Simplified Revocable Hierarchical Identity-Based
Encryption from Lattices

Shixiong Wang!#, Juanyang Zhang?, Jingnan He®*, Huaxiong Wang?*, and Chao Lit

1 College of Computer, National University of Defense Technology, Changsha, China
2 School of Information Engineering, Ningxia University, Yinchuan, China
3 State Key Laboratory of Information Security, Institute of Information Engineering of Chinese
Academy of Sciences, Beijing, China
4 School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore,
Singapore
wsx09@foxmail.com, jyzhang@nxu.edu.cn,hejingnan@iie.ac.cn,
hxwang@ntu.edu.sg, lichao_nudt@sina.com

Abstract. As an extension of identity-based encryption (IBE), revocable hierarchi-
cal IBE (RHIBE) supports both key revocation and key delegation simultaneously,
which are two important functionalities for cryptographic use in practice. Recently in
PKC 2019, Katsumata et al. constructed the first lattice-based RHIBE scheme with
decryption key exposure resistance (DKER). Such constructions are all based on bilin-
ear or multilinear maps before their work. In this paper, we simplify the construction
of RHIBE scheme with DKER provided by Katsumata et al. With our new treatment
of the identity spaces and the time period space, there is only one short trapdoor base
in the master secret key and in the secret key of each identity. In addition, we claim
that some items in the keys can also be removed due to the DKER setting. Our
first RHIBE scheme in the standard model is presented as a result of the above sim-
plification. Furthermore, based on the technique for lattice basis delegation in fixed
dimension, we construct our second RHIBE scheme in the random oracle model. It
has much shorter items in keys and ciphertexts than before, and also achieves the
adaptive-identity security under the learning with errors (LWE) assumption.

Keywords: Lattices, Identity-based encryption, Revocation, Delegation

1 Introduction

Background. Identity-based encryption (IBE), envisaged by Shamir [20] in 1984, is an
advanced form of public-key encryption (PKE) where any string such as an email address
can be used as a public key. Hierarchical IBE (HIBE), an extension of IBE introduced by
Horwitz and Lynn [10] in 2002, further supports a key delegation functionality. Moreover, just
as many multi-user cryptosystems, an efficient revocation mechanism is usually necessary
and imperative in the (H)IBE setting. The public/private key pair of a system user may need
to be removed for various reasons, such as that the user is no longer a legitimate system user,
or that the private key is lost or stolen. Designing the revocable IBE (RIBE) or revocable
HIBE (RHIBE) turned out to be a challenging problem.

In 2001, Boneh and Franklin [6] proposed a naive solution for RIBE, which requires
users to periodically renew their private keys. This solution is too impractical to be used
in large-scale system, since for the key generation center (denoted by KGC), the workload
grows linearly in the number of users N. Later in 2008, Boldyreva et al. [5] utilized the
complete subtree (CS) method of Naor et al. [17] to construct the first scalable RIBE, where
KGC’s workload is only logarithmic in N. RIBE requires three types of keys: a secret key
SK, a key update KU, and a decryption key DK. For each time period t, the KGC broadcasts
a key update KUkgc+ through a public channel, and only non-revoked identity ID at this
time period t can derive a decryption key DK|p: by combining its secret key SK|p with the

key update KUkgct. In the security model of [5], the adversary only has the access to a
secret key reveal oracle and a key update reveal oracle. However, leakage of decryption keys
may also happen in practice. In 2013, Seo and Emura [19] introduced a new security notion
called decryption key exposure resistance (DKER), and thus refined the security model,
where the adversary also has the access to a decryption key reveal oracle. The works in [5]
and [19] attracted a lot of followup works, and their RIBE schemes were also extended to
RHIBE schemes. Note that before Katsumata et al.’s work [11] in 2019, the constructions of
R(H)IBE schemes with DKER are all based on bilinear or multilinear maps, and they rely
heavily on the so-called key re-randomization property.

This paper focuses on the lattice-based cryptography, which has faster arithmetic oper-
ations and conjectured security against quantum attacks. In 2012, Chen et al. [8] employed
Agrawal et al.’s IBE [1] and the CS method [17] to construct the first lattice-based RIBE
scheme without DKER. Then in 2017, Takayasu and Watanabe [21] presented a new lattice-
based RIBE scheme secure against exposure of a-priori bounded number of decryption keys
for every identity. Namely, their scheme only achieves bounded DKER. Later in 2019, Kat-
sumata et al. [11] proposed the first lattice-based R(H)IBE scheme with DKER under the
learning with errors (LWE) assumption. Specifically, they provided a generic construction of
RIBE with DKER from any RIBE without DKER and two-level HIBE. This result direct-
ly implies the first lattice-based RIBE scheme with DKER. Furthermore, they constructed
the first lattice-based RHIBE scheme with DKER by further exploiting the algebraic struc-
ture of lattices. Since lattices are ill-fit with the so-called key re-randomization property,
Katsumata et al. [11] introduced new tools such as leveled ciphertexts, leveled secret keys,
leveled decryption keys, and level conversion keys. Therefore, their techniques highly depart
from previous works which are based on bilinear or multilinear maps.

Our Contributions and Techniques. In this paper, we manage to simplify the construc-
tion of lattice-based RHIBE scheme with DKER in [11]. Specifically, we present two new
RHIBE schemes IT; and II5, both of which are based on lattices and achieve DKER. Let IIj
denote the RHIBE scheme with DKER in [11]. Then compared with Iy, our first scheme
II; has fewer items in the public parameters, secret keys, and key updates. Furthermore,
in our second scheme Il5, the items in keys and ciphertexts are much shorter than I, IT;.
The scheme I in [11] and our first scheme II; are in the standard model, and they both
satisfy the selective-identity security, assuming the hardness of the LWE problem. While
our second scheme ITs, which is in the random oracle model, achieves the adaptive-identity
security under the LWE assumption.

In Figure 1, we show the public parameters PP, the master secret key SKkgc (the secret
key of KGC), the ciphertext CT, the secret key SKp, the key update KUjp +, and the decryp-
tion key DK|p, together with the description of their items, for the schemes Iy, IT; and
IT,. In this figure, L is the maximum depth of the hierarchy, and we use ¢ := [ID| to denote
the depth of the corresponding ID explicitly in SKip, KUipt, DKipt, or implicitly in CT,
respectively. In addition, for nq,ne € N, we set [n1,ns] := {n1,n1 +1,--+ ,na} if ny < no,
or [n1,nz2] := 0 if ny > ng, and then let [n] := [1,n] for n € N. Figure 1 only provides a brief
description of the RHIBE schemes I, IT;, II5, and the notations in this figure will be clar-
ified later in this paper when necessary. For example, the notation BTkgc (or BT|p), which
denotes a binary tree managed by KGC (or ID), is introduced in Section 2.3. The function
E(-) used in SKp for IIg, II; is described in Section 3, and the functions Py (-), P2(:) used
in SK|p for Iy are defined in Section 4. Actually, Figure 1 is mainly for the comparison,
from which we can see that our first scheme IT; needs fewer items than Iy, and the sizes of
items are much smaller in our second scheme Il;. Furthermore, with the help of Figure 1,
we can briefly introduce our techniques as follows.

In the RHIBE, each identity ID = (idy, - - - ,idy) at level £ € [L] belongs to the hierarchical
identity space IDy = (ID)St := Uie (ZD)¢, where ZD is the element identity space. The
KGC, i.e., the key generation center, is the unique level-0 identity. For the construction of our
scheme IT;, we introduce another space ZD such that ZDNZD = (), |ZD| = |ZD|, and there is

The RHIBE Scheme I in [11] The items in Iy

1. PP = ((Adier+1] b (Ciljerrtr), (Wr)re(r))7 L A;,Cj € Zy ™, uy, € Ly,
Ta, € Zmxm
SKkec = (BTKGQ (Ta,)icint1])
2. CT = (Co, (ci)iergs CL+1)

3. SKip = (BTD, (0,ep,0)0, (fip,k)kefet,r)s 3. e,, fip, € ZTI™,
UIDkJkelef1,L] Tia, E0D)] € 7+ 1)mx (e+1)m

2. ¢co € Zq, C; € Z[(]i+2)m7 Cr+1 € Z((]Z+2)m

’ (Tia, B0)icle+1,041) D
(+2) (i+2)
4. KUpt = ((G,em,t,e)m (fio,, ,t,k)(i,k)e[e]x[ul,L]) 4. epto €Z " fiogy e € 20T

5. DKipt = ((fIDM,t,Z)iE[Z—l], dip s, ng,c) 5. fioy 0 € Z0FD™ dip ., gip € ZEHD™
Our First RHIBE Scheme IT; The items in IT;
1. PP = (: (Ci)ielz+115 l): LA G €Zg™™, uely,
TA e mem

SKkec = (BTKGC,)

2. ¢ €Zqg, c;i € Z((Zi+2>m, CrL+1 € Z((]Z+2)m

2. CT= (CO’ (Ci)sera, CL+1) 3. ep, € zt™,

3. SKpp = (BT.D7 (0,ep,0)0, | Tia/EqD)) T[I;\E(ID)] € ZUHDmX(E+1)m

4. KUpy = ((O,em,t,g)@, (d|D[i]’t)Z‘€[g]) 4. epye € 2™, dip, + € 7,(i+2)m
5. DKipt = ((d'Dm t)iele), gm,t) 5. dip, « € ZO+DIm o € grDm
Our Second RHIBE Scheme IT» The items in I

1. PP = (A, B, u), 1. ABeZ™™ uezl,

T T mem
SKkec = (BTKGQ Ta, TB) 4, 1B €

2. ¢y € Zq, (civl,cm) S ng, CrL+1 € Z;ﬂ

2. CT = (Co, (ci,1,€i,2)icie, CL+1)
3. ep,p €Z™,
3. SKip = (BT'D’ (0,€,0)0, TP,), TBPZ('D)) Ta.p,0), TB.PoaD) € Z™*™
4. KUp;: = ((07eID,t,9)97 (dID[i],t)ie[é]) 4. epo € Z™, dipy, .« € 7>
5. DKipt = ((d|Dm ,t)iE[Z]v gID,t) 5. d'D[i] t € ZQm, gt € Z™

Fig. 1. Comparison of the RHIBE schemes Ily, IT;, IT2

a one-to-one correspondence between id € ZD and id € ID. Suppose that in the encryption
algorithm, a message M is encrypted under an identity ID = (idy, - - - ,id;) € ZDy (and under
a time period t). Then from Figure 1, we know that both the schemes Il and IT; will output
the ciphertext CT = (CO, (€i)iclys cL+1) € Ly x (ZE™ X ZJ™ X --- X Z,(f+2)m) X Z((ZHQ)"L.
However, for Iy the item c; in CT is generated from IDy; := (idy, - ,id;_1,id;), while the
item c; for our IT; is created from IDy;) := (idy, - - - ,id;—1,id;). As a consequence, our scheme
IT; only needs one short trapdoor base Ta (or T(s|g(p))) in the secret key SKkgc (or SKip),
and accordingly the matrix A is used in PP instead of (A;);c|r+1], shown as in Figure 1.
In the security proof, the adversary A may issue a secret key reveal query on IDE‘M but not
on any ID;) for j € [* — 1], where ID" denotes the challenge identity and 7* < [ID*|. In this
case, the LWE problem instance is used to construct A,u in PP and ¢y, c;« in CT for our
scheme IT;. Though without the trapdoor T o, we are still able to construct T[A\E(lD[*i*])] in

—_—

SKID;*] for the adversary A, since the simulated c¢;- is only related to IDE*], not IDE;*] itself.
The construction of T A[E(ID,..)] will not succeed, if ¢;+ is obtained in the way of the scheme
ITy. This is also the reason why Ily employs L + 1 short trapdoor bases (Ta,)icir+1] in

SKkec, and L + 1 — £ short trapdoor bases (T(a,|g(D)))ic[¢+1,2+1] in SKip, just as Figure 1
shows. Similarly, we also deal with the time period t differently in the encryption algorithm
for our scheme IT;. As a result, we no longer need T to answer all the queries made by
the adversary A in the security proof.

The items in Ily, IT; related to the above changes are boxed in Figure 1. Besides, we
describe the underlined items in ITy, II; as follows (the items in DKip; are not marked
since there is no simplification). For the scheme Il in Figure 1, the vector fip ; in SKip,
the vector fipt in KUp: and the vector dipt in DKpt, satisfy the condition fipt s =
dipt + [fip.k]|Omx1] € ZEFD™ for k € [(+1, L], where [-||] denotes vertical concatenation of
vectors, and ¢ = |ID|. Actually, as a preparation for achieving DKER, Katsumata et al. [11]
also presented an RHIBE scheme without DKER, where the decryption key DKp+ does not
contain the item gp ;. Following this scheme without DKER, they introduced these vectors
fip,k: fip; .tk to avoid a trivial attack. For simplicity, one can imagine that if there is no
gip,t in DKp for our scheme II; in Figure 1, then the private DK|p; is totally contained in
the public KU\p +, which is obviously insecure. However, for the construction of RHIBE with
the DKER setting, it can be proved that the item gp; itself is sufficient to guarantee the
security. Therefore, one no longer needs the items (fip x)xee+1,2) in SKip, or part of the items
(lem k) k)l xe+1,0) in KUppt. Then in the public parameters PP we can also use only
one vector u, instead of (ug)ieqz), and finally our scheme II; is obtained as a simplification
of ITy, shown as in Figure 1.

