (l : group list) : group =

foldr (CyclicGroup.( * )) g1 l.

clone import CommitmentScheme as PedersenCS with

type rand_t = polynomial * polynomial,

type msg_t = t * t,

type commit_t = t * ((int * group) list),

op commit (r : rand_t) (m : msg_t) =

let (rs,rc) = r in let (m,sh) = m in

let rz = zip rs rc in

(eval m r, map (fun x => ((fst x).‘expo, g^(fst x).‘coef * h^(snd x).‘coef)) rz),

op verify (m : msg_t) (c : commit_t) : bool =

let (c, gsh) = c in

let (m,sh) = m in

g^sh*h^c = multiplicator (map (fun x => snd x ^ (m ^ fst x)) gsh).

...

end PedersenCommitmentScheme.

Fig. 9: Pedersen commitment scheme

Finally, we can instantiate the abstract verifiable secret sharing construction using the concrete passively
secure secret sharing scheme (ShamirSS, inside theory ShamirSecretSharingScheme) and the concrete unforgeable
commitment scheme (PedersenCS, inside theory PedersenCommitmentScheme). This instantiation step is
actually very simple and can be done with very little overhead. An EasyCrypt implementation of the verifiable
secret sharing version of Shamir’s secret sharing scheme can then be obtained simply by plugging ShamirSS
and PedersenCS to the abstract verifiable secret sharing construction.

PSS with dishonest majority We also implemented a proactive (gradual) secret sharing scheme [32,35] which
is secure against a dishonest majority of mixed adversaries - detailed in Section 4 - where we use it for
an example-driven presentation of how the EasyCrypt extraction tool works. Formalization and extracted
executables of this scheme can be of independent interest beside the BGW-based MPC part.

3.3 MPC Protocols in EasyCrypt

We divide the MPC sub-protocols we specified into two main categories: 1. arithmetic protocols, used to
perform actual circuit computation; these are the addition (add) and multiplication (mul) protocols; and
2. ”security” protocols, used to ensure proactive security throughout the evaluation of the circuit; protocols
refresh and recover will be used in this context.

The circuit to be executed will be composed of a series of addition and multiplication protocols, interpolating
with refresh and recover in order to maintain the evaluation secure. Informally, we want protocols add and
mul to achieve privacy, meaning that we will only want for the communication traces and output shares
of these protocols to leak no information about the input shares involved in the protocol. Afterwards, an
execution of refresh would re-randomize the outputs. We call such security notion random. Lastly, recover can
be used in order to prevent an adversary from potentially corrupting all nodes of the system. We say protocol
recover achieves proactive security. All the afore mentioned security notions consider malicious adversaries.
This high-level description is summarized in Figure 10, where we depict our abstract modular framework
for MPC protocols. This architecture leverages the security definitions found in other simular tools such as
Sharemind [22,23] or [5]. Nevertheless, these two works only consider passive security, while our evaluator
provides proactive security.
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Fig. 10: MPC abstract framework. Protocols can realize three functionalities - deterministic, random and
proactive. Smaller protocols can also be composed in order to achieve stronger security guarantees.

Abstract MPC At the base of our MPC abstract framework lies the abstraction of an MPC protocol (Figure 11).
The abstraction defines an operator prot which models the functional behaviour of the protocol, with parties
entering the protocol with their inputs and randomness information and ending with some output. In a
possible instantiation, one could specify individual party operations that can then be called inside prot
operator, which would model communication.

theory AbstractProtocol.

type p_id_t. (* Party identifier *)

op p_id_set : p_id_t list. (* Set of parties involved *)

type input_t. (* Party input *)

type inputs_t = (p_id_t * input_t option) list. (* Set of party inputs *)

type output_t. (* Party output *)

type outputs_t = (p_id_t * output_t option) list. (* Set of party outputs *)

type rand_t. (* Party randomness *)

type rands_t = (p_id_t * rand_t option) list. (* Set of party randomness *)

type conv_t. (* Party "conversation" *)

type convs_t = (p_id_t * conv_t option) list. (* Set of party "conversations" *)

(* Executes the protocol *)

op prot : rands_t -> inputs_t -> (convs_t * outputs_t).

end AbstractProtocol.

Fig. 11: Abstract MPC protocol

The proposed abstraction not only fits complete instantiations of protocols but also allows one to split the
same protocol into multiple smaller protocols and then compose them into a bigger protocol. For example,
the refresh protocol can be written as a composition of a protocol where every party shares the value 0
(zero), a protocol where every party sends to each other the corresponding shares and a protocol where
every party adds the received shares to the current share. This approach is actually ideal when reasoning
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about the security of a protocol against malicious adversaries. Intuitively, one can prove the desirable level of
security for the individual protocols and, subsequently, derive the security of the composed protocol using
the composition lemmas that we describe with more detail later in this section. Note that this approach
contemplates possible misbehaviors in the middle of the protocol execution, which is a desirable property for
malicious secure protocols and, probably, the most challenging aspect to model.

In our evaluator, MPC protocols may realize three types of functionalities. Similarly to the protocol
abstraction, we define functionalities that will execute in one block and functionalities that will execute
by phases. In the private functionality, protocols must realize some arithmetic operation. Intuitively, this
functionality receives unshared inputs and computes the arithmetic operation over raw inputs instead of
over shared values. Regarding random functionality, protocola must re-randomize the input shares. In short,
executing the protocol must output a result indistinguishable from freshly sharing a secret after reconstructing
it. Finally, in the proactive functionality, protocols must recover a corrupted party to a non-corrupted state.
Informally, recovering parties should receive new shares that would invalidate the previous ones. EasyCrypt
snippets for the three functionalities can be found in the extended version of this paper.

These functionalities are tied to a specific Real ∼ Ideal security experiences. For private and random
security, our security experiencies are extensions to the malicious setting of the ones defined in [22,5], while
for proactive security we use the ones formally defined in [35]. Likewise, we define three different types of
simulators. This is due to the fact that simulators will have different goals, according to the security asset.

We modeled the security definitions by means of EasyCrypt modules in the following way. An environment
Z will try to distinguish between a real execution of the protocol or the simulated one. In order to do so, Z
can ask an adversary A to execute either the protocol or to simulate it (behaviour defined by some bit b).
Since we are interested in malicious adversaries, this adversary will be grant access to oracles (that are to be
executed at the end of every protocol stage):

– corrupt - getting access to party
– corruptInput - modify some corrupted party phase input
– abort - remove some party from the protocol

At the end, A will provide Z with information (depending on the security defintion) that Z will use to make
its guess. We refer the reader to Appendix C for a complete view of the security definitions representation.

The functionalities, security experiences and simulators described above define security for individual
protocols but not for the entire evaluator. Intuitively, we want the overall evaluator to be a composition of
smaller protocols for which it is simpler to prove security. Subsequently, we want to derive security for the
entire system by relying on composition lemmas surrounding the MPC protocols. Informally, we want to
evaluate a sequence of addition and multiplication protocols, keeping the evaluation private. The circuit will
then reach a refresh or a recover protocol, and will assume the security each protocol provides. We thus need
three composition lemmas:

1. The composition of two private protocol yields a private protocol.
2. The composition of a private protocol with a random protocol yields a random protocol.
3. The composition of a random protocol with a proactive protocol yields a proactive protocol.

To finish this subsection, we highlight how EasyCrypt can be used in order to define the composition of a
private and a random protocols and how to specify its security.

Figure 12 details the specification of the composed protocol Π = π2 ◦ π1. The structure is simple. Each
party i involved in protocol Π will input two shares xi and yi of the values x and y, respectively, and will end
the execution of Π with one share zi of some value z, that will be the randomized result of the arithmetic
operation realized by protocol π1. Inputs xi and yi are also the inputs of protocol π1, whereas the the input
of π2 will be the output of π1.

The security of the composed protocol can now be reduced to the security of the two protocols. The
interesting aspect about this proof is that it can be performed in an abstract and modular way. Consequently,
in future instantiations, the only concern will be proving security for the small components of a bigger protocol,
since the composition lemmas can be applied. The reason why the proof can be modular is because the
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composed simulator and functionalities do not need to be restricted to any particular behavior or description
but can simply be defined as the sequential execution of S1 and S2 and F1 and F2. Figure 12 demonstrates
the security set up for the composed protocol Π.

The intuition behind the security proof is that every real execution of a protocol can be replaced by the
ideal one. At the end, instead of executing the two protocols sequentially, the security experience will be
executing the two simulators sequentially, therefore connecting the real and ideal worlds.

theory RandomAfterPrivateComposition.

...

clone import AbstractProtocol as P1.

clone import PrivateProtocolSecurity as P1PrivSec with

theory AbstractProtocol <- P1.

clone import AbstractProtocol as P2 with

type input_t = P1.output_t.

clone import RandomFunctionality as RandomFunc with

type input_t = P1PrivSec.F.output_t.

clone import RandomProtocolSecurity as P2RandSec with

theory AbstractProtocol <- P2,

theory F <- RandomFunc.

clone import AbstractProtocol as P with

type input_t = P1.input_t,

type output_t = P2.output_t,

type rand_t = P1.rand_t * P2.rand_t.

clone import RandomProtocolSecurity as PRandSec with

type F.input_t = P1PrivSec.F.input_t,

type F.output_t = P2RandSec.F.output_t,

type F.rand_t = P2RandSec.F.rand_t,

type F.leak_t = P1PrivSec.leak_t * P2RandSec.leak_t,

op F.func (r : F.rand_t) (xx : F.input_t) =

let (y, l1) = P1PrivSec.F.func xx in

let (z, l2) = P2RandSec.F.func r y in (z, (l1, l2)),

theory AbstractProtocol <- P.

