

RELATED-KEY DIFFERENTIAL SLIDE ATTACK AGAINST FOUNTAIN V1

Raluca POSTEUCA*

* COSIC, KU Leuven, Belgium
E-mail: raluca.posteuca@esat.kuleuven.be

Abstract. The stream cipher FOUNTAIN was introduced in April 2019 as one of the candidates in the

NIST lightweight crypto standardization process. In this paper we introduce a slide attack that leads to

the construction of 32 relations on key bits, with time complexity around 17 × 280. The success of the

attack is around 98%. We also present some properties of the internal state transitions that allow the

identification of (key-iv-ad) input data that produce identical ciphertexts, with probability of 2-32.

Key words: lightweight cryptography, Fountain, slide attacks, internal states collisions, invertible states

transition.

1. INTRODUCTION

Lightweight cryptography represents nowadays a very popular research area due to the necessity of

designing and implementing efficient and secure cryptographic primitives for devices with constrained

resources. During the last years numerous primitives were designed, having improved properties regarding the

suitability for software and hardware implementation, performance and efficiency.

Some of the proposals became part of European or international standards, such as ISO/IEC standards.

One of the standards relevant for lightweight cryptography is the 29192 standard, dedicated to lightweight

cryptography, including the block ciphers PRESENT[3] and CLEFIA[14] and the stream ciphers Trivium[5]

and Enocoro[7]. The 18033 standard describes encryption algorithms, some of them being lightweight, such

as MISTY1[11], SNOW 2.0 [12] and Rabbit [10].

 The European Network of Excellence for Cryptology (ECRYPT) funded a 4-year project, eSTREAM,

dedicated to the identification of new stream ciphers dedicated to software applications with high throughput

(Profile I) and to hardware applications with restricted resources (Profile II). Grain 128A [9], Trivium and

Mickey[13] algorithms were selected for the Profile II portfolio.

 CAESAR, the Competition for Authenticated Encryption: Security, Applicability and Robustness, took

place between 2014 and 2018; in the section dedicated to lightweight applications two stream ciphers were

selected as winners – ACORN[8] and Ascon[6].

More details regarding the State of the Art in Lightweight Symmetric Cryptography can be found in [1].

The lightweight cryptography became even more attractive since NIST initiated a process meant to lead

to the standardization of lightweight algorithms that are suitable for usage in constrained environments. The

first round of this competition is on-going, having 56 submissions.

Our contribution. In order to contribute to the public research efforts dedicated to the analysis of NIST

Round 1 candidates, we focused on one of the proposals, the Fountain stream cipher [4]. In this paper we

introduce a slide attack with time complexity around 17 × 280. The goal of this attack is to construct a system

of 32 low degree equations using the key bits, this being equivalent to recovering 32 bits of the key (by solving

this equation system, the complexity of the exhaustive search is decreased from 2128 to 296). We have also

identified some properties of the internal states transitions that allow the identification of (𝑘𝑒𝑦, 𝐼𝑉, 𝐴𝐷) input

data that produce identical ciphertexts, with probability of 2-32.

Organization of the paper. The paper is organized as follows: the Fountain cipher is briefly described

in Section 2; in Section 3 we present a set of properties of the state update function and present an attack on a

slightly modified version of the cipher Fountain, in the hypothesis that the associated data is null. The attack

leads to the identification of input data which determines collisions in the internal state and, thus, to the

generation of identical ciphertexts (when using the same plaintext); in Section 4 we present a manner in which

the previous attack can be extended to the original version of Fountain; Section 5 presents the method in which

we were able to identify (𝑘𝑒𝑦, 𝐼𝑉, 𝐴𝐷) input data that produce identical ciphertexts; the last section concludes

our paper.

2. DESCRIPTION OF FOUNTAIN CIPHER

2.1 Parameters

Fountain is a lightweight stream cipher with 16-byte secret key 𝐾 and 12-byte initialization vector 𝐼𝑉.

The input data of the cipher is represented by a quartet (𝐾, 𝐼𝑉, 𝐴𝐷,𝑀) where 𝐴𝐷 represents the associated

data, 𝑀 the plaintext and 𝐾, 𝐼𝑉 are the key and the initialization vector, respectively. The length of 𝐴𝐷 can

range from 0 (no associated data) to 250 − 1 bytes. The length of 𝑀 can be less than or equal to 261 bytes. The

output of the authenticated encryption is a pair (𝐶, 𝑇) where 𝐶 represents the encryption of 𝑀 and 𝑇 is the

authentication tag of 𝐴𝐷 and 𝑀. The length of the tag 𝑇 can be 64 or 128 bits. The verification and decryption

process takes as input the tuple (𝐾, 𝐼𝑉, 𝐴𝐷, 𝐶, 𝑇) and outputs the plaintext 𝑀 only if the tag verification

succeeds. If the tag verification fails, no plaintext is returned.

2.2 Component functions

 The state update function of Fountain operates on 256-bits internal states, using 4 LFSRs, 4 × 4 S-boxes,

an MDS matrix and a Boolean (filter) function used for the generation of keystream bits.