As for our second RHIBE scheme II,, we follow the idea of our II;, and adopt the
technique for lattice basis delegation in fixed dimension introduced in [2]. Therefore, the
sizes of items are much smaller than Iy and IT;. For example, the ciphertext CT under an
identity ID with ¢ = |ID], is a vector in Zf“l)mﬂ for our IT,. While in Il and II;, CT is
Te+2)m+1

a vector in Zééeu . Moreover, as Figure 1 shows, the items in SKip, KUip+, DKip+
for IT5 do not depend on £ = |ID|. They are either short matrices in Z™>*™, or short vectors
in Z™ or Z>™. Unlike only one matrix T in SKkgc for IT;, we emphasize that the master
secret key SKkgc in our scheme ITs contains two trapdoor bases Ta, Tg. This comes from
the different technique introduced in [2]. Following this, two trapdoor bases are necessary
even for the construction of RIBE (not RHIBE) without DKER.

Organization. The rest of this paper is organized as follows. Section 2 reviews some back-
ground on lattices, the definitions for RHIBE re-formalized in [11], and the complete subtree
method. Then in Section 3, we provide our first RHIBE scheme IT;, together with its analy-
sis. The construction and the security proof for our second RHIBE scheme II5, are presented
in Section 4. Finally, the conclusion is given in Section 5.

2 Preliminaries

Notations. The acronym PPT stands for “probabilistic polynomial-time”. We say that
a function ¢ : N — R is negligible, if for sufficient large A € N, |e())| is smaller than the
reciprocal of any polynomial in A. The notation negl()) is used to denote a negligible function
€()A). Besides, an event is said to happen with overwhelming probability if it happens with
probability at least 1 — negl(\). The statistical distance of two random variables X and Y
over a discrete domain (2 is defined as A(X;Y) := 2 >, [Pr[X = s] — Pr[Y = s]|. If X(})
and Y () are ensembles of random variables, we say that X and Y are statistically close if
d(A) := A(X(N);Y(N)) is equal to negl(A). For a distribution x, we often write = < x to
indicate that we sample x from y. For a finite set {2, the notation x & 0 means that z is
chosen uniformly at random from (2. We treat vectors in their column form. For a vector
x € Z"™, denote ||x|| as the Euclidean norm of x. For a matrix A € Z"*™, denote ||A| as
the Euclidean norm of the longest column in A, and denote ||A|lgs as ||Ags||, where Ags
is the Gram-Schmidt orthogonalization of A.

2.1 Background on Lattices

Integer Lattices. A (full-rank) integer lattice A of dimension m is defined as the set
{Zie[m] x;b; | z; € Z}, where B := {by, -+ ,b,,} are m linearly independent vectors in
Z™. Here B is called the basis of the lattice A. Let n,m and g > 2 be positive integers. For a
matrix A € Z?*™, define the m-dimensional lattice Ay (A) := {x € Z™ | Ax = 0 mod ¢}.
For any u in the image of A, define the coset A%(A) := {x € Z™ | Ax = umod ¢}.

Discrete Gaussians over Lattices. Let A be a lattice in Z™. For any parameter o € R+,
define py(x) = exp(—nl|x||*/o?) for x € Z™, and p,(A) = >, ., po(x). The discrete
Gaussian distribution over A with parameter o is Dy (y) := po(¥)/ps(4), for y € A. Some
properties are shown as follows.

Lemma 1. ([16]) For A € Z7*™ u € Z with q > 2,m > n, let Ta be a basis for Ay (A)
and 0 > || Talas - w(Viogm), then Pr[x <= Dju(a),o : (X[> o/m] < negl(n).

Lemma 2. (/9]) Suppose that n,m,q € Z~o, 0 € Rsq, with ¢ a prime, m > 2nlogq and
o > w(y/logn). Then for A & Zy ™, e <> Dgm o, the distribution of u := Ae (mod q) is
statistically close to uniform over Zy. Furthermore, for a fived vector u € Z; and a matriz

AL Zy*™, the conditional distribution of e <= Dzm , given Ae =u (mod q) is DA;(A),U
with overwhelming probability.

In addition, as in [2], we set or := v/nlogq - w(+/logm), and let D, ., denote the
distribution on matrices in Z™*™ defined as (Dzm »5)™ conditioned on the resulting matrix
being Zg-invertible.

Algorithms about Lattices. Let us briefly review some algorithms which are useful for
lattice-based cryptography. For these algorithms introduced below, we simply assume that
n,m,mo,q € Z~o with ¢ > 3 a prime and m = 2(nlog q). Besides, we note that according
to [15], there exists a fixed full rank matrix G € Zg*™, called the gadget matrix, such that

the lattice Aé‘(G) has a publicly known basis Tg € Z™*™ with || Tg|as < V5.

TrapGen(17,1™,q) — (A, Ta) ([3,4,15]): On input n,m, g, output a matrix A € Zy*"™ and
a basis Ta of /1ql (A), such that A is distributed statistically close to uniform over Zj*™
and | Tallgs < O(v/nlogq) with overwhelming probability in n.

SamplePre(A, Ta,u,0) — e ([9]): On input a full rank matrix A € Zy*™, a basis Ta of
A7 (A), a vector u € Z!, and a Gaussian parameter o > || Tal|as - w(v/Iogm), output a
vector e € Z™ distributed statistically close to D AB(A),0

SampleLeft(A, M, Ta,u,0) — e ([1,7]): On input a full rank matrix A € Zy*™, a matrix
M € Zg*™°, a basis Ta of A;-(A), a vector u € Zy, and a Gaussian parameter o >
ITAllgs - w(y/log(m 4+ mg)), output a vector e € Z™T™° distributed statistically close
t0 Dav((A|M)),0-

SampleRight(A,H - G, R, Tg,u,0) — e ([1,15]): On input a matrix A € Z3*™, a matrix
of the form H - G € Zy*™ (where H € Z{*™ is full rank and G € Zy*™ is the gadget
matrix [15]), a uniform random matrix R & {—1,1}™*™ a basis Tg of A7(G), a
vector u € Z7, and a Gaussian parameter o > || Tallgs - v/m - w(y/logm), output a
vector e € Z2™ distributed statistically close to DAE([A‘A;H_HG])’J.

RandBasis(T,0) — T’ ([7]): On input a basis T of an m-dimensional lattice A, (A) and
a Gaussian parameter 0 > | T|as - w(v/Iogm), output a new basis T’ of Ay (A) such
that T’ is distributed statistically close to DBaSiS(A;‘(A),O') introduced below, and
ITlcs < oy/m holds with overwhelming probability.

The distribution DBasis(/l[JI-

O(Af(A),0) be an algorithm that generates samples from the distribution Dyt(a),o» and

(A),0) used above can be briefly described as follows. Let

set m as the dimension of A (A). Fori=1,2,--- ,m, run v < O(A}(A), o) repeatedly un-
til v is linearly independent of {vy,---,v;_1}, and then set v; < v. After that, convert the
set of vectors {v1, -+, vy, } to a basis Ta of A;-(A) using Lemma 7.1 of [14] (and using some
canonical basis of Aj (A)). The distribution of this T 4 is then denoted as Dpgsis (/1qL (A), o).
Actually, in the process of RandBasis(T, o) — T, the input basis T is only used to run the
algorithm SamplePre(A, T, 0, o), instead of the above algorithm O(A(JI- (A),0). Thus up to a
negligible statistical distance, the distribution of the output basis T’ does not depend on T.

Using the distribution Dpgg;s (Aé- (A), o) introduced above, we are able to describe the
following algorithms for generating a random basis of some lattice.

SampleBasisLeft (A, M, Ta,0) — Tiajnm ([1,7]): On input a full rank matrix A € Zy*™, a
matrix M € Z*™ a basis Ta of Ay (A), and a Gaussian parameter o > ||Tallas -
w(y/log(m +mq)), output a basis Tiajmy € Z,(m+mo)x(m+mo) distributed statistically
close to Dpasis(A7 ([A | M]), 0).

SampleBasisRight(A,H - G,R,Tq,0) — Tajar+uc] ([1,15]): On input a matrix A €
Zy ™, a matrix of the form H-G € Z3*™ (where H € Zy*™ is full rank and G € Zy*™

is the gadget matrix [15]), a uniform random matrix R & {—=1,1}*™ a basis Tg
of A7(G), and a Gaussian parameter o > || Tg|las - v/m - w(v/Iogm), output a basis
T(ajar+HG] € Z2"*?™ distributed statistically close to Dpasis(A, ([A | AR+HG]),0).

BasisDel(A, R, Ta,0) — Tar-1) ([2]): On input a full rank matrix A € Zy*™, a Z,-
invertible matrix R € Z™*™ sampled from D,,xm, a basis T of /1ql (A), and a Gaus-
sian parameter o > ||Ta|las - vVrmlogq - w(log® m), output a basis T(ar-1) € Z™*™
distributed statistically close to Dpasis(A; (AR™Y), 0).

SampleRwithBasis(A, o) — (R, T(ar-1)) ([2,7]): On input a full rank matrix A € Zy*™, and
a Gaussian parameter o > y/nlog ¢-w(y/log m), output a Z,-invertible matrix R € Z"™*™
sampled from a distribution statistically close to Dpxm, and a basis T ag-1) € Z™*™
distributed statistically close to Dpgsis (/qu (AR71),0).

Recall that the distribution D,,«,, used above has already been defined below Lemma 2.
Besides, the algorithm SampleRwithBasis described above is actually a combination of the
original algorithm SampleRwithBasis in [2] and the algorithm RandBasis in [7]. We directly
describe this modified SampleRwithBasis just for convenience in the future proof of security.

Hardness Assumption. The learning with errors (LWE) problem, first introduced by
Regev [18], plays a central role in lattice-based cryptography. The security of our schemes
will rely on the following LWE assumption.

Assumption 1 (LWE) Suppose that n,m,q € Zso, a € (0,1) with ¢ a prime satisfy
aq > 2y/n. For a PPT algorithm A, the advantage for the learning with errors problem
IWEy m.q.Dm o, Of A is defined as |PrlA(A,ATs + x) = 1] — PrlA(A,v) = 1]|, where

A& Zy*™,s & Ly, % <> Dgm aq, v & Zq'. We say that the LWE assumption holds if the
above advantage is negligible for all PPT A.

2.2 Revocable Hierarchical Identity-Based Encryption

We briefly review the syntax, correctness and security definition for RHIBE, which are re-
formalized in [11]. First of all, let us introduce some notations as follows.

Recall that the hierarchical identity space in RHIBE is denoted by ZDy = (ZD)St =
Uie[L] (ZD)*, where ID is the element identity space, and L is the maximum depth of the
hierarchy. The KGC is the unique level-0 identity, and an identity ID € ZDy at level £ € [L]
is expressed as a length-¢ vector ID = (idy, - ,id¢) € (ID)". For k € [{], we set IDpy :=

(idy, -+ ,idg) as the length-k prefix of ID, and define prefix(ID) := {IDy, 1D, ---,IDjg =
ID}. Besides, we let pa(ID) := IDj,_yj if £ > 2, and pa(ID) := KGC if £ = 1. Here pa(ID) is
called the parent of ID. We use ID||ZD to denote the subset of (ZD)**! which contains all
the members that have ID € (ZD)* as its parent. When ID = KGC (i.e. £ = 0), the notation
ID||ZD just denotes ZD.

Next, we introduce the notation RL (C (ZD)S%) to denote the revocation list on the
time period t. If ID € RLy, then implicitly we assume ID’ € RL; also holds, where ID’ is any
descendant of ID. Besides, it is required that RL;, C RL, for t; < ta. We set RLip+ := RL¢N
(ID|IZD) as the revocation list managed by the identity ID on the time period t. Following
these notations, when we write “ID € RL.”, it means that user ID has been revoked on the
time period t. For any ID’ € prefix(ID) and any t’ < t, we have ID" € RLpaapr),v = ID € RL:.
When we write “ID ¢ RL”, it means that user ID is not revoked on the time period t. We
have ID ¢ RL; < ID" & RLy,(1pr),t, V ID” € prefix(ID).

Syntax. As re-formalized in [11], an RHIBE scheme II consists of the following six algo-
rithms Setup, Encrypt, GenSK, KeyUp, GenDK, Decrypt. Here the “revoke” algorith-
m is not explicitly introduced, since it is a simple operation of appending revoked users into
a revocation list.

Setup(1*,1%) — (PP,SKkgc): This is the setup algorithm run by the KGC. On input a
security parameter A and the maximum depth of the hierarchy L, it outputs public
parameters PP and the KGC’s secret key SKkgc.

Encrypt(PP,ID,t,M) — CT: This is the encryption algorithm run by a sender. On input
public parameters PP, an identity ID, a time period t, and a plaintext M, it outputs a
ciphertext CT.