...

module Simulator(S1 : P1PrivSec.Sim_t) (S2 : P2RandSec.Sim_t)={

proc simm(l : leak_t, xi : input_t, zi : output_t) = {

...

(l1, l2) <- l;

(yi, v1) <@ S1.simm(l1, xi);

v2 <@ S2.simm(l2, yi, zi);

return ((v1,v2));

}

}

...

end RandomAfterPrivateComposition.

Fig. 12: Composition of a private protocol with a random protocol

Concrete MPC Instantiation We implemented in EasyCrypt protocols add, refresh and recover specified in [35].
Protocols add and refresh do not introduce a significant implementation overhead since add is a simple local
protocol and refresh can be seen as a composition of share (of a secret equal to 0) and add. Protocol recover is
slightly more complex than the previous two. It involves non-recovering parties to sub-share their shares and
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recovering parties performing polynomial interpolation in order to obtain the new shares. For multiplication,
we choose to implement the simplified malicious version of the BGW multiplication protocol [17] described
by Asharov and Lindell in [7]. This version is similar to the passive version, with the introduction of a an
error correction step that can correct possible subshare corruptions. Figure 13 compiles the instantiation step
of MPC protocols.

Random
Functionality

Deterministic
Functionality

π+ π×

πrefresh ◦ πarith

πrefresh

Random
Functionality

πrecover ◦ πrefresh

Proactive
Functionality

πrecover

Proactive
Functionality

(2) (1) (3) (4)

Fig. 13: Concrete instantiation of MPC framework. π+ and π× are used to evaluate an arithmetic, while
πrefresh and πreconstruct are used to ensure security of the evaluation. Security of the composed protocols is
easily derive from the abstract framework once security is proven for concrete instantiations.

We now present the EasyCrypt formalization of the recover protocol. Protocols add, refresh and mul can
be found in Appendix D. The EasyCrypt code of the MPC protocols is written party-wise, meaning that
we have operators for every stage of the protocol that are then merged in the prot operator. For example,
operator nr pstage1, nr pstage2 and r pstage1 in Figure 14 represent the first stage of non-recovering parties,
the second stage of non-recovering parties and the first and only stage of recovering parties in the recover
protocol, respectively. The outputs of those stages are the party state (values that need to be carried out
throughout the execution of the party) and some message, which can either be a broadcast (like bdcst1 t in
nr pstage1) or a simple message (like msg2 t in nr pstage2). The prot operator is used to depict the global
execution of the protocol, including simulation of party communication.

Following the BGW protocol description from [7], we built a Reed-Solomon code specification in EasyCrypt,
that we use to correct possible errors in the shares. We keep this definition abstract for now, and leave its
concrete realization for future work.

A simple circuit evaluation function can now be defined. This function, taking a circuit description as input
(a series of additions and multiplications), outputs a protocol version of that circuit mapping every addition
into an add protocol and every multiplication into a mul protocol. Nevertheless, the protocol description
of the circuit should also take care of the introduction of periodic calls to refresh and recover protocols, in
order to ensure that the system achieves the desired level of security. We opt to introduce a refresh and a
recover protocol at the end of every circuit layer. This decision introduces a performance penalty that could
be mitigated if recover and refresh would only be introduced in strategic points of the circuit.

3.4 Reusability of the abstract framework

One of the most interesting features of our work is the propose abstract framework. We claim it is general
enough to accommodate multiple possible instantiations of both secret sharing schemes and MPC protocols.
The previously shown instantiations are just an example of how it can be used. In this section, we demonstrate
that our framework is even able to abstract existing MPC platforms such as Sharemind [22,23].

Sharemind incorporates a 3-out-of-3 additive secret sharing scheme, which shares elements of a finite field
and produces shares which are also elements of the same finite field. The sharing and reconstructing processes
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theory RecoverProtocol.

...

clone import Protocol as Recover with

type pstate1_t = shares_t,

op nrpstage1 (r : rand_t) : pstate1_t =

with r = RRP _ => []

with r = RNRP rs => share rs F.zero,

op nrpstage2 pid i ss =

foldr (fun (x : share_t) (acc : share_t) =>

if verify (pid, fst x) (snd x) then

AdditionProtocol.pexec (x,acc)

else acc) i ss,

op rparty pid r ss =

with r = RRP rc =>

let o = interpolate pid (map (fun pidsh => (fst pidsh, fst (snd pidsh))) ss) in

let c = commit rc (pid,o) in (o,c)

with r = RNRP _ => (witness, witness),

op prot rs iss =

let rp = fst (snd (head witness iss)) in

let nrp = rem rp p_id_set in

let iss = map (fun pidi => let (pid,i) = pidi in (pid, snd i)) iss in

let pst1 = map (fun pid => (pid, nrpstage1 (oget (assoc rs pid)))) nrp in

let cs = map (fun pid => (pid, map (fun ss => snd ss) (oget (assoc pst1 pid)))) nrp in

let sss = map (fun pid => (pid, map (fun idss => oget (assoc (snd idss) pid)) pst1)) nrp in

let os = map (fun pid => (pid, nrpstage2 pid (oget (assoc iss pid)) (oget (assoc sss pid))))

nrp in

let cs = map (fun pid => (pid, oget (assoc cs pid) ++ (oget (assoc sss pid)))) nrp in

let orp = rparty rp (oget (assoc rs rp)) os in

let crp = map (fun x => snd x) os in

Some ((rp, crp) :: cs, (rp, orp) :: os).

end RecoverProtocol.

Fig. 14: Recover protocol

are conceptually easy. Sharing outputs three shares, where two are randomly generated and the other one
is obtaining by subtracting the secret by the two random shares. The secret can be easily reconstructed
by adding all the shares. We show how to instantiate this scheme using our secret sharing abstraction in
Figure 15.

Similarly to our addition protocol, Sharemind addition (depicted in Figure 16) can be locally computed by
simply adding shares.

Refreshing shares inside the Sharemind platform involves parties generating a random value and sending
that value to the next party, i.e. party i sends its random value to party i+ 1. Shares are randomized by
adding the party’s random value and subtracting the received random value. Sharemind’s refresh protocol can
be found in Figure 17.

Finally, the multiplication protocol is slightly more complex than the previous two but is conceptually
similar to the refresh protocol as parties will also send information to the party with the next identifier. It
involves two calls to the refresh protocol and every party will send the new randomized shares to the next
party. At the end, the multiplication of two values x̄ = x1 + x2 + x3 and ȳ = y1 + y2 + y3 can be obtained by
performing

∑3
i=1

∑3
j=1 xi · yj . We show the EasyCrypt instantiation of Sharemind’s multiplication protocol in

Figure 18.
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theory AdditiveSecretSharingScheme.

clone import SecretSharingScheme with

op n = 3,

op k = 1,

op d = n,

op t = n - 1,

type p_id_t = t,

op p_id_set = [ofint 0, ofint 1, ofint 2],

type secret_t = t,

type share_t = t,

type rand_t = t * t,

op share (r : rand_t) (s : secret_t) : (int * share_t) list =

let (r1,r2) = r in

zip p_id_set [r1; r2; s - r1 - r2],

op reconstruct (ss : (int * share_t) list) : (secret_t) option =

Some (summation (unzip2 ss)).

end AdditiveSecretSharingScheme.

Fig. 15: Sharemind’s additive secret sharing scheme

theory SharemindAddition.

clone import Protocol as SAddition with

type p_id_t = p_id_t,

op p_id_set = p_id_set,

type input_t = share_t * share_t,

type output_t = share_t,

type rand_t = unit,

type conv_t = unit,

op prot (r : (p_id_t * rand_t) list) (is : (p_id_t * input_t)) =

(map (fun pid => (pid, None)) p_id_set,

map (fun pid => let x = oget is.[pid] in (pid, fst x + snd x)) p_id_set).

end AdditiveSecretSharingScheme.

Fig. 16: Sharemind’s addition protocol

We demonstrated that all Sharemind components are actually concrete instantiations of our abstract
framework, thus providing evidence of its modularity and generality. All this elements can then be composed
in order to obtain the full Sharemind evaluation system.