 The 4 LFSRs used in Fountain have the same length, but different feedback polynomials, as follows:

LFSR1: 1 + 𝑥12 + 𝑥25 + 𝑥31 + 𝑥64

LFSR2: 1 + 𝑥9 + 𝑥19 + 𝑥31 + 𝑥64

LFSR3: 1 + 𝑥14 + 𝑥20 + 𝑥31 + 𝑥64

LFSR4: 1 + 𝑥6 + 𝑥10 + 𝑥31 + 𝑥64

 The initial values of the four LFSRs are denoted by:

𝐿𝐹𝑆𝑅1 = (𝛼0, … , 𝛼63)

𝐿𝐹𝑆𝑅2 = (𝛽0, … , 𝛽63)

𝐿𝐹𝑆𝑅3 = (𝛾0, … , 𝛾63)

𝐿𝐹𝑆𝑅4 = (𝜁0, … , 𝜁63)

 The linear recursions are:

𝐿𝐹𝑆𝑅1: 𝛼64+𝑖 = 𝛼31+𝑖 + 𝛼25+𝑖 + 𝛼12+𝑖 + 𝛼𝑖

𝐿𝐹𝑆𝑅2: 𝛽64+𝑖 = 𝛽31+𝑖 + 𝛽19+𝑖 + 𝛽9+𝑖 + 𝛽𝑖

𝐿𝐹𝑆𝑅3: 𝛾64+𝑖 = 𝛾31+𝑖 + 𝛾20+𝑖 + 𝛾14+𝑖 + 𝛾𝑖

𝐿𝐹𝑆𝑅4: 𝜁64+𝑖 = 𝜁31+𝑖 + 𝜁10+𝑖 + 𝜁6+𝑖 + 𝜁𝑖

 The following 4 × 4 S-boxes are used in Fountain:

𝑆𝑅_𝑘𝑔 = {9, 5, 6, 𝐷, 8, 𝐴, 7, 2, 𝐸, 4, 𝐶, 1, 𝐹, 0, 𝐵, 3};

𝑆𝑅_𝑎𝑑 = {9,𝐷, 𝐸, 5, 8, 𝐴, 𝐹, 2, 6, 𝐶, 4, 1, 7, 0, 𝐵, 3};

𝑆𝑅_𝑡𝑎𝑔 = {𝐵, 𝐹, 𝐸, 8, 7, 𝐴, 2, 𝐷, 9, 3, 4, 𝐶, 5, 0, 6, 1};

 The S-boxes are always applied to the nibbles formed by the second bit from the 4 LFSRs. More

precisely, at step 𝑖, the input of the Sbox is the nibble 𝜁𝑖+1𝛾𝑖+1𝛽𝑖+1𝛼𝑖+1, where 𝛼𝑖+1 is the LSB of the nibble.

The output nibble and the component bits are denoted by 𝑓𝑖 = 𝑓1𝑓2𝑓3𝑓4.

 The filter function is given by

𝑧𝑖 = 𝛼𝑖+3 + 𝛼𝑖+11 + 𝛽𝑖+20 + 𝛾𝑖+5 + 𝛾𝑖+16 + 𝜁𝑖+7 + 𝜁𝑖+29 + ℎ(𝑥),

where 𝑧𝑖 represents the keystream bits, and ℎ is the Boolean function

ℎ(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) = 𝑥0𝑥1⨁𝑥2𝑥3⨁𝑥4𝑥5⨁𝑥6𝑥7⨁𝑥0𝑥4𝑥8,

where

(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) = (𝜁𝑖+2, 𝛼𝑖+5, 𝛽𝑖+4, 𝛾𝑖+11, 𝜁𝑖+23, 𝛾𝑖+27, 𝛽𝑖+24, 𝛼𝑖+29, 𝜁𝑖+30)

2.3 Phases

In order to produce an authenticated ciphertext using Fountain, the following phases are performed.

The Loading Phase

Let 𝐾 = (𝐾0, 𝐾1, … , 𝐾15) and 𝐼𝑉 = (𝐼𝑉0, 𝐼𝑉1, … , 𝐼𝑉11) denote the key and the initialization vector,

respectively and let 𝑟𝑒𝑣(𝑥) denote the function that reverses the bits’ order in the byte 𝑥 (for

example, the least significant bit becomes the most significant one).

The cipher’s state will be initialized using the loading function 𝑙𝑜𝑎𝑑 defined as:

(𝐿𝐹𝑆𝑅1, 𝐿𝐹𝑆𝑅2, 𝐿𝐹𝑆𝑅3, 𝐿𝐹𝑆𝑅4) = 𝑙𝑜𝑎𝑑(𝐾, 𝐼𝑉)

(𝛼0, … , 𝛼63) = (𝑟𝑒𝑣(𝐾0), 𝑟𝑒𝑣(𝐼𝑉0), 𝑟𝑒𝑣(𝐾1), 𝑟𝑒𝑣(𝐼𝑉1), 𝑟𝑒𝑣(𝐾2), 𝑟𝑒𝑣(𝐼𝑉2), 𝑟𝑒𝑣(𝐾3), 𝑟𝑒𝑣(𝐼𝑉3))

(𝛽0, … , 𝛽63) = (𝑟𝑒𝑣(𝐾4), 𝑟𝑒𝑣(𝐼𝑉4), 𝑟𝑒𝑣(𝐾5), 𝑟𝑒𝑣(𝐼𝑉5), 𝑟𝑒𝑣(𝐾6), 𝑟𝑒𝑣(𝐼𝑉6), 𝑟𝑒𝑣(𝐾7), 𝑟𝑒𝑣(𝐼𝑉7))

(𝛾0, … , 𝛾63) = (𝑟𝑒𝑣(𝐾8), 𝑟𝑒𝑣(𝐼𝑉8), 𝑟𝑒𝑣(𝐾9), 𝑟𝑒𝑣(𝐼𝑉9), 𝑟𝑒𝑣(𝐾10), 𝑟𝑒𝑣(𝐼𝑉10), 𝑟𝑒𝑣(𝐾11), 𝑟𝑒𝑣(𝐼𝑉11))

(𝜁0, … , 𝜁63) = (𝑟𝑒𝑣(𝐾12), 𝑟𝑒𝑣(𝐾13), 0𝑥FF, 𝑟𝑒𝑣(𝐾14), 𝑟𝑒𝑣(𝐾15), 0𝑥FC, 0𝑥00, 0𝑥01).