GenSK (PP, SK,(p), D) — (SK|D,SK:)8(,D)): This is the secret key generation algorithm
run by pa(ID), the parent user of ID. On input public parameters PP, the parent user’s
secret key SKp,(p), and the identity ID, it outputs a secret key SKip for ID along with
the parent user’s “updated” secret key SK;aUD).

KeyUp(PP,t,5Kip, RLip ¢, KUpa(ipy 1) — (KUipt, SK{p): This is the key update generation
algorithm run by the user ID. On input public parameters PP, a time period t, a secret
key SKip, a revocation list RLip;, and the parent user’s key update KUp,(p) s, it outputs
a key update KUp; along with the “updated” secret key SK{p. (In the special case
ID = KGC, since KU,(kae),t is not needed, we just define KUp,kgey := L forallt € 7.)

GenDK (PP, SKp, KUp,pyt) — DKipt or L: This is the decryption key generation algo-
rithm run by the user ID. On input public parameters PP, a secret key SK|p, and the
parent user’s key update KUp,p),t, it outputs a decryption key DKipt, or the special
“invalid” symbol L which indicates that ID has been revoked.

Decrypt(PP,DK|pt,CT) — M: This is the decryption algorithm run by the user ID. On
input public parameters PP, a decryption key DKip+, and a ciphertext CT, it outputs
the decrypted plaintext M.

Correctness. The correctness requirement for an RHIBE scheme II states that, for all
ML € Zsg, £ €[L], ID € (ID), te T, M€ M, RL, C (ID)SE, if ID ¢ RL;, and all
parties follow the above prescribed algorithms Setup, GenSK, KeyUp, GenDK, Encrypt
to generate PP, DK|p, CT, then Decrypt(PP,DKipt,CT) = M.

Security Definition. Let IT = (Setup, Encrypt, GenSK, KeyUp, GenDK, Decrypt)
be an RHIBE scheme. We first consider the selective-identity security, which is defined via
the following game between an adversary A and a challenger C.

At the beginning, A sends the challenge identity /time period pair (ID*,t*) € (ZD)SVx T
to C. After that, C runs (PP,SKkgc) ¢+ Setup(1*,17), and prepares a list SKList that
initially contains (KGC,SKkgc). During the game, whenever a new secret key is generated

or an existing secret key is updated for some identity ID € {KGC} U (ZD)SE, the challenger
C will store or update the identity/secret key pairs (ID,SK|p) in SKList, and we do not
explicitly mention this addition/update. The global counter t.,, which denotes the “current
time period”, is initialized with 1. Then C executes (KUkgc,1, SKkgc) < KeyUp(PP, te, =
1,SKkec, RLkger =0, L) for to, = 1, and gives PP, KUkgc1 to A.

From this point on, .4 may adaptively make the following five types of queries to C.

Secret Key Generation Query: Upon a query ID € (ZD)SF from A, the challenger C
checks whether the condition (ID, *) ¢ SKList, (pa(ID),SKpaapy) € SKList is satisfied. If
not, C just returns L. Otherwise, C executes (SKp, SK;,a(,D)) <+ GenSK(PP, SKy,(py, ID).

Furthermore, if ID € (ZD)SE~1, then C executes (KUjp +,, SKip) «+ KeyUp(PP, tey, SKip,
RLipt, = 0, KUpa(p) 1,)» and returns KUjp ¢, to A.
Secret Key Reveal Query: Upon a query ID € (ZD)SE from A, the challenger C checks
whether the following condition is satisfied.
- If tey > t* and ID € prefix(ID*), then ID € RLy-.
If not, C just returns L. Otherwise, C finds SK|p from SKList, and returns it to .A.
Revoke & Key Update Query: Upon a query RL C (ZD)SE from A, the challenger C
checks whether the following conditions are satisfied simultaneously.
- RL;, CRL.
- For ID,ID’ € (ZD)SE with ID" € prefix(ID), if ID’ € RL, then ID € RL.
- If toy = t* — 1, and SK|p for some ID € prefix(ID*) has been revealed by the secret
key reveal query, then ID € RL.
If not, C just returns L. Otherwise, C increments the current time period by te, <
tew + 1, and then sets RL;, <+ RL. Next, for all ID € {KGC} U (ZD)SL~1 with (ID,) €
SKList, ID ¢ RLy, in the breadth-first order in the identity hierarchy, C set RLip s,
RLtcu n (|DHID), and run (KUID,tcua SK{D) — KeyUp(PP,tcu, SK|D7 RLIDytcu7 KUpa(ID),tcu>-
Finally, C returns all these generated key updates {KUjpy,} to A.
Decryption Key Reveal Query: Upon a query (ID,t) € (ZD)SF x T from A, the chal-
lenger C checks whether the following condition is satisfied.
- t < te, ID ¢ RL, (ID,t) # (ID*,t*).
If not, C just returns L. Otherwise, C finds SK|p from SKList, runs DKp ; + GenDK(PP,
SKip, KUpa(iD).¢), and returns DKip ; to A.
Challenge Query: A is allowed to make this query only once. Upon a query (Mg, M;)

with [Mg| = [My| from A, the challenger C picks the challenge bit b & {0,1}, runs
CT* «+ Encrypt(PP,ID*,t*, My), and returns the challenge ciphertext CT* to A.

At some point, A outputs b’ € {0,1} as the guess for b and terminates.

The above completes the description of the game. In this game, A’s selective-identity
security advantage is defined by Advf—fjfﬁse'()\) := 2. |Pr[tY = b] — 1/2|, where X is the
security parameter. We say that an RHIBE scheme IT with depth L satisfies the selective-
identity security, if the advantage Adv%’j'ﬁise'()\) is negligible for any PPT adversary A.

The game for the adaptive-identity security, is defined in the same way as the above
game, except that the adversary A chooses the challenge identity /time period pair (ID*,t*) €
(ZD)SE x T not at the beginning of the game, but at the time when A makes the challenge
query. Formally, the challenge query is defined differently as follows.

Challenge Query: A is allowed to make this query only once. The query (ID*,t*, Mg, M)
from A must satisfy the following conditions simultaneously.
- [Mo| = [My].
- If toy > t*, and SK|p for some ID € prefix(ID*) has been revealed by the secret key
reveal query, then ID € RL-.
- If tey > t*, then A has not submitted (ID*,t*) as a decryption key reveal query.

After receiving this query (ID*,t*, Mg, My), C picks the challenge bit b & {0,1}, runs
CT* + Encrypt(PP,ID*,t*, M), and returns the challenge ciphertext CT* to A.

Besides, in the other queries, the conditions related to ID*,t* are naturally omitted before A4
makes the above challenge query. Recall that at last A will output &’ € {0, 1} as the guess for
b. The adaptive-identity security advantage is then defined by Adv%’j'ﬁiad()\) =2-|Pr[t) =
b] — 1/2| for this modified game. Similarly, we say that an RHIBE scheme IT with depth L
satisfies the adaptive-identity security, if the advantage Adv%‘jﬁiad(/\) is negligible for any
PPT adversary A.

2.3 The Complete Subtree Method

Similar to the works in [5,8], the RHIBE scheme IIy in [11], and our schemes II;, IIy
constructed in this paper, all need the complete subtree (CS) method of Naor et al. [17] to
achieve the revocation mechanism.

Shown as in Figure 1, every identity ID, including the KGC, keeps a binary tree BTp
in its secret key SK|p. Actually, each member that has ID as its parent, will be randomly
assigned to a leaf node of BTp. For a leaf node 1, we use Path(BTp,7) to denote the set of
nodes on the path from 7 to the root in BT|p (both 7 and the root inclusive). For a non-leaf
node 6, let 6;, 60, denote the left and right child of 8, respectively. Besides, recall that RLjp ¢
is the revocation list managed by the identity ID on the time period t. Then the algorithm
KUNode, which takes BT|p and RLjp; as input, can be described as follows: (1) X,Y «+ {);
(2) for each ID" € RLip, add Path(BTp,mp’) to X, where np- denotes the leaf node to
which ID’ is assigned; (3) for each node 6 € X, add 6; to Y if §; ¢ X, and add 6, to Y if
6, ¢ X; (4) if RLipy = 0, add the root node of BT|p to Y (5) return Y as the output of
KU Node(BT|D, RL|D't).

Let us focus on the decryption key generation algorithm GenDK(PP,SKp/, KUp)
run by the user ID” with pa(ID’) = ID. Here the secret key SKps contains the set of n-
odes P := Path(BTp,np’). While the key update KU|p. contains the set of nodes K :=
KUNode(BT\p,RLip). If ID" ¢ RLipt, we have P N K = {#*}, which contains exactly one
node 6*. Then ID’ is able to generate its decryption key DKjp +, using some item related to
6*. If ID’ € RLip ¢, we have P N K = (), from which ID" can never obtain DKip’+. This is the
general way to achieve the revocation mechanism from the CS method.

3 RHIBE Scheme in the Standard Model

In this section, we describe our first RHIBE scheme IT; in Section 3.1, and then present its
selective-identity security in Section 3.2. As a preparation, we need to explain our treatment
of some spaces such as 7,ZD,ZDy = (ID)SY, and introduce an encoding with full-rank
differences used in the scheme IT;.

Treatment of Spaces. The element identity space ZD is treated as a subset of Z \ {0},
namely, ZD C Z;\{0,}. We need to define a function f : ZD — ID such that f(id;) # f(id2)

for id; # idy. Here TD is a new space satisfying D C Zy \ {0,} and ID NID = {). For
simplicity, we just define

ID:={1} xZ!7Y, ID:= {2} x 22" and f(1||v):=2|v for veZ! L

The time period space T = {1,2, - , tmax} is encoded into the set Z;L_l. Here we note that
one can also choose disjoint ZD, ZD C Zy\{0,} such that |ID| = |ﬁ7| = 1(¢"—1), and set
T as a subset of Z7 \ {0, } with |T] = [+(¢" —1)]. Besides, let us deal with the hierarchical
identity space ZDy = (ZD)S" = ;) (ZD)". Define F : (ID)S = Uico 1) (ZD)" % D
as F(ID) := (idy,- -+ ,idg—1, f(id¢)) for ID = (idy,- - ,idg—1,id¢). Thus for [ID| = £ > 2, we
have ID # F(ID), IDy_y) = [F(ID)]j¢—1). For simplicity, let us set id := f(id), D = F(ID),
and use IBE] to denote F(IDy;).

Encoding with Full-Rank Differences. We use the standard map H defined in [1] to
encode vectors as matrices. The function H : Zg — Zy*" is actually an encoding with
full-rank differences for a prime g. Namely, the matrix H(chy) — H(chs) is full rank for any
two distinct chy, chy € Zy, and H is computable in polynomial time in nlog g. One can refer
to [1] for the explicit construction of the map H. Finally, for CH = (chy,chy,--- ,chy) €

(z3\ {On})gL and i € [L], t € Z7~", we define the following functions:

- E(CH) = [Cl +H(Ch1)G | C, +H(Ch2)G | | Cz +H(Ch[)G] (S nglm’
- F(i,t) ;== Cpy1 + H(illt)G € Zj*™.

Here (C;)ic[r+1) are uniformly random matrices in Zj*™ chosen in the setup algorithm of
the scheme IT; and G is the gadget matrix [15]. In addition, we can treat i||t as a vector in
Zg, since L < q obviously holds due to the parameters selection given later.

3.1 Construction

Due to our new treatment of the identity spaces and the time period space, we can obtain
a much simple RHIBE scheme II; in the standard model, which is described as follows.
Here we let o, a’, (0¢)se(0,) be positive reals denoting Gaussian parameters, and set N as
the maximum number of children each parent manages. These parameters, together with
positive integers n, m and a prime ¢, are all implicitly determined by the security parameter
A, and in particular we set n(\) := .

Setup(l”, 1L) — (PP, SKKgc):
Taking the security parameter n and the maximum depth of the hierarchy L as input,
it performs the following steps.
1. Run (A, Ta) < TrapGen(1",1™, q).
2. Select C; & Z*™ for i € [L+ 1], and u & Z1.
3. Create a binary tree BTkgc with N leaf nodes, which denote N children users.
4. Output PP .= (A, (Ci)ie[L+1]a u), SKKGC . (BTK(;(:, TA>.
Here recall that (C;);ciz+1) define the functions E(-) and F(-) introduced before.
Encrypt(PP,ID,t,M) — CT:
For M € {0,1}, |ID| = ¢ € [L], it performs the following steps.
1. Select s; & Zg for i € [(] U{L + 1}. Then sample x <> Dz aq, X; <= Dyiit2ym o4 for
1€ [E]’ and Xr41 < DZ(2+2)m,a/q~

2. Set
Co = UT(Sl +/§2+"'+Sg)+uTSL+1 +I+ML%J,
c; = [A | E(IDp) | F(i,t)]Ts; +x; for i€ (],
Cr+1 = [A | E(lD) | F(E, t)]TSL+1 —|—XL+1.

3. Output CT := (co, (€i)iera CL+1> € Lg X (Z3™ X Zg™ X - -+ X Z,(f+2)m) X Z((ZHQ)M.

GenSK(PP, SKpa(|D), |D) — (SK|[)7 SK:)a(ID)>:
For |ID| = ¢ € [L], it performs the following steps.
1. Randomly pick an unassigned leaf node np from BTanD) and store ID in node np.