4 EasyCrypt extraction tool-chain

Our verified implementation of a (proactive) MPC evaluator is obtained via a new extraction tool-chain
for EasyCrypt. The general execution pipeline of the tool-chain is shown in Figure 19. Briefly, an EasyCrypt
description is first translated into a WhyML program, which can then be fed to the Why3 [39,38] platform
in order to perform extraction to OCaml using the new Why3 (verified) extraction mechanism [60]. Note
that besides making use of Why3 code generation capabilities, one could also use Why3’s proving system.
For example, one could take the generated WhyML program, annotate it with the desired predicates and
use Why3 to discharge the generated verification conditions; for example, one can use Why3 to prove safety
about some EasyCrypt code in an automated way. This subject is outside the scope of this work and is an
interesting future research direction.
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theory SharemindRefresh.

clone import Protocol as SRefresh with

type p_id_t = p_id_t,

op p_id_set = p_id_set,

type input_t = share_t,

type output_t = share_t,

type rand_t = t,

type conv_t = t * t,

op prot (r : (p_id_t * rand_t) list) (is : (p_id_t * input_t)) =

(map (fun pid => let ri = oget r.[pid] in

let ri1 = oget r.[pid - 1] in

(pid, (ri, ri1))) p_id_set,

map (fun pid => let ri = oget r.[pid] in

let ri1 = oget r.[pid - 1] in

let i = oget is.[pid] in

(pid, i + ri - ri1)) p_id_set).

end SharemindRefresh.

Fig. 17: Sharemind’s refresh protocol

Why3 in a nutshell Why3 is a framework for deductive verification of programs. It allows the user to specify,
annotate, prove programs and, if desired, obtain concrete correct-by-construction implementations of the
specifications made. Why3 was geared towards automation of proofs by making use of external automatic
theorem provers. Nevertheless, it can also be paired with interactive provers such as Coq or Coq.

Why3 incorporates a ML-like language called WhyML. Besides providing features commonly found in
other functional programming languages (pattern matching, records, ...), WhyML encompasses an annotation
mechanism, allowing an user to write contracts (pre- and post-conditions and loop invariants) for the specified
functions. The validity of these contracts can then be checked usingWhy3, that offers a graphical interface to
the user to interact with the proving system.

WhyML code may also be used with the objective of generating correct-by-construction executable code.
Why3 code extraction mechanism is general enough to support extraction to multiple platforms, such as
OCaml or C, by providing the desired driver to the extraction system. In fact, it is also possible to provide
user-defined drivers, if one wants to deviate from how Why3 performs extraction by default or if one wants to
specify how abstract functions in the WhyML file are to be extracted.

We chose Why3 as an intermediate tool for two reasons. First, the specification languages of both
frameworks (EasyCrypt and Why3) are very similar, which simplifies the translation process between the two
platforms. Second, Why3 incorporates a powerful, verified, extraction mechanism, supporting extraction to
multiple platforms and languages. However, some are not as mature (or verified) as the OCaml extraction. We
view our tool-chain as an interesting starting point for a future (more general) EasyCrypt extraction tool-chain
that makes use of a refined Why3 based code generation with support for multiple target languages.

From EasyCrypt to OCaml We provide here an example illustration of our tool-chain using gradual secret
sharing. We use the (proactive) gradual secret sharing scheme presented in [32,35] to demonstrate how
executable code can be obtained from an EasyCrypt protocol specification. Briefly, the gradual secret sharing
scheme is a composition of an additive secret sharing scheme and a batch secret sharing scheme. The additive
secret sharing scheme is first executed using a secret s with the purpose of obtaining d summands s1, . . . , sd
adding up to s. Then, every summand is shared linearly, increasing the degree of the sharing polynomial
as parties advance on the summand they are sharing. We start by showing how the additive secret sharing
scheme was specified in EasyCrypt in Figure 20. Note that Sharemind’s additive secret sharing scheme in
Figure 15 can be seen as a special instantiation of this one, with the value of n being set to 3.
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theory SharemindMultiplication.

clone import Protocol as SMultiplication with

type p_id_t = p_id_t,

op p_id_set = p_id_set,

type input_t = share_t * share_t,

type output_t = share_t,

type rand_t = t * t,

type conv_t = t * t * t * t,

op prot (r : (p_id_t * rand_t) list) (is : (p_id_t * input_t)) =

let xx = map (fun pid => (pid, fst (oget is.[pid]))) p_id_set in

let yy = map (fun pid => (pid, snd (oget is.[pid]))) p_id_set in

let r1 = map (fun pid => (pid, (oget r.[pid]).‘1)) p_id_set in

let r2 = map (fun pid => (pid, (oget r.[pid]).‘2)) p_id_set in

let (crxx, rxx) = SRefresh.prot r1 xx in

let (cryy, ryy) = SRefresh.prot r2 yy in

(map (fun pid => let xi = oget rxx.[pid] in

let yi = oget ryy.[pid] in

let xi1 = oget rxx.[pid - 1] in

let yi1 = oget ryy.[pid - 1] in

(pid, (xi, yi, yi1, xi1)) p_id_set,

map (fun pid => let xi = oget rxx.[pid] in

let yi = oget ryy.[pid] in

let xi1 = oget rxx.[pid - 1] in

let yi1 = oget ryy.[pid - 1] in

(pid, xi * yi + xi * yi1 + xi1 * yi)) p_id_set).

end SharemindMultiplication.

Fig. 18: Sharemind’s multiplication protocol

The additive secret sharing is very easy to implement. Every party will get a random share (given by the
random type) except for the first party, who gets the difference between the secret and the summation of all
the random summands. The secret can be easily reconstructed by adding all the shares.

The batch secret sharing scheme is a good example of a secret sharing scheme that produces shares to
mutliple secrets. Briefly, it makes use of one linear secret sharing scheme to share every secret. In order to
reconstruct, parties can recover one polynomial at a time and then evaluate it in the zero point to obtain the
original secret.

The gradual secret sharing scheme can finally be specified as shown in Figure 22, where we assume that
the scheme was instantiated for 15 parties.

We translate every type definition and functional operator to its counterpart in WhyML. We will focus only
on the types and operators defined by GradualSS and omit definitions of dependencies such as list operations.
The WhyML code generated for the same scheme can be found in Figure 23. As Figures 22 and 23 show, the
code in the two scripts is very similar. Abstract values (both abstract operators and abstract constants) are
defined in Why3 using val, every EasyCrypt op is mapped to an WhyML let and the type keyword is the same
in both languages. Note, however, that the order of parametric types is reversed in both languages. In general,
our translation tool performs a simple syntactic translation between the two languages, which increases our
confidence about correctness of the tool even without a formal proof for this part.

The WhyML program is now ready for extraction. Applying the Why3 extraction mechanism yields the
correct-by-construction OCaml code in Figure 24.
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Fig. 19: EasyCrypt extraction tool-chain. We only extract OCaml code in this work, but there are resources
online suggesting that C and PVS code could also be extracted from WhyML.

theory AdditiveSecretSharingScheme.

const n : {int | 2 <= n} as gtn_2.

op k = 1.

op d = n.

op t = n - 1.

type p_id_t = int.

op p_id_set = iota_ 0 n.

type secret_t = t.

type share_t = t.

type rand_t = t list.

op share (r : rand_t) (s : secret_t) : (int * share_t) list =

zip p_id_set ((s - summation r) :: r).

op reconstruct (ss : (int * share_t) list) : (secret_t) option =

Some (summation (unzip2 ss)).

clone import SecretSharingScheme as ASS with

...

end AdditiveSecretSharingScheme.

Fig. 20: Additive secret sharing scheme

5 Verified (proactive) secret sharing and MPC implementation

Our verified implementation of the secure arithmetic evaluator was obtained via the EasyCrypt extraction
tool described in Section 4, except the abstract libraries for randomness generation, Reed-Solomon codes
and the cyclic group and finite field structures, which were implemented using the CryptoKit library 13. We
generated cyclic group (and finite field) parameters using openssl and used ocaml-reed-solomon-erasure 14 for
instantiating the Reed-Solomon error correction.

In this work we only focus on extracting an OCaml implementation (as highlighted in Figure 19). Because
there are no publicly available implementations of proactive secret sharing and PMPC protocols, we compare
the execution time of our extracted gradual secret sharing scheme with an unverified manual implementation
of gradual secret sharing that we develop using the native secret sharing class in Charm 15. We provide
microbenchmarks for our extracted implementation in both the passive and malicious cases.

Benchmarking results of the secret sharing schemes are presented in Table 3, while benchmarks of the
MPC protocols are shown in Table 4. We provide individual performance times for share, reconstruct, add,
mult, refresh and recover for a field size of 128, 256, 512 and 1024 bits and for 5, 9 and 15 parties. We present

13 https://github.com/xavierleroy/cryptokit
14 https://gitlab.com/darrenldl/ocaml-reed-solomon-erasure
15 https://github.com/JHUISI/charm
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theory BatchSecretSharingScheme.

import PedersenCommitmentScheme.

const n : { int | 5 <= n < F.q } as ge2n_gtnZPp.

const d = n - 3.

const t = n\%/2.

const k = d.

type p_id_t = t.

op p_id_set : t list.

type secret_t = t list.

type share_t = (t * commit_t) list.

type rand_t = polynomial list * polynomial list.

op exec (p : polynomial) (ss : (p_id_t * share_t) list) (rc : polynomial): (p_id_t * share_t)

list =

map (fun id_ss => let (id,ss) = id_ss in (id, ss ++ [(eval id p, commit (p,rc) (id, eval id p))

])) ss.

op loop (rr : (polynomial * polynomial) list) ss =

with rr = [] => ss

with rr = ps :: rr’ => loop rr’ (exec ps.‘1 ss ps.‘2).

op share (r : rand_t) (s : secret_t) : (p_id_t * share_t) list =

let (rs,rc) = r in

let rr = zip rs rc in

loop rr (map (fun id => (id, [])) p_id_set).

op ocons (x : ’a) (ol : ’a list option) =

omap ((fun x y => x :: y) x) ol.

op build_points_pid’ (pid : p_id_t) (ss : share_t) : ((p_id_t * t) list) option =

with ss = [] => Some []

with ss = x :: xs =>

if verify (pid, x.‘1) x.‘2 then

ocons (pid, x.‘1) (build_points_pid’ pid xs)

else None.

op build_points_pid (s : (p_id_t * share_t)) : ((p_id_t * t) list) option =

build_points_pid’ (fst s) (snd s).

op build_points_pids (ss : (p_id_t * share_t) list) =

with ss = [] => Some []

with ss = x :: xs =>

let ox = build_points_pid x in

if ox <> None then

ocons (oget ox) (build_points_pids xs)

else None.

op build_points (ss : (p_id_t * share_t) list) =

let obpt = build_points_pids ss in

if obpt <> None then

Some (transpose (oget obpt))

else None.

op open_loop (pts : (p_id_t * t) list list) : t list =

with pts = [] => []

with pts = x :: xs =>

interpolate F.zero x :: open_loop xs.

op reconstruct (ss : (p_id_t * share_t) list) : secret_t option =

let obpt = build_points ss in

if obpt <> None then

Some (open_loop (oget obpt))

else None.

clone import SecretSharingScheme as BSS with

...

Fig. 21: Batch secret sharing scheme
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theory GradualSecretSharingScheme.

const n = 15.

op k = BSS.k.

op d = BSS.d.

op t = BSS.t.

type secret_t = ASS.secret_t.

type share_t = BSS.share_t.

type rand_t = ASS.rand_t * BSS.rand_t.

op share (r : rand_t) (s : secret_t) : (BSS.p_id_t * share_t) list =

let (ra,rb) = r in

let summands = ASS.share ra s in

BSS.share rb (map snd summands).

op reconstruct (ss : (BSS.p_id_t * share_t) list) : secret_t option =

let summands = BSS.reconstruct ss in

ASS.reconstruct (zip ASS.p_id_set (oget summands)).

clone import SecretSharingScheme as GradualSS with

...

end GradualSecretSharingScheme.

Fig. 22: Gradual secret sharing scheme (File name: Gradual.ec).

module GradualSS

...

val n : int

let k = 1

let d = n - 3

let t = d - 1

type p_id_t = int

val p_id_set : t list

type secret_t = t

type share_t = list (t * (t * (list (int * group))))

type rand_t = list t * (list (monomial list))

let share (r : rand_t) (s : secret_t) : list (BSS.p_id_t * share_t)=

let (ra,rb) = r in

let summands = share ra s in

share rb (map snd summands)

let reconstruct (ss : list (p_id_t * share_t)) : option secret_t =

let summands = reconstruct ss in

reconstruct (zip p_id_set1 (oget summands))

Fig. 23: Gradual secret sharing scheme in WhyML.

the execution times in milliseconds. We also provide an individual comparison with the Charm unverified
implementation of the gradual secret sharing scheme in Table 2.

Our measurements were conducted on an x86-64 Intel Core i5 clocked at 2.4GHz with 256KB L2 cache per
core. The extracted code was compiled with ocamlopt version 4.05.0 and the tests were ran in isolation, using
the OCamlSys.time operator to read the execution time. We ran tests in batches of 100 runs each, noting the
median of the times recorded in the runs.

We found that the sharing operation is faster in our generated code while reconstruct performs better
in the Charm version. This may be justified by the verification penalty induced by the verified polynomial
library (specially the polynomial interpolation) that only manifests itself in the reconstruction phase. In fact,
the share protocol does not make use of significant polynomial operations (besides polynomial evaluation
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let d1 : Z.t = Z.sub (Z.of_string "5") (Z.of_string "3")

let k : Z.t = d

let t : Z.t = Z.sub d Z.one

type p_id_t = Z.t

type secret_t = Z.t

type share_t = ((Z.t) * ((Z.t) * (Z.t * (Z.t list))) list) list

type rand_t = ((Z.t) list) * ((monomial list) list)

let share2 (r : ((Z.t) list) * ((monomial list) list)) (s : (Z.t)) : ((Z.t) * ((Z.t) * (Z.t * (Z.t

list))) list) list =

let (ra,rb) = r in

let summands = share ra s in

share1 rb (map snd summands)

let reconstruct2 (ss : ((Z.t) * ((Z.t) * (Z.t * (Z.t list))) list) list) : (Z.t) option =

let summands = reconstruct ss in

reconstruct1 (zip p_id_set1 (oget summands))

Fig. 24: Gradual secret sharing scheme in OCaml (File name: gradual.ml).

Table 2: Performance Benchmark Table Gradual for extract gradual secret sharing and for Charm unverified
implementation for a 512 bit-size field

Share Reconstruct

Charm
n = 5 6 0.3
n = 15 23 2

Extracted
n = 5 0.19 0.6
n = 5 1.5 6

that does not represent a major overhead in the execution time) and so its performance depends on the
performance of cyclic group and finite field operations. Since these are implemented with the Zarith library 16

(an OCaml wrapper for GMP), we are able to achieve a good performance for it. This is not the case for the
reconstruction protocol, whose performance is greatly influenced by the performance of the polynomial library.
By relying on a unverified library, Charm delivers better results for polynomial operations, thus delivering
faster times for the reconstruct protocol.

Table 3: Performance Benchmark Table for Extracted Secret Sharing Implementation (times in ms)
Shamir Pedersen

Passive Malicious Unforgeable
Share Reconstruct Share Reconstruct Commit Verify

128 bits
n = 5 0.0200 0.0523 0.1546 0.0229 0.0566 0.0211
n = 9 0.0458 0.2074 0.4702 0.0332 0.0941 0.0300
n = 15 0.1249 0.5783 1.2102 0.0440 0.1571 0.0497

256 bits
n = 5 0.0229 0.0988 0.5746 0.0870 0.2468 0.0618
n = 9 0.0978 0.4433 1.7046 0.1187 0.4410 0.0848
n = 15 0.1853 0.9847 4.8086 0.1814 0.6432 0.1076

512 bits
n = 5 0.0290 0.1722 2.2661 0.3532 1.2448 0.2430
n = 9 0.1255 0.7247 7.3145 0.5302 1.7492 0.2347
n = 15 0.2610 1.7041 20.3639 0.7907 2.8111 0.2917

1024 bits
n = 5 0.0588 0.3910 15.0708 2.3797 7.1856 1.2635
n = 9 0.1866 1.2866 48.9167 3.6002 12.0770 1.3364
n = 15 0.5989 3.6757 135.1714 5.3811 19.2705 1.5435

16 https://github.com/ocaml/Zarith
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Table 4: Performance Benchmark Table for Extracted (P)MPC Implementation (times in ms). First column
is the field size, the second is the number of parties.

Addition Multiplication Refresh Recover
Passive Malicious Passive Malicious Passive Malicious Passive Malicious

Total Per party Total Per party Total Per party Total Per party Total Per party Total Per party Total Per party Total Per party

128 bits
n = 5 0.0032 0.0006 0.0071 0.0014 0.0790 0.0158 1.6393 0.3279 0.0756 0.0151 1.2306 0.2461 0.1191 0.0238 0.9878 0.1976
n = 9 0.0080 0.0009 0.0133 0.0015 0.4197 0.0466 8.0503 0.8945 0.3971 0.0441 6.1809 0.6868 0.6760 0.0751 5.6529 0.6281
n = 15 0.0161 0.0011 0.0399 0.0027 1.8872 0.1258 35.3512 2.3567 1.8390 0.1226 27.9059 1.8604 2.9788 0.1986 26.7091 1.7806

256 bits
n = 5 0.0043 0.0009 0.0095 0.0019 0.1069 0.0214 6.4831 1.2966 0.1005 0.0201 4.6022 0.9204 0.1678 0.0336 3.6051 0.7210
n = 9 0.0067 0.0007 0.0220 0.0024 0.6038 0.0671 33.8347 3.7594 0.5655 0.0628 24.8867 2.7652 1.0586 0.1176 22.1240 2.4582
n = 15 0.0158 0.0011 0.0507 0.0034 2.7882 0.1859 148.1338 9.8756 2.6609 0.1774 110.5301 7.3687 4.6013 0.3068 103.5219 6.9015

512 bits
n = 5 0.0038 0.0008 0.0125 0.0025 0.1359 0.0272 28.5523 5.7105 0.1229 0.0246 19.8966 3.9793 0.2838 0.0568 15.2577 3.0515
n = 9 0.0052 0.0007 0.0195 0.0028 0.3805 0.0544 73.5487 10.5070 0.3565 0.0509 52.0222 7.4317 0.7889 0.1127 43.0156 6.1451
n = 15 0.0156 0.0010 0.0805 0.0054 3.9201 0.2613 650.2054 43.3470 3.7476 0.2498 478.2466 31.8831 7.1490 0.4766 440.0359 29.3357

1024 bits
n = 5 0.0040 0.0008 0.0229 0.0046 0.2284 0.0457 193.5127 38.7025 0.1876 0.0375 134.2940 26.8588 0.5368 0.1074 101.6083 20.3217
n = 9 0.0082 0.0009 0.0651 0.0072 1.4559 0.1618 1015.8850 112.8761 1.3595 0.1511 725.8251 80.6472 3.1142 0.3460 625.8767 69.5419
n = 15 0.0166 0.0011 0.1356 0.0090 7.6396 0.5093 4393.1295 292.8753 7.4067 0.4938 3202.2946 213.4863 14.1664 0.9444 2934.7924 195.6528

Comparing with other optimized MPC implementations A comparison with other (unverified) optimized
implementations of MPC protocols, like EMP or SCALE-MAMBA, would be interesting but is outside the
scope of this paper. We stress that we do not claim to have the fastest implementation of a (proactive) secure
MPC evaluator, nor is that our goal. Our goal is to demonstrate feasibility to performing computer-aided
verification of such complex MPC protocols for active adversaries, and to automatically extract verified
executable implementations thereof. It would be interesting to explore how verified implementations behave in
real software engineering projects, how the performance penalty induced by the verification process affects
the overall performance of the system, and how much execution time developers are willing to sacrifice in
order to have a more reliable system. Our performance comparison with Charm show that code obtained using
our extraction approach is at least comparable with some manually implemented software, which is promising
evidence that the verification overhead induced by our approach may not be as prohibitive as one may
initially think. Likewise, the performance penalty of our solution is not intrinsic to the verification/extraction
methodology. Some of the implementations cited above rely either on cryptographic optimizations, other
(faster) protocols, faster underlying libraries (such as faster polynomial libraries) or some circuit optimization
techniques. We point out that our overall verification approach can accommodate these cryptographic
advances, with some implications on the security and correctness proofs. Exploring these issues is a promising
avenue for future work as discussed next.

6 Related work

Previous computer-aided verification attempts paved the way for our work by demonstrating that verification
of multiparty protocols is possible in EasyCrypt (even if only for smaller number of parties and/or for
weaker adversaries). We not only wanted to demonstrate that verification tools like EasyCrypt have reached
an interesting state of maturity, enough to formalize complex cryptographic protocols such as the ones
described in this paper, but also lay the foundations that can be later used/extended to hopefully verify other
cryptographic protocols in other proof environments, such as, for example, an UC proof of the BGW protocol.

The most relevant related work to ours in formal verification and high-assurance implementations of
secure computation protocols is summarized in table 1. Staughton and Varia’s work [68] focus on proving the
adaptive, information-theoretic, honest-but-curious security of one function-specific three-party cryptographic
protocol that counts the number of elements in a database in the nonprogrammable random oracle model [15].
Similarly to ours, their work also relies on EasyCrypt to check the security proofs they perform. Nevertheless,
their work does not deal with generic secure computation protocols, nor with more than 3 parties.

Haagh et al. [47] verify a simple, yet very interesting and didactic, MPC protocol due to Maurer [58]. The
authors followed an interesting approach to address the active security of the concrete MPC protocol: they
combine non-interference techniques (which are proven to be equivalent to certain classes of cryptographic
security in [5,6,47]) to prove the existence of a simulator. The non-interference approach the authors followed
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is an interesting approach to reason at a higher-level, concretely in trying to understand if a simulator in
fact exists for some protocol and some functionality. Additionally, they present an interesting formalization
of Maurer’s protocol, that can be generalized and applied to other MPC protocols. There are two main
differences between our work and that of Haagh et al.: i. there is no synthesis of a high-assurance (or certified
in the terminology of [4]) software to evaluate the MPC protocol; and ii. our work deals with explicit simulator
definitions, thus achieving a full end-to-end EasyCrypt formalization. Finally, the verified version of Maurer’s
protocol in [47] is designed for general adversary structures and incurs exponential overhead (in size of shared
data) in the threshold case. This limits [47] to a small number of parties.

The closest work to ours is that of Almeida et al. [4]. It develops a verified software stack for secure
function evaluation by two parties in the semi-honest model. Their stack cannot handle more than two parties,
nor active adversaries. The stack consists of two components: a certified compiler from C to Boolean circuits,
and a high-assurance garbled circuit evaluator. The compiler proves that the output circuit is equivalent to
the input C code. The Boolean circuit is then executed by a verified garbled circuit evaluator, synthesized
from a formally verified EasyCrypt implementation of Yao’s protocol. While this work may seem, at first
sight, to have some limitations (in the number of parties and in the security model), it still represents a very
interesting case of study and stepping stone in the development of verified implementations of cryptographic
software.

In addition to the above, there have been impressive advances in research developing (practical) secure
computation frameworks and software, either for two parties (typically based on garbled circuits) [69,57],
or for multiparty using algebraic MPC approach on top of secret sharing [70,16,23], or function-specific
protocols based on (fully) homomorphic encryption, or mixed versions [48,31]. Such frameworks are not
directly comparable to our work because they do not claim to produce implementations of mechanically
formally verified protocols nor executables thereof. We think that a very interesting future research direction
is to perform computer-aided formal verification of the optimized protocols in the above frameworks and to
attempt to mechanically synthesize efficient implementations thereof. We also hope that such mechanically
synthesized implementations will have comparable performance to manually optimized ones.

7 Conclusions and future work

Secure and privacy-preserving protocols are an example of advanced cryptographic constructions that will
probably play a crucial role in the future of our networked world and the Internet. Computer-aided verification
and automated software synthesis of such complicated protocols (e.g., with proactive security guarantees
against active adversaries) is achievable with EasyCrypt as our work demonstrates. As a side contribution we
perform the first computer-aided verification and automated synthesis of a variant of the (fundamental) BGW
secure multiparty computation (MPC) protocol for static active adversaries. We also develop a tool-chain to
verifiably extract executable implementations from EasyCrypt specifications of such protocols.

Future research directions include: 1) extending our work to provide stronger security guarantees and
handle more settings, e.g., adaptive active adversaries as opposed to static ones we have for BGW, dealing
with dynamic groups in the standard and proactive settings, and operating over asynchronous networks;
2) performing computer-aided verification and synthesis of other (practical) MPC protocols such as SPDZ
and its variations which is the basis for the efficient SCALE-MAMBA 17 MPC framework, or classic ones such
as GMW [45] to deal with dishonest majorities; 3) performing full verification and synthesis of UC-secure
MPC protocols and primitives to enable arbitrary compositions of them and their executables; 4) extending
our protocol executables with verified libraries providing lower-level cryptographic algorithms and primitives
similar to EverCrypt 18; and 5) developing formal specification and computer-aided verifications of the
underlying broadcast synchronous (or even asynchronous) communication.

17 https://github.com/KULeuven-COSIC/SCALE-MAMBA
18 https://project-everest.github.io
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Appendix A Reasoning About Polynomials

We had to formalize a verified library to reason about polynomials because several protocols rely heavily
on polynomials and operations over them. This was a critical step in our proofs, otherwise we would have
needed to use a non-verified polynomial library to perform the desired operations, which would increase our
trusted code base.

We are interested in polynomials over finite fields in this work. However, we developed a general polynomials
library, that could be reused to define multiple instances of polynomials. We started the development of our
polynomials library by first defining an abstract definition for it. This abstract definition provides an interface
for concrete realizations of polynomials and defines the coefficient type, polynomial evaluation, the zero and
one polynomials, polynomial degree, addition, multiplication, unary minus and interpolation. We fix the
type of the polynomials to be a list of monomials, which induces a possible equality class to be the equality
between lists. Such equality class is too strong and would force the definition of complicated operators to
perform addition and multiplication, thus inducing a significant performance penalty. We fix the equality
class to be the equality of the evaluation of two polynomials in the same points, and use this equality class to
define the subsequent axioms and lemmas around the polynomial operations mentioned above. This abstract
polynomial interface is reusable and can be applied to other domains.

We then instantiate the type of the coefficients to be the same type of elements in a finite field and define
all polynomial operations in the expected, classical way. Properties such as commutativity and associativity
of polynomial addition and multiplication were easily proven by relying on the same properties verified in
finite field operations. We also provide a formalization for polynomial interpolation based on the Lagrange
interpolation, which makes use of a linear combination of Lagrange basis polynomials. Note that polynomial
interpolation is important in our work, since it allows secret reconstruction inside the reconstruct protocol
and also recovering parties to successfully recover shares.

In order to define polynomials, we make use of EasyCrypt’s record system as shown in Figure 25. We see
polynomials as lists of monomials, which are a record with two fields: a coefficient (an element of a finite
field) and an exponent (an integer).

type coefficient = t.

type exponent = int.

type monomial = {

coef : coefficient;

expo : exponent

}.

type polynomial = monomial list.

Fig. 25: Polynomial type definition

Next, our polynomial library defines evaluation functions, one for monomial evaluation and other for
polynomials that is basically multiple applications of the first one. Polynomial evaluation defines our equality
class. All this definitions can be found in Figure 26. We also include in this Figure a polynomial membership
test: a point is the polynomial if the evaluation of the polynomial at the abscissa is equal to the value of the
ordinate.

We are also interested in having a zero (i.e. a polynomial that always evaluate to zero) and a one
polynomial (i.e. a polynomial that always evaluate to one) so that we are able to define algebraic properties
around polynomial operations. Those polynomials are depicted in Figure 27. Note that zero could also be
defined based on mzero but defining it as an empty list simplifies proofs because it allows one to prove
polynomial properties based on list induction.

Figure 28 sketches the EasyCrypt definition of polynomial arithmetic. Every arithmetic operation is defined
in the same, mechanical way: 1) we start by defining that operation in terms of monomials (madd, mmul
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op meval (x:coefficient) (m : monomial) = m.‘coef * (x ^ m.‘expo).

op eval (x:coefficient) p =

with p = [] => F.zero

with p = m :: p’ => meval x m + (eval x p’).

op (==) p1 p2 = forall x, eval x p1 = eval x p2.

op mem (pt : (coeficient * coeficient)) p = eval (fst pt) p = (snd pt).

Fig. 26: Polynomial evaluation and equality class

op mzero = {| coef = F.zero; expo = 1 |}.

op zero : polynomial = [].

op mone = {| coef = F.one; expo = 0 |}.

op one = [mone].

Fig. 27: Zero and one polynomials

and mumin); 2) then we define it in terms of a monomial and a polynomial (mpadd and mpmul); and finally
3) we define the polynomial operation based on the previous two (add, mul and umin) The reason why
we implement polynomial operations as such lies with proof simplification. Proving properties related to
monomial operations is much more easy than proving them applied to polynomials. Yet, since polynomial
operations are defined based on the monomials’ ones, it is easy to propagate results obtained at monomial
level to polynomials. Additionally, interesting arithmetic properties (such as commutativity or associativity)
of polynomial operations are easily proven by relying on the same properties of their underlying coefficients.

The last operations delivered by our polynomial interface is Lagrange interpolation. Lagrange interpolation
allows to reconstruct a d− 1 degree polynomial based on d points. Briefly, it works by computing bases based
on the abscissa values, which are then multiplied by the ordinate values. As part of this project, we provide
two different interpolation functions:

– interpolate - taking as input a set of points and a some x value, returns the evaluation of the interpolated
polynomial on x

– interpolate poly - taking as input a set of points, returns the interpolated polynomial.

EasyCrypt polynomial interpolation is presented in Figure 29.

Appendix B Secret sharing security definitions

Figure 30 defines passive security for a secret sharing scheme. Theory HBCSecretSharingSchemeSecurity is
parameterized by a secret sharing scheme, making it modular enough to be reused when representing security
for multiple secret sharing schemes. It starts by first defining an abstract random generator type that will be
used to feed the explicit randomness needed to execute probabilistic algorithms such as share. This random
generator is abstract because the secret sharing scheme is also abstract and thus there is no information
about the type of randomness involved. Notwithstanding, the instantiation step will make it concrete. Next,
there is the definition of oracles. For the particular case of semi-honest security, we are only interested in
providing the adversary with an oracle to corrupt parties. An adversary attacking the scheme (parameterized
by the oracles) should, therefore, have two procedures:

– choose - that creates a query of two secrets
– guess - that tries to guess which secret was the origin of the received shares

The security experience follows naturally. The adversary chooses two secrets and tries to distinguish
between the set of shares he receives. He wins the game if he is able to do some with probability 1.
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op madd m1 m2 = {| coef = m1.‘coef + m2.‘coef; expo = m1.‘expo |}.

op mpadd (m : monomial) p =

with p = [] => [m]

with p = m’ :: p’ =>

if m.‘expo = m’.‘expo then madd m m’ :: p’

else

if m’.‘expo < m.‘expo then m :: p

else m’ :: mpadd m p’.

op add (p1 p2 : polynomial) =

with p1 = [], p2 = [] => []

with p1 = m1 :: p1’, p2 = [] => p1

with p1 = [], p2 = m2 :: p2’ => p2

with p1 = m1 :: p1’, p2 = m2 :: p2’ =>

if m1.‘expo = m2.‘expo then madd m1 m2 :: add p1’ p2’

else

if m1.‘expo < m2.‘expo then m2 :: add p1 p2’

else m1 :: add p1’ p2.

op mmul m1 m2 =

if m1 = mzero \/ m2 = mzero then mzero

else {| coef = m1.‘coef * m2.‘coef; expo = m1.‘expo + m2.‘expo |}.

op mpmul m p =

with p = [] => []

with p = m’ :: p’ => mpadd (mmul m m’) (mpmul m p’).

op mul p1 p2 =

with p1 = [] => []

with p1 = m :: p1’ => add (mpmul m p2) (mul p1’ p2).

op mumin m = {| coef = - m.‘coef; expo = m.‘expo |}.

op umin p =

with p = [] => []

with p = m :: p’ => mumin m :: umin p’.

Fig. 28: Polynomial arithmetic

op basis_loop (x : t) (xmx : t) (xm : t list) : t list =

with xm = [] => []

with xm = y :: ys =>

if y <> xmx then

((x - y) / (xmx - y)) :: basis_loop x xmx ys

else basis_loop x xmx ys.

op basis (x xmx : t) (xm : t list) =

foldr (fun (x y : t) => x * y) F.one (basis_loop x xmx xm).

op interpolate_loop (x : t) (xm : t list) (pm : (t * t) list) =

with pm = [] => []

with pm = y :: ys =>

((basis x (fst y) xm) * (snd y)) :: interpolate_loop x xm ys.

op interpolate (x : t) (pm : (t * t) list) =

let xm = map fst pm in

let bs = interpolate_loop x xm pm in

foldr (fun (x y : t) => x + y) F.zero bs.

Fig. 29: Polynomial Lagrange interpolation
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theory HBCSecretSharingSchemeSecurity.

clone import SecretSharingScheme.

module type Rand_t = {

proc gen() : rand_t

}.

module type Oracles_t = {

proc corrupt(pid : p_id_t) : unit

}.

...

module type Adv_t (O : Oracles_t) = {

proc choose() : secret_t * secret_t

proc guess(ss : shares_t) : bool

}.

module Game (R : Rand_t) (A : Adv_t) = {

module O = Oracles

module A = A(O)

proc main() : bool = {

...

b <\$ {0,1}; r <@ R.gen(); O.init();

(s0,s1) <@ A.choose();

ss <- share r (b ? s1 : s0);

ss <- get_corrupted O.corrupted ss;

b’ <@ A.guess(ss);

return (b = b’);

}

}.

end HBCSecretSharingSchemeSecurity.

Fig. 30: Honest-but-curious (HBC) security for secret sharing

In order to define integrity of shares, we used the security notion depicted in Figure 31. To win the security
game, an adversary needs to provide some forgery of shares that were not obtained via an honest execution of
the secret sharing scheme. We model the entire behaviour of the security experience in the adversary oracles
by giving him access to a share oracle - that provides the adversary honestly generated shares -, and with a
forge oracle - which the adversary can use in order to test if some shares are a valid forgery.

The reason why we are modeling the security goal inside an adversary oracle instead of the expected
way (the adversary only have access to a share oracle and it outputs shares that are going to be tested for
forge validity) is because it greatly simplifies the composition proof with an honest-but-curious secret sharing
scheme.

The security of a commitment scheme is presented in Figure 32. It is a very similar security definition for
other integrity or authenticity schemes such as MAC schemes. An adversary can require commits and also
can check if some commitment is valid for some message. It will then try to forge a message/commitment
pair that verifies but that was not obtained via an honest execution of the commitment scheme.

Finally, we define malicious security for secret sharing schemes as shown in Figure 33. In this security
experience, the adversary will try to break either the integrity of shares or the indistinguishability of them.
With that purpose, it is given access to a reconstruct oracle that provide it with secrets reconstructed using
the desired set of shares. A malicious (verifiable) secret sharing scheme can then be obtained by composing
an honest-but-curious secret sharing scheme with an unforgeable commitment scheme.
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theory INTSecretSharingSchemeSecurity.

clone import SecretSharingScheme.

module type Rand_t = {

proc gen() : rand_t

}.

module type Oracles_t = {

proc share(s : secret_t) : shares_t option

proc forge(ss : shares_t) : unit

}.

module type Adv_t(O : Oracles_t) = {

proc main() : unit

}.

...

module Game (R : Rand_t) (A : Adv_t) = {

module O = Oracles

module A = A(O)

proc main() : bool = {

...

r <@ R.gen(); O.init(r);

A.main();

return (O.forgery);

}

}.

end INTSecretSharingSchemeSecurity.

Fig. 31: Integrity security for secret sharing

Appendix C MPC security definitions

The private (active) security definition for MPC protocols can be found in Figure 34. The security experience
works by phases:

– The initial phase (initial in Figure 34) is first initialized with the protocol inputs and randomness, as
well as with an empty corrupted set.

– Before the execution of each phase, the adversary has the ability to either change the input with which a
party is going to execute the stage of the protocol or simply abandon it.

– The result of the phase execution are then used as input to the next phase of the protocol.

In the ideal scenario, the experience will run a simulator using some auxiliary input (which we depict
as leak t) and the input shares of corrupted parties. This simulator will need to be able to produce random
coins and communication traces that have the same probability distribution as the ones outputed by the
real protocol execution. For this particular case of private security, we want the simulator to also be able to
simuate the output share of corrupted parties.

Random security definition in Figure 35 is defined in a very similar way to private security. In fact, the
only differences are the protocol input type - each party will only have a share as input - and the type of the
simulator - which will now need to produce random coins and conversation traces based on auxiliary input,
corrupted input shares and corrupted output shares.

Similarly to functionalities, proactive security can be seen as a special case of a re-randomization protocol
like refresh with the caveat that it undermines previous shares of recovered parties. At a high level, this means
that, after the execution of the protocol, the recovering party will have a good share even if it started with a
corrupt one. The definition of proactive security can be found in Figure 36.
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theory CommitmentShemeSecurity.

clone import CommitmentScheme.

...

module type Rand_t = {

proc gen() : rand_t

}.

module type Oracles_t = {

proc mac(m : msg_t) : commit_t

proc verify(m : msg_t, t : commit_t) : bool

proc forge(m : msg_t, t : commit_t) : unit

}.

module type Adv_t(O : Oracles_t) = {

proc main() : unit

}.

...

module Game(R : Rand_t, A : Adv_t) = {

module O = Oracles

module A = A(O)

proc main(): bool = {

...

r <@ R.gen(); O.init(r);

A.main();

return (O.forgery);

}

}.

end CommitmentShemeSecurity.

Fig. 32: Unforgeability for commitment schemes

Appendix D MPC concrete protocols

This Appendix will focus on the presentation of several EasyCrypt implementations of MPC protocols, both
in the passive and malicious setting. Due to space constrains, we will focus on the functional behaviour of
protocols.

An honest-but-curious version of the addition protocol can be found in Figure 37. It is a very simple
protocol, since it is composed only by local operations. The only difference between the passive version and
the malicious one (Figure 38) is the computation of new homomorphic commitments to the new shares.

Figures 39 and 40 represent the passive and active versions of the refresh protocol, respectively. The two
main differences between the two rely on the use of homomorphic commitments to ensure share integrity:
first, parties will produce sharings of zero using a verifiable secret sharing scheme and then, shares will be
checked for consistency during the addition step. Note that, besides being a simple modification, it induces a
significant performace penalty as it requires the computation of several field and cyclic group exponentiations.
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theory MALSecretSharingSchemeSecurity.

clone import SecretSharingScheme.

...

module type Rand_t = {

proc gen() : rand_t

}.

module type Oracles_t = {

proc corrupt(pid : p_id_t) : unit

proc reconstruct(ss : shares_t) : secret_t option

}.

module type Adv_t (O : Oracles_t) = {

proc choose() : secret_t * secret_t

proc guess(ss : shares_t) : bool

}.

module Game (R : Rand_t) (A : Adv_t) = {

module O = Oracles

module A = A(O)

proc main() : bool = {

...

b <\$ {0,1}; O.init(); r <@ R.gen();

(s0, s1) <@ A.choose();

ss <- share r (b ? s1 : s0);

ss <- get_corrupted O.corrupted ss;

b’ <@ A.guess(ss);

return (b = b’);

}

}.

end MALSecretSharingSchemeSecurity.

Fig. 33: Malicious security for secret sharing

An honest-but-curious version of the recover protocol can be obtained via Figure 41. This version is
simpler than the malicious one presented in Section 3.3 since it does not deal with share integrity verification.
In fact, the only difficulty in implementing this protocol lies on the polynomial interpolation, since every
other operation is a combination of the share and addition protocols.

We end with the presentation of protocols to perform multiplication, both passive - Figure 42 -, and
malicious - Figure 43. Multiplication is done following directions pointed by Asharov and Lindell in [7]. Briefly,
multiplication works by parties first multiplying their shares and then subsharing them in order to perform
polynomial degree reduction. For the malicious protocol, parties need to cope with possible modification of
subshares and thus there is the need to use an error correction algorithm upon receiving all sub-shares.
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theory ProtocolPrivateSecurity.

...

module Game (R : Rand_t, Z : Environment_t, A : Adversary_t, S : Simulator_t) = {

module O = Oracles

module A = A(O)

b <\${0,1};
inps <@ Z.choose();

r <@ R.gen(inps);

C.init(inps);

if (valid_inputs inps /\ valid_rands r inps) {

if (b) {

A.run();

(cc,yy) <- P.prot r inps;

cc <- filter_corrupt_convs cc C.corrupt;

b’ <@ Z.guess(poutput2foutput yy, filter_corrupt_outputs yy C.corrupt, cc);

}

else {

A.run();

finp <- pinput2finput inps;

y <- F.f finp;

l <- F.φ finp;

(yy, cc) <@ S.simm(l, filter_corrupt_inputs inps C.corrupt, C.corrupt);

b’ <@ Z.guess(y, yy, cc);

}

}

else {

b <\$ {0,1}

}

return b’;

}.

end ProtocolPrivateSecurity.

Fig. 34: Private security
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theory ProtocolRandomSecurity.

...

module Game (R : Rand_t, Z : Environment_t, A : Adversary_t, S : Simulator_t) = {

module O = Oracles

module A = A(O)

b <\${0,1};
inps <@ Z.choose();

r <@ R.gen(inps);

C.init(inps);

if (valid_inputs inps /\ valid_rands r inps) {

if (b) {

A.run();

(cc,yy) <- P.prot r inps;

b’ <@ Z.guess(filter_corrupt_outputs yy C.corrupt, filter_corrupt_convs cc C.corrupt);

}

else {

finp <- pinput2finput inps;

y <- F.f r finp;

l <- F.φ r finp;

cc <@ S.simm(l, filter_corrupt_inputs inps C.corrupt, filter_corrupt_foutput y C.corrupt, C.

corrupt);

b’ <@ Z.guess(filter_corrupt_outputs (foutput2poutput y) C.corrupt, cc);

}

}

else {

b <\$ {0,1}

}

return b’;

}.

end ProtocolRandomSecurity.

Fig. 35: Random security
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theory ProtocolProactiveSecurity.

...

module Game (R : Rand_t, Z : Environment_t, A : Adversary_t, S : Simulator_t) = {

module O = Oracles

module A = A(O)

b <\${0,1};
inps <@ Z.choose();

r <@ R.gen(inps);

C.init(inps);

if (valid_inputs inps /\ valid_rands r inps) {

if (b) {

A.run();

(cc,yy) <- P.prot r inps;

b’ <@ Z.guess(filter_corrupt_outputs yy C.corrupt, filter_corrupt_convs cc C.corrupt);

}

else {

finp <- pinput2finput inps;

y <- F.f r finp;

l <- F.φ r finp;

cc <@ S.simm(l, filter_corrupt_inputs inps C.corrupt, filter_corrupt_foutput y C.corrupt, C.

corrupt);

b’ <@ Z.guess(filter_corrupt_outputs (foutput2poutput y) C.corrupt, cc);

}

}

else {

b <\$ {0,1}

}

return b’;

}.

end ProtocolProactiveSecurity.

Fig. 36: Proactive security
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theory HBCAdditionProtocol.

...

type p_id_t = p_id_t.

type input_t = share_t * share_t.

type inputs_t = (p_id_t * input_t) list.

type output_t = share_t.

type outputs_t = (p_id_t * output_t) list.

type rand_t = unit.

type rands_t = (p_id_t * rand_t) list.

type conv_t = unit.

type convs_t = (p_id_t * conv_t) list.

op pexec (pi : input_t) : output_t =

let (xi,yi) = pi in

(xi + yi).

op prot (rs : rands_t) (pis : inputs_t) : (convs_t * outputs_t) option =

let os = map (fun pi => (fst pi, pexec (snd pi))) pis in

let cs = map (fun pi => (fst pi, ())) pis in

Some (cs, os).

clone import Protocol as HBCAddition with

...

end HBCAdditionProtocol.

Fig. 37: Honest-but-curious addition protocol

theory MALAdditionProtocol.

...

type p_id_t = p_id_t.

type input_t = share_t * share_t.

type inputs_t = (p_id_t * input_t) list.

type output_t = share_t.

type outputs_t = (p_id_t * output_t) list.

type rand_t = unit.

type rands_t = (p_id_t * rand_t) list.

type conv_t = unit.

type convs_t = (p_id_t * conv_t) list.

op update_commits (c c’ : commit_t) : commit_t =

(c.‘1 + c’.‘1, map2 (fun x y => (fst x, CyclicGroup.( * ) (snd x) (snd y))) c.‘2 c’.‘2).

op pexec (pi : input_t) : output_t =

let (xi,yi) = pi in

(xi.‘1 + yi.‘1, update_commits xi.‘2 yi.‘2).

op prot (rs : rands_t) (pis : inputs_t) : (convs_t * outputs_t) option =

let os = map (fun pi => (fst pi, pexec (snd pi))) pis in

let cs = map (fun pi => (fst pi, ())) pis in

Some (cs, os).

clone import Protocol as MalAddition with

...

end MALAdditionProtocol.

Fig. 38: Malicious addition protocol

43



theory HBCRefreshProtocol.

...

type p_id_t = p_id_t.

op p_id_set = ShamirSS.p_id_set.

type input_t = share_t.

type inputs_t = (p_id_t * input_t) list.

type output_t = share_t.

type outputs_t = (p_id_t * output_t) list.

type rand_t = ShamirSS.rand_t.

type rands_t = (p_id_t * rand_t) list.

type conv_t = share_t list.

type convs_t = (p_id_t * conv_t) list.

type pstate1_t = ShamirSS.shares_t.

op pstage1 (r : rand_t) : pstate1_t =

ShamirSS.share r F.zero.

op pstage2 (i : input_t) (ss : share_t list) : output_t =

foldr (fun (x : share_t) (acc : share_t) => AdditionProtocol.pexec (x, acc)) i ss.

op prot (rs : rands_t) (iss : inputs_t) : (convs_t * outputs_t) option =

let pst1 = map (fun pid => (pid, pstage1 (oget (assoc rs pid)))) p_id_set in

let cs = map (fun pid => (pid, map (fun ss => snd ss) (oget (assoc pst1 pid)))) p_id_set in

let sss = map (fun pid => (pid, map (fun idss => oget (assoc (snd idss) pid)) pst1)) p_id_set

in

let os = map (fun pid => (pid, pstage2 (oget (assoc iss pid)) (oget (assoc sss pid)))) p_id_set

in

let cs = map (fun pid => (pid, oget (assoc cs pid) ++ (oget (assoc sss pid)))) p_id_set in

Some (cs,os).

clone import Protocol as HBCRefresh with

...

end HBCRefreshProtocol.

Fig. 39: Honest-but-curious refresh protocol
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theory MALRefreshProtocol.

...

type p_id_t = p_id_t.

op p_id_set = p_id_set.

type input_t = share_t.

type inputs_t = (p_id_t * input_t) list.

type output_t = share_t.

type outputs_t = (p_id_t * output_t) list.

type rand_t = rand_t.

type rands_t = (p_id_t * rand_t) list.

type conv_t = share_t list.

type convs_t = (p_id_t * conv_t) list.

type pstate1_t = shares_t.

op pstage1 (r : rand_t) : pstate1_t =

share r F.zero.

op pstage2 (pid : p_id_t) (i : input_t) (ss : share_t list) : output_t =

foldr (fun (x : share_t) (acc : share_t) =>

if verify (pid, fst x) (snd x) then

AdditionProtocol.pexec (x,acc)

else acc) i ss.

op prot (rs : rands_t) (iss : inputs_t) : (convs_t * outputs_t) option =

let pst1 = map (fun pid => (pid, pstage1 (oget (assoc rs pid)))) p_id_set in

let cs = map (fun pid => (pid, map (fun ss => snd ss) (oget (assoc pst1 pid)))) p_id_set in

let sss = map (fun pid => (pid, map (fun idss => oget (assoc (snd idss) pid)) pst1)) p_id_set

in

let os = map (fun pid => (pid, pstage2 pid (oget (assoc iss pid)) (oget (assoc sss pid))))

p_id_set in

let cs = map (fun pid => (pid, oget (assoc cs pid) ++ (oget (assoc sss pid)))) p_id_set in

Some (cs,os).

clone import Protocol as MalRefresh with

...

end MALRefreshProtocol.

Fig. 40: Malicious refresh
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theory HBCRecoverProtocol.

...

type p_id_t = p_id_t.

op p_id_set = ShamirSS.p_id_set.

type input_t = p_id_t * share_t.

type inputs_t = (p_id_t * input_t) list.

type output_t = share_t.

type outputs_t = (p_id_t * output_t) list.

type rand_t = ShamirSS.rand_t.

type rands_t = (p_id_t * rand_t) list.

type conv_t = share_t list.

type convs_t = (p_id_t * conv_t) list.

type pstate1_t = ShamirSS.shares_t.

op pstage1 (r : rand_t) : pstate1_t =

ShamirSS.share r F.zero.

op pstage2 (i : share_t) (ss : share_t list) : output_t =

foldr (fun (x : share_t) (acc : share_t) => AdditionProtocol.pexec (x, acc)) i ss.

op rparty (pid : p_id_t) (ss : (p_id_t * share_t) list) : output_t =

interpolate pid ss.

op prot (rs : rands_t) (iss : inputs_t) : (convs_t * outputs_t) option =

let rp = fst (snd (head witness iss)) in

let nrp = rem rp p_id_set in

let iss = map (fun pidi => let (pid,i) = pidi in (pid, snd i)) iss in

let pst1 = map (fun pid => (pid, pstage1 (oget (assoc rs pid)))) nrp in

let cs = map (fun pid => (pid, map (fun ss => snd ss) (oget (assoc pst1 pid)))) nrp in

let sss = map (fun pid => (pid, map (fun idss => oget (assoc (snd idss) pid)) pst1)) nrp in

let os = map (fun pid => (pid, pstage2 (oget (assoc iss pid)) (oget (assoc sss pid)))) nrp in

let cs = map (fun pid => (pid, oget (assoc cs pid) ++ (oget (assoc sss pid)))) nrp in

let orp = rparty rp os in

let crp = map (fun x => snd x) os in

Some ((rp, crp) :: cs, (rp, orp) :: os).

clone import Protocol as HBCRecover with

...

end HBCRecoverProtocol.

Fig. 41: Honest-but-curious recover
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theory HBCMultiplicationProtocol.

type p_id_t = p_id_t.

type p_id_set = p_id_set.

type input_t = share_t * share_t.

type inputs_t = (p_id_t * input_t) list.

type output_t = share_t.

type outputs_t = (p_id_t * output_t) list.

type rand_t = rand_t.

type rands_t = (p_id_t * rand_t) list.

type conv_t = share_t list.

type convs_t = (p_id_t * conv_t) list.

type bdcst_1 = shares_t.

type state1 = share_t.

op pstage1 (r : rand_t) (i : input_t) : conv_t * state1 * bdcst_1 =

let mi = i.‘1 * i.‘2 in

let ss = ShamirSS.share r mi in

(unzip2 ss, mi, ss).

op pstage2 (pid : p_id_t) (c : conv_t) (st : state1) (ss : share_t list) : conv_t * output_t =

let sum = summation (map (fun sh, basis pid sh ss) ss) in

(c++ss,sum).

op prot (rs : rands_t) (iss : inputs_t) : (convs_t * outputs_t) option =

let pid_set = unzip1 iss in

let stage1 = map (fun pid => let p1 = pstage1 (oget (assoc rs pid)) (oget (assoc iss pid)) in

((pid, p1.‘1),(pid, p1.‘2), p1.‘3)) pid_set in

let cs = unzip13 stage1 in let sts = unzip23 stage1 in let bs = unzip33 stage1 in

let stage2 = map (fun pid => let p2 = pstage2 pid (oget (assoc cs pid)) (oget (assoc sts pid))

(get_all_assoc pid bs) in ((pid, p2.‘1),(pid, p2.‘2))) pid_set in

Some (unzip1 stage2, unzip2 stage2).

clone import Protocol as HBCMultiplication with

...

end HBCMultiplicationProtocol.

Fig. 42: Honest-but-curious mul protocol
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theory MALMultiplicationProtocol.

type p_id_t = p_id_t.

type p_id_set = p_id_set.

type input_t = (share_t * share_t) * t list.

type inputs_t = (p_id_t * input_t) list.

type output_t = share_t.

type outputs_t = (p_id_t * output_t) list.

type rand_t = rand_t.

type rands_t = (p_id_t * rand_t) list.

type conv_t = share_t list.

type convs_t = (p_id_t * conv_t) list.

op pstage1 (i : input_t) : t = (fst (fst (fst i))) * (fst (snd (fst i))).

type pstate2 = shares_t

op pstage2 (pid : p_id_t) (r : rand_t) (i : t) : pstate2 = share r i.

op pstage3 (pid : p_id_t) (i : input_t) (ss : share_t list) : output_t =

let tl = snd i in

let ss = correct ss in

let pre = map2 (fun (sh : share_t) (x : t) => ScalarMultiplicationProtocol.pexec (sh, x)) ss tl

in

foldr (fun (x : share_t) (acc : share_t) =>

if Pedersen_comp.PedersenCommitmentScheme.PedersenCS.verify (pid, fst x) (snd x) then

AdditionProtocol.pexec (x,acc)

else acc) (F.zero, (F.zero, [])) ss.

op prot (rs : rands_t) (inps : inputs_t) : (convs_t * outputs_t) option =

let pst1 = map (fun pid => (pid, pstage1 (oget (assoc inps pid)))) p_id_set in

let cs = map (fun pid => (pid, map (fun ss => snd ss) (oget (assoc pst1 pid)))) p_id_set in

let pst2 = map (fun pid => (pid, pstage2 (oget (assoc rs pid)) (oget (assoc pst1 pid))))

p_id_set in

let sss = map (fun pid => (pid, map (fun idss => oget (assoc (snd idss) pid)) pst2)) p_id_set

in

let os = map (fun pid => (pid, pstage3 pid (oget (assoc inps pid))(oget (assoc sss pid))))

p_id_set in

let cs = map (fun pid => (pid, oget (assoc cs pid) ++ (oget (assoc sss pid)))) p_id_set in

Some (cs, os).

clone import Protocol as MalMultiplication with

...

end MALMultiplicationProtocol.

Fig. 43: Malicious mul protocol
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