 Initialization Phase

The initialization phase consists of 384 rounds. In each round 𝑖, the Boolean function is applied in

order to compute the keystream bit 𝑧𝑖. Afterwards, the nibble 𝑓𝑖 is computed by applying the Sbox

𝑆𝑅_𝑘𝑔. In the end, each of the 4 LFSRs are clocked one step, with 𝑧𝑖⨁𝑓𝑗 being feedback to the jth

LFSR, 𝑗 = 1,4. Note that the keystream bit is used to update the internal state.

 Associated Data Processing

The associated data processing consists of 𝑎𝑑𝐿𝑒𝑛 rounds, where 𝑎𝑑𝐿𝑒𝑛 denotes the number of bits in

𝐴𝐷. In each round 𝑖, the Boolean function is applied in order to compute the keystream bit 𝑧𝑖+384.

Afterwards, the nibble 𝑓𝑖 is computed by applying the Sbox 𝑆𝑅_𝑎𝑑. In the end, each of the 4 LFSRs

are clocked one step, with 𝑧𝑖+384⨁𝑓𝑗⨁𝑎𝑑𝑖 being feedback to the jth LFSR, 𝑗 = 1,4. Note that during

this phase the keystream bit xored with the 𝐴𝐷 bit is used to update the internal state.

 Middle Separation Phase

After the associated data processing, the middle separation phase represents the application of 64

rounds, consisting of the same operations as during the initialization phase (again using the 𝑆𝑅_𝑘𝑔 S-

box).

 Plaintext processing

Before starting processing the plaintext, the first bit of the second LFSR is xored with 1:

 𝛽448+𝑎𝑑𝐿𝑒𝑛 = 𝛽448+𝑎𝑑𝐿𝑒𝑛 ⨁ 1 (1)

For each bit 𝑚𝑖 of the plaintext, the keystream bit 𝑧𝑖+448+𝑎𝑑𝐿𝑒𝑛 is computed; the corresponding

ciphertext bit 𝑐𝑖 is computed by xoring the keystream bit and the plaintext bit. Each of the 4 LFSRs

are clocked one step, with 𝑚𝑖⨁𝑓𝑗 being feedback to the LFSRs (in this case, the keystream bit is not

used to update the internal state, instead it is xored to the plaintext bit, in order to generate the

keystream bit). During the rounds, the 𝑆𝑅_𝑘𝑔 S-box is used. This phase consists of 𝑝𝐿𝑒𝑛 rounds,

where 𝑝𝐿𝑒𝑛 denotes the length of the plaintext.

 Finalization and tag generation

Before starting the tag generation, the first bit of the fourth LFSR is xored with 1:

 𝜁 448+𝑎𝑑𝐿𝑒𝑛+𝑝𝐿𝑒𝑛 = 𝜁448+𝑎𝑑𝐿𝑒𝑛+𝑝𝐿𝑒𝑛 ⨁ 1 (2)

For 384 rounds, the keystream bit 𝑧𝑖+448+𝑎𝑑𝐿𝑒𝑛+𝑝𝐿𝑒𝑛 is computed, and the 𝑆𝑅_𝑡𝑎𝑔 S-box is applied

on the states bits mentioned previously; each of the 4 LFSRs are clocked one step, with 𝑧𝑖⨁𝑓𝑗 being

feedback to the LFSRs (the keystream bit is again used to update the internal state).

The authentication tag 𝑇 is computed by xoring the secret key 𝐾 with the last 128 keystream bits. For

the 64-bit tag version, the last 64 keystream bits are xored with the least significant 64 bits of the key

𝐾, in order to compute the tag.

 The state update functions corresponding to each phase of the cipher can be viewed as a function

parametrized by the used Sbox and by the function used to compute the feedback of the 4 LFSRs. We denote

the state update function by 𝑅𝑜𝑢𝑛𝑑𝑥,𝑆
 . The formal description of this functions is presented in Fig.1.

 Let us denote the composition of the function 𝑅𝑜𝑢𝑛𝑑𝑥,𝑆
 by

𝑅𝑜𝑢𝑛𝑑𝑥,𝑆
𝑛 = 𝑅𝑜𝑢𝑛𝑑𝑥,𝑆

 ∘ … ∘ 𝑅𝑜𝑢𝑛𝑑𝑥,𝑆

⏟
𝑛 𝑡𝑖𝑚𝑒𝑠

𝑅𝑜𝑢𝑛𝑑𝑥,𝑆
 ()

 Compute the keystream bit 𝑧𝑖
 Compute 𝑓1𝑓2𝑓3𝑓4 = S[𝜉 1𝛾 1𝛽 1𝛼 1]
 Run the 4 LFSRs 1 step with 𝑧𝑖⨁𝑥⨁𝑓𝑖 as feedback

Fig. 1 One round of the cipher, parametrized by the bit 𝑥 and the

Sbox 𝑆

 Using this notation, the cipher’s phases can be written as depicted in Table 1.

Table 1 Fountain phases as a composition of the function 𝑅𝑜𝑢𝑛𝑑𝑥,𝑆
 and the associated parameters

Phase Description

Initialization 𝑅𝑜𝑢𝑛𝑑0,𝑆𝑅_𝑘𝑔
384

Associated Data

Processing
𝑅𝑜𝑢𝑛𝑑𝑎𝑑𝑖,𝑆𝑅_𝑎𝑑

𝐴𝐷𝑙𝑒𝑛

Middle Separation 𝑅𝑜𝑢𝑛𝑑0,𝑆𝑅_𝑘𝑔
64

Plaintext Processing 𝑅𝑜𝑢𝑛𝑑𝑐𝑖,𝑆𝑅_𝑘𝑔
𝑃𝑙𝑒𝑛

Finalization 𝑅𝑜𝑢𝑛𝑑0,𝑆𝑅_𝑡𝑎𝑔
384

Observations. The initialization and the middle separation phases use the same state transition function,

the only difference being given by the number of iterations performed (in the initialization phase are performed

384 iterations, while in the middle separation phase are performed only 64 iterations). Moreover, the

initialization, the middle separation and plaintext processing phases use the same Sbox. By getting 𝑝𝑖 = 𝑧𝑖,
where 𝑝𝑖 is a plaintext bit and 𝑧𝑖 is a keystream bit, and a null associated data, then the encryption process is

composed by 384 + 64 + 𝑝𝐿𝑒𝑛 identical steps, where 𝑝𝐿𝑒𝑛 denotes the length of the plaintext. In this case,

the ciphertext will be represented by the string 0𝑝𝐿𝑒𝑛.