Then select upa(1p),0 & Zy for node 6 € Path(BTp,1p), MiD), if Upa(ip),¢ is undefined.

Here pa(ID) updates SKp,p)y to SK;a(ID) by storing new defined up,py,g in 6 €
2. Run e|p g < SampleLeft([A | E(pa(ID))],C, + H(idg)G,T[A‘E(pa@))], Upa(1D),0, T¢—1)

for 6 € Path(BTpaapy, mip). Here epp g € ZEHD™ gatisfies [A | E(ID)]eip,s = upa(ip).6-
3. Run T[A|E(ID)] — SampIeBasisLeft([A | E(pa(ID))], C,+H(idy)G, T[A|E(pa(ID))]a or—1).
4. Create a new binary tree BT|p with IV leaf nodes.

10

5. Output SKp := (BT|D, (0, €1D,0)6cPath(BT yu0y.m0) T[A\E(ID)])a SKpa(i)-

I(eytjp(PP7 t, SKp, RL|D't, KUpa(ID),t) — (KU|D't, SK{D)
For |ID| = ¢ € [0, L — 1], it performs the following steps.

1. Select up g & Z1 for node § € KUNode(BTp, RLip ;), if uip,g is undefined. Here ID
may update SKip to SK|p by storing new defined upy in 6 € BTp.

2. Run €ept,g < SampIeLeft([A | :E(|D)}7 F(f + 1,t), T[A\E(ID)]7 u-—up.g, O’g) for 6 €
KUNode(BTp,RLp +). Here ep 1 g € ZE+2™ satisfies [A | E(ID) | F(4+1,t)]epto =
u—upg-

3. If £ > 1, run DKip; < GenDK(PP, SK\p, KU,,(p),t), where GenDK(-) is defined
below. Then extract (dlD[i],t)ie[Z] from DK|D,t.

4. Output KUpp := ((9,elD,t,e)eeKUNode(BTm,RL.D,t), (dID[i],t)iE[é])> SKip.-

GenDK(PP,SK|D, KUpa(ID),t) — DK|D't or L:
For |ID| = ¢ € [L], it performs the following steps.

1. Extract P := Path(BTppy, mp) in SKip, and K := KUNode(BT pa(p), RLpa(i),¢) in
KUpa(p),e- FPNK = @, output L. Otherwise, for the unique node 6* € PNK, extract
€ID,0%; €pa(ID),t,0* € ZUAD™ in SKp, KUpa(iD),t, Tespectively. Parse them as ep g« =
el o- leib -] €pa(iD).co- = [el;;a(lD),t,O* ||e§a(|D),t,e*]v where e:_D,OMeI;;a(ID),t,O* €z
and eff, ., e ip) g+ € Z™. Then set dipt := [efp - +€5,p) 1 g+
7,(e+2)m.

eﬁ),e* ||e§a(|[)),t,e*] €

2. If £ > 2, extract (dipg,,t)icie—1) from KUpa(py ¢
3. Run gID,t < SampIeLeft([A | E('D)], F(ﬁ, t), T[A|E(ID)]; u, 0’(). Here ng’t c Z(€+2)m
satisfies [A | E(ID) | F(4,t)|gip,: = u.

4. Output DKip s := ((dID[i],t)ie[é]a ng,t)-

Decrypt(PP,DKip+,CT) — M:
For |ID| = ¢ € [L], it performs the following steps.
1. Compute ¢ := ¢ —Zle dgm’tci —8ib+CL+1 € Zg. Treat ¢ as an integer in [¢] C Z.

2. Output M :=1if | — [2]| < [1], and output M := 0 otherwise.

Correctness. Assume that ID has the depth |ID| = ¢ € [L]. If ID ¢ RL;, then one can obtain
DKip: = ((dID[i],t)ie[Z]a ng,t>. Recall that dip: = [e]p - +e';;a(ID),t,9* esa(lD),t,G*] €
Z(€+2)m7 where 0* € Path(BTanD), 77ID) N KUNOde(BTpa(|D), RLpa(lD),t)- ACCOI‘dng to

R
€D, g~

[A | E(E)lem,e* RZ Upa(ID),6% » [A | E(Pa(|D))L| F(¢, t)]epaR(ID),t,O* = U — Upa(ID),0*>»
€iD,6~ = [eID,H* elD,G*]? €pa(ID),t,0* = [epa(lD),t,e*

epa(lD),t,G* ’

one can obtain [A | E(E) | F(4,t)]dipt = u, d;,&tcz = uTSngd'thz. Similarly, for i € [¢—1]
we also have [A | E(IBTZ]) | F(i,t)]dip + = u, dl—B[Mci = uTsi-s-d,—B[i] X Besides, the vector

gin,e € ZU ™ satisfies [A | E(ID) | F(€,1)]gin: = 0, ghCL41 = u'Sp41+8h Xr41. From
the above, we can compute

¥4 ¥4
c = uT<Zi:1 si) + uTSLJrl +z+M L%J - Zi:l dl—lrj[,-] 4G — gl—lls,tcLJrl

¢
=M[2]+ (-, dE)m Xi gIITD}tXL-‘rl)'

Set z := I—Zle d£[i] X —gthL_H as the noise. Then according to the triangle inequality,
the Cauchy-Schwarz inequality, and Lemma 1, the noise z can be bounded as follows with

11

overwhelming probability:

o] < el o+ i [ldimy e - 1] + flgimel| - (x|
<aq+ Y201/ (i + 2)m - o/q\/(i + 2)m + o0/ (E+ 2)m - /g /(L +2)m
= ag+ X, 2(i + 2)oi-1 + (£ + 2)or]ma’q
< agq+ 2L(L+2) + (L +2)]orma’yg

O(aq + L*opma’q).

As a conclusion, if O(aq+ L?0;ma’q) < q/5, we know that |z| is upper bounded by ¢/5 with
overwhelming probability, and thus our RHIBE scheme IT; only has negligible decryption
error.

Parameters. The analysis for parameters selection is similar to that in [11]. We must
consider the condition O(aq + L?0ma’q) < q/5 for the correctness requirement, and the
condition ¢ > 2/n/a for the hardness assumption of LWE, ;414,041 - Besides, we
also need to make sure that algorithms such as SampleBasisLeft et al. can operate in the
construction, and algorithms such as SampleBasisRight et al. can work in the security proof.
Finally, we set the parameters used for our RHIBE scheme IT; as follows:

m = 6n'*% = O(Lnlogn), a = [L3miLlt2w(log? 3 n)~L, o = O((Lm)?)a,
q= Lgm%L+gw(log%L+% n), o= m%”%w(log%“'% n) for £€l0,L],

and round up m to the nearest larger integer, and ¢ to the nearest larger prime. Here we
choose & such that n® > [logq] = O(Llogn).

3.2 Security

Theorem 1. The RHIBE scheme I1; satisfies the selective-identity security, assuming the
hardness of the problem L\WEy, ;1,4 where X = Dgm+1 o4

Let ID* = (id], -+ ,id}.), t* be the challenge identity and time period with £* := |ID*|.
Then the attack strategies taken by A can be divided into the following two types, which
consist of £* 4 1 strategies in total.

— Type-I: A issues secret key reveal queries on at least one ID € prefix(ID*).
- Further divided into Type-I-i* (i* € [¢*]):
A issues a secret key reveal query on ID[;.; but not on any ID € prefix(ID[;. _y)).

— Type-II: A does not issue secret key reveal queries on any ID € prefix(ID*).

We follow the framework in [12] (the full version of [11]) to show the security proof.
According to the “strategy-dividing lemma” introduced in [11,12], the following Lemma 3
and Lemma 4 are sufficient for the proof of Theorem 1. Thus it remains to prove these two
lemmas. Since they are similar to the proof in [12], the proofs of Lemma 3 and Lemma 4
are presented in Appendix A and Appendix B, respectively.

Lemma 3. Suppose that a PPT adversary A follows the Type-I-i* strategy for some i* €
[0*]. Then its advantage is negligible, assuming the hardness of the problem LWEy, 11,4,
where X = Dzm+1 oq-

Lemma 4. Suppose that a PPT adversary A follows the Type-II strategy. Then its advan-

tage is negligible, assuming the hardness of the problem IWE;, ;41,4 where X = Dzm+1 oq-

12

4 RHIBE Scheme in the Random Oracle Model

In this section, we describe our second RHIBE scheme IT5 in Section 4.1, and then provide
the proof of its adaptive-identity security in Section 4.2. As a preparation, we need to explain
our treatment of some spaces such as 7,ZD,IDy = (ZD)S%, and introduce two random
oracles used in the scheme I5.

Treatment of Spaces. The time period space T, the element identity space ZD, and the
space ZD are all treated as subsets of {0,1,2}%, such that TNZD = TNID =IDNID = (.
Here w is an integer determined by the security parameter. Similarly, we also need to define
a function f : ID — ID satisfying f(idy) # f(id2) for idy # ide. For simplicity, we just
define

T :={0} x {0,1,2}*~1, ID := {1} x {0,1,2}*~1, TD := {2} x {0,1,2}*~1,
and f(1]|ch) :=2|ch for ch € {0,1,2}~~ %

Note that here one can also choose T, ID,ﬁD as pairwise disjoint subsets of {0, 1}*. Next,
let us deal with the hierarchical identity space IDy = (ZD)SE = Uier (ZD)*. We still
define F : (ZD)SE = Ucpo_1(ZD)" x ID as F(ID) := (idy, -+ ,idy_1, f(ids)) for ID =
(idy, -+ ,ide_1,ids). Similarly, for [ID] = ¢ > 2, we have ID # F(ID), IDj_y; = [F(ID)]_1;.
For simplicity, we still set id == f(id), ID := F(ID), and use IDf; to denote F(IDf;). In
addition, for KGC and ID = (idy, - - - ,id,) € ({0, 1,2}*)*, we define the notations KGC|t := t
and ID||t := (idy,- - - ,ide,t) € ({0,1,2}*)%*! and thus (ID||t)jq = ID.

Random Oracles. We define two random oracles Hy, Hy as follows:

- Hy : ({0,1,2)%)SE41 5 zmxm - CH s Hy (CH) ~ Doscom,s
- Ha: ({0,1,2}%)SE = Zmm CH = Hy(CH') ~ Dy

Here the outputs of Hy, Hs are both distributed as D,,, xm , which is defined below Lemma 2 in
Section 2.1. Furthermore, for CH € ({0, 1,2}*)SL*! with £ = |CH|, and CH' € ({0, 1,2}*)sE
with ¢/ = |CH’'|, we define the following functions:

- Py (CH) := [H; (CHyg)H, (CHye—y)) - - - Hy (CHpyp)] € zZm,
- Py(CH') := [Hy(CH{p) Hy(CH{p _y)) -+ Hy(CHy))] 7t € Zxm,

Therefore, after setting P1(CHg), PQ(CHE()]) as the identity matrix L, xm, we have P1(CHy;))
= Pl(CH[jfl]) . [Hl(CH[J])]_l fOI‘j S [é], and PQ(CH/[J/]) = PQ(CHsz_l]) . [HQ(CHI[j,])}_l for
Jj el

4.1 Construction

In the following, we describe the construction of our RHIBE scheme II; in the random
oracle model. Note that in this scheme the KGC’s secret key SKkgc contains two trapdoor
bases. Similar to Section 3.1, here we let «, (0¢)¢ejo,r) be positive reals denoting Gaussian
parameters, and set IV as the maximum number of children each parent manages. These
parameters, together with positive integers n, m and a prime ¢, are all implicitly determined
by the security parameter A\, and in particular we set n(A) := A. Besides, in the scheme Il
we set 74 := ogy/m - w(y/logm) for ¢ € [0, L] to make the algorithm SamplePre work.

Setup (17, 1%) — (PP, SKkgc):

Taking the security parameter n and the maximum depth of the hierarchy L as input,
it performs the following steps.

1. Run (A, Ta) + TrapGen(1™,1™,q), and (B, Tg) + TrapGen(1",1™,q).
2. Select u & Ly.

13

3. Create a binary tree BTkgc with N leaf nodes, which denote N children users.
4. Output PP := (A, B, u), SKkgc = (BTKGQ Ta, TB>.

Encrypt(PP,ID,t,M) — CT:
For M € {0,1}, |ID| = ¢ € [L], it performs the following steps.

1. Select s; & Zy for i € [{] U{L + 1}. Then sample x <> Dz g, Xi,j <> Dzm oq for
(i,7) € [€] x [2], and xXp4+1 <= Dzm aq-
2. Define IDgj[|t := t, and then set
Ccop 1= UT(Sl —|—S2+"'+S@) +UTSL+1 +z+ MI_%L
Ci1 = [A . Pl(lfD\[:‘])}TSi + X1 for 7€ w],
Ci2: [B . P?(ID[ifl ||t)]TSi + X;2 for 1€ [6]7
Cr+1 = [A . P1(|D||t)} S 41 + XL+1-

3. Output CT := (CQ, (Ci,laci,Q)iE[Z]; CL+1) S Zq X (Z;n X Z;n)@ X Z;n

GenSK(PP, SKpa(|D), |D) — (SK|D, SK:)a(ID)):
For |ID| = ¢ € [L], it performs the following steps.
1. Randomly pick an unassigned leaf node np from BTy,(p) and store ID in node np.