3. PROPERTIES OF THE STATE UPDATE FUNCTION

3.1 Slide-based property of 𝑹𝒐𝒖𝒏𝒅𝒙,𝑺
𝒏

Slide attacks were introduced by Alex Biryukov and David Wagner in 1999 [2]. This type of attacks

were proved to be successful in breaking iterative ciphers with high-self similarity, in terms of component

operations, usually independently of the number of rounds. Slide attacks were applied to various families of

ciphers, for example Feistel and Even-Mansour schemes.

In general, in order to achieve efficiency and to prove the security against general known cryptanalytic

techniques, lightweight ciphers are using a large number of similar rounds. This approach may lead to potential

weaknesses in the context of applying slide attacks.

Slide attacks are exploiting key schedule weaknesses or general structural properties, depending of the

cipher’s design. A very well-known method to prevent slide attacks is to avoid self-similarity of the iterative

process (using fixed random constants or iterative counters).

A slide attack is based on the identification of a relation between two inputs that also holds for the

corresponding outputs. This relation could be the composition of a fixed number of rounds, in the case of the

block ciphers, or a set of state transitions, for stream ciphers. The identification of this type of relation may

lead to the recovery of some secret data (key or plaintext bits).

In this section we introduce a slide-based property of the state update function 𝑅𝑜𝑢𝑛𝑑𝑥,𝑆
𝑛 .

Definition. Let (𝐾1, 𝐼𝑉1) and (𝐾2, 𝐼𝑉2) be two key-IV pairs. The pairs are called n-slid pairs if, for 𝑛 > 0,

𝑅𝑜𝑢𝑛𝑑0,𝑆𝑅_𝑘𝑔
𝑛 (𝑙𝑜𝑎𝑑(𝐾1, 𝐼𝑉1)) = 𝑙𝑜𝑎𝑑(𝐾2, 𝐼𝑉2)

Observation. For a pair (𝐾1, 𝐼𝑉1) and a value n, there exists an n-slid pair if and only if, after

computing 𝑅𝑜𝑢𝑛𝑑0,𝑆𝑅𝑘𝑔
𝑛 (𝑙𝑜𝑎𝑑(𝐾1, 𝐼𝑉1)), the internal state satisfies the same property as a loaded state, i.e. the

4th LFSR satisfies the property:

𝜁𝑛+16…𝜁𝑛+23 = 0𝑥𝐹𝐹

𝜁𝑛+40…𝜁𝑛+47 = 0𝑥𝐹𝐶

𝜁𝑛+48…𝜁𝑛+55 = 0𝑥00

𝜁𝑛+56…𝜁𝑛+63 = 0𝑥01

(3)

 Lemma 1. The minimum value of 𝑛 for which there exist n-slid pairs is 47.

 Proof. For 𝑛 < 47, the system of equations (3) is incompatible, i.e. the initial values of the constants

directly influence the values of the bits 𝜁𝑛+16…𝜁𝑛+23, 𝜁𝑛+40…𝜁𝑛+63, making the constants pattern

impossible. □

 For 𝑛 = 47, we conjecture that the system of equations corresponding to the bits

𝜁𝑛+16…𝜁𝑛+23, 𝜁𝑛+40…𝜁𝑛+63 is incompatible or that the last 47 bits of the 4th LFSR are not uniformly

distributed, resulting in a very low probability of finding the correct values of the constants.

 For 𝑛 = 48, we have experimentally found n-slid pairs; one such example is:

 𝐾1 = {8D, 41, 3F, A4, 29, 58, 52, E9, 64, B4, E6, 1C, 68, 03, 64, D1}

𝐼𝑉1 = {A4,D8, A2,25,0A, 0D, 11, D8,52, F8,47, B1}

𝐾2 = {A4,D2,7A, 4C, E9,5E, D8,88,1C, A1, B6,6F, 00,80,24,30}

𝐼𝑉2 = {25,94,31, F4, D8, B3, B4, E8, B1, AF, FC, 8C}

 Observation. Since the pair (𝐾2, 𝐼𝑉2) is obtained after 48 rounds, then the following relations will

always hold for a 48-slid pair:

𝐾2[4 × 𝑖] = 𝐾1[4 × 𝑖 + 3], ∀𝑖 ∈ {0,1,2};

𝐼𝑉2[4 × 𝑖] = 𝐼𝑉1[4 × 𝑖 + 3], ∀𝑖 ∈ {0,1,2};

 𝐾2[12] = 0𝑥00;𝐾2[13] = 0𝑥80;

 Assuming that, after 48 rounds, the last 48 bits of the 4th LFSR are uniformly distributed over ℤ248, then

the probability of finding 48-slid pairs is 2−32. We have also experimentally verified this probability.

 Definition. Let 𝑓: 𝔽𝑞
𝑛 → 𝔽𝑞

𝑛 and 𝑔: 𝔽𝑞
𝑛 → 𝔽𝑞

𝑛. We say that two pairs (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) have a slide-

based property with respect to the function 𝑔 if 𝑎 = 𝑔(𝑏) and 𝑓(𝑎) = 𝑔(𝑓(𝑏)).

 Lemma 2. Two n-slid pairs (𝐾1, 𝐼𝑉1) and (𝐾2, 𝐼𝑉2) define a slide-based property with respect to the state

update function 𝑅𝑜𝑢𝑛𝑑0,𝑆𝑅_𝑘𝑔
𝑚 , ∀𝑚 > 0.

 Proof. The proof is straightforward for 𝑔 = 𝑅𝑜𝑢𝑛𝑑0,𝑆𝑅_𝑘𝑔
𝑛 , 𝑎 = 𝑙𝑜𝑎𝑑(𝐾2, 𝐼𝑉2) and 𝑏 = 𝑙𝑜𝑎𝑑(𝐾1, 𝐼𝑉1).

□

3.2 Slide attack on a modified version of Fountain

 In this section we present a slide attack on a modified version of the stream cipher Fountain, the attack

being the starting point to the attack that will be presented in the sequel. The scope of the attack (on the

modified version of the cipher) is to prove the existence of collisions of the keystream, independent of the

length of the plaintexts.

 Let us denote by Fountainwx the cipher Fountain without the following xor operation:

 𝛽448+𝑎𝑑𝐿𝑒𝑛 = 𝛽448+𝑎𝑑𝐿𝑒𝑛 ⨁ 1

 In this case, two 48-slid pairs (𝐾1, 𝐼𝑉1) and (𝐾2, 𝐼𝑉2) will generate a slide behavior as follows:

Fig. 2 Slide behavior of Fountainwx

 The first process will perform the encryption of the plaintext 𝑝1 = 𝑧448, . . 𝑧495,𝑚49, …𝑚𝑝𝐿𝑒𝑛−1 using

the key 𝐾1 and the initialization vector 𝐼𝑉1. The second process will encrypt the plaintext 𝑝2 =
𝑚49, …𝑚𝑝𝐿𝑒𝑛−1, using the pair (𝐾2, 𝐼𝑉2).

 Since the Initialization and the Middle Separation phases use the same parameters of the state update

function, the internal states will satisfy the slide property for 448 rounds, until the first pair finishes the Middle

Separation phase and begins the processing of the plaintext. Since the first 48 bits of the plaintext are the

keystream bits, then, after the encryption of the first 48 bits, the two processes are perfectly synchronized (have

the same internal state). Therefore, after this step, if the two processes are fed with the same plaintext, no

matter the length of it, the corresponding ciphertexts will be equal.

 Since the attack assumes the black-box hypothesis, an attacker does not have access to the correct values

of the keystream bits 𝑧448, . . 𝑧495. Assuming that these 48 bits are uniformly distributed, the probability of

correctly guessing them is 2−48.

 Since the complexity of finding a 48-slid pair is 2−32, the probability of finding this slide behavior of

Fountainwx is 2−80. So, using approximately 280 data of the type (𝐾1, 𝐼𝑉1, 𝑧448, . . 𝑧495), we will be able to find

a collision on the ciphertexts.

4. DIFFERENTIAL SLIDE ATTACK ON FOUNTAIN

 As stated before, the difference between the original description of the Fountain cipher and the cipher

Fountainwx is Operation (1) performed after the end of the Middle Separation phase. In this case, two 48-slid

pairs (𝐾1, 𝐼𝑉1) and (𝐾2, 𝐼𝑉2) will generate the behavior depicted in Fig. 3.

Fig. 3 Slide behavior of Fountain

 Therefore, using the approach described in the section 3.2 for the original description of Fountain, the

behavior of the internal states for the first 448 rounds will remain unchanged. After the first process finishes

the Middle Separation phase, Operation (1) is applied, inducing an 1-bit difference between the corresponding

internal states.

 In order to attack the Fountain cipher, we have analyzed the propagation of the differences induced after

applying Operation (1) is both processes.

4.1 Differential characteristics of Fountain

 In this section we will describe the manner in which we analyzed the distribution of the differences

through the cipher Fountain.

 One difference can be involved either in a linear manner (in the computation of a LFSR feedback or the

linear part of the keystream bit generation function) or in a non-linear manner (in the non-linear part of the

keystream bit generation function or in the Sbox).

1. Linear behavior of the differences

Let ℓ be a linear function and let 𝛿 be an input difference. The output difference Δ is computed by

applying the linear function ℓ over the input difference:

Δ = ℓ(𝑥)⊕ ℓ(𝑥 ⊕ 𝛿) = ℓ(𝛿).

In this case, the probability of computing Δ knowing 𝛿 is 𝑝 = 1.

2. Non-linear behavior of the differences through the Sbox 𝑺𝑹_𝒌𝒈

The behavior of differences propagation through an Sbox are usually analyzed using the Differential

Distribution Table (DDT). The DDT of 𝑆𝑅𝑘𝑔 is presented in Table 2. For the input difference 𝛿, the

output difference is Δ, with a probability of 𝑝 =
𝐷𝐷𝑇[𝛿,Δ]

16
.

3. Non-linear behavior of the differences through the 𝒉 function

The function ℎ is a Boolean function of degree 3, having an input of 9 bits:

ℎ(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) = 𝑥0𝑥1⨁𝑥2𝑥3⨁𝑥4𝑥5⨁𝑥6𝑥7⨁𝑥0𝑥4𝑥8.

Table 2 The DDT of 𝑆𝑅_𝑘𝑔

 Let 𝛿 = (𝛿0, … , 𝛿8) be the input difference of ℎ. The value of the output difference is computed as

follows:

Δ = ℎ({𝑥𝑖}𝑖) ⊕ ℎ({𝑥𝑖⊕𝛿𝑖}𝑖)

 Therefore, for a fixed input difference, the output difference Δ can be described as a Boolean function 𝑓𝛿

of the input bits {𝑥𝑖}𝑖, the degree of this function being at most 2. Moreover, by observing the value of Δ, the

attacker can learn a relation between the input bits {𝑥𝑖}𝑖. In some cases, the attacker learns a linear combination

of the input bits or, even more, the exact value of one input bit. The probability of having an output difference

Δ = 0 is equal to the probability that the equation 𝑓𝛿({𝑥𝑖}𝑖) = 0.