Then select uy,(1py,6 & Zy for node 6 € Path(BT ,(1p), 7iD), if Upa(ip),¢ is undefined.
Here pa(ID) updates SKp,py to SK;EUD) by storing new defined up,py,e in 0 €
BT pa(iD)-
2. Define P1(KGC), P5(KGC) as the identity matrix I,,x.m,, and then run
TA_P1(|~D) < BasisDel(A - Py (pa(ID)), Hi(ID), Ta.p, (pa(iD)); T¢—1),
Tap,(p) < BasisDel(A - Py (pa(ID)), H1(ID), Ta.p,(pa(iD))> T¢—1);
TB»Pz(ID) — BasisDeI(B . PQ/(\E)B('D)), H2(|D), TB~P2(pa(ID))a O’g_l).
3. Runepy + SamplePre(A-Pl(ID),TA.P1(|~D)7 Upa(1D),0, Te—1) for 6 € Path(BT by, mip)-
4. Create a new binary tree BT|p with IV leaf nodes.

5. Output SKip := (BTIDa (0, €1D,0)0ePath(BT pgpy.mo)> L AP (D), TBPg(ID))a SKia(iD)-

I(eytjp(PP7 t, SKp, RL|D't, KUpa(ID),t) — (KU|D't, SK{D)Z
For |ID| = ¢ € [0, L — 1], it performs the following steps.

1. Select uip ¢ & Zg for node 6 € KUNode(BTp, RLipt), if wp ¢ is undefined. Here ID

may update SKip to SK|p by storing new defined up, in § € BTp.
2. Run Tg.p,(p|) ¢ BasisDel(B-P3(ID), Hy(ID||t), T.p,(p), 0¢), and then run et
— SampIePre(B . PQUDHt)7 TB-Pg(IDHt)> u—up,, Tg) for 0 € KUNOde(BT”), RL|D't).
3. If £ > 1, run DK|p; + GenDK(PP,SKp, KU, (ip)+), where GenDK(-) is defined
below. Then extract (dlD[i],t)ie[f] from DK|p .

4. Output KUjp ;s := ((97elD,t,e)eeKUNode(BT.D,RL.D,t)7 (dle,t)ie[z])7 SKip-

GenDK(PP,SK|D, KUpa(lD),t) — DK|D't or |:
For |ID| = ¢ € [L], it performs the following steps.

1. Extract P := Path(BTpa(|D),’I7|D) in SK|p, and K := KUNOde(BTpa(|D),RLpa(|D)’t) in
KUpaap)t- If PN K = 0, output L. Otherwise, for the unique node 0* € P N K,
extract ep o+, €pa(iD)t,0+ € Z™ in SKip, KUpap)t, respectively. Then set dip: :=
[eiD,6+ | €pa(iD) 1.6+] € Z*™.

2. If ¢ > 2, extract (d|D[i]’t)i€[5_1] from KUp,(ip) -

3. Run TA~P1(IDHt) — BasisDeI(A . Pl(lD), Hl(lD”t), TA.p1(|D), O'g), and then run
gip,t < SamplePre(A - P1(ID[[t), Tap,(pjr), W, 7o)

4. Output DKip,x := ((dle,t)z‘e[e], ng,t)~

Decrypt(PP,DKip+,CT) — M:
For |ID| = ¢ € [L], it performs the following steps.

14

1. Compute ¢’ := ¢g — Zle dlgm’t[ciylﬂci?g] - gI—IrD,tCL‘Fl € Zgy. Treat ¢’ as an integer
n[q] C Z.
2. Output M :=1if |¢ — [2]| < | %], and output M := 0 otherwise.

Correctness. Assume that ID has the depth |[ID| = ¢ € [L]. If ID ¢ RL;, then one can
obtain DKipy = ((d.DL] t)ie[] gD t) Recall that dip+ = [eip o
0* € Path(BTanD) mp) N KUNOde(BTpa(|D), RLpa D), ¢)- According to

€pa(ID),t,6+] € Z?>™ where

[A-P;(ID)]ep,o- = Upa(iD),6+, B - Pa(pa(ID)[lt)]epa(ip),t.6+ = U — Upa(ip) 6+

one can obtain dip[ce1lce2] = u'sp + dip[xe1%¢2]. Similarly, for i € [¢ — 1] we also

have dgm’t[1llciz] = uls; + d})m,t[xi’lﬂxi,g}. Besides, the vector gip+ € Z™ satisfies

[A - P1(ID|t)]gipt = u, gBtcLH =u'spy + gthLH. From the above, we can compute

¢ ¢
¢ =u' (i) tulspa o+ ME] =30 dp leialleis] — gip e
¢
=M L%J + (=2 im dl—lg[i],t[i, 2] — gl—llg),tXL+1)~

Set z:=x — Zle dg[v] [xi1]lxi2] — &b «XL+1 as the noise. Then according to the triangle

inequality, the Cauchy-Schwarz inequality, and Lemma 1, the noise z can be bounded as
follows with overwhelming probability:

| | ‘ Z 1 e|D[] 0+ Xi,1 + epa(ID]) t,G*xi’Z) - g;B,tXL+1’
< [a| + Zz 1(llengo- |- lIxia]| + llepaaog)ao- | - 1xi2f]) + flgoell - [lxzia
< Q+Zi:1(7-z—1\/> agy/m + Ti_1/m - agy/m) + Te/m - agy/m
=[1+ (Zle 20i_1 + ag)m%w(\/log m)]ag
< [1+4 (2L + DormEw(yIogm)lag
= O(Loym3w(y/Iogm)ag).

Note that in the above eip ; o+, €pa(ID(;).1,0%» the node 6 is determined by ID(;, t as shown in

the decryption key generation algorithm. As a conclusion, if O(Lopm2w(v/log m)aq) < ¢/5,
we know that {z} is upper bounded by ¢/5 with overwhelming probability, and thus our
RHIBE scheme ITs only has negligible decryption error.

Parameters. The analysis for parameters selection is similar to that in Section 3.1. We must
consider the condition O(Lorm2w(y/Iogm)aq) < q/5 for the correctness requirement, and
the condition ¢ > 21/n/« for the hardness assumption of LWEn72m+1,q7DZ2m+1,aq~ Besides, we
also need to make sure that algorithms such as BasisDel et al. can operate in the construction,
and algorithms such as SampleRwithBasis et al. can work in the security proof. Finally, we

set the parameters used for our RHIBE scheme Il as follows:

m = 6n'*° = O(Lnlogn), o= [Lm3Et3y (logzL""% n)] 71,

q= Lm%L+3n%w(log2L+% n), op=m2*30(logn) for £e€|0,L],

and round up m to the nearest larger integer, and ¢ to the nearest larger prime. Here we
choose § such that n° > [logg] = O(Llogn).
4.2 Security

Theorem 2. The RHIBE scheme Ils satisfies the adaptive-identity security, assuming the
hardness of the problem L\WEy, 241, where X = Dgzmt1 qq.

15

It is shown in Section 3.2 that the attack strategies taken by A can be divided into
the Type-I strategy (further divided into Type-I-i*) and the Type-II strategy. In the
security game, we separately describe the progress for these two types of attack strategies.
Then according to the “strategy-dividing lemma” introduced in [11,12], we can complete the
proof of Theorem 2. First of all, for an adversary A that uses the Type-I strategy (instead
of the Type-I-i* strategy in Lemma 3), we have the following result.

Lemma 5. Suppose that a PPT adversary A follows the Type-I strategy, and its adaptive-
identity security advantage is denoted by Advﬁ?’;i(n) Besides, let Qu,,Qu, denote the
mazximum numbers of queries made by A to the random oracles Hy, Ho, respectively. Then
there exits a PPT algorithm C, whose advantage for the L\WE, 211,49 (X = Dzzm+1 o)

problem is denoted by Advs"E(n), such that
AdvE () < (2L Qi - Qu,) - Adv™ (n) + negl(n).

Proof. The algorithm C, which we are going to construct, simulates an attack environment
for the adversary A that uses the Type-I strategy as follows.

Instance. C is given the problem instance of LWE,, smi1.4. as (A,) € Zi M+ zzm
for A & ZZX(2mH). The task of C is to distinguish whether (1) v = ATS + % for some
s & Zy and some X <> x, or (2) V & 72"+, Here we assume that A=[ay|a| |

nx(2m+1 ~
o | € Zg () and V = (vg, V1, -+ ,Vam) EZ?I”‘H.

Setup. Firstly, C directly selects i* & [L]. Namely, C guesses that the strategy taken by the

adversary A is Type-I-i*. Then C chooses (3 & (@], and selects Q7 ; & Qu,], Ry ; <
Dixm, R3; > Dmxm for j € [i*]. Besides, C sets u := ag € Ly, Ao = [a] | -+ |
ay | € Zy*™, Bo :=[amy1 | -+ | azm | € Zy*™. Namely, we have A=[u|Ay|Bgl
Next, C sets A := Ag(R7 ;. -+~ R ,RT), B:=Bo(Rj,.---R3,Rj ;). One can check that
A, B are both uniform in Zy*™, and u is uniform in Zgy. Finally, C publishes the public
parameters PP := (A,B,u). (Note that here C must also give the key update KUkgc 1
to A. For convenience, the construction of KUkgc 1 will be given later, together with the
construction of other key updates.)

Random Oracle Query. For each random oracle, we assume that the queries are u-
nique, otherwise C simply returns the same output on the same input without increment-
ing the query counter. Besides, without loss of generality, we can assume that for any
CH € ({0,1,2}*)SE] the Hy query on CH is preceded by the H; query on CH. Then C
answers A’s queries as follows.

Query H; on CH € ({0,1,2}*)SEFL: Suppose that it is the Qi-th query. (1) If Q; =
Q7,; for some j € [i*], define H;(CH) := Rj ;. (2) Otherwise, let ¢ := |CH| be the
depth of CH. If £ < 4* + 1, compute F1, := A - (R}, ;- ~Ri,Ri), run (R, Tf) +
SampleRwithBasis(F s, 00_1) for F := F; ,R™!, and define H;(CH) := R. Besides, C saves
the tuple (¢,CH, R, F, Ty) for future use. (3) If £ > i* + 1, just select R <= D, », and then
set H;(CH) := R. (4) Finally, C returns H;(CH) to A.

Query Hy on CH € ({0, 1,2}*)SE: Suppose that it is the Qo-th query. (1) Let C check the
value of Hy(CH). If H; (CH) = R ; holds for some j € [i* — 1], then define Hy(CH) := R ;.
(2) Otherwise, C checks whether ()2 = Q3 holds. In case Q2 = @3, define Hy(CH) := Rj ;..
(3) In case Q2 # @3, let £ := |CH| be the depth of CH. If ¢ < ¢* + 1, compute Fo, :=
B- (R, ;---R5,R5,)"", run (R, Tg) ¢ SampleRwithBasis(Fy ¢, 0/_1) for F := Fy /R,
and define Hy(CH) := R. Besides, C saves the tuple (¢, CH, R, F, Tg) for future use. (4) If
£>i*+1, just select R <= Dy, 5 and then set Ho(CH) := R. (5) Finally, C returns Hy(CH)
to A.

According to the above setup algorithm, C does not own the trapdoors T a, Tg. However,
due to the above random oracle query, we still have the following result, where the sets

16

CH1,CHo are defined as

CHy := {CH € ({0,1,2}*)SEH! | |CH| < i*, and Hy(CHp;) = Rj for j =1,2,---,|CHI},
CHy := {CH € ({0,1,2}*)S" | [CH| < i*, and Hy(CHy;) = R3 ; for j =1,2,---,|CHI}.

Lemma 6. The setup algorithm and the random oracle query are shown as above.

(1) Suppose that for some CH € ({0,1,2}*)SLT1 with |CH| = ¢, the adversary A has
queried Hy on all CH' € prefix(CH). Then if CH ¢ CH1, the algorithm C is able to construct
a short basis T a.p, (cHy distributed statistically close to Dpasis (/1qL (A -P1(CH)),00-1).

(2) Suppose that for some CH € ({0, 1,2}*)SL with |CH| = ¢, the adversary A has queried
H, on all CH' € prefix(CH). Then if CH ¢ CHa, the algorithm C is able to construct a short
basis Tg.p,(chy distributed statistically close to Dpqsis(Ay (B - Pa(CH)), 00-1).

Proof. (1) Let us define the integer k at first. If Hy(CH(;) = R ; for all j € [min{s*, [CH|}],
then |CH| > i* + 1 must hold since CH ¢ CH;, and we define k = i* 4+ 1 for this case.
Otherwise, we define k € [min{i*, [CH|}] as the smallest index such that H;(CHy) # R7 ;.
Note that k <i*+1, and Hy(CH};) = R} for all j € [k —1]. From the H; query history, C
retrieves the saved tuple (k, CHp, R, F, Tr), which is created when the adversary A queries
H; on CHy. By construction, we know F = A - (R})" (R)" --- (R}, ;) 'R™' = A
(Hl(CH[l]))fl(Hl(CH[Q]))fl cee (H1(CH[k_l]))71(H1(CH[]C]))71 =A- Pl(CH[k]), and TF =
TAP,(cHy) 18 distributed statistically close to DBasis(/l;- (A -Py(CHp)),on-1). If k = £,
the basis Ty is already the desired TA.p,(chy- If ¥ < ¢, C runs Ta-p,(cHy) BasisDel(A -
Py (CHp—q)), Hi(CHpy), TAPi(CH,_1)) oj—1) for j = k+1,k+2,--- ¢, and finally the desired
T A.p,(ch) is also obtained.

(2) The proof of this part is the same as that of (1). O

Assume that ID*, t* are the challenge identity and time period, which A sends to C
in the challenge query. Then we let Success be the event that the adversary A follows the
Type-I-i* strategy (which implicitly implies [ID*| > ¢*), and IBE/] € CHi, IDjj._yllt" €
CHz holds, and C does not fail due to collisions on H; or Hy found by A. According to
pa(HDAF;]) = pa(ID};-_qy[It*) = ID};-_y) and the above Hy random oracle query, we have

ID;+) € CHi, IDj_y)l[t* € CH2 & D} € CHi, Ha(IDjj._y[lt*) = RS ;.. Therefore, we
obtain Pr[Success] = 1/L - 1/62?;1 -1/Qu, - (1 — negl(n)).

In the following, we show that if Success happens, the algorithm C will successfully
simulate the attack environment for A. Otherwise, C will fail and abort at some point.

Suppose that the event Success happens. In order to respond to the secret key generation
query, the secret key reveal query, the revoke & key update query, and the decryption key
reveal query, which are made by A using the Type-I-i* strategy, C must construct the
following items:

— (a) SKip = (BTID7 (0, €1D,0)9ePath(BT pgp)7i0): L AP, (D)5 TB~P2(ID)) for ID € (ZD)S"\
prefix(IDp;-_1));

— (b)) KUppt = ((97eID,t,G)GGKUNode(BTm,RL.D‘t)7 (dip, ,t)ie[é]) for ID € {KGC}U(ZD)SE~1 t e
T and ID ¢ RL;, where ¢ = |ID|;

~ () DKip, = ((dmm’t)ie[z], g|D’t) for (ID,t) € (ZD)<F x T\ {(ID*,t*)} and ID ¢ RL,,
where ¢ = |ID|.

C needs to generate any item in (a) in the secret key generation query and return it to the
adversary A in the secret key reveal query. In the revoke & key update query (and in the
secret key generation query, and at the setup), C must return the corresponding items in
(b) to A. Similarly, A is allowed to query any item in (c) as a decryption key reveal query.
Note that these four queries can be made before the challenge query, and in this case C does
not know ID*, t* (the challenge identity and time period). However, if Success happens, we

17

—_—

can regard CH; as its subset prefix(ID[;.;), and regard CHz as its subset prefix(ID[;._y[[t").

—

We do not need to consider the case that A finds some CH; € CH; \ prefix(IDj;.), or some
CHy € CHa \ prefix(IDj;-_yj[|t*), which implies that A finds collisions on H;y or Ha. The
failure of C due to this case is directly denied by the definition of the event Success.

As a preparation for the construction of the above (a), (b) and (c), C must deal with BT|p
differently for some user ID satisfying ID = KGC (if ¢* = 1), or |ID| = i* — 1,ID € CH; (if
i* > 2). Specifically, C must change the way that the vectors (uip g)gesT,, stored in nodes of
BT\p are generated. Once BT|p is created at the setup or in the secret key generation query,
C randomly pick a leaf node n* from BTp. In the future, n* is only used to store some user
IDr which has ID as its parent and satisfies H;(IDr) = R ;.. This can be done, since C can

check whether H(IDep) = Rj ;. holds before assigning a leaf node of BTp to ID’s child user
IDe. Note that if the event Success happens, the above ID, IDg will denote pa(IDj;.1), ID[;),
respectively. When ujp ¢ for some § € BT|p must be defined for C to answer A’s query, C
proceeds as follows. If § € Path(BTp,n*), C first samples €19 <= Dzm -.._,, and then sets
up,p = Ag-eig. If 0 € BT|p \ Path(BTip,n*), C first samples €3 g <> Dzm . _,, and then
sets wp,p ;= u — B - ez 4. C keeps the obtained e; g or ey g secret for future use.

Construction of SK;p. Undoubtedly, C is able to construct the item BTp for any ID €
(ID)gL. Now let us see the generation of the items Ta.p,py and Tg.p,(p)- According
to Lemma 6, if ID ¢ CH;, C is able to construct the short basis Ta.p,(py. Similarly, if
ID ¢ CHa, the item Tg.p,(p) can also be obtained. Besides, we let C use the symbol L to
denote T o.p,(p) for ID € CH; and Tg.p,(p) for ID € CHz. The symbol L denotes that the
corresponding item in SK|p cannot be constructed. If there is a symbol L in SK|p created in
the secret key generation query, C fails and aborts only when C must return the same SK|p
to A in the secret key reveal query.

As for the item (0,e|D’9)96path(BTpa(lD)_’nlD), C needs to consider ID. (1) If D ¢ CHi,
C is able to construct the short basis TA-P1(|~D) due to Lemma 6. Then C can obtain

(9,e|D)0)0€Path(BTpa(|D)mID) by running ep g < SamplePre(A-P1(ID), TA~P1(I~D)’ Upa(ID),0> Te—1)
for € Path(BT by, D). (2) If ID € CH; and [ID| = i*, we know that pa(ID) = KGC
(if i* = 1), or |pa(ID)] = i* — 1,pa(ID) € CHy (if * > 2). Thus C must deal with
BT,a(p) differently, which is shown as before. According to Lemma 2 and the fact up g =
Ag-erp = Ag(Ri ;.- RioRT) - (Ri .- Ri,RT)™ -er9p = A - Py(ID) - €19 where
0 € Path(BTp,n*), we know that C is able to obtain (97eID-,G)GGPath(BTpa(.D),mD) after setting
n* :=np and ep g := e1,9. (3) IfID € CH;y and |ID| < i*, C just uses the symbol L to denote
(0, €1D,0)6ePath(BT a0y m10)

The above construction of SK|p is made in the secret key generation query. When C
must return SKp to A in the secret key reveal query, C fails and aborts if there is a sym-
bol L in SK|p. However, assuming the occurrence of Success, C will never fail. The event

—_~

Success lets anyone regard CH; as prefix(IDj;.;), and CHa as prefix(IDj;-_1[[t*). From the
above (a) we know ID € (ZD)St\ prefix(ID;-_y)), which implies ID ¢ prefix(lf)%;}) and
ID ¢ prefix(IDf;._y)[[t*) due to ZD NID =) and IZD NT = 0, respectively. Thus we
can regard that ID ¢ CH; and ID ¢ CHs always holds. Similarly, due to ZD NZD = 0,
we have ID ¢ prefix(lf)\i‘:]) for |ID| < i*, and thus D ¢ CH, always holds for |ID] < i*.
Note that here the successful construction of (9,e|D,9)gepath(BTpa(lleD) does not need the
condition ID € (ZD)SE\ prefix(ID;- _y1)). Thus if Success happens, we claim that the item
(9»elDﬁ)@ePath(BTpauD)mm) in SKip can be constructed by C for any ID € (ZD)SF, which will
be important for the construction of (dip, t)icfg in KUip+ and DKip .

Construction of KUjp,. In order to create the item (6, €p.t,0)sekUNode(BTpp,RLip,)» C should
consider ID||t. (1) If ID[[t ¢ CHa, C is able to construct the short basis Tg.p,ap|t) due to
Lemma 6. Then C can obtain (6, €ip.t,0) 9ckUNode(BTip,RLip) PY TUNNINg €jp ¢ 9 <— SamplePre(B-

18

P2(|D||t), TB~P2(ID\|t)7 u—up,g, Tg) for 0 € KUNOde(BT|D,RL|D't). (2) If |DHt € CHsy and
[ID||t| = i*, we know that ID = KGC (if i* = 1), or |ID| = i* — 1,ID € CH,,ID € CH; (if
i* > 2) due to the Hy random oracle query. Thus C must deal with BT|p differently, which is
shown as before. Then C checks whether KUNode(BTp, RLip+) € BT\p\Path(BTp, n*) holds.
If not, C uses the symbol L to denote (6, ep,t,0)seKUNode(BTp,RLib;)- Otherwise, according to
Lemma 2 and the fact u—wuip g = Bo-ez29 = Bo(R3 ;. - --R3,R5 ;) - (R5 ;. - --R3,R5 ;)71
€29 = B - Py(ID||t) - €29 where 6§ € KUNode(BT|p, RLipt). we know that C is able to obtain
(6, €1D,t,0)9cKUNode(BT 0 RL,) after setting ep t,9 := €2 . (3) If ID[|t € CH, and |ID||t| < i*, C
just uses the symbol L to denote (6, elD,t,G)GGKUNode(BTm,RL.D‘t)~

Assuming that (6, €ip,6)gePath(BT,p)mp) i1 SKiD and (6, €pa(iD) t,0)6cKUNode(BT a0y RLpaio).)
in KUp,(ip),: are successfully constructed using the above way, C can use these two items to
generate dip ¢ for ID ¢ RLy, just as the algorithm GenDK does. A symbol L for either of
these two items, directly implies a symbol L for dip . Furthermore, C uses the symbol L to
denote (d'Dm t)icle), When there is some dip, + denoted by L.

When C must return KUp: to A, C fails and aborts if there is a symbol L in KUpy.
However, if Success happens, in the following we show that C will never fail. First of all, we
can regard the case of ID||t € C?Ha, |ID||t| = i* as the case of ID = ID[;._;),t = t*. Besides, the
adversary A must issue a secret key reveal query on IDE}]7 and thus we have IDE;*] € RLy«
according to the security definition. When |DE‘*—1] € RLi, C does not need to construct
KUpp for ID = IDj._q),t = t*. When ID;._y; ¢ RLe, D € RLip:. .+, the condition
KUNode(BTp,RLipt) € BTip \ Path(BT\p,n*) must hold for ID = IDE}_l],t = thn* =
Moy, Moreover, due to 7 NID = 0, we have ID[[t ¢ prefix(IDj;._q[|t*) for [ID[|t] < 4*,
and thus ID||t ¢ CHy always holds for |ID|[t|] < ¢*. Finally, when Success happens, the
successful construction of (9>elD,@)HGPath(BTpauD),mD) and (9,epa(|D)7t79)GGKUNOde(BTanD)VRLPQ(ID)I)
directly implies the successful construction of dip+ for ID ¢ RL;.

Construction of DKp ;. The generation of (d'Dm ,t),»e[g] in DK|p ¢ is similar to that in KUp ¢.
As for the item gip ¢, if ID[|t ¢ CH1, C is able to construct the short basis T o.p, |ty due to
Lemma 6. Then C runs gip,t <— SamplePre(A - P1(ID||t), Ta.p,pjt), u, 7¢). If ID||t € CHy,
C just uses the symbol L to denote gp ¢. Similar to before, when C must return DKip s to A,
C fails and aborts if there is a symbol L in DK|p ;. Suppose that Success happens. Then we
always have ID||t ¢ C?H1, since ID||t ¢ prefix(IDj;.;) always holds due to 7NID = TNID = 0.
Together with the successful construction of (dip,t)ic(¢ for ID ¢ RL¢, we know that C will
never fail. Here we note that the adversary A can not obtain DKip:. + for any i € [i*, 1ID*|]
since IDE;*] € RL¢-.

Challenge Query. Suppose that A makes this query on (ID*,t*, Mg, M;), which satisfies
the conditions required for the adaptive-identity security game. Then C checks whether
(= |ID*]) > i*, IDj.y € CHi, IDp._yllt* € CHz holds. If not, C fails and aborts.
Otherwise, C picks the challenge bit b & {0,1}, and runs Encrypt(PP,ID* t*,M,;) —
(co, (€1, Ci2)icpes] CL+1)7 where cg, (i~ 1, Ci+ 2) are redefined as follows. Recall that v =
(v, 1, ,Vom) € ng‘H, and we let vy 1= (v1,--+ ,0m) € Z', Vo := (Umg1, - ,V2m) €
Zyr. After that, C sets co +— vo + uT(Ziew*]\{i*} s;)+ulsp i+ Myl2], ci=1 = Vi, Cio 2
va, where (s;);c[e+)\fi+} and spy1 are already selected in the algorithm Encrypt. Then C
returns the challenge ciphertext CT* := (co, (Ci1sCi2)icpee] CL+1) to A.

Finally, when A outputs ' € {0,1} as the guess for b at some point, C checks whether A
has issued a secret key reveal query on IDE;*]. If not, C fails and aborts. Otherwise, C outputs
1 in case b’ = b, and outputs 0 for b’ # b.

Suppose that the event Success happens, and then we can analyze the challenge query
as follows. (1) If the LWE,, 21,4,y Problem instance (A,V) satisfies v = ATS + X for

~ 8 ~ ~
some S < Zg; and some X <> X, we parse X as (0,1, ,Tam) € Z*™TL and let x; =

(1, ,Zm) € Z™, X3 := (Tmt1, " ,Tam) € Z™. Then according to v = ATS + % and

19

.&:[u|A0|B0],wehave

Co = Vo + UT(Eie[Z*]\{i*}fi) +ulspa + Ms (5]
uT(Zie[Z*]\{i*} si+8)+u'spy1+ 20+ My 2],

Cii1 = vi = AJs+x; = [A- (R}, Ri,Ri,) T8+ x;
= [APl(lDE*])}T/S\—‘er,
Cirp = Vo = Bis+x; = [B-(Rj,;.--R3,R5,)7 S+ x

= [B-Py(IDj;-_y[It*)] "8 + xa.

Hence the challenge ciphertext CT* given to A is a valid encryption of M, for ID* on t*.

(2) If the LWE,, 2m+1,4,, Problem instance (A\,V) is just sampled as A & ZZX@mH) and

& 22+, then (co, €+ 1, €+ 2) is also uniformly random in Z2™+!. Since the distribution
of ¢y no longer depends on the value of b, the probability of A guessing whether b = 0 or
b =1 is exactly 1/2, which implies that Pr[t' = b] = 1/2.

Note that once C fails and aborts at some point in the above game, C always outputs a

uniformly random bit from {0, 1}. Recall that Adv"5(n) denotes the advantage of C for the

LWE,, 2m+1,¢,x Problem, and Advﬁi"f’; ! (n) denotes the adaptive-identity security advantage
of A that follows the Type-I strategy. Besides, for the case of v = A'S + X, we use

~ ~ . .. ~ 8
V1, Success; to denote Vv, Success, respectively. Similarly, for the case of v < Zi’”“‘l, we use
Vo, Successs to denote v, Success, respectively. Then we have

AdVAVE () = ‘ Pr[C(A,%1) = 1] — Pr[C(A, ¥2) = 1]]
= ‘ Pr[bt’ = b | Success;] - Pr[Successi] + 1 Pr[Successi] — 1 Pr[Successs] — 3 Pr[Success,]

= ‘ Pr[b’ = b | Success;] - Pr[Success;] — 3 Pr[Success; |

= Pr[Success] - ’Pr[b’ = b | Success;] — %‘
> Pr[Success] - [%Advg{;pﬁ;(n) — negl(n)]
=1/(2L- Q& - Qu,) - (1 — negl(n)) - [AdvPe 7 (n) — negl(n)]
>1/(2L - Qf, - Qu,) - (1 — negl(n)) - [Advy P (n) — negl(n)].

Thus we complete the proof of Lemma 5. O

Similarly, we present the following result against an adversary A that uses the Type-II
strategy. Its proof proceeds analogously to that of Lemma 5, and thus is given in Appendix C.

Lemma 7. Suppose that a PPT adversary A follows the Type-1I strategy, and its adaptive-
identity security advantage is denoted by Advﬁif’ijl(n). Besides, let Qu, denote the maz-
imum numbers of queries made by A to the random oracle Hy. Then there exits a PPT
algorithm C, whose advantage for the L\WE,, 21,9, (X = Dz2m+1 44) problem is denoted by

AdvEVE(n), such that
Advﬁ?’i‘f (n) < (2L Qf)Adve"E(n) + negl(n).

Actually, the proof of Lemma 7 (in Appendix C) only uses the first m + 1 samples of
the problem instance of LWE,, 2y, +1,4,- Namely, we only need to consider the LWE,, 11,4,/
problem where x’' = Dym+1 44. Therefore, the notation AdvéWE(n) in Lemma 7 can also be
replaced by AdvéWE/ (n), which denotes the advantage of C for the LWE,, ;,4+1,4,,+ problem.

Finally, according to the “strategy-dividing lemma” introduced in [11,12], Lemma 5 and

Lemma 7, we have
Adv%’ilﬁBLE’jd(n) < AdvEZf’Lej(n) + Adv%é\/‘?jl(n) e
< (2L- Ok, - Quu,)AWEVE(n) + negl(n) + (2L - Q& AVEVE (n) + negl(n)
<2L-Qf;, - (Qu, + Qu,) - Advg"E(n) + negl(n).

20

It is obtained that AdveVE(n) = negl(n), assuming the hardness of the problem LWE,, 2, 11.4.x

where X = Dz2m+1 4. Since 2L - QILL - (Qu, + Qm,) is polynomial in n, we know that

AdvIRIT)BLE’jd(n) < negl(n), which completes the proof of Theorem 2.

5 Conclusion

In this paper, we present two new RHIBE schemes with DKER from lattices, and thus
simplify the construction of RHIBE scheme provided by Katsumata et al. [11]. Our first
scheme needs fewer items than that in [11], and the sizes of items are much smaller in our
second scheme. The security of these two new schemes are both based on the hardness of
the LWE problem, and our second scheme also achieves the adaptive-identity security.

Acknowledgments. The work in this paper is supported by the National Natural Science
Foundation of China (Grant Nos. 11531002, 61572026 and 61722213), the Open Foundation
of State Key Laboratory of Cryptology, and the program of China Scholarship Council
(CSC) (No. 201703170302).

References

1. Agrawal S, Boneh D, Boyen X. Efficient lattice (H) IBE in the standard model. Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques. Springer,
Berlin, Heidelberg, 2010: 553-572.

2. Agrawal S, Boneh D, Boyen X. Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE. Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2010: 98-115.

3. Ajtai M. Generating hard instances of the short basis problem. International Colloquium on
Automata, Languages, and Programming. Springer, Berlin, Heidelberg, 1999: 1-9.

4. Alwen J, Peikert C. Generating shorter bases for hard random lattices. Theory of Computing
Systems, 2011, 48(3): 535-553.

5. Boldyreva A, Goyal V, Kumar V. Identity-based encryption with efficient revocation. Proceedings
of the 15th ACM conference on Computer and communications security. ACM, 2008: 417-426.

6. Boneh D, Franklin M. Identity-based encryption from the Weil pairing. Annual international
cryptology conference. Springer, Berlin, Heidelberg, 2001: 213-229.

7. Cash D, Hofheinz D, Kiltz E, et al. Bonsai trees, or how to delegate a lattice basis. Annual
International Conference on the Theory and Applications of Cryptographic Techniques. Springer,
Berlin, Heidelberg, 2010: 523-552.

8. Chen J, Lim H W, Ling S, et al. Revocable identity-based encryption from lattices. Australasian
Conference on Information Security and Privacy. Springer, Berlin, Heidelberg, 2012: 390-403.

9. Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic
constructions. Proceedings of the fortieth annual ACM symposium on Theory of computing.
ACM, 2008: 197-206.

10. Horwitz J, Lynn B. Toward hierarchical identity-based encryption. International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2002:
466-481.

11. Katsumata S, Matsuda T, Takayasu A. Lattice-based revocable (hierarchical) IBE with decryp-
tion key exposure resistance. International Workshop on Public Key Cryptography. Springer,
Berlin, Heidelberg, 2019: 441-471.

12. Katsumata S, Matsuda T, Takayasu A. Lattice-based Revocable (Hierarchical) IBE with
Decryption Key Exposure Resistance. TACR Cryptology ePrint Archive, 2018: 420. http-
s://eprint.iacr.org/2018/420.

13. Katsumata S, Yamada S. Partitioning via non-linear polynomial functions: more compact IBEs
from ideal lattices and bilinear maps. International Conference on the Theory and Application
of Cryptology and Information Security. Springer, Berlin, Heidelberg, 2016: 682-712.

14. Micciancio D, Goldwasser S. Complexity of Lattice Problems: A Cryptographic Perspective.
Vol. 671. Springer Science & Business Media, 2002.

21

15. Micciancio D, Peikert C. Trapdoors for lattices: Simpler, tighter, faster, smaller. Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques. Springer,
Berlin, Heidelberg, 2012: 700-718.

16. Micciancio D, Regev O. Worst-case to average-case reductions based on Gaussian measures.
SIAM Journal on Computing, 2007, 37(1): 267-302.

17. Naor D, Naor M, Lotspiech J. Revocation and tracing schemes for stateless receivers. Annual
International Cryptology Conference. Springer, Berlin, Heidelberg, 2001: 41-62.

18. Regev O. On lattices, learning with errors, random linear codes, and cryptography. Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing. ACM, 2005: 84-93.

19. Seo J H, Emura K. Revocable identity-based encryption revisited: Security model and construc-
tion. International Workshop on Public Key Cryptography. Springer, Berlin, Heidelberg, 2013:
216-234.

20. Shamir A. Identity-based cryptosystems and signature schemes. Workshop on the theory and
application of cryptographic techniques. Springer, Berlin, Heidelberg, 1984: 47-53.

21. Takayasu A, Watanabe Y. Lattice-based revocable identity-based encryption with bounded de-
cryption key exposure resistance. Australasian Conference on Information Security and Privacy.
Springer, Cham, 2017: 184-204.

22

Supplemental Material

Appendix A: Proof of Lemma 3

We provide the proof of Lemma 3 using the following games.
Game 0. This is the real security game between the adversary A and the challenger C.
Game 1. In this game, we change the way that the matrices (C;);c(r+1) in PP are generated

for the setup algorithm. At first, C samples R} & {=1,1}™*™ for j € [L + 1], and keeps
these matrices as a part of SKkgc. Next, C sets (C;);erz41) as follows:

AR} - H(id})G for jel[i*—1],
AR - H(d)G for j=1,

AR; for je[i*+1,1],
AR} - H(*[[t")G for j=L+1.

C]‘ =

As the proof in [12] (the full version of [11]) shows, the distribution of PP in Game 1 is
statistically close to that in Game 0,

Game 2. The changes made in this game are the most important part of our security proof.
First of all, we change the way that the matrix A in PP is generated for the setup algorithm.

Instead of running TrapGen(1™,1™ ¢) in Game 1, C selects A & Zy>*™ without the trapdoor
Ta in SKkgc. The choice of (C;)je(r+1) remains as in Game 1. Though C does not own the
trapdoor T a, we still have the following result, whose proof is similar to that in [12] and thus
is omitted here. We note that its proof will make heavy use of the algorithms SampleRight,
SampleBasisRight, together with the algorithms SampleLeft, SampleBasisLeft.

Lemma 8. The setup algorithm is changed as above. For any CH € (ZZ \ {O,L})gL with
[CH| =¥, and any i€ [L], t€ Z;“l, v € Zy,

—

(1)if CH ¢ prefix(lDf‘i*]), then the challenger C is able to construct a short basis T g(ch)]

distributed statistically close to Dpqsis(Ay ([A | E(CH)]),00_1), and is also able to construct
a short vector e distributed statistically close to IDAZ([A‘E(CH)])yo'Z—l;

—_~

(2) if CH ¢ prefix(IDj;q) or (i,t) # (i*,t*), then the challenger C is able to construc-
t a short basis T(ag(cH)|F(i,t) distributed statistically close to Dpasis(Ay ([A | E(CH) |
F(i,t)]),0¢), and is also able to construct a short vector e distributed statistically close to
D ay (A[B(CH)[F(i,t)]),00-

Besides, we change the way that the vectors (upa“Dr*]))g)geBT , stored in nodes of
i]

pa(lDri*
BTpa(lD[*i*]) are generated. When the vector Upa(ID%,..)0 for some 0 € BTP"('DE*]) must be
defined for C to answer A’s query, C proceeds as follows. If 6 € Path(BTpa“D?*]),77|Dri*]), C

first samples en:. .0 < Dyeiim g, and then sets Upa(ID7,.)0 = [A | E(IDE*})]ema*]’g. It
RS BTpa(lDE‘i*]) \Path(BTpa(IDE‘i*])a nIDEL*])’ C first samples epa(ID[*i*]),t*,G — IDZ(i*+1)7n$o.i*71, and
then sets Upa(ID7,.)0 7= U — [A | E(pa(IDf‘i*])) | F(i*’t*)]epa(lD["i*]),t*,O' C keeps the obtained
er.,,

With the preparation above, now we prove that the challenger C is able to answer any
allowed queries made by the adversary A that follows the Type-I-i* strategy for some
i* € [¢*]. In the following we summarize the items which C must construct to respond to A’s
queries:

— (a) SKip = (BTID> (0, €1D,0)6cPath(BT yu0y.m10) T[A|E(ID)]) for ID € (ZD)S"\prefix(IDj;- _y));

— (b)KUjp = ((97eID,t,G)GEKUNode(BTm,RL.D‘t)a (dID[i],t)z‘e[Z]> for ID € {KGC}U(ZID)SE~1 t e
T and ID ¢ RL;, where ¢ = |ID|;

6 O €pa(IDy,.) t*.0 secret for future use.
RO

23

~ (¢) DKins = ((diog, dicie: &ios) for (ID) € (ZD)<E x T\ {(ID°,t°)} and ID ¢ RL,
where ¢ = |ID].

C needs to generate any item in (a) in the secret key generation query and return it to the
adversary A in the secret key reveal query. In the revoke & key update query (and in the
secret key generation query, and at the beginning), C must return the corresponding items
in (b) to A. Similarly, A is allowed to query any item in (c¢) as a decryption key reveal query.

Firstly, we consider the items in (a). Undoubtedly, C is able to generate BT|p for any ID €

(ID)S*. For ID # IDj;.), we have that ID ¢ prefix(ID[;.)) always holds. According to Lemma 8,
for any vector up,py,0 € Zy, C is able to construct a short vector distributed statistically

O (A[B(D)) .00 where ¢ = |ID| = |ID|. Then C just sets this short vector

as eyp,g. This shows that C is able to construct (9,e|D79)gepath(BTpa“leD). For ID = IDE*}’

C has already constructed (9,e|DF_*]79)96path(BTp 10+) since we change the way that
k3 a [i%] *]

(upa(lD[*i*]),B)OEBTpauD[*i*]) are generated. Therefore, C can construct (6, eip,0)gcpath(BT

close to D (pa(iD),
q

)777IDE‘i
pa(lD)J]lD)
for any ID € (ZD)SY. Again due to Lemma 8, the condition for C to construct T(a|E(ID)] I8

ID ¢ prefix(IDj;.)), which is exactly equivalent to ID ¢ prefix(IDj;._;;). As a conclusion, C is
able to construct SKip for any ID € (ZD)S* \ prefix(IDj;. _;)). Note that C can also generate
(9,e|D79)gepath(BTpa(lleD) for any ID € prefix(IDE‘i*_l])7 which will play an important role in
the construction of (dip, t)icfg in (b) and (c).

Secondly, let us deal with the items in (b). Suppose that (ID,t) # (IDj._q),t*). If

——

ID| = i* — 1 and t = t*, then ID # ID};._;; must hold. Thus we have ID ¢ prefix(IDj;.). If
[ID| # i* — 1 or t # t*, then we have (|ID]| + 1,t) # (i*,t*). According to Lemma 8, for any
vector u —up g € Z;, C is able to construct a short vector distributed statistically close

to DA;"“'D"’([A\E(lD)\F(uLt)]),a@’ where ¢ = |ID|. Then C just sets this short vector as eip t,¢.

This shows that C is able to construct (0, €ip.t,0)seKUNode(BTpp,RLip,)- FOT the case of (ID,t) =
(IDf+_1),t*) where IDj;._y) = pa(IDj;+1), C is able to construct €pa(ID?,.) "0 for any 6 €

BTPa('DE*]) \ Path(BTanD[*i*]),77|Dﬁ*]), since we change the way that (upa(m[*i*]))g)genga(lDﬂ_*])

are generated. By definition of the Type-I-i* strategy, we must have IDE-*] € RLi«. There-
fore, either there is no need to construct KUpa(m?*])’t* (if pa(IDf;+)) € RLy+), or we have

KUNode(BTanDa*]), RLpa(ID[*,;*]),t*) C BTPa('DE}*]) \ Path(BTpa(lD;*]ﬁ77IDE;*]). Therefore, C is
able to construct any (6, €ip,t,0)9ckUNode(BTi.RLp,) 11t (b). As for (dip;; t)ieg in (b), we note
that if ID" ¢ RLy, C is able to create any djp; from combining (97elD’ﬁ)@GPath(BTpa(m/)Jho/)
and (0, epa(lD’),tﬂ)GEKUNode(BTpaqu,RLPZ(.D'M)v which can be generated by C as stated above. As
a conclusion, C has the ability to construct KUjp; for ID € {KGC} U (ZD)SE1, t € T and
ID ¢ RL;.

Thirdly, there remain the items in (c). The method to construct (dip, t)icfg in (c) is

—

similar to the above. Here we only need to consider gip +. If [ID[= i*, then ID ¢ prefix(IDj;.;).
If [ID| # i*, then (|ID[,t) # (i*,t"). According to Lemma 8, for any vector u € Zy, C is able
to construct a short vector distributed statistically close to DA;([A|E(|D)|F(z,t)]),a[7 where
¢ = |ID|. Then C just sets this short vector as gipt. As a conclusion, C is able to construct
DKip for (ID,t) € (ZD)SF x T\ {(ID*,t*)} and ID ¢ RL;. Note that ID;.; € RL¢-, thus we
have ID* € RL;-, which implies that dip~ ¢+ does not exist.

From the description of the algorithm TrapGen, the two matrices A in Game 1 and
Game 2 are statistically indistinguishable. Moreover, according to Lemma 8 and Lem-
ma 2, the distributions of SKp, KUpt, DKip+ provided to the adversary A in Game 2
are statistically close to those in Game 1, and so are the distributions of the vectors
(upa(lD@*])79)9€BTPE<|DE;*])' As a conclusion, the adversary A’s advantage in Game 2 is at most

negligibly different from its advantage in Game 1.

24

Game 3. Recall that in the challenge query, upon a query (Mg, M;) with |[Mg| = |[M;] from A,

C picks the challenge bit b & {0,1}, and runs Encrypt(PP, ID*,t* M;) — (co7 (Ci)icles CL+1)-
In this game, we reset ¢y and c;~ as follows. Recall that in the algorithm Encrypt, we have
already selected s; & Zy for i € [(*]U{L + 1}, and <> Dz aq. Besides, let C sample
X <> Dzm oq. Then define w := u's;«,w := ATs;, and compute v := w+z € Lg, v =
w+x € Zg'. Next, C sets

co =0+ 0T (Cieppegiry i) + 0 sL41 + My,
¢; « ReRand([I,, | R*], v, aq, %)7 where R :=[R7 [- | R} |Rj 4.

Here the algorithm ReRand is introduced in [13] for noise re-randomization. One can also
refer to [12] for its definition. Besides, the proof in [12] also shows that the change of c¢;«
alters the view of A only negligibly. In addition, the generation for ¢ is actually unchanged.
As a conclusion, Game 2 and Game 3 are statistically indistinguishable.

Game 4. In this game, we further change the way that the challenge ciphertext CT* is

created. Instead of setting w := u's;, w := ATs;« in Game 3, we let C sample w & Ly, W &

Zy'. The remainder of Game 4 is the same as Game 3. As the proof in [12] shows, Game 3
and Game 4 are computationally indistinguishable for the PPT adversary A, assuming the
hardness of the problem LWEy, 1 41,4,x Where x = Dzm+1 4.

In Game 4, according to w < Z, and o = wlzA+ul (3¢ -y 81) Hu spa]+Mp 3],
the probability of A guessing whether b = 0 or b = 1 is exactly 1/2. Namely, A’s advantage
in Game 4 is zero. According to the analysis for the above games, it is obtained that A’s
advantage in Game 0 is negligible, and thus we complete the proof of Lemma 3.

Appendix B: Proof of Lemma 4

The proof of Lemma 4 is similar to that of Lemma 3 in Appendix A. Below we only point
out the part different from Appendix A in each game.
In Game 1, the challenger C sets (C;);e[z41) as follows:

AR} - H(id;)G for j e [0*],
Cj:= 4 AR; for je[*+1,1],
AR — H(*|t)G for j=L+1.

In Game 2, similar to Lemma 8, for any CH € (Z\ {07L})<L with |CH| = ¢, and any
ie[l],te fol,v € Zy, the challenger C is able to construct a short basis T(a|g(cH) dis-
tributed statistically close to Dpgsis (Aql([A | E(CH)]), 0¢—1), and a short vector e distributed
statistically close to D ay ((AIE(CH)]) 0015 if CH ¢ prefix(ID*); and C is also able to construc-
t a short basis T(a|g(cH)F(i,y) distributed statistically close to Dpasis(4A7 ([A | E(CH) |
F(i,t)]),0¢), and a short vector e distributed statistically close to D 4y ((AJE(CH)[F(i,0)]),00 if
CH ¢ prefix(ID*) or (i,t) # (£*,t*).

Besides, we need to change the way that the vectors (upa(lD*)ﬁ)GeBTpa(m*) stored in nodes
of BT 51+ are generated. When the vector up,(ip+),¢ for some 6 € BT, p+) must be defined
for C to answer A’s query, C first samples epaip) .9 <> Dzer+1m 4,. ,, and then sets
Upa(iD*),9 = U — [A | E(pa(ID")) | F(g*,t*)]eanD*)’t*’g. C keeps the obtained eya(p+) i+ .0
secret.

Similarly, with the preparation above, we can also prove that the challenger C is able
to answer any allowed queries made by the adversary A that follows the Type-II strategy.
Namely, C is able to construct the following items:

— (a) SKip for ID € (ZD)SE \ prefix(ID*);

25

— (b) KU, for ID € {KGC} U (ZD)<L=!, t € T and ID ¢ RLy;
— (¢) DKipy for (ID,t) € (ID)SE x T\ {(ID*,t*)} and ID ¢ RL,.

T

In Game 3, C defines w :=u's;11,w:= ATs; 1, and sets
9 +1 +1»

co:=v+ uT(Zie[é*] Si) + Mbl_%J,
cr+1 < ReRand([L,, | R*], v, aq, g—(;), where R*:=[R}|---|R}. [R}]

In Game 4, instead of setting w :=u'sy 41, w := ATsp 1, C samples w & Ly, W & Ly".

Similarly, for the PPT adversary A, we can prove that any two consecutive games of
Games 0, 1, 2 and 3 are statistically indistinguishable, and that Game 3 and Game 4 are com-
putationally indistinguishable, assuming the hardness of the problem LWE,, ;1,4 Where
X = Dgm+1 o4- Besides, in Game 4 the probability of A guessing whether b = 0 or b = 1
is exactly 1/2, which implies that A’s advantage is zero in Game 4. Combining everything
together, we conclude that A’s advantage in Game 0 (the real security game) is negligible,
and thus we complete the proof of Lemma 4.

Appendix C: Proof of Lemma 7

Given the problem instance of LWE,, 2141,y 88 (.&,0) with A = [ag |ar |- |am] €
ZZX(QmH) and V = (v, v1, -+ ,U2m) € ng+17 the algorithm C sets u := ag € Zg, Ay =
[a1 | --- | &an] € Zy*™ such that A=[u|Ag]|] Besides, C selects ¢* & [L] as

the guess for the length of the challenge identity ID*, and samples Q1 & [Qu,], R}, <
Dinxm for j € [€* + 1]. Then C sets A := Ao(R] ;.- Ri R}), and runs (B, Tg) «
TrapGen(1™,1™, q). Finally, C publishes the public parameters PP := (A, B, u).

The random oracle H; is operated just as that in the proof of Lemma 5, where the pa-
rameter i* should be replaced by £* + 1. Then similar to Lemma 6, for CH € ({0,1,2}«)SE+!
with |CH| = ¢, we can prove that the algorithm C is able to construct a short basis
T a.p,(cH) distributed statistically close to DBQSZ-S(A;- (A -P1(CH)),00-1), if CH ¢ CH; :=
{CH € ({0,1,2}«)SLH | |CH| < ¢* + 1, and Hy(CH[;)) = Ry, for j=1,2,-- ,|CH|}. As for
the random oracle Ha, once A queries Hy on some CH € ({0,1,2}*)SL, C just selects
R < Dyxm and then returns Ho(CH) := R to A. Note that C owns the trapdoor Tg. As a
consequence, for any CH € ({0, 1,2}*)SL with |CH| = /, the algorithm C is able to construct
a short basis Tg.p,(ch) distributed statistically close to Dpasis(A; (B - P2(CH)), 00-1).

Set ID*, t* as the challenge identity and time period, and let Success be the event that
[ID*| = ¢*, ID*||t* € CH;1 holds, and C does not fail due to collisions on H; found by A.
Then we obtain Pr[Success| = 1/L- 1/@%;?1 -(1—negl(n)). Similar to the proof of Lemma 5,
we can prove that if Success happens, the algorithm C will successfully simulate the attack
environment for A, and otherwise, C will fail and abort at some point. Note that in the proof
of Lemma 7, C does not need to deal with BT|p differently for any ID. When 4 makes the
challenge query on (ID*,t*, Mg, My), if [ID*| = ¢*, ID*||t* € CH; holds, C picks the challenge
bit b & {0,1}, and runs Encrypt(PP,ID*,t*,M;) — (co, (Ci,1s€i2)icpe+] CL+1)7 where
¢o,cr+1 are redefined as follows. Recall that v = (vg,v1, - ,V2m) € Z3m+1, and we let
V1= (v1,- -+ ,vm) € Zy'. After that, C sets co < vo + uT(ZiE[Z*] si) +Myl2], coyr V1.
Then C returns the challenge ciphertext CT* := (co, (Ci1s€i2)iele) CL+1) to A.

When A outputs b’ € {0,1} as the guess for b at some point, C outputs 1 in case b’ = b,
and outputs 0 for &’ # b. The remaining analysis for the relation between Advlq-'g o E(n) and

AdvéWE(n) is almost the same as that in the proof of Lemma 5, and finally we can complete
the proof of Lemma 7.

26

	Simplified Revocable Hierarchical Identity-Based Encryption from Lattices
	Introduction
	Preliminaries
	Background on Lattices
	Revocable Hierarchical Identity-Based Encryption
	The Complete Subtree Method

	RHIBE Scheme in the Standard Model
	Construction
	Security

	RHIBE Scheme in the Random Oracle Model
	Construction
	Security

	Conclusion