 For example, let’s assume that only one 𝛿𝑖 = 1:

▪ if 𝑖 ∈ { 1, 3, 5, 7}, then Δ = 𝑥𝑖−1; 𝑃(Δ = 0) = 𝑃(𝑥𝑖−1 = 0) = 0.5;

▪ if 𝑖 ∈ { 2, 6}, then Δ = 𝑥𝑖+1; 𝑃(Δ = 0) = 𝑃(𝑥𝑖+1 = 0) = 0.5;

▪ if 𝑖 ∈ { 0, 4}, then Δ = 𝑥𝑖+1⊕𝑥𝑖−4𝑥𝑖+4; 𝑃(Δ = 0) = 𝑃(𝑥𝑖+1⊕𝑥𝑖−4𝑥𝑖+4 = 0) = 0.5;

▪ if 𝑖 = 8, then Δ = 𝑥0𝑥4; 𝑃(Δ = 0) = 𝑃(𝑥0𝑥4 = 0) = 0.75;

 From the analysis of the difference propagation of Fountain, we remark the following:

 The initial difference pattern on the internal state, induced by applying (1) is described in Fig. 4. We

denote the 1 difference by “X” and the 0 difference by “-“.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 2 0 0 2 0 0 2 0 2 2 2 2 0 2

2 0 0 2 2 2 2 0 0 4 0 0 0 0 0 0 4

3 0 0 0 2 2 0 0 0 2 0 2 2 2 2 0 2

4 0 6 2 0 2 0 0 2 0 0 0 0 0 0 0 4

5 0 0 0 2 2 0 0 0 0 0 4 2 0 2 2 2

6 0 2 0 2 0 2 0 6 0 0 0 0 0 0 4 0

7 0 0 2 0 0 2 0 0 0 0 0 2 4 2 2 2

8 0 4 0 0 0 0 0 4 0 0 4 0 4 0 0 0

9 0 2 0 0 2 2 0 2 2 2 0 2 0 2 0 0

10 0 0 2 2 2 2 0 0 4 4 0 0 0 0 0 0

11 0 2 2 2 0 0 0 2 2 2 0 2 0 2 0 0

12 0 0 0 2 0 2 4 0 0 0 0 2 0 2 4 0

13 0 0 0 0 2 2 4 0 0 2 2 0 2 0 2 0

14 0 0 2 0 2 0 4 0 0 4 0 2 0 2 0 0

15 0 0 2 2 0 0 4 0 0 2 2 0 2 0 2 0

𝛿 Δ

Fig. 4 Initial difference pattern on the 4 LFSRs

 For 33 rounds, the difference will not be involved in any operation. At Round 34, the difference will be

involved, in a linear manner, in the computation of the feedback of the 2nd LFSR, resulting in the state

difference depicted in Fig. 5.

Fig. 5 The state difference pattern at round 34

 At the 41st round, the difference will be involved in the computation of the 𝒉 function. The two possible

output differences after 41 rounds are depicted in Fig. 6. The actual difference pattern will be fixed by the

value of the 20th position of the second LFSR. If that value is 0, then the difference pattern will be the first one,

thus there will only be two differences between the internal states.

Fig. 6 The state difference patterns at round 41

 After performing 45 rounds, in both cases, one difference is involved in a linear manner in the

computation of the keystream bit, thus, with probability 1, the last bits of every LFSR will contain a nonzero

difference. In order to better control the difference propagation through the following rounds and since this

property will be satisfied with probability 1, we will cancel these differences by “guessing” the value of 𝑧45⊕
1 instead of the value of 𝑧45. The same property will appear at step 90. In this case, we will cancel the difference

by choosing two plaintexts with a difference in the 42nd position.

 The difference will influence the application of the Sbox for the first time at the 63rd round, the input

difference of the Sbox being 𝛿 = 2. After this step, there will be 24 possible output difference patterns, having

different appearance probabilities.

 Observation. After computing one output difference pattern after n rounds, we have also generated the

“observable” difference pattern, i.e. the keystream difference pattern used in the common part of the

ciphertexts. The number of such patterns is smaller than the number of state difference patterns since not all

the differences in the state are involved in the computation of the keystream bit difference.

 After computing all possible output differences patterns for 102 steps, we obtain 2095680 difference

patterns on the internal state and 83200 difference pattern on the observable part of the keystream. We store

the 83200 difference patterns in a sorted manner. Since one entrance in this list has 54 bits, the memory needed

for this is approximately 4.4 MB.

 We have experimentally verified that, for the 48-slid pairs that we found, the difference patterns obtained

after 102 rounds belong to this list.

4.2 Differential slide attack on Fountain

 Using the observations and properties described in the previous section, we have designed a related-key

differential slide attack on the Fountain cipher.

 The data needed for this attack is represented by 280 random 𝐼𝑉1
𝑖s and arbitrary 102-bit plaintexts 𝑝. The

first 48 bits of 𝑝 are used as the keystream bits 𝑧448…𝑧495.

 According to the previous section, after performing 45 rounds, the last bit of every LFSR will contain a

nonzero difference, with probability 1. In order to cancel these differences, the bit 𝑝[44] should introduce a

difference in the internal states, so this value should be different from the keystream bit used in the second

process, i.e. 𝑝[44] = 𝑧492⊕1. If the first 48 bits of 𝑝 are correctly guessed, then the first 48 bits of the

ciphertext will satisfy the following conditions:

𝑐1[𝑖] = 0, ∀𝑖 ≠ 45, 𝑖 < 48 and 𝑐1[44] = 1. (4)

 The same behavior of differences will also appear after performing 90 rounds. In order to cancel these

differences, we will introduce a difference in the second plaintext in the 42nd position. More precisely, the

second plaintext is defined as

𝑝2[𝑖] = 𝑝[𝑖 + 48], ∀ 𝑖 ∈ {0, 53} ∖ {41}.

 The hypothesis of this attack is that the attacker has access to an encryption oracle. The oracle will answer

two types of challenges:

• Given an initialization vector 𝐼𝑉 and an 102-bit plaintext 𝑝, the oracle will return the associated

ciphertext 𝑐, under the secret key 𝐾 and the input 𝐼𝑉;

• Given an initialization vector 𝐼𝑉1 and a 54-bit plaintext 𝑝, the oracle will do the following computations

o compute 𝑠 = 𝑅𝑜𝑢𝑛𝑑0,𝑆𝑅_𝑘𝑔
48 (𝑙𝑜𝑎𝑑(𝐾 , 𝐼𝑉1))

o extract (𝐾2
𝑖 , 𝐼𝑉2

𝑖) from 𝑠

o return the encryption of 𝑝 under the input pair (𝐾2
𝑖 , 𝐼𝑉2

𝑖)

 The attack works as follows. The attacker generates the list of all possible ciphertext differences, as

described in the previous section. Then, he randomly generates 280 initialization vectors 𝐼𝑉1
𝑖 and asks for the

encryption of random 102-bit plaintext 𝑝. If the first 48 bits of the ciphertext satisfy (4), then he asks for the

encryption of the corresponding 𝑝2. He computes the difference pattern {𝑡𝑖 = 𝑐1[𝑖] ⊕ 𝑐2[𝑖 + 48]}𝑖 and checks

if the pattern is contained in the precomputed list of differences. If the constraint holds, then the slide property

holds.

 The pseudocode of the attack is presented in Fig. 7.

 The data complexity of the attack is 280, while the time complexity is around 17 × 280. The difference

between the two complexities is explained by the time complexity of the search in the precomputed sorted list.

Since the list contains 83200 < 217 and the search in a sorted list can be performed in logarithmic time, the

time complexity of the search is around 17.

For 𝑖 = 0 to 280 − 1

 Randomly generate an initialization vector 𝐼𝑉1
𝑖 and the arbitrary plaintexts 𝑝, 𝑝2

 Ask for the encryption 𝑐1 = Fountain(𝐾, 𝐼𝑉1
𝑖, 𝑝)

 If 𝑐1[𝑖] = 0, ∀𝑖 ≠ 45, 𝑖 < 48 and 𝑐1[44] = 1

 Ask for the encryption 𝑐2 =Fountain(𝐾2
𝑖 , 𝐼𝑉2

𝑖, 𝑝2)
 Compute {𝑡𝑖 = 𝑐1[𝑖] ⊕ 𝑐2[𝑖 + 48]}𝑖
 If {𝑡𝑖}𝑖 ∈ 𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑙𝑖𝑠𝑡
 Return 𝐼𝑉1

𝑖;

Key-recovery

The pairs (𝐾, 𝐼𝑉1
𝑖) and (𝐾2

𝑖 , 𝐼𝑉2
𝑖) are 48-slid pairs ⇒ 32 equations using the 128

bits of 𝐾

Fig. 7 The pseudocode of the attack on Fountain

Success probability.

 In our attack, in order to filter the right value of 𝐼𝑉1
𝑖, we apply two filters. The first one is based on the

values of 𝑐1[𝑖], for 𝑖 < 48. The probability that the condition of this filter is accomplished is 2−48. The second

filter is based on the identification of a “good” differential pattern on {𝑡𝑖}𝑖. The probability of finding such a

difference, for a 48-slid pair (if the values of 𝑧448…𝑧495 were correctly guessed) is 1. The probability that

such a difference is obtained for random pairs (𝐾1, 𝐼𝑉1) and (𝐾2, 𝐼𝑉2) is 2−37.66. Therefore, the probability

that the algorithm described above outputs a 𝐼𝑉1
𝑖 that was generated by random input key-IV pairs is 2−5.66.

Thus, the probability of success of our attack is 0.98.

5 OTHER OBSERVATIONS ON FOUNTAIN

The attack presented above is performed under the hypothesis that the associated data is null. We have

analyzed the cipher also in the hypothesis that the additional data is not null. In this scenario, if the length of

AD is higher than 4 bytes, then the input space of the input of the cipher (until the Middle Separation phase)

is 𝑙𝑒𝑛 = 128 + 96 + 𝑎𝑑𝐿𝑒𝑛, where 𝑎𝑑𝐿𝑒𝑛 defines the length of the associated data. If 𝑎𝑑𝐿𝑒𝑛 > 32, then

𝑙𝑒𝑛 > 256 (the length of the internal state length). So, mathematically, this means that there will be collisions

on the internal state.

We have performed a series of experiments with the scope of finding two input pairs (𝐾1, 𝐼𝑉1, 𝐴𝐷1) and

(𝐾2, 𝐼𝑉2, 𝐴𝐷2) for which the internal state is the same. Such pairs can be found, with probability 2−32, using

the algorithm described in Fig. 8. Our algorithm is based on the fact that the state update function of Fountain

is invertible.

An example of input data pairs that lead to state collision are the following:

𝐾1 = {FF, FF, FF, FF, FF, FF, FF, FF, FF, FF, FF, FF, FF, FF, FF, FF}
𝐼𝑉1 = {F0, F0, F0, F0, F0, F0, F0, F0, F0, F0, F0, F0}
𝐴𝐷1 = {00,01,02,03,04,05,06}
𝐾2 = {DA, 7F, A4,1B, D3,0E, 1D, EA, 9B, CC, C7, AF, E3,3E, 83,11}
𝐼𝑉2 = {FF, 6F, A7,00,57, AF, EE, A0,94,19,91, CC}
𝐴𝐷2 = {7F, C1, A5,67,27}

Randomly generate a fixed key 𝐾, 𝐼𝑉 and 𝐴𝐷

Compute the internal state 𝑠 obtained after the loading, initialization and

associated data processing phases

For 𝑖 = 0 to 232 − 1

 Generate at random a pair (𝐼𝑉𝑖, 𝐴𝐷𝑖)
 Apply the inverse of the Associated Data Processing phase

 If the internal state is a valid loading state (the 32 constant bits are in the

correct place)

 Extract and return (𝐾𝑖, 𝐼𝑉𝑖)

Fig. 8 The pseudocode of the algorithm for finding pairs (𝐾1, 𝐼𝑉1, 𝐴𝐷1) and (𝐾2, 𝐼𝑉2, 𝐴𝐷2) that lead to

the same internal state

6 CONCLUSION AND FUTURE WORK

In this paper we introduce a slide attack on full Fountain cipher. The attack may concern question

regarding the security margin of the cipher in the related-key scenario. Although the attack involves the

identification of (key, IV) pairs with a particular property, concerns about the structural properties and

component operations arises. We also present (key - IV - associated data) input data pairs that lead to the same

ciphertexts, in the case of enciphering the same message (the xor sum of the associated tags being equal to the

xor sum of the initial keys).

The work presented can be extended in different directions. For example, it remains to be investigated if

and how the attack presented in this paper can be improved in term of both data and time complexity. It will

also be interesting to identify an attack scenario using the property regarding the internal state collison. Further

research should also consider the analyze of Fountain in the single-key scenario.

ACKNOWLEDGEMENT

The author would like to thank Vincent Rijmen, Tomer Ashur and all others for all the fruitful discussions

and ideas regarding the cryptanalysis of Fountain.

REFERENCES

1. A. BIRYUKOV and L. PERRIN, State of the Art in Lightweight Symmetric Cryptography, https://eprint.iacr.org/2017/511.pdf,

2017.

2. A. BIRYUKOV and D. WAGNER, Slide Attacks, Proceeding of FSE’99, LNCS 1636, pp.245-259, Springer Verlag, 1999.

3. A. BOGDANOV, L. R. KNUDSEN, G. LEANDER, C. PAAR, A. POSCHMANN, M. J. B. ROBSHAW, Y. SEURIN, and C.

VIKKELSOE. PRESENT: An ultra-lightweight block cipher. In Cryptographic Hardware and Embedded Systems – CHES 2007,

volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer, Heidelberg, September 2007.

4. B. ZHANG, Fountain: A Lighweight Authenticated Cipher (v1), NIST Information Technology Laboratory, CSRC, Lightweight

Cryptography, Round 1 Candidates, https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates, June 2019.

5. C. DE CANNIÈRE. Trivium: A stream cipher construction inspired byblock cipher design principles. In ISC 2006: 9th

International Conference on Information Security, volume 4176 of Lecture Notes in Computer Science, pages 171–186. Springer,

Heidelberg, August / September 2006.

6. C. DOBRAUNIG, M. EICHLSEDER, F. MENDEL, and M SCHLÄFFER. Ascon v1.2.Candidate for the CAESAR Competition.

See also http://ascon.iaik.tugraz.at/, 2016.

7. D. WATANABE, K. IDEGUCHI, J. KITAHAR, K. MUTO, H. FURUICHI, and T. KANEKO. Enocoro-80: A hardware oriented

stream cipher. In The Third International Conference on Availability, Reliability and Security— ARES 08, pages 1294–1300,

2008.

8. H. WU. ACORN: A lighweight authenticated cipher (v3). Candidate for the CAESAR Competition. See also

https://competitions.cr.yp.to/round3/acornv3.pdf, 2016.

https://eprint.iacr.org/2017/511.pdf
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
http://ascon.iaik.tugraz.at/
https://competitions.cr.yp.to/round3/acornv3.pdf

9. M. ÅGREN, M. HELL, T. JOHANSSON, and W. MEIER. Grain-128a: A New Version of Grain-128 with Authentication.

International Journal of Wireless and Mobile Computing 5(1):48-59 · December 2011

10. M. BOESGAARD, M. VESTERAGER, T. CHRISTENSEN, and E. ZENNER. The stream cipher Rabbit. Available in the

eSTREAM portfolio, a descriptionis available at http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf, 2008.

11. M. MATSUI. New block encryption algorithm MISTY. In Fast Software Encryption – FSE’97, volume 1267 of Lecture Notes in

Computer Science, pages 54–68, Springer, Heidelberg, January 1997.
12. P. EKDAHL and T. JOHANSSON. A new version of the stream cipher SNOW. In SAC 2002: 9th Annual International Workshop

on Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer Science, pages 47–61. Springer, Heidelberg,

August 2003.

13. S. BABBAGE and M. DODD. The MICKEY stream ciphers. In New Stream Cipher Designs, volume 4986 of Lecture Notes in

Computer Science, pages 191–209. Springer Berlin Heidelberg, 2008

14. T. SHIRAI, K. SHIBUTANI, T. AKISHITA, S. MORIAI, and T. IWATA. The 128-bit blockcipher CLEFIA (extended abstract).

In Fast Software Encryption – FSE 2007, volume 4593 of Lecture Notes in Computer Science, pages 181–195, Springer,

Heidelberg, March 2007.

https://www.researchgate.net/journal/1741-1084_International_Journal_of_Wireless_and_Mobile_Computing
http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf

