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Abstract. As an extension of identity-based encryption (IBE), revocable hierarchi-
cal IBE (RHIBE) supports both key revocation and key delegation simultaneously,
which are two important functionalities for cryptographic use in practice. Recently in
PKC 2019, Katsumata et al. constructed the first lattice-based RHIBE scheme with
decryption key exposure resistance (DKER). Such constructions are all based on bilin-
ear or multilinear maps before their work. In this paper, we simplify the construction
of RHIBE scheme with DKER provided by Katsumata et al. With our new treatment
of the identity spaces and the time period space, there is only one short trapdoor base
in the master secret key and in the secret key of each identity. In addition, we claim
that some items in the keys can also be removed due to the DKER setting. Our
first RHIBE scheme in the standard model is presented as a result of the above sim-
plification. Furthermore, based on the technique for lattice basis delegation in fixed
dimension, we construct our second RHIBE scheme in the random oracle model. It
has much shorter items in keys and ciphertexts than before, and also achieves the
adaptive-identity security under the learning with errors (LWE) assumption.
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1 Introduction

Background. Identity-based encryption (IBE), envisaged by Shamir [20] in 1984, is an
advanced form of public-key encryption (PKE) where any string such as an email address
can be used as a public key. Hierarchical IBE (HIBE), an extension of IBE introduced by
Horwitz and Lynn [10] in 2002, further supports a key delegation functionality. Moreover, just
as many multi-user cryptosystems, an efficient revocation mechanism is usually necessary
and imperative in the (H)IBE setting. The public/private key pair of a system user may need
to be removed for various reasons, such as that the user is no longer a legitimate system user,
or that the private key is lost or stolen. Designing the revocable IBE (RIBE) or revocable
HIBE (RHIBE) turned out to be a challenging problem.

In 2001, Boneh and Franklin [6] proposed a naive solution for RIBE, which requires
users to periodically renew their private keys. This solution is too impractical to be used
in large-scale system, since for the key generation center (denoted by KGC), the workload
grows linearly in the number of users N . Later in 2008, Boldyreva et al. [5] utilized the
complete subtree (CS) method of Naor et al. [17] to construct the first scalable RIBE, where
KGC’s workload is only logarithmic in N . RIBE requires three types of keys: a secret key
SK, a key update KU, and a decryption key DK. For each time period t, the KGC broadcasts
a key update KUKGC,t through a public channel, and only non-revoked identity ID at this
time period t can derive a decryption key DKID,t by combining its secret key SKID with the



key update KUKGC,t. In the security model of [5], the adversary only has the access to a
secret key reveal oracle and a key update reveal oracle. However, leakage of decryption keys
may also happen in practice. In 2013, Seo and Emura [19] introduced a new security notion
called decryption key exposure resistance (DKER), and thus refined the security model,
where the adversary also has the access to a decryption key reveal oracle. The works in [5]
and [19] attracted a lot of followup works, and their RIBE schemes were also extended to
RHIBE schemes. Note that before Katsumata et al.’s work [11] in 2019, the constructions of
R(H)IBE schemes with DKER are all based on bilinear or multilinear maps, and they rely
heavily on the so-called key re-randomization property.

This paper focuses on the lattice-based cryptography, which has faster arithmetic oper-
ations and conjectured security against quantum attacks. In 2012, Chen et al. [8] employed
Agrawal et al.’s IBE [1] and the CS method [17] to construct the first lattice-based RIBE
scheme without DKER. Then in 2017, Takayasu and Watanabe [21] presented a new lattice-
based RIBE scheme secure against exposure of a-priori bounded number of decryption keys
for every identity. Namely, their scheme only achieves bounded DKER. Later in 2019, Kat-
sumata et al. [11] proposed the first lattice-based R(H)IBE scheme with DKER under the
learning with errors (LWE) assumption. Specifically, they provided a generic construction of
RIBE with DKER from any RIBE without DKER and two-level HIBE. This result direct-
ly implies the first lattice-based RIBE scheme with DKER. Furthermore, they constructed
the first lattice-based RHIBE scheme with DKER by further exploiting the algebraic struc-
ture of lattices. Since lattices are ill-fit with the so-called key re-randomization property,
Katsumata et al. [11] introduced new tools such as leveled ciphertexts, leveled secret keys,
leveled decryption keys, and level conversion keys. Therefore, their techniques highly depart
from previous works which are based on bilinear or multilinear maps.

Our Contributions and Techniques. In this paper, we manage to simplify the construc-
tion of lattice-based RHIBE scheme with DKER in [11]. Specifically, we present two new
RHIBE schemes Π1 and Π2, both of which are based on lattices and achieve DKER. Let Π0

denote the RHIBE scheme with DKER in [11]. Then compared with Π0, our first scheme
Π1 has fewer items in the public parameters, secret keys, and key updates. Furthermore,
in our second scheme Π2, the items in keys and ciphertexts are much shorter than Π0,Π1.
The scheme Π0 in [11] and our first scheme Π1 are in the standard model, and they both
satisfy the selective-identity security, assuming the hardness of the LWE problem. While
our second scheme Π2, which is in the random oracle model, achieves the adaptive-identity
security under the LWE assumption.

In Figure 1, we show the public parameters PP, the master secret key SKKGC (the secret
key of KGC), the ciphertext CT, the secret key SKID, the key update KUID,t, and the decryp-
tion key DKID,t, together with the description of their items, for the schemes Π0, Π1 and
Π2. In this figure, L is the maximum depth of the hierarchy, and we use ` := |ID| to denote
the depth of the corresponding ID explicitly in SKID, KUID,t, DKID,t, or implicitly in CT,
respectively. In addition, for n1, n2 ∈ N, we set [n1, n2] := {n1, n1 + 1, · · · , n2} if n1 6 n2,
or [n1, n2] := ∅ if n1 > n2, and then let [n] := [1, n] for n ∈ N. Figure 1 only provides a brief
description of the RHIBE schemes Π0,Π1,Π2, and the notations in this figure will be clar-
ified later in this paper when necessary. For example, the notation BTKGC (or BTID), which
denotes a binary tree managed by KGC (or ID), is introduced in Section 2.3. The function
E(·) used in SKID for Π0,Π1 is described in Section 3, and the functions P1(·),P2(·) used
in SKID for Π2 are defined in Section 4. Actually, Figure 1 is mainly for the comparison,
from which we can see that our first scheme Π1 needs fewer items than Π0, and the sizes of
items are much smaller in our second scheme Π2. Furthermore, with the help of Figure 1,
we can briefly introduce our techniques as follows.

In the RHIBE, each identity ID = (id1, · · · , id`) at level ` ∈ [L] belongs to the hierarchical
identity space IDH = (ID)6L :=

⋃
i∈[L](ID)i, where ID is the element identity space. The

KGC, i.e., the key generation center, is the unique level-0 identity. For the construction of our
scheme Π1, we introduce another space ĨD such that ID∩ĨD = ∅, |ID| = |ĨD|, and there is
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The RHIBE Scheme Π0 in [11]

1. PP =
(

(Ai)i∈[L+1] , (Cj)j∈[L+1], (uk)k∈[L]

)
,

SKKGC =
(
BTKGC, (TAi)i∈[L+1]

)
2. CT =

(
c0, (ci)i∈[`], cL+1

)
3. SKID =

(
BTID, (θ, eID,θ)θ, (fID,k)k∈[`+1,L],

(T[Ai|E(ID)])i∈[`+1,L+1]

)
4. KUID,t =

(
(θ, eID,t,θ)θ, (fID[i],t,k)(i,k)∈[`]×[`+1,L]

)
5. DKID,t =

(
(fID[i],t,`)i∈[`−1], dID,t, gID,t

)

The items in Π0

1. Ai,Cj ∈ Zn×mq , uk ∈ Znq ,
TAi ∈ Zm×m

2. c0 ∈ Zq, ci ∈ Z(i+2)m
q , cL+1 ∈ Z(`+2)m

q

3. eID,θ, fID,k ∈ Z(`+1)m,
T[Ai|E(ID)] ∈ Z(`+1)m×(`+1)m

4. eID,t,θ ∈ Z(`+2)m, fID[i],t,k ∈ Z(i+2)m

5. fID[i],t,` ∈ Z(i+2)m, dID,t,gID,t ∈ Z(`+2)m

Our First RHIBE Scheme Π1

1. PP =
(

A , (Ci)i∈[L+1], u
)

,

SKKGC =
(
BTKGC, TA

)
2. CT =

(
c0, (ci)i∈[`], cL+1

)
3. SKID =

(
BTID, (θ, eID,θ)θ, T[A|E(ID)]

)
4. KUID,t =

(
(θ, eID,t,θ)θ, (dID[i],t)i∈[`]

)
5. DKID,t =

(
(dID[i],t)i∈[`], gID,t

)

The items in Π1

1. A,Ci ∈ Zn×mq , u ∈ Znq ,
TA ∈ Zm×m

2. c0 ∈ Zq, ci ∈ Z(i+2)m
q , cL+1 ∈ Z(`+2)m

q

3. eID,θ ∈ Z(`+1)m,
T[A|E(ID)] ∈ Z(`+1)m×(`+1)m

4. eID,t,θ ∈ Z(`+2)m, dID[i],t ∈ Z(i+2)m

5. dID[i],t ∈ Z(i+2)m, gID,t ∈ Z(`+2)m

Our Second RHIBE Scheme Π2

1. PP =
(
A, B, u

)
,

SKKGC =
(
BTKGC, TA, TB

)
2. CT =

(
c0, (ci,1, ci,2)i∈[`], cL+1

)
3. SKID =

(
BTID, (θ, eID,θ)θ, TA·P1(ID), TB·P2(ID)

)
4. KUID,t =

(
(θ, eID,t,θ)θ, (dID[i],t)i∈[`]

)
5. DKID,t =

(
(dID[i],t)i∈[`], gID,t

)

The items in Π2

1. A,B ∈ Zn×mq , u ∈ Znq ,
TA,TB ∈ Zm×m

2. c0 ∈ Zq, (ci,1, ci,2) ∈ Z2m
q , cL+1 ∈ Zmq

3. eID,θ ∈ Zm,
TA·P1(ID),TB·P2(ID) ∈ Zm×m

4. eID,t,θ ∈ Zm, dID[i],t ∈ Z2m

5. dID[i],t ∈ Z2m, gID,t ∈ Zm

Fig. 1. Comparison of the RHIBE schemes Π0,Π1,Π2

a one-to-one correspondence between id ∈ ID and ĩd ∈ ĨD. Suppose that in the encryption
algorithm, a message M is encrypted under an identity ID = (id1, · · · , id`) ∈ IDH (and under
a time period t). Then from Figure 1, we know that both the schemes Π0 and Π1 will output

the ciphertext CT =
(
c0, (ci)i∈[`], cL+1

)
∈ Zq × (Z3m

q × Z4m
q × · · · × Z(`+2)m

q ) × Z(`+2)m
q .

However, for Π0 the item ci in CT is generated from ID[i] := (id1, · · · , idi−1, idi), while the

item ci for our Π1 is created from ĨD[i] := (id1, · · · , idi−1, ĩdi). As a consequence, our scheme
Π1 only needs one short trapdoor base TA (or T[A|E(ID)]) in the secret key SKKGC (or SKID),
and accordingly the matrix A is used in PP instead of (Ai)i∈[L+1], shown as in Figure 1.
In the security proof, the adversary A may issue a secret key reveal query on ID∗[i∗] but not
on any ID∗[j] for j ∈ [i∗ − 1], where ID∗ denotes the challenge identity and i∗ 6 |ID∗|. In this
case, the LWE problem instance is used to construct A,u in PP and c0, ci∗ in CT for our
scheme Π1. Though without the trapdoor TA, we are still able to construct T[A|E(ID∗

[i∗])]
in

SKID∗
[i∗]

for the adversary A, since the simulated ci∗ is only related to ĨD∗[i∗], not ID∗[i∗] itself.

The construction of T[A|E(ID∗
[i∗])]

will not succeed, if ci∗ is obtained in the way of the scheme

Π0. This is also the reason why Π0 employs L + 1 short trapdoor bases (TAi)i∈[L+1] in
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SKKGC, and L+ 1− ` short trapdoor bases (T[Ai|E(ID)])i∈[`+1,L+1] in SKID, just as Figure 1
shows. Similarly, we also deal with the time period t differently in the encryption algorithm
for our scheme Π1. As a result, we no longer need TA to answer all the queries made by
the adversary A in the security proof.

The items in Π0,Π1 related to the above changes are boxed in Figure 1. Besides, we
describe the underlined items in Π0,Π1 as follows (the items in DKID,t are not marked
since there is no simplification). For the scheme Π0 in Figure 1, the vector fID,k in SKID,
the vector fID,t,k in KUID,t and the vector dID,t in DKID,t, satisfy the condition fID,t,k =
dID,t + [fID,k‖0m×1] ∈ Z(`+2)m for k ∈ [`+ 1, L], where [·‖·] denotes vertical concatenation of
vectors, and ` = |ID|. Actually, as a preparation for achieving DKER, Katsumata et al. [11]
also presented an RHIBE scheme without DKER, where the decryption key DKID,t does not
contain the item gID,t. Following this scheme without DKER, they introduced these vectors
fID,k, fID[i],t,k to avoid a trivial attack. For simplicity, one can imagine that if there is no
gID,t in DKID,t for our scheme Π1 in Figure 1, then the private DKID,t is totally contained in
the public KUID,t, which is obviously insecure. However, for the construction of RHIBE with
the DKER setting, it can be proved that the item gID,t itself is sufficient to guarantee the
security. Therefore, one no longer needs the items (fID,k)k∈[`+1,L] in SKID, or part of the items
(fID[i],t,k)(i,k)∈[`]×[`+1,L] in KUID,t. Then in the public parameters PP we can also use only
one vector u, instead of (uk)k∈[L], and finally our scheme Π1 is obtained as a simplification
of Π0, shown as in Figure 1.

As for our second RHIBE scheme Π2, we follow the idea of our Π1, and adopt the
technique for lattice basis delegation in fixed dimension introduced in [2]. Therefore, the
sizes of items are much smaller than Π0 and Π1. For example, the ciphertext CT under an

identity ID with ` = |ID|, is a vector in Z(2`+1)m+1
q for our Π2. While in Π0 and Π1, CT is

a vector in Z( 1
2 `

2+ 7
2 `+2)m+1

q . Moreover, as Figure 1 shows, the items in SKID, KUID,t, DKID,t

for Π2 do not depend on ` = |ID|. They are either short matrices in Zm×m, or short vectors
in Zm or Z2m. Unlike only one matrix TA in SKKGC for Π1, we emphasize that the master
secret key SKKGC in our scheme Π2 contains two trapdoor bases TA,TB. This comes from
the different technique introduced in [2]. Following this, two trapdoor bases are necessary
even for the construction of RIBE (not RHIBE) without DKER.

Organization. The rest of this paper is organized as follows. Section 2 reviews some back-
ground on lattices, the definitions for RHIBE re-formalized in [11], and the complete subtree
method. Then in Section 3, we provide our first RHIBE scheme Π1, together with its analy-
sis. The construction and the security proof for our second RHIBE scheme Π2, are presented
in Section 4. Finally, the conclusion is given in Section 5.

2 Preliminaries

Notations. The acronym PPT stands for “probabilistic polynomial-time”. We say that
a function ε : N → R is negligible, if for sufficient large λ ∈ N, |ε(λ)| is smaller than the
reciprocal of any polynomial in λ. The notation negl(λ) is used to denote a negligible function
ε(λ). Besides, an event is said to happen with overwhelming probability if it happens with
probability at least 1 − negl(λ). The statistical distance of two random variables X and Y
over a discrete domain Ω is defined as ∆(X;Y ) := 1

2

∑
s∈Ω |Pr[X = s]− Pr[Y = s]|. If X(λ)

and Y (λ) are ensembles of random variables, we say that X and Y are statistically close if
d(λ) := ∆(X(λ);Y (λ)) is equal to negl(λ). For a distribution χ, we often write x ←↩ χ to

indicate that we sample x from χ. For a finite set Ω, the notation x
$← Ω means that x is

chosen uniformly at random from Ω. We treat vectors in their column form. For a vector
x ∈ Zn, denote ‖x‖ as the Euclidean norm of x. For a matrix A ∈ Zn×m, denote ‖A‖ as
the Euclidean norm of the longest column in A, and denote ‖A‖GS as ‖AGS‖, where AGS

is the Gram-Schmidt orthogonalization of A.

4



2.1 Background on Lattices

Integer Lattices. A (full-rank) integer lattice Λ of dimension m is defined as the set{∑
i∈[m] xibi | xi ∈ Z

}
, where B := {b1, · · · ,bm} are m linearly independent vectors in

Zm. Here B is called the basis of the lattice Λ. Let n,m and q > 2 be positive integers. For a
matrix A ∈ Zn×mq , define the m-dimensional lattice Λ⊥q (A) :=

{
x ∈ Zm | Ax = 0 mod q

}
.

For any u in the image of A, define the coset Λu
q (A) :=

{
x ∈ Zm | Ax = u mod q

}
.

Discrete Gaussians over Lattices. Let Λ be a lattice in Zm. For any parameter σ ∈ R>0,
define ρσ(x) := exp(−π‖x‖2/σ2) for x ∈ Zm, and ρσ(Λ) :=

∑
x∈Λ ρσ(x). The discrete

Gaussian distribution over Λ with parameter σ is DΛ,σ(y) := ρσ(y)/ρσ(Λ), for y ∈ Λ. Some
properties are shown as follows.

Lemma 1. ([16]) For A ∈ Zn×mq ,u ∈ Znq with q > 2,m > n, let TA be a basis for Λ⊥q (A)

and σ > ‖TA‖GS · ω(
√

logm), then Pr[x←↩ DΛu
q (A),σ : ‖x‖ > σ

√
m] 6 negl(n).

Lemma 2. ([9]) Suppose that n,m, q ∈ Z>0, σ ∈ R>0, with q a prime, m > 2n log q and

σ > ω(
√

log n). Then for A
$← Zn×mq , e ←↩ DZm,σ, the distribution of u := Ae (mod q) is

statistically close to uniform over Znq . Furthermore, for a fixed vector u ∈ Znq and a matrix

A
$← Zn×mq , the conditional distribution of e ←↩ DZm,σ given Ae = u (mod q) is DΛu

q (A),σ

with overwhelming probability.

In addition, as in [2], we set σR :=
√
n log q · ω(

√
logm), and let Dm×m denote the

distribution on matrices in Zm×m defined as (DZm,σR
)m conditioned on the resulting matrix

being Zq-invertible.

Algorithms about Lattices. Let us briefly review some algorithms which are useful for
lattice-based cryptography. For these algorithms introduced below, we simply assume that
n,m,m0, q ∈ Z>0 with q > 3 a prime and m = Ω(n log q). Besides, we note that according
to [15], there exists a fixed full rank matrix G ∈ Zn×mq , called the gadget matrix, such that

the lattice Λ⊥q (G) has a publicly known basis TG ∈ Zm×m with ‖TG‖GS 6
√

5.

TrapGen(1n, 1m, q)→ (A,TA) ([3,4,15]): On input n,m, q, output a matrix A ∈ Zn×mq and

a basis TA of Λ⊥q (A), such that A is distributed statistically close to uniform over Zn×mq

and ‖TA‖GS 6 O(
√
n log q) with overwhelming probability in n.

SamplePre(A,TA,u, σ) → e ([9]): On input a full rank matrix A ∈ Zn×mq , a basis TA of

Λ⊥q (A), a vector u ∈ Znq , and a Gaussian parameter σ > ‖TA‖GS · ω(
√

logm), output a
vector e ∈ Zm distributed statistically close to DΛu

q (A),σ.

SampleLeft(A,M,TA,u, σ) → e ([1,7]): On input a full rank matrix A ∈ Zn×mq , a matrix

M ∈ Zn×m0
q , a basis TA of Λ⊥q (A), a vector u ∈ Znq , and a Gaussian parameter σ >

‖TA‖GS · ω(
√

log(m+m0)), output a vector e ∈ Zm+m0 distributed statistically close
to DΛu

q ([A|M]),σ.

SampleRight(A,H ·G,R,TG,u, σ) → e ([1,15]): On input a matrix A ∈ Zn×mq , a matrix
of the form H ·G ∈ Zn×mq (where H ∈ Zn×nq is full rank and G ∈ Zn×mq is the gadget

matrix [15]), a uniform random matrix R
$← {−1, 1}m×m, a basis TG of Λ⊥q (G), a

vector u ∈ Znq , and a Gaussian parameter σ > ‖TG‖GS ·
√
m · ω(

√
logm), output a

vector e ∈ Z2m distributed statistically close to DΛu
q ([A|AR+HG]),σ.

RandBasis(T, σ) → T′ ([7]): On input a basis T of an m-dimensional lattice Λ⊥q (A) and

a Gaussian parameter σ > ‖T‖GS · ω(
√

logm), output a new basis T′ of Λ⊥q (A) such

that T′ is distributed statistically close to DBasis(Λ⊥q (A), σ) introduced below, and
‖T′‖GS 6 σ

√
m holds with overwhelming probability.
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The distribution DBasis(Λ⊥q (A), σ) used above can be briefly described as follows. Let

O(Λ⊥q (A), σ) be an algorithm that generates samples from the distribution DΛ⊥q (A),σ, and

set m as the dimension of Λ⊥q (A). For i = 1, 2, · · · ,m, run v← O(Λ⊥q (A), σ) repeatedly un-
til v is linearly independent of {v1, · · · ,vi−1}, and then set vi ← v. After that, convert the
set of vectors {v1, · · · ,vm} to a basis TA of Λ⊥q (A) using Lemma 7.1 of [14] (and using some

canonical basis of Λ⊥q (A)). The distribution of this TA is then denoted as DBasis(Λ⊥q (A), σ).
Actually, in the process of RandBasis(T, σ)→ T′, the input basis T is only used to run the
algorithm SamplePre(A,T,0, σ), instead of the above algorithm O(Λ⊥q (A), σ). Thus up to a
negligible statistical distance, the distribution of the output basis T′ does not depend on T.

Using the distribution DBasis(Λ⊥q (A), σ) introduced above, we are able to describe the
following algorithms for generating a random basis of some lattice.

SampleBasisLeft(A,M,TA, σ) → T[A|M] ([1,7]): On input a full rank matrix A ∈ Zn×mq , a

matrix M ∈ Zn×m0
q , a basis TA of Λ⊥q (A), and a Gaussian parameter σ > ‖TA‖GS ·

ω(
√

log(m+m0)), output a basis T[A|M] ∈ Z(m+m0)×(m+m0) distributed statistically

close to DBasis(Λ⊥q ([A |M]), σ).
SampleBasisRight(A,H · G,R,TG, σ) → T[A|AR+HG] ([1,15]): On input a matrix A ∈

Zn×mq , a matrix of the form H ·G ∈ Zn×mq (where H ∈ Zn×nq is full rank and G ∈ Zn×mq

is the gadget matrix [15]), a uniform random matrix R
$← {−1, 1}m×m, a basis TG

of Λ⊥q (G), and a Gaussian parameter σ > ‖TG‖GS ·
√
m · ω(

√
logm), output a basis

T[A|AR+HG] ∈ Z2m×2m distributed statistically close to DBasis(Λ⊥q ([A | AR+HG]), σ).
BasisDel(A,R,TA, σ) → T(AR−1) ([2]): On input a full rank matrix A ∈ Zn×mq , a Zq-

invertible matrix R ∈ Zm×m sampled from Dm×m, a basis TA of Λ⊥q (A), and a Gaus-

sian parameter σ > ‖TA‖GS ·
√
nm log q · ω(log2m), output a basis T(AR−1) ∈ Zm×m

distributed statistically close to DBasis(Λ⊥q (AR−1), σ).
SampleRwithBasis(A, σ)→ (R,T(AR−1)) ([2,7]): On input a full rank matrix A ∈ Zn×mq , and

a Gaussian parameter σ >
√
n log q·ω(

√
logm), output a Zq-invertible matrix R ∈ Zm×m

sampled from a distribution statistically close to Dm×m, and a basis T(AR−1) ∈ Zm×m

distributed statistically close to DBasis(Λ⊥q (AR−1), σ).

Recall that the distribution Dm×m used above has already been defined below Lemma 2.
Besides, the algorithm SampleRwithBasis described above is actually a combination of the
original algorithm SampleRwithBasis in [2] and the algorithm RandBasis in [7]. We directly
describe this modified SampleRwithBasis just for convenience in the future proof of security.

Hardness Assumption. The learning with errors (LWE) problem, first introduced by
Regev [18], plays a central role in lattice-based cryptography. The security of our schemes
will rely on the following LWE assumption.

Assumption 1 (LWE) Suppose that n,m, q ∈ Z>0, α ∈ (0, 1) with q a prime satisfy
αq > 2

√
n. For a PPT algorithm A, the advantage for the learning with errors problem

LWEn,m,q,DZm,αq of A is defined as |Pr[A(A,A>s + x) = 1] − Pr[A(A,v) = 1]|, where

A
$← Zn×mq , s

$← Znq ,x ←↩ DZm,αq,v
$← Zmq . We say that the LWE assumption holds if the

above advantage is negligible for all PPT A.

2.2 Revocable Hierarchical Identity-Based Encryption

We briefly review the syntax, correctness and security definition for RHIBE, which are re-
formalized in [11]. First of all, let us introduce some notations as follows.

Recall that the hierarchical identity space in RHIBE is denoted by IDH = (ID)6L =⋃
i∈[L](ID)i, where ID is the element identity space, and L is the maximum depth of the

hierarchy. The KGC is the unique level-0 identity, and an identity ID ∈ IDH at level ` ∈ [L]
is expressed as a length-` vector ID = (id1, · · · , id`) ∈ (ID)`. For k ∈ [`], we set ID[k] :=
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(id1, · · · , idk) as the length-k prefix of ID, and define prefix(ID) := {ID[1], ID[2], · · · , ID[`] =
ID}. Besides, we let pa(ID) := ID[`−1] if ` > 2, and pa(ID) := KGC if ` = 1. Here pa(ID) is

called the parent of ID. We use ID‖ID to denote the subset of (ID)`+1 which contains all
the members that have ID ∈ (ID)` as its parent. When ID = KGC (i.e. ` = 0), the notation
ID‖ID just denotes ID.

Next, we introduce the notation RLt

(
⊆ (ID)6L

)
to denote the revocation list on the

time period t. If ID ∈ RLt, then implicitly we assume ID′ ∈ RLt also holds, where ID′ is any
descendant of ID. Besides, it is required that RLt1 ⊆ RLt2 for t1 < t2. We set RLID,t := RLt ∩
(ID‖ID) as the revocation list managed by the identity ID on the time period t. Following
these notations, when we write “ID ∈ RLt”, it means that user ID has been revoked on the
time period t. For any ID′ ∈ prefix(ID) and any t′ 6 t, we have ID′ ∈ RLpa(ID′),t′ ⇒ ID ∈ RLt.
When we write “ID /∈ RLt”, it means that user ID is not revoked on the time period t. We
have ID /∈ RLt ⇔ ID′ /∈ RLpa(ID′),t,∀ ID′ ∈ prefix(ID).

Syntax. As re-formalized in [11], an RHIBE scheme Π consists of the following six algo-
rithms Setup,Encrypt,GenSK,KeyUp,GenDK,Decrypt. Here the “revoke” algorith-
m is not explicitly introduced, since it is a simple operation of appending revoked users into
a revocation list.

Setup(1λ, 1L) → (PP,SKKGC): This is the setup algorithm run by the KGC. On input a
security parameter λ and the maximum depth of the hierarchy L, it outputs public
parameters PP and the KGC’s secret key SKKGC.

Encrypt(PP, ID, t,M) → CT: This is the encryption algorithm run by a sender. On input
public parameters PP, an identity ID, a time period t, and a plaintext M, it outputs a
ciphertext CT.

GenSK(PP,SKpa(ID), ID) → (SKID,SK′pa(ID)): This is the secret key generation algorithm
run by pa(ID), the parent user of ID. On input public parameters PP, the parent user’s
secret key SKpa(ID), and the identity ID, it outputs a secret key SKID for ID along with
the parent user’s “updated” secret key SK′pa(ID).

KeyUp(PP, t,SKID,RLID,t,KUpa(ID),t) → (KUID,t,SK′ID): This is the key update generation
algorithm run by the user ID. On input public parameters PP, a time period t, a secret
key SKID, a revocation list RLID,t, and the parent user’s key update KUpa(ID),t, it outputs
a key update KUID,t along with the “updated” secret key SK′ID. (In the special case
ID = KGC, since KUpa(KGC),t is not needed, we just define KUpa(KGC),t := ⊥ for all t ∈ T .)

GenDK(PP,SKID,KUpa(ID),t) → DKID,t or ⊥: This is the decryption key generation algo-
rithm run by the user ID. On input public parameters PP, a secret key SKID, and the
parent user’s key update KUpa(ID),t, it outputs a decryption key DKID,t, or the special
“invalid” symbol ⊥ which indicates that ID has been revoked.

Decrypt(PP,DKID,t,CT) → M: This is the decryption algorithm run by the user ID. On
input public parameters PP, a decryption key DKID,t, and a ciphertext CT, it outputs
the decrypted plaintext M.

Correctness. The correctness requirement for an RHIBE scheme Π states that, for all
λ, L ∈ Z>0, ` ∈ [L], ID ∈ (ID)`, t ∈ T , M ∈ M, RLt ⊆ (ID)6L, if ID /∈ RLt, and all
parties follow the above prescribed algorithms Setup,GenSK,KeyUp,GenDK,Encrypt
to generate PP,DKID,t,CT, then Decrypt(PP,DKID,t,CT) = M.

Security Definition. Let Π = (Setup,Encrypt,GenSK,KeyUp,GenDK,Decrypt)
be an RHIBE scheme. We first consider the selective-identity security, which is defined via
the following game between an adversary A and a challenger C.

At the beginning, A sends the challenge identity/time period pair (ID∗, t∗) ∈ (ID)6L×T
to C. After that, C runs (PP,SKKGC) ← Setup(1λ, 1L), and prepares a list SKList that
initially contains (KGC,SKKGC). During the game, whenever a new secret key is generated
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or an existing secret key is updated for some identity ID ∈ {KGC} ∪ (ID)6L, the challenger
C will store or update the identity/secret key pairs (ID,SKID) in SKList, and we do not
explicitly mention this addition/update. The global counter tcu, which denotes the “current
time period”, is initialized with 1. Then C executes (KUKGC,1,SK′KGC) ← KeyUp(PP, tcu =
1,SKKGC,RLKGC,1 = ∅,⊥) for tcu = 1, and gives PP,KUKGC,1 to A.

From this point on, A may adaptively make the following five types of queries to C.

Secret Key Generation Query: Upon a query ID ∈ (ID)6L from A, the challenger C
checks whether the condition (ID, ∗) /∈ SKList, (pa(ID),SKpa(ID)) ∈ SKList is satisfied. If
not, C just returns⊥. Otherwise, C executes (SKID,SK′pa(ID))← GenSK(PP,SKpa(ID), ID).

Furthermore, if ID ∈ (ID)6L−1, then C executes (KUID,tcu ,SK′ID)← KeyUp(PP, tcu,SKID,
RLID,tcu = ∅,KUpa(ID),tcu), and returns KUID,tcu to A.

Secret Key Reveal Query: Upon a query ID ∈ (ID)6L from A, the challenger C checks
whether the following condition is satisfied.

- If tcu > t∗ and ID ∈ prefix(ID∗), then ID ∈ RLt∗ .
If not, C just returns ⊥. Otherwise, C finds SKID from SKList, and returns it to A.

Revoke & Key Update Query: Upon a query RL ⊆ (ID)6L from A, the challenger C
checks whether the following conditions are satisfied simultaneously.

- RLtcu ⊆ RL.
- For ID, ID′ ∈ (ID)6L with ID′ ∈ prefix(ID), if ID′ ∈ RL, then ID ∈ RL.
- If tcu = t∗ − 1, and SKID for some ID ∈ prefix(ID∗) has been revealed by the secret

key reveal query, then ID ∈ RL.
If not, C just returns ⊥. Otherwise, C increments the current time period by tcu ←
tcu + 1, and then sets RLtcu ← RL. Next, for all ID ∈ {KGC} ∪ (ID)6L−1 with (ID, ∗) ∈
SKList, ID /∈ RLtcu in the breadth-first order in the identity hierarchy, C set RLID,tcu ←
RLtcu ∩ (ID‖ID), and run (KUID,tcu ,SK′ID) ← KeyUp(PP, tcu,SKID,RLID,tcu ,KUpa(ID),tcu).
Finally, C returns all these generated key updates {KUID,tcu} to A.

Decryption Key Reveal Query: Upon a query (ID,t) ∈ (ID)6L × T from A, the chal-
lenger C checks whether the following condition is satisfied.

- t 6 tcu, ID /∈ RLt, (ID,t) 6= (ID∗, t∗).
If not, C just returns⊥. Otherwise, C finds SKID from SKList, runs DKID,t ← GenDK(PP,
SKID,KUpa(ID),t), and returns DKID,t to A.

Challenge Query: A is allowed to make this query only once. Upon a query (M0,M1)

with |M0| = |M1| from A, the challenger C picks the challenge bit b
$← {0, 1}, runs

CT∗ ← Encrypt(PP, ID∗, t∗,Mb), and returns the challenge ciphertext CT∗ to A.

At some point, A outputs b′ ∈ {0, 1} as the guess for b and terminates.
The above completes the description of the game. In this game, A’s selective-identity

security advantage is defined by AdvRHIBE-selΠ,L,A (λ) := 2 · |Pr[b′ = b] − 1/2|, where λ is the
security parameter. We say that an RHIBE scheme Π with depth L satisfies the selective-
identity security, if the advantage AdvRHIBE-selΠ,L,A (λ) is negligible for any PPT adversary A.

The game for the adaptive-identity security, is defined in the same way as the above
game, except that the adversary A chooses the challenge identity/time period pair (ID∗, t∗) ∈
(ID)6L×T not at the beginning of the game, but at the time when A makes the challenge
query. Formally, the challenge query is defined differently as follows.

Challenge Query: A is allowed to make this query only once. The query (ID∗, t∗,M0,M1)
from A must satisfy the following conditions simultaneously.

- |M0| = |M1|.
- If tcu > t∗, and SKID for some ID ∈ prefix(ID∗) has been revealed by the secret key

reveal query, then ID ∈ RLt∗ .
- If tcu > t∗, then A has not submitted (ID∗, t∗) as a decryption key reveal query.

After receiving this query (ID∗, t∗,M0,M1), C picks the challenge bit b
$← {0, 1}, runs

CT∗ ← Encrypt(PP, ID∗, t∗,Mb), and returns the challenge ciphertext CT∗ to A.
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Besides, in the other queries, the conditions related to ID∗, t∗ are naturally omitted before A
makes the above challenge query. Recall that at last A will output b′ ∈ {0, 1} as the guess for
b. The adaptive-identity security advantage is then defined by AdvRHIBE-adΠ,L,A (λ) := 2 · |Pr[b′ =
b]− 1/2| for this modified game. Similarly, we say that an RHIBE scheme Π with depth L
satisfies the adaptive-identity security, if the advantage AdvRHIBE-adΠ,L,A (λ) is negligible for any
PPT adversary A.

2.3 The Complete Subtree Method

Similar to the works in [5,8], the RHIBE scheme Π0 in [11], and our schemes Π1, Π2

constructed in this paper, all need the complete subtree (CS) method of Naor et al. [17] to
achieve the revocation mechanism.

Shown as in Figure 1, every identity ID, including the KGC, keeps a binary tree BTID

in its secret key SKID. Actually, each member that has ID as its parent, will be randomly
assigned to a leaf node of BTID. For a leaf node η, we use Path(BTID, η) to denote the set of
nodes on the path from η to the root in BTID (both η and the root inclusive). For a non-leaf
node θ, let θl, θr denote the left and right child of θ, respectively. Besides, recall that RLID,t

is the revocation list managed by the identity ID on the time period t. Then the algorithm
KUNode, which takes BTID and RLID,t as input, can be described as follows: (1) X,Y ← ∅;
(2) for each ID′ ∈ RLID,t, add Path(BTID, ηID′) to X, where ηID′ denotes the leaf node to
which ID′ is assigned; (3) for each node θ ∈ X, add θl to Y if θl /∈ X, and add θr to Y if
θr /∈ X; (4) if RLID,t = ∅, add the root node of BTID to Y ; (5) return Y as the output of
KUNode(BTID,RLID,t).

Let us focus on the decryption key generation algorithm GenDK(PP,SKID′ ,KUID,t)
run by the user ID′ with pa(ID′) = ID. Here the secret key SKID′ contains the set of n-
odes P := Path(BTID, ηID′). While the key update KUID,t contains the set of nodes K :=
KUNode(BTID,RLID,t). If ID′ /∈ RLID,t, we have P ∩ K = {θ∗}, which contains exactly one
node θ∗. Then ID′ is able to generate its decryption key DKID′,t, using some item related to
θ∗. If ID′ ∈ RLID,t, we have P ∩ K = ∅, from which ID′ can never obtain DKID′,t. This is the
general way to achieve the revocation mechanism from the CS method.

3 RHIBE Scheme in the Standard Model

In this section, we describe our first RHIBE scheme Π1 in Section 3.1, and then present its
selective-identity security in Section 3.2. As a preparation, we need to explain our treatment
of some spaces such as T , ID, IDH = (ID)6L, and introduce an encoding with full-rank
differences used in the scheme Π1.

Treatment of Spaces. The element identity space ID is treated as a subset of Znq \ {0n},
namely, ID ⊂ Znq \{0n}. We need to define a function f : ID → ĨD such that f(id1) 6= f(id2)

for id1 6= id2. Here ĨD is a new space satisfying ĨD ⊂ Znq \ {0n} and ID ∩ ĨD = ∅. For
simplicity, we just define

ID := {1} × Zn−1q , ĨD := {2} × Zn−1q and f(1‖v) := 2‖v for v ∈ Zn−1q .

The time period space T = {1, 2, · · · , tmax} is encoded into the set Zn−1q . Here we note that

one can also choose disjoint ID, ĨD ⊂ Znq \{0n} such that |ID| = |ĨD| = 1
2 (qn−1), and set

T as a subset of Znq \ {0n} with |T | = b 1L (qn− 1)c. Besides, let us deal with the hierarchical

identity space IDH = (ID)6L =
⋃
i∈[L](ID)i. Define F : (ID)6L →

⋃
i∈[0,L−1](ID)i × ĨD

as F(ID) := (id1, · · · , id`−1, f(id`)) for ID = (id1, · · · , id`−1, id`). Thus for |ID| = ` > 2, we

have ID 6= F(ID), ID[`−1] = [F(ID)][`−1]. For simplicity, let us set ĩd := f(id), ĨD := F(ID),

and use ĨD[i] to denote F(ID[i]).
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Encoding with Full-Rank Differences. We use the standard map H defined in [1] to
encode vectors as matrices. The function H : Znq → Zn×nq is actually an encoding with
full-rank differences for a prime q. Namely, the matrix H(ch1)−H(ch2) is full rank for any
two distinct ch1, ch2 ∈ Znq , and H is computable in polynomial time in n log q. One can refer
to [1] for the explicit construction of the map H. Finally, for CH = (ch1, ch2, · · · , ch`) ∈(
Znq \ {0n}

)6L
and i ∈ [L], t ∈ Zn−1q , we define the following functions:

- E(CH) := [C1 +H(ch1)G | C2 +H(ch2)G | · · · | C` +H(ch`)G] ∈ Zn×`mq ,
- F(i, t) := CL+1 +H(i‖t)G ∈ Zn×mq .

Here (Ci)i∈[L+1] are uniformly random matrices in Zn×mq chosen in the setup algorithm of
the scheme Π1 and G is the gadget matrix [15]. In addition, we can treat i‖t as a vector in
Znq , since L < q obviously holds due to the parameters selection given later.

3.1 Construction

Due to our new treatment of the identity spaces and the time period space, we can obtain
a much simple RHIBE scheme Π1 in the standard model, which is described as follows.
Here we let α, α′, (σ`)`∈[0,L] be positive reals denoting Gaussian parameters, and set N as
the maximum number of children each parent manages. These parameters, together with
positive integers n,m and a prime q, are all implicitly determined by the security parameter
λ, and in particular we set n(λ) := λ.

Setup(1n, 1L)→ (PP,SKKGC):

Taking the security parameter n and the maximum depth of the hierarchy L as input,
it performs the following steps.

1. Run (A,TA)← TrapGen(1n, 1m, q).

2. Select Ci
$← Zn×mq for i ∈ [L+ 1], and u

$← Znq .
3. Create a binary tree BTKGC with N leaf nodes, which denote N children users.

4. Output PP :=
(
A, (Ci)i∈[L+1], u

)
, SKKGC :=

(
BTKGC, TA

)
.

Here recall that (Ci)i∈[L+1] define the functions E(·) and F(·) introduced before.

Encrypt(PP, ID, t,M)→ CT:

For M ∈ {0, 1}, |ID| = ` ∈ [L], it performs the following steps.

1. Select si
$← Znq for i ∈ [`] ∪ {L+ 1}. Then sample x←↩ DZ,αq, xi ←↩ DZ(i+2)m,α′q for

i ∈ [`], and xL+1 ←↩ DZ(`+2)m,α′q.
2. Set

c0 := u>(s1 + s2 + · · ·+ s`) + u>sL+1 + x+ Mb q2c,
ci := [A | E(ĨD[i]) | F(i, t)]>si + xi for i ∈ [`],

cL+1 := [A | E(ID) | F(`, t)]>sL+1 + xL+1.

3. Output CT :=
(
c0, (ci)i∈[`], cL+1

)
∈ Zq × (Z3m

q × Z4m
q × · · · × Z(`+2)m

q )× Z(`+2)m
q .

GenSK(PP,SKpa(ID), ID)→ (SKID,SK′pa(ID)):

For |ID| = ` ∈ [L], it performs the following steps.

1. Randomly pick an unassigned leaf node ηID from BTpa(ID) and store ID in node ηID.

Then select upa(ID),θ
$← Znq for node θ ∈ Path(BTpa(ID), ηID), if upa(ID),θ is undefined.

Here pa(ID) updates SKpa(ID) to SK′pa(ID) by storing new defined upa(ID),θ in θ ∈
BTpa(ID).

2. Run eID,θ ← SampleLeft([A | E(pa(ID))],C` +H(ĩd`)G,T[A|E(pa(ID))],upa(ID),θ, σ`−1)

for θ ∈ Path(BTpa(ID), ηID). Here eID,θ ∈ Z(`+1)m satisfies [A | E(ĨD)]eID,θ = upa(ID),θ.
3. Run T[A|E(ID)] ← SampleBasisLeft([A | E(pa(ID))],C`+H(id`)G,T[A|E(pa(ID))], σ`−1).
4. Create a new binary tree BTID with N leaf nodes.
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5. Output SKID :=
(

BTID, (θ, eID,θ)θ∈Path(BTpa(ID),ηID), T[A|E(ID)]

)
, SK′pa(ID).

KeyUp(PP, t,SKID,RLID,t,KUpa(ID),t)→ (KUID,t,SK′ID):

For |ID| = ` ∈ [0, L− 1], it performs the following steps.

1. Select uID,θ
$← Znq for node θ ∈ KUNode(BTID,RLID,t), if uID,θ is undefined. Here ID

may update SKID to SK′ID by storing new defined uID,θ in θ ∈ BTID.
2. Run eID,t,θ ← SampleLeft([A | E(ID)], F(`+ 1, t), T[A|E(ID)], u− uID,θ, σ`) for θ ∈

KUNode(BTID,RLID,t). Here eID,t,θ ∈ Z(`+2)m satisfies [A | E(ID) | F(`+1, t)]eID,t,θ =
u− uID,θ.

3. If ` > 1, run DKID,t ← GenDK(PP,SKID,KUpa(ID),t), where GenDK(·) is defined
below. Then extract (dID[i],t)i∈[`] from DKID,t.

4. Output KUID,t :=
(

(θ, eID,t,θ)θ∈KUNode(BTID,RLID,t), (dID[i],t)i∈[`]

)
, SK′ID.

GenDK(PP,SKID,KUpa(ID),t)→ DKID,t or ⊥:

For |ID| = ` ∈ [L], it performs the following steps.

1. Extract P := Path(BTpa(ID), ηID) in SKID, and K := KUNode(BTpa(ID),RLpa(ID),t) in
KUpa(ID),t. If P∩K = ∅, output ⊥. Otherwise, for the unique node θ∗ ∈ P∩K, extract

eID,θ∗ , epa(ID),t,θ∗ ∈ Z(`+1)m in SKID,KUpa(ID),t, respectively. Parse them as eID,θ∗ =

[eL
ID,θ∗‖eR

ID,θ∗ ], epa(ID),t,θ∗ = [eL
pa(ID),t,θ∗‖e

R
pa(ID),t,θ∗ ], where eL

ID,θ∗ , e
L
pa(ID),t,θ∗ ∈ Z`m

and eR
ID,θ∗ , e

R
pa(ID),t,θ∗ ∈ Zm. Then set dID,t := [eL

ID,θ∗+eL
pa(ID),t,θ∗‖e

R
ID,θ∗‖eR

pa(ID),t,θ∗ ] ∈
Z(`+2)m.

2. If ` > 2, extract (dID[i],t)i∈[`−1] from KUpa(ID),t.

3. Run gID,t ← SampleLeft([A | E(ID)], F(`, t), T[A|E(ID)], u, σ`). Here gID,t ∈ Z(`+2)m

satisfies [A | E(ID) | F(`, t)]gID,t = u.

4. Output DKID,t :=
(

(dID[i],t)i∈[`], gID,t

)
.

Decrypt(PP,DKID,t,CT)→ M:

For |ID| = ` ∈ [L], it performs the following steps.

1. Compute c′ := c0−
∑`
i=1 d>ID[i],t

ci−g>ID,tcL+1 ∈ Zq. Treat c′ as an integer in [q] ⊂ Z.

2. Output M := 1 if |c′ − b q2c| < b
q
4c, and output M := 0 otherwise.

Correctness. Assume that ID has the depth |ID| = ` ∈ [L]. If ID /∈ RLt, then one can obtain

DKID,t =
(

(dID[i],t)i∈[`], gID,t

)
. Recall that dID,t = [eL

ID,θ∗ + eL
pa(ID),t,θ∗‖e

R
ID,θ∗‖eR

pa(ID),t,θ∗ ] ∈
Z(`+2)m, where θ∗ ∈ Path(BTpa(ID), ηID) ∩ KUNode(BTpa(ID),RLpa(ID),t). According to

[A | E(ĨD)]eID,θ∗ = upa(ID),θ∗ , [A | E(pa(ID)) | F(`, t)]epa(ID),t,θ∗ = u− upa(ID),θ∗ ,
eID,θ∗ = [eL

ID,θ∗‖eR
ID,θ∗ ], epa(ID),t,θ∗ = [eL

pa(ID),t,θ∗‖e
R
pa(ID),t,θ∗ ],

one can obtain [A | E(ĨD) | F(`, t)]dID,t = u, d>ID,tc` = u>s`+d>ID,tx`. Similarly, for i ∈ [`−1]

we also have [A | E(ĨD[i]) | F(i, t)]dID[i],t = u, d>ID[i],t
ci = u>si+d>ID[i],t

xi. Besides, the vector

gID,t ∈ Z(`+2)m satisfies [A | E(ID) | F(`, t)]gID,t = u, g>ID,tcL+1 = u>sL+1+g>ID,txL+1. From
the above, we can compute

c′ = u>(
∑`
i=1 si) + u>sL+1 + x+ Mb q2c −

∑`
i=1 d>ID[i],t

ci − g>ID,tcL+1

= Mb q2c+ (x−
∑`
i=1 d>ID[i],t

xi − g>ID,txL+1).

Set z := x−
∑`
i=1 d>ID[i],t

xi−g>ID,txL+1 as the noise. Then according to the triangle inequality,

the Cauchy-Schwarz inequality, and Lemma 1, the noise z can be bounded as follows with
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overwhelming probability:∣∣z∣∣ 6 ∣∣x∣∣+
∑`
i=1

∥∥dID[i],t

∥∥ · ∥∥xi∥∥+
∥∥gID,t

∥∥ · ∥∥xL+1

∥∥
6 αq +

∑`
i=1 2 · σi−1

√
(i+ 2)m · α′q

√
(i+ 2)m+ σ`

√
(`+ 2)m · α′q

√
(`+ 2)m

= αq + [
∑`
i=1 2(i+ 2)σi−1 + (`+ 2)σ`]mα

′q
6 αq + [2L(L+ 2) + (L+ 2)]σLmα

′q
= O(αq + L2σLmα

′q).

As a conclusion, if O(αq+L2σLmα
′q) < q/5, we know that

∣∣z∣∣ is upper bounded by q/5 with
overwhelming probability, and thus our RHIBE scheme Π1 only has negligible decryption
error.

Parameters. The analysis for parameters selection is similar to that in [11]. We must
consider the condition O(αq + L2σLmα

′q) < q/5 for the correctness requirement, and the
condition q > 2

√
n/α for the hardness assumption of LWEn,m+1,q,DZm+1,αq

. Besides, we
also need to make sure that algorithms such as SampleBasisLeft et al. can operate in the
construction, and algorithms such as SampleBasisRight et al. can work in the security proof.
Finally, we set the parameters used for our RHIBE scheme Π1 as follows:

m = 6n1+δ = O(Ln log n), α = [L
5
2m

1
2L+2ω(log

1
2L+

1
2 n)]−1, α′ = O((Lm)

1
2 )α,

q = L
5
2m

1
2L+

5
2ω(log

1
2L+

1
2 n), σ` = m

1
2 `+

1
2ω(log

1
2 `+

1
2 n) for ` ∈ [0, L],

and round up m to the nearest larger integer, and q to the nearest larger prime. Here we
choose δ such that nδ > dlog qe = O(L log n).

3.2 Security

Theorem 1. The RHIBE scheme Π1 satisfies the selective-identity security, assuming the
hardness of the problem LWEn,m+1,q,χ where χ = DZm+1,αq.

Let ID∗ = (id∗1, · · · , id
∗
`∗), t∗ be the challenge identity and time period with `∗ := |ID∗|.

Then the attack strategies taken by A can be divided into the following two types, which
consist of `∗ + 1 strategies in total.

– Type-I: A issues secret key reveal queries on at least one ID ∈ prefix(ID∗).

- Further divided into Type-I-i∗ (i∗ ∈ [`∗]):
A issues a secret key reveal query on ID∗[i∗] but not on any ID ∈ prefix(ID∗[i∗−1]).

– Type-II: A does not issue secret key reveal queries on any ID ∈ prefix(ID∗).

We follow the framework in [12] (the full version of [11]) to show the security proof.
According to the “strategy-dividing lemma” introduced in [11,12], the following Lemma 3
and Lemma 4 are sufficient for the proof of Theorem 1. Thus it remains to prove these two
lemmas. Since they are similar to the proof in [12], the proofs of Lemma 3 and Lemma 4
are presented in Appendix A and Appendix B, respectively.

Lemma 3. Suppose that a PPT adversary A follows the Type-I-i∗ strategy for some i∗ ∈
[`∗]. Then its advantage is negligible, assuming the hardness of the problem LWEn,m+1,q,χ

where χ = DZm+1,αq.

Lemma 4. Suppose that a PPT adversary A follows the Type-II strategy. Then its advan-
tage is negligible, assuming the hardness of the problem LWEn,m+1,q,χ where χ = DZm+1,αq.
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4 RHIBE Scheme in the Random Oracle Model

In this section, we describe our second RHIBE scheme Π2 in Section 4.1, and then provide
the proof of its adaptive-identity security in Section 4.2. As a preparation, we need to explain
our treatment of some spaces such as T , ID, IDH = (ID)6L, and introduce two random
oracles used in the scheme Π2.

Treatment of Spaces. The time period space T , the element identity space ID, and the
space ĨD are all treated as subsets of {0, 1, 2}ω, such that T ∩ID = T ∩ĨD = ID∩ĨD = ∅.
Here ω is an integer determined by the security parameter. Similarly, we also need to define
a function f : ID → ĨD satisfying f(id1) 6= f(id2) for id1 6= id2. For simplicity, we just
define

T := {0} × {0, 1, 2}ω−1, ID := {1} × {0, 1, 2}ω−1, ĨD := {2} × {0, 1, 2}ω−1,
and f(1‖ch) := 2‖ch for ch ∈ {0, 1, 2}ω−1.

Note that here one can also choose T , ID, ĨD as pairwise disjoint subsets of {0, 1}∗. Next,
let us deal with the hierarchical identity space IDH = (ID)6L =

⋃
i∈[L](ID)i. We still

define F : (ID)6L →
⋃
i∈[0,L−1](ID)i × ĨD as F(ID) := (id1, · · · , id`−1, f(id`)) for ID =

(id1, · · · , id`−1, id`). Similarly, for |ID| = ` > 2, we have ID 6= F(ID), ID[`−1] = [F(ID)][`−1].

For simplicity, we still set ĩd := f(id), ĨD := F(ID), and use ĨD[i] to denote F(ID[i]). In

addition, for KGC and ID = (id1, · · · , id`) ∈ ({0, 1, 2}ω)`, we define the notations KGC‖t := t
and ID‖t := (id1, · · · , id`, t) ∈ ({0, 1, 2}ω)`+1, and thus (ID‖t)[`] = ID.

Random Oracles. We define two random oracles H1,H2 as follows:

- H1 : ({0, 1, 2}ω)6L+1 → Zm×mq , CH 7→ H1(CH) ∼ Dm×m,
- H2 : ({0, 1, 2}ω)6L → Zm×mq , CH′ 7→ H2(CH′) ∼ Dm×m.

Here the outputs of H1,H2 are both distributed asDm×m, which is defined below Lemma 2 in
Section 2.1. Furthermore, for CH ∈ ({0, 1, 2}ω)6L+1 with ` = |CH|, and CH′ ∈ ({0, 1, 2}ω)6L

with `′ = |CH′|, we define the following functions:

- P1(CH) := [H1(CH[`])H1(CH[`−1]) · · ·H1(CH[1])]
−1 ∈ Zm×mq ,

- P2(CH′) := [H2(CH′[`′])H2(CH′[`′−1]) · · ·H2(CH′[1])]
−1 ∈ Zm×mq .

Therefore, after setting P1(CH[0]),P2(CH′[0]) as the identity matrix Im×m, we have P1(CH[j])

= P1(CH[j−1]) · [H1(CH[j])]
−1 for j ∈ [`], and P2(CH′[j′]) = P2(CH′[j′−1]) · [H2(CH′[j′])]

−1 for
j′ ∈ [`′].

4.1 Construction

In the following, we describe the construction of our RHIBE scheme Π2 in the random
oracle model. Note that in this scheme the KGC’s secret key SKKGC contains two trapdoor
bases. Similar to Section 3.1, here we let α, (σ`)`∈[0,L] be positive reals denoting Gaussian
parameters, and set N as the maximum number of children each parent manages. These
parameters, together with positive integers n,m and a prime q, are all implicitly determined
by the security parameter λ, and in particular we set n(λ) := λ. Besides, in the scheme Π2

we set τ` := σ`
√
m · ω(

√
logm) for ` ∈ [0, L] to make the algorithm SamplePre work.

Setup(1n, 1L)→ (PP,SKKGC):

Taking the security parameter n and the maximum depth of the hierarchy L as input,
it performs the following steps.

1. Run (A,TA)← TrapGen(1n, 1m, q), and (B,TB)← TrapGen(1n, 1m, q).

2. Select u
$← Znq .
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3. Create a binary tree BTKGC with N leaf nodes, which denote N children users.

4. Output PP :=
(
A, B, u

)
, SKKGC :=

(
BTKGC, TA, TB

)
.

Encrypt(PP, ID, t,M)→ CT:

For M ∈ {0, 1}, |ID| = ` ∈ [L], it performs the following steps.

1. Select si
$← Znq for i ∈ [`] ∪ {L + 1}. Then sample x ←↩ DZ,αq, xi,j ←↩ DZm,αq for

(i, j) ∈ [`]× [2], and xL+1 ←↩ DZm,αq.
2. Define ID[0]‖t := t, and then set

c0 := u>(s1 + s2 + · · ·+ s`) + u>sL+1 + x+ Mb q2c,
ci,1 := [A ·P1(ĨD[i])]

>si + xi,1 for i ∈ [`],
ci,2 := [B ·P2(ID[i−1]‖t)]>si + xi,2 for i ∈ [`],

cL+1 := [A ·P1(ID‖t)]>sL+1 + xL+1.

3. Output CT :=
(
c0, (ci,1, ci,2)i∈[`], cL+1

)
∈ Zq × (Zmq × Zmq )` × Zmq .

GenSK(PP,SKpa(ID), ID)→ (SKID,SK′pa(ID)):

For |ID| = ` ∈ [L], it performs the following steps.

1. Randomly pick an unassigned leaf node ηID from BTpa(ID) and store ID in node ηID.

Then select upa(ID),θ
$← Znq for node θ ∈ Path(BTpa(ID), ηID), if upa(ID),θ is undefined.

Here pa(ID) updates SKpa(ID) to SK′pa(ID) by storing new defined upa(ID),θ in θ ∈
BTpa(ID).

2. Define P1(KGC),P2(KGC) as the identity matrix Im×m, and then runTA·P1(ĨD) ← BasisDel(A ·P1(pa(ID)), H1(ĨD), TA·P1(pa(ID)), σ`−1),

TA·P1(ID) ← BasisDel(A ·P1(pa(ID)), H1(ID), TA·P1(pa(ID)), σ`−1),
TB·P2(ID) ← BasisDel(B ·P2(pa(ID)), H2(ID), TB·P2(pa(ID)), σ`−1).

3. Run eID,θ ← SamplePre(A·P1(ĨD),TA·P1(ĨD),upa(ID),θ, τ`−1) for θ ∈ Path(BTpa(ID), ηID).

4. Create a new binary tree BTID with N leaf nodes.

5. Output SKID :=
(

BTID, (θ, eID,θ)θ∈Path(BTpa(ID),ηID), TA·P1(ID), TB·P2(ID)

)
, SK′pa(ID).

KeyUp(PP, t,SKID,RLID,t,KUpa(ID),t)→ (KUID,t,SK′ID):

For |ID| = ` ∈ [0, L− 1], it performs the following steps.

1. Select uID,θ
$← Znq for node θ ∈ KUNode(BTID,RLID,t), if uID,θ is undefined. Here ID

may update SKID to SK′ID by storing new defined uID,θ in θ ∈ BTID.
2. Run TB·P2(ID‖t) ← BasisDel(B ·P2(ID),H2(ID‖t),TB·P2(ID), σ`), and then run eID,t,θ

← SamplePre(B ·P2(ID‖t),TB·P2(ID‖t),u− uID,θ, τ`) for θ ∈ KUNode(BTID,RLID,t).
3. If ` > 1, run DKID,t ← GenDK(PP,SKID,KUpa(ID),t), where GenDK(·) is defined

below. Then extract (dID[i],t)i∈[`] from DKID,t.

4. Output KUID,t :=
(

(θ, eID,t,θ)θ∈KUNode(BTID,RLID,t), (dID[i],t)i∈[`]

)
, SK′ID.

GenDK(PP,SKID,KUpa(ID),t)→ DKID,t or ⊥:

For |ID| = ` ∈ [L], it performs the following steps.

1. Extract P := Path(BTpa(ID), ηID) in SKID, and K := KUNode(BTpa(ID),RLpa(ID),t) in
KUpa(ID),t. If P ∩ K = ∅, output ⊥. Otherwise, for the unique node θ∗ ∈ P ∩ K,
extract eID,θ∗ , epa(ID),t,θ∗ ∈ Zm in SKID,KUpa(ID),t, respectively. Then set dID,t :=
[eID,θ∗‖epa(ID),t,θ∗ ] ∈ Z2m.

2. If ` > 2, extract (dID[i],t)i∈[`−1] from KUpa(ID),t.
3. Run TA·P1(ID‖t) ← BasisDel(A · P1(ID), H1(ID‖t), TA·P1(ID), σ`), and then run

gID,t ← SamplePre(A ·P1(ID‖t), TA·P1(ID‖t), u, τ`).

4. Output DKID,t :=
(

(dID[i],t)i∈[`], gID,t

)
.

Decrypt(PP,DKID,t,CT)→ M:

For |ID| = ` ∈ [L], it performs the following steps.
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1. Compute c′ := c0 −
∑`
i=1 d>ID[i],t

[ci,1‖ci,2] − g>ID,tcL+1 ∈ Zq. Treat c′ as an integer

in [q] ⊂ Z.

2. Output M := 1 if |c′ − b q2c| < b
q
4c, and output M := 0 otherwise.

Correctness. Assume that ID has the depth |ID| = ` ∈ [L]. If ID /∈ RLt, then one can

obtain DKID,t =
(

(dID[i],t)i∈[`], gID,t

)
. Recall that dID,t = [eID,θ∗‖epa(ID),t,θ∗ ] ∈ Z2m, where

θ∗ ∈ Path(BTpa(ID), ηID) ∩ KUNode(BTpa(ID),RLpa(ID),t). According to

[A ·P1(ĨD)]eID,θ∗ = upa(ID),θ∗ , [B ·P2(pa(ID)‖t)]epa(ID),t,θ∗ = u− upa(ID),θ∗ ,

one can obtain d>ID,t[c`,1‖c`,2] = u>s` + d>ID,t[x`,1‖x`,2]. Similarly, for i ∈ [` − 1] we also

have d>ID[i],t
[ci,1‖ci,2] = u>si + d>ID[i],t

[xi,1‖xi,2]. Besides, the vector gID,t ∈ Zm satisfies

[A ·P1(ID‖t)]gID,t = u, g>ID,tcL+1 = u>sL+1 + g>ID,txL+1. From the above, we can compute

c′ = u>(
∑`
i=1 si) + u>sL+1 + x+ Mb q2c −

∑`
i=1 d>ID[i],t

[ci,1‖ci,2]− g>ID,tcL+1

= Mb q2c+ (x−
∑`
i=1 d>ID[i],t

[xi,1‖xi,2]− g>ID,txL+1).

Set z := x−
∑`
i=1 d>ID[i],t

[xi,1‖xi,2]− g>ID,txL+1 as the noise. Then according to the triangle

inequality, the Cauchy-Schwarz inequality, and Lemma 1, the noise z can be bounded as
follows with overwhelming probability:∣∣z∣∣ =

∣∣x−∑`
i=1(e>ID[i],θ∗

xi,1 + e>pa(ID[i]),t,θ∗
xi,2)− g>ID,txL+1

∣∣
6
∣∣x∣∣+

∑`
i=1(

∥∥eID[i],θ∗
∥∥ · ∥∥xi,1∥∥+

∥∥epa(ID[i]),t,θ∗
∥∥ · ∥∥xi,2∥∥) +

∥∥gID,t

∥∥ · ∥∥xL+1

∥∥
6 αq +

∑`
i=1(τi−1

√
m · αq

√
m+ τi−1

√
m · αq

√
m) + τ`

√
m · αq

√
m

= [1 + (
∑`
i=1 2σi−1 + σ`)m

3
2ω(
√

logm)]αq

6 [1 + (2L+ 1)σLm
3
2ω(
√

logm)]αq

= O(LσLm
3
2ω(
√

logm)αq).

Note that in the above eID[i],θ∗ , epa(ID[i]),t,θ∗ , the node θ∗ is determined by ID[i], t as shown in

the decryption key generation algorithm. As a conclusion, if O(LσLm
3
2ω(
√

logm)αq) < q/5,
we know that

∣∣z∣∣ is upper bounded by q/5 with overwhelming probability, and thus our
RHIBE scheme Π2 only has negligible decryption error.

Parameters. The analysis for parameters selection is similar to that in Section 3.1. We must
consider the condition O(LσLm

3
2ω(
√

logm)αq) < q/5 for the correctness requirement, and
the condition q > 2

√
n/α for the hardness assumption of LWEn,2m+1,q,DZ2m+1,αq

. Besides, we
also need to make sure that algorithms such as BasisDel et al. can operate in the construction,
and algorithms such as SampleRwithBasis et al. can work in the security proof. Finally, we
set the parameters used for our RHIBE scheme Π2 as follows:

m = 6n1+δ = O(Ln log n), α = [Lm
3
2L+3ω(log2L+ 5

2 n)]−1,

q = Lm
3
2L+3n

1
2ω(log2L+ 5

2 n), σ` = m
3
2 `+

3
2ω(log2`+2 n) for ` ∈ [0, L],

and round up m to the nearest larger integer, and q to the nearest larger prime. Here we
choose δ such that nδ > dlog qe = O(L log n).

4.2 Security

Theorem 2. The RHIBE scheme Π2 satisfies the adaptive-identity security, assuming the
hardness of the problem LWEn,2m+1,q,χ where χ = DZ2m+1,αq.
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It is shown in Section 3.2 that the attack strategies taken by A can be divided into
the Type-I strategy (further divided into Type-I-i∗) and the Type-II strategy. In the
security game, we separately describe the progress for these two types of attack strategies.
Then according to the “strategy-dividing lemma” introduced in [11,12], we can complete the
proof of Theorem 2. First of all, for an adversary A that uses the Type-I strategy (instead
of the Type-I-i∗ strategy in Lemma 3), we have the following result.

Lemma 5. Suppose that a PPT adversary A follows the Type-I strategy, and its adaptive-
identity security advantage is denoted by AdvType-I

Π2,L,A(n). Besides, let QH1
, QH2

denote the
maximum numbers of queries made by A to the random oracles H1,H2, respectively. Then
there exits a PPT algorithm C, whose advantage for the LWEn,2m+1,q,χ (χ = DZ2m+1,αq)

problem is denoted by AdvLWE
C (n), such that

AdvType-I
Π2,L,A(n) 6 (2L ·QLH1

·QH2
) · AdvLWE

C (n) + negl(n).

Proof. The algorithm C, which we are going to construct, simulates an attack environment
for the adversary A that uses the Type-I strategy as follows.

Instance. C is given the problem instance of LWEn,2m+1,q,χ as (Â, v̂) ∈ Zn×(2m+1)
q ×Z2m+1

q

for Â
$← Zn×(2m+1)

q . The task of C is to distinguish whether (1) v̂ = Â>ŝ + x̂ for some

ŝ
$← Znq and some x̂ ←↩ χ, or (2) v̂

$← Z2m+1
q . Here we assume that Â = [ a0 | a1 | · · · |

a2m ] ∈ Zn×(2m+1)
q and v̂ = (v0, v1, · · · , v2m) ∈ Z2m+1

q .

Setup. Firstly, C directly selects i∗
$← [L]. Namely, C guesses that the strategy taken by the

adversary A is Type-I-i∗. Then C chooses Q∗2
$← [QH2

], and selects Q∗1,j
$← [QH1

], R∗1,j ←↩
Dm×m, R∗2,j ←↩ Dm×m for j ∈ [i∗]. Besides, C sets u := a0 ∈ Znq , A0 := [ a1 | · · · |
am ] ∈ Zn×mq , B0 := [ am+1 | · · · | a2m ] ∈ Zn×mq . Namely, we have Â = [ u | A0 | B0 ].
Next, C sets A := A0(R∗1,i∗ · · ·R∗1,2R∗1,1), B := B0(R∗2,i∗ · · ·R∗2,2R∗2,1). One can check that
A,B are both uniform in Zn×mq , and u is uniform in Znq . Finally, C publishes the public
parameters PP := (A,B,u). (Note that here C must also give the key update KUKGC,1

to A. For convenience, the construction of KUKGC,1 will be given later, together with the
construction of other key updates.)

Random Oracle Query. For each random oracle, we assume that the queries are u-
nique, otherwise C simply returns the same output on the same input without increment-
ing the query counter. Besides, without loss of generality, we can assume that for any
CH ∈ ({0, 1, 2}ω)6L, the H2 query on CH is preceded by the H1 query on CH. Then C
answers A’s queries as follows.

Query H1 on CH ∈ ({0, 1, 2}ω)6L+1: Suppose that it is the Q1-th query. (1) If Q1 =
Q∗1,j for some j ∈ [i∗], define H1(CH) := R∗1,j . (2) Otherwise, let ` := |CH| be the

depth of CH. If ` 6 i∗ + 1, compute F1,` := A · (R∗1,`−1 · · ·R∗1,2R∗1,1)−1, run (R,TF) ←
SampleRwithBasis(F1,`, σ`−1) for F := F1,`R

−1, and define H1(CH) := R. Besides, C saves
the tuple (`,CH,R,F,TF) for future use. (3) If ` > i∗+ 1, just select R←↩ Dm×m and then
set H1(CH) := R. (4) Finally, C returns H1(CH) to A.

Query H2 on CH ∈ ({0, 1, 2}ω)6L: Suppose that it is the Q2-th query. (1) Let C check the
value of H1(CH). If H1(CH) = R∗1,j holds for some j ∈ [i∗− 1], then define H2(CH) := R∗2,j .
(2) Otherwise, C checks whether Q2 = Q∗2 holds. In case Q2 = Q∗2, define H2(CH) := R∗2,i∗ .
(3) In case Q2 6= Q∗2, let ` := |CH| be the depth of CH. If ` 6 i∗ + 1, compute F2,` :=
B · (R∗2,`−1 · · ·R∗2,2R∗2,1)−1, run (R,TF)← SampleRwithBasis(F2,`, σ`−1) for F := F2,`R

−1,
and define H2(CH) := R. Besides, C saves the tuple (`,CH,R,F,TF) for future use. (4) If
` > i∗+1, just select R←↩ Dm×m and then set H2(CH) := R. (5) Finally, C returns H2(CH)
to A.

According to the above setup algorithm, C does not own the trapdoors TA,TB. However,
due to the above random oracle query, we still have the following result, where the sets
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CH1, CH2 are defined as

CH1 :=
{

CH ∈ ({0, 1, 2}ω)6L+1 | |CH| 6 i∗, and H1(CH[j]) = R∗1,j for j = 1, 2, · · · , |CH|
}
,

CH2 :=
{

CH ∈ ({0, 1, 2}ω)6L | |CH| 6 i∗, and H2(CH[j]) = R∗2,j for j = 1, 2, · · · , |CH|
}
.

Lemma 6. The setup algorithm and the random oracle query are shown as above.
(1) Suppose that for some CH ∈ ({0, 1, 2}ω)6L+1 with |CH| = `, the adversary A has

queried H1 on all CH′ ∈ prefix(CH). Then if CH /∈ CH1, the algorithm C is able to construct
a short basis TA·P1(CH) distributed statistically close to DBasis(Λ⊥q (A ·P1(CH)), σ`−1).

(2) Suppose that for some CH ∈ ({0, 1, 2}ω)6L with |CH| = `, the adversary A has queried
H2 on all CH′ ∈ prefix(CH). Then if CH /∈ CH2, the algorithm C is able to construct a short
basis TB·P2(CH) distributed statistically close to DBasis(Λ⊥q (B ·P2(CH)), σ`−1).

Proof. (1) Let us define the integer k at first. If H1(CH[j]) = R∗1,j for all j ∈ [min{i∗, |CH|}],
then |CH| > i∗ + 1 must hold since CH /∈ CH1, and we define k = i∗ + 1 for this case.
Otherwise, we define k ∈ [min{i∗, |CH|}] as the smallest index such that H1(CH[k]) 6= R∗1,k.
Note that k 6 i∗+ 1, and H1(CH[j]) = R∗1,j for all j ∈ [k− 1]. From the H1 query history, C
retrieves the saved tuple (k,CH[k],R,F,TF), which is created when the adversary A queries
H1 on CH[k]. By construction, we know F = A · (R∗1,1)−1(R∗1,2)−1 · · · (R∗1,k−1)−1R−1 = A ·
(H1(CH[1]))

−1(H1(CH[2]))
−1 · · · (H1(CH[k−1]))

−1(H1(CH[k]))
−1 = A ·P1(CH[k]), and TF =

TA·P1(CH[k]) is distributed statistically close to DBasis(Λ⊥q (A · P1(CH[k])), σk−1). If k = `,
the basis TF is already the desired TA·P1(CH). If k < `, C runs TA·P1(CH[j]) ← BasisDel(A ·
P1(CH[j−1]),H1(CH[j]),TA·P1(CH[j−1]), σj−1) for j = k+1, k+2, · · · , `, and finally the desired
TA·P1(CH) is also obtained.

(2) The proof of this part is the same as that of (1). �

Assume that ID∗, t∗ are the challenge identity and time period, which A sends to C
in the challenge query. Then we let Success be the event that the adversary A follows the

Type-I-i∗ strategy (which implicitly implies |ID∗| > i∗), and ĨD∗[i∗] ∈ CH1, ID∗[i∗−1]‖t∗ ∈
CH2 holds, and C does not fail due to collisions on H1 or H2 found by A. According to

pa(ĨD∗[i∗]) = pa(ID∗[i∗−1]‖t∗) = ID∗[i∗−1] and the above H2 random oracle query, we have

ĨD∗[i∗] ∈ CH1, ID∗[i∗−1]‖t∗ ∈ CH2 ⇔ ĨD∗[i∗] ∈ CH1, H2(ID∗[i∗−1]‖t∗) = R∗2,i∗ . Therefore, we

obtain Pr[Success] = 1/L · 1/Qi∗H1
· 1/QH2

· (1− negl(n)).
In the following, we show that if Success happens, the algorithm C will successfully

simulate the attack environment for A. Otherwise, C will fail and abort at some point.
Suppose that the event Success happens. In order to respond to the secret key generation

query, the secret key reveal query, the revoke & key update query, and the decryption key
reveal query, which are made by A using the Type-I-i∗ strategy, C must construct the
following items:

– (a) SKID =
(

BTID, (θ, eID,θ)θ∈Path(BTpa(ID),ηID), TA·P1(ID), TB·P2(ID)

)
for ID ∈ (ID)6L \

prefix(ID∗[i∗−1]);

– (b) KUID,t =
(

(θ, eID,t,θ)θ∈KUNode(BTID,RLID,t), (dID[i],t)i∈[`]

)
for ID ∈ {KGC}∪(ID)6L−1, t ∈

T and ID /∈ RLt, where ` = |ID|;
– (c) DKID,t =

(
(dID[i],t)i∈[`], gID,t

)
for (ID,t) ∈ (ID)6L × T \ {(ID∗, t∗)} and ID /∈ RLt,

where ` = |ID|.

C needs to generate any item in (a) in the secret key generation query and return it to the
adversary A in the secret key reveal query. In the revoke & key update query (and in the
secret key generation query, and at the setup), C must return the corresponding items in
(b) to A. Similarly, A is allowed to query any item in (c) as a decryption key reveal query.
Note that these four queries can be made before the challenge query, and in this case C does
not know ID∗, t∗ (the challenge identity and time period). However, if Success happens, we
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can regard CH1 as its subset prefix(ĨD∗[i∗]), and regard CH2 as its subset prefix(ID∗[i∗−1]‖t∗).
We do not need to consider the case that A finds some CH1 ∈ CH1 \ prefix(ĨD∗[i∗]), or some
CH2 ∈ CH2 \ prefix(ID∗[i∗−1]‖t∗), which implies that A finds collisions on H1 or H2. The
failure of C due to this case is directly denied by the definition of the event Success.

As a preparation for the construction of the above (a), (b) and (c), C must deal with BTID

differently for some user ID satisfying ID = KGC (if i∗ = 1), or |ID| = i∗ − 1, ID ∈ CH1 (if
i∗ > 2). Specifically, C must change the way that the vectors (uID,θ)θ∈BTID

stored in nodes of
BTID are generated. Once BTID is created at the setup or in the secret key generation query,
C randomly pick a leaf node η∗ from BTID. In the future, η∗ is only used to store some user

IDR which has ID as its parent and satisfies H1(ĨDR) = R∗1,i∗ . This can be done, since C can

check whether H1(ĨDch) = R∗1,i∗ holds before assigning a leaf node of BTID to ID’s child user
IDch. Note that if the event Success happens, the above ID, IDR will denote pa(ID∗[i∗]), ID

∗
[i∗],

respectively. When uID,θ for some θ ∈ BTID must be defined for C to answer A’s query, C
proceeds as follows. If θ ∈ Path(BTID, η

∗), C first samples e1,θ ←↩ DZm,τi∗−1
, and then sets

uID,θ := A0 · e1,θ. If θ ∈ BTID \ Path(BTID, η
∗), C first samples e2,θ ←↩ DZm,τi∗−1

, and then
sets uID,θ := u−B0 · e2,θ. C keeps the obtained e1,θ or e2,θ secret for future use.

Construction of SKID. Undoubtedly, C is able to construct the item BTID for any ID ∈
(ID)6L. Now let us see the generation of the items TA·P1(ID) and TB·P2(ID). According
to Lemma 6, if ID /∈ CH1, C is able to construct the short basis TA·P1(ID). Similarly, if
ID /∈ CH2, the item TB·P2(ID) can also be obtained. Besides, we let C use the symbol ⊥ to
denote TA·P1(ID) for ID ∈ CH1 and TB·P2(ID) for ID ∈ CH2. The symbol ⊥ denotes that the
corresponding item in SKID cannot be constructed. If there is a symbol ⊥ in SKID created in
the secret key generation query, C fails and aborts only when C must return the same SKID

to A in the secret key reveal query.

As for the item (θ, eID,θ)θ∈Path(BTpa(ID),ηID), C needs to consider ĨD. (1) If ĨD /∈ CH1,
C is able to construct the short basis TA·P1(ĨD) due to Lemma 6. Then C can obtain

(θ, eID,θ)θ∈Path(BTpa(ID),ηID) by running eID,θ ← SamplePre(A·P1(ĨD), TA·P1(ĨD), upa(ID),θ, τ`−1)

for θ ∈ Path(BTpa(ID), ηID). (2) If ĨD ∈ CH1 and |ID| = i∗, we know that pa(ID) = KGC
(if i∗ = 1), or |pa(ID)| = i∗ − 1, pa(ID) ∈ CH1 (if i∗ > 2). Thus C must deal with
BTpa(ID) differently, which is shown as before. According to Lemma 2 and the fact uID,θ =

A0 · e1,θ = A0(R∗1,i∗ · · ·R∗1,2R∗1,1) · (R∗1,i∗ · · ·R∗1,2R∗1,1)−1 · e1,θ = A · P1(ĨD) · e1,θ where
θ ∈ Path(BTID, η

∗), we know that C is able to obtain (θ, eID,θ)θ∈Path(BTpa(ID),ηID) after setting

η∗ := ηID and eID,θ := e1,θ. (3) If ĨD ∈ CH1 and |ID| < i∗, C just uses the symbol ⊥ to denote
(θ, eID,θ)θ∈Path(BTpa(ID),ηID).

The above construction of SKID is made in the secret key generation query. When C
must return SKID to A in the secret key reveal query, C fails and aborts if there is a sym-
bol ⊥ in SKID. However, assuming the occurrence of Success, C will never fail. The event

Success lets anyone regard CH1 as prefix(ĨD∗[i∗]), and CH2 as prefix(ID∗[i∗−1]‖t∗). From the

above (a) we know ID ∈ (ID)6L \ prefix(ID∗[i∗−1]), which implies ID /∈ prefix(ĨD∗[i∗]) and

ID /∈ prefix(ID∗[i∗−1]‖t∗) due to ID ∩ ĨD = ∅ and ID ∩ T = ∅, respectively. Thus we

can regard that ID /∈ CH1 and ID /∈ CH2 always holds. Similarly, due to ĨD ∩ ID = ∅,
we have ĨD /∈ prefix(ĨD∗[i∗]) for |ID| < i∗, and thus ĨD /∈ CH1 always holds for |ID| < i∗.
Note that here the successful construction of (θ, eID,θ)θ∈Path(BTpa(ID),ηID) does not need the

condition ID ∈ (ID)6L \ prefix(ID∗[i∗−1]). Thus if Success happens, we claim that the item

(θ, eID,θ)θ∈Path(BTpa(ID),ηID) in SKID can be constructed by C for any ID ∈ (ID)6L, which will
be important for the construction of (dID[i],t)i∈[`] in KUID,t and DKID,t.

Construction of KUID,t. In order to create the item (θ, eID,t,θ)θ∈KUNode(BTID,RLID,t), C should
consider ID‖t. (1) If ID‖t /∈ CH2, C is able to construct the short basis TB·P2(ID‖t) due to
Lemma 6. Then C can obtain (θ, eID,t,θ)θ∈KUNode(BTID,RLID,t) by running eID,t,θ ← SamplePre(B·
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P2(ID‖t), TB·P2(ID‖t), u − uID,θ, τ`) for θ ∈ KUNode(BTID,RLID,t). (2) If ID‖t ∈ CH2 and
|ID‖t| = i∗, we know that ID = KGC (if i∗ = 1), or |ID| = i∗ − 1, ID ∈ CH2, ID ∈ CH1 (if
i∗ > 2) due to the H2 random oracle query. Thus C must deal with BTID differently, which is
shown as before. Then C checks whether KUNode(BTID,RLID,t) ⊆ BTID\Path(BTID, η

∗) holds.
If not, C uses the symbol ⊥ to denote (θ, eID,t,θ)θ∈KUNode(BTID,RLID,t). Otherwise, according to
Lemma 2 and the fact u−uID,θ = B0 ·e2,θ = B0(R∗2,i∗ · · ·R∗2,2R∗2,1) · (R∗2,i∗ · · ·R∗2,2R∗2,1)−1 ·
e2,θ = B ·P2(ID‖t) · e2,θ where θ ∈ KUNode(BTID,RLID,t). we know that C is able to obtain
(θ, eID,t,θ)θ∈KUNode(BTID,RLID,t) after setting eID,t,θ := e2,θ. (3) If ID‖t ∈ CH2 and |ID‖t| < i∗, C
just uses the symbol ⊥ to denote (θ, eID,t,θ)θ∈KUNode(BTID,RLID,t).

Assuming that (θ, eID,θ)θ∈Path(BTpa(ID),ηID) in SKID and (θ, epa(ID),t,θ)θ∈KUNode(BTpa(ID),RLpa(ID),t)

in KUpa(ID),t are successfully constructed using the above way, C can use these two items to
generate dID,t for ID /∈ RLt, just as the algorithm GenDK does. A symbol ⊥ for either of
these two items, directly implies a symbol ⊥ for dID,t. Furthermore, C uses the symbol ⊥ to
denote (dID[i],t)i∈[`], when there is some dID[i],t denoted by ⊥.

When C must return KUID,t to A, C fails and aborts if there is a symbol ⊥ in KUID,t.
However, if Success happens, in the following we show that C will never fail. First of all, we
can regard the case of ID‖t ∈ CH2, |ID‖t| = i∗ as the case of ID = ID∗[i∗−1], t = t∗. Besides, the
adversary A must issue a secret key reveal query on ID∗[i∗], and thus we have ID∗[i∗] ∈ RLt∗

according to the security definition. When ID∗[i∗−1] ∈ RLt∗ , C does not need to construct
KUID,t for ID = ID∗[i∗−1], t = t∗. When ID∗[i∗−1] /∈ RLt∗ , ID

∗
[i∗] ∈ RLID∗

[i∗−1]
,t∗ , the condition

KUNode(BTID,RLID,t) ⊆ BTID \ Path(BTID, η
∗) must hold for ID = ID∗[i∗−1], t = t∗, η∗ =

ηID∗
[i∗]

. Moreover, due to T ∩ ID = ∅, we have ID‖t /∈ prefix(ID∗[i∗−1]‖t∗) for |ID‖t| < i∗,

and thus ID‖t /∈ CH2 always holds for |ID‖t| < i∗. Finally, when Success happens, the
successful construction of (θ, eID,θ)θ∈Path(BTpa(ID),ηID) and (θ, epa(ID),t,θ)θ∈KUNode(BTpa(ID),RLpa(ID),t)

directly implies the successful construction of dID,t for ID /∈ RLt.

Construction of DKID,t. The generation of (dID[i],t)i∈[`] in DKID,t is similar to that in KUID,t.
As for the item gID,t, if ID‖t /∈ CH1, C is able to construct the short basis TA·P1(ID‖t) due to
Lemma 6. Then C runs gID,t ← SamplePre(A ·P1(ID‖t), TA·P1(ID‖t), u, τ`). If ID‖t ∈ CH1,
C just uses the symbol ⊥ to denote gID,t. Similar to before, when C must return DKID,t to A,
C fails and aborts if there is a symbol ⊥ in DKID,t. Suppose that Success happens. Then we

always have ID‖t /∈ CH1, since ID‖t /∈ prefix(ĨD∗[i∗]) always holds due to T ∩ID = T ∩ĨD = ∅.
Together with the successful construction of (dID[i],t)i∈[`] for ID /∈ RLt, we know that C will
never fail. Here we note that the adversary A can not obtain DKID∗

[i]
,t∗ for any i ∈ [i∗, |ID∗|]

since ID∗[i∗] ∈ RLt∗ .

Challenge Query. Suppose that A makes this query on (ID∗, t∗,M0,M1), which satisfies
the conditions required for the adaptive-identity security game. Then C checks whether

`∗(:= |ID∗|) > i∗, ĨD∗[i∗] ∈ CH1, ID∗[i∗−1]‖t∗ ∈ CH2 holds. If not, C fails and aborts.

Otherwise, C picks the challenge bit b
$← {0, 1}, and runs Encrypt(PP, ID∗, t∗,Mb) →(

c0, (ci,1, ci,2)i∈[`∗], cL+1

)
, where c0, (ci∗,1, ci∗,2) are redefined as follows. Recall that v̂ =

(v0, v1, · · · , v2m) ∈ Z2m+1
q , and we let v1 := (v1, · · · , vm) ∈ Zmq , v2 := (vm+1, · · · , v2m) ∈

Zmq . After that, C sets c0 ← v0 +u>(
∑
i∈[`∗]\{i∗} si) +u>sL+1 + Mbb q2c, ci∗,1 ← v1, ci∗,2 ←

v2, where (si)i∈[`∗]\{i∗} and sL+1 are already selected in the algorithm Encrypt. Then C
returns the challenge ciphertext CT∗ :=

(
c0, (ci,1, ci,2)i∈[`∗], cL+1

)
to A.

Finally, when A outputs b′ ∈ {0, 1} as the guess for b at some point, C checks whether A
has issued a secret key reveal query on ID∗[i∗]. If not, C fails and aborts. Otherwise, C outputs
1 in case b′ = b, and outputs 0 for b′ 6= b.

Suppose that the event Success happens, and then we can analyze the challenge query
as follows. (1) If the LWEn,2m+1,q,χ problem instance (Â, v̂) satisfies v̂ = Â>ŝ + x̂ for

some ŝ
$← Znq and some x̂ ←↩ χ, we parse x̂ as (x0, x1, · · · , x2m) ∈ Z2m+1, and let x1 :=

(x1, · · · , xm) ∈ Zm, x2 := (xm+1, · · · , x2m) ∈ Zm. Then according to v̂ = Â>ŝ + x̂ and
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Â = [ u | A0 | B0 ], we have

c0 = v0 + u>(
∑
i∈[`∗]\{i∗} si) + u>sL+1 + Mbb q2c

= u>(
∑
i∈[`∗]\{i∗} si + ŝ) + u>sL+1 + x0 + Mbb q2c,

ci∗,1 = v1 = A>0 ŝ + x1 = [A · (R∗1,i∗ · · ·R∗1,2R∗1,1)−1]>ŝ + x1

= [A ·P1(ĨD∗[i∗])]
>ŝ + x1,

ci∗,2 = v2 = B>0 ŝ + x2 = [B · (R∗2,i∗ · · ·R∗2,2R∗2,1)−1]>ŝ + x2

= [B ·P2(ID∗[i∗−1]‖t∗)]>ŝ + x2.

Hence the challenge ciphertext CT∗ given to A is a valid encryption of Mb for ID∗ on t∗.

(2) If the LWEn,2m+1,q,χ problem instance (Â, v̂) is just sampled as Â
$← Zn×(2m+1)

q and

v̂
$← Z2m+1

q , then (c0, ci∗,1, ci∗,2) is also uniformly random in Z2m+1
q . Since the distribution

of c0 no longer depends on the value of b, the probability of A guessing whether b = 0 or
b = 1 is exactly 1/2, which implies that Pr[b′ = b] = 1/2.

Note that once C fails and aborts at some point in the above game, C always outputs a
uniformly random bit from {0, 1}. Recall that AdvLWE

C (n) denotes the advantage of C for the

LWEn,2m+1,q,χ problem, and AdvType-I
Π2,L,A(n) denotes the adaptive-identity security advantage

of A that follows the Type-I strategy. Besides, for the case of v̂ = Â>ŝ + x̂, we use

v̂1,Success1 to denote v̂,Success, respectively. Similarly, for the case of v̂
$← Z2m+1

q , we use
v̂2,Success2 to denote v̂,Success, respectively. Then we have

AdvLWE
C (n) =

∣∣∣Pr[C(Â, v̂1) = 1]− Pr[C(Â, v̂2) = 1]
∣∣∣

=
∣∣∣Pr[b′ = b | Success1] · Pr[Success1] + 1

2
Pr[Success1]− 1

2
Pr[Success2]− 1

2
Pr[Success2]

∣∣∣
=
∣∣∣Pr[b′ = b | Success1] · Pr[Success1]− 1

2
Pr[Success1]

∣∣∣
= Pr[Success1] ·

∣∣∣Pr[b′ = b | Success1]− 1
2

∣∣∣
> Pr[Success1] · [ 1

2
AdvType-I

Π2,L,A(n)− negl(n)]

= 1/(2L ·Qi
∗

H1
·QH2) · (1− negl(n)) · [AdvType-I

Π2,L,A(n)− negl(n)]

> 1/(2L ·QLH1
·QH2) · (1− negl(n)) · [AdvType-I

Π2,L,A(n)− negl(n)].

Thus we complete the proof of Lemma 5. �

Similarly, we present the following result against an adversary A that uses the Type-II
strategy. Its proof proceeds analogously to that of Lemma 5, and thus is given in Appendix C.

Lemma 7. Suppose that a PPT adversary A follows the Type-II strategy, and its adaptive-
identity security advantage is denoted by AdvType-II

Π2,L,A (n). Besides, let QH1 denote the max-
imum numbers of queries made by A to the random oracle H1. Then there exits a PPT
algorithm C, whose advantage for the LWEn,2m+1,q,χ (χ = DZ2m+1,αq) problem is denoted by

AdvLWE
C (n), such that

AdvType-II
Π2,L,A (n) 6 (2L ·QL+1

H1
)AdvLWE

C (n) + negl(n).

Actually, the proof of Lemma 7 (in Appendix C) only uses the first m + 1 samples of
the problem instance of LWEn,2m+1,q,χ. Namely, we only need to consider the LWEn,m+1,q,χ′

problem where χ′ = DZm+1,αq. Therefore, the notation AdvLWE
C (n) in Lemma 7 can also be

replaced by AdvLWE′

C (n), which denotes the advantage of C for the LWEn,m+1,q,χ′ problem.
Finally, according to the “strategy-dividing lemma” introduced in [11,12], Lemma 5 and

Lemma 7, we have

AdvRHIBE-ad
Π2,L,A (n) 6 AdvType-I

Π2,L,A(n) + AdvType-II
Π2,L,A (n)

6 (2L ·QLH1
·QH2

)AdvLWE
C (n) + negl(n) + (2L ·QL+1

H1
)AdvLWE

C (n) + negl(n)

6 2L ·QLH1
· (QH2

+QH1
) · AdvLWE

C (n) + negl(n).
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It is obtained that AdvLWE
C (n) = negl(n), assuming the hardness of the problem LWEn,2m+1,q,χ

where χ = DZ2m+1,αq. Since 2L · QLH1
· (QH2 + QH1) is polynomial in n, we know that

AdvRHIBE-adΠ2,L,A (n) 6 negl(n), which completes the proof of Theorem 2.

5 Conclusion

In this paper, we present two new RHIBE schemes with DKER from lattices, and thus
simplify the construction of RHIBE scheme provided by Katsumata et al. [11]. Our first
scheme needs fewer items than that in [11], and the sizes of items are much smaller in our
second scheme. The security of these two new schemes are both based on the hardness of
the LWE problem, and our second scheme also achieves the adaptive-identity security.
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Supplemental Material

Appendix A: Proof of Lemma 3

We provide the proof of Lemma 3 using the following games.

Game 0. This is the real security game between the adversary A and the challenger C.
Game 1. In this game, we change the way that the matrices (Cj)j∈[L+1] in PP are generated

for the setup algorithm. At first, C samples R∗j
$← {−1, 1}m×m for j ∈ [L + 1], and keeps

these matrices as a part of SKKGC. Next, C sets (Cj)j∈[L+1] as follows:

Cj :=


AR∗j −H(id∗j )G for j ∈ [i∗ − 1],

AR∗j −H(ĩd∗j )G for j = i∗,
AR∗j for j ∈ [i∗ + 1, L],
AR∗j −H(i∗‖t∗)G for j = L+ 1.

As the proof in [12] (the full version of [11]) shows, the distribution of PP in Game 1 is
statistically close to that in Game 0,

Game 2. The changes made in this game are the most important part of our security proof.
First of all, we change the way that the matrix A in PP is generated for the setup algorithm.

Instead of running TrapGen(1n, 1m, q) in Game 1, C selects A
$← Zn×mq without the trapdoor

TA in SKKGC. The choice of (Cj)j∈[L+1] remains as in Game 1. Though C does not own the
trapdoor TA, we still have the following result, whose proof is similar to that in [12] and thus
is omitted here. We note that its proof will make heavy use of the algorithms SampleRight,
SampleBasisRight, together with the algorithms SampleLeft, SampleBasisLeft.

Lemma 8. The setup algorithm is changed as above. For any CH ∈
(
Znq \ {0n}

)6L
with

|CH| = `, and any i ∈ [L], t ∈ Zn−1q , v ∈ Znq ,

(1) if CH /∈ prefix(ĨD∗[i∗]), then the challenger C is able to construct a short basis T[A|E(CH)]

distributed statistically close to DBasis(Λ⊥q ([A | E(CH)]), σ`−1), and is also able to construct
a short vector e distributed statistically close to DΛv

q ([A|E(CH)]),σ`−1
;

(2) if CH /∈ prefix(ĨD∗[i∗]) or (i, t) 6= (i∗, t∗), then the challenger C is able to construc-

t a short basis T[A|E(CH)|F(i,t)] distributed statistically close to DBasis(Λ⊥q ([A | E(CH) |
F(i, t)]), σ`), and is also able to construct a short vector e distributed statistically close to
DΛv

q ([A|E(CH)|F(i,t)]),σ` .

Besides, we change the way that the vectors (upa(ID∗
[i∗]),θ

)θ∈BTpa(ID∗
[i∗])

stored in nodes of

BTpa(ID∗
[i∗])

are generated. When the vector upa(ID∗
[i∗]),θ

for some θ ∈ BTpa(ID∗
[i∗])

must be

defined for C to answer A’s query, C proceeds as follows. If θ ∈ Path(BTpa(ID∗
[i∗])

, ηID∗
[i∗]

), C

first samples eID∗
[i∗],θ

←↩ DZ(i∗+1)m,σi∗−1
, and then sets upa(ID∗

[i∗]),θ
:= [A | E(ĨD∗[i∗])]eID∗

[i∗],θ
. If

θ ∈ BTpa(ID∗
[i∗])
\Path(BTpa(ID∗

[i∗])
, ηID∗

[i∗]
), C first samples epa(ID∗

[i∗]),t
∗,θ ←↩ DZ(i∗+1)m,σi∗−1

, and

then sets upa(ID∗
[i∗]),θ

:= u− [A | E(pa(ID∗[i∗])) | F(i∗, t∗)]epa(ID∗
[i∗]),t

∗,θ. C keeps the obtained

eID∗
[i∗],θ

or epa(ID∗
[i∗]),t

∗,θ secret for future use.

With the preparation above, now we prove that the challenger C is able to answer any
allowed queries made by the adversary A that follows the Type-I-i∗ strategy for some
i∗ ∈ [`∗]. In the following we summarize the items which C must construct to respond to A’s
queries:

– (a) SKID =
(

BTID, (θ, eID,θ)θ∈Path(BTpa(ID),ηID), T[A|E(ID)]

)
for ID ∈ (ID)6L\prefix(ID∗[i∗−1]);

– (b) KUID,t =
(

(θ, eID,t,θ)θ∈KUNode(BTID,RLID,t), (dID[i],t)i∈[`]

)
for ID ∈ {KGC}∪(ID)6L−1, t ∈

T and ID /∈ RLt, where ` = |ID|;

23



– (c) DKID,t =
(

(dID[i],t)i∈[`], gID,t

)
for (ID,t) ∈ (ID)6L × T \ {(ID∗, t∗)} and ID /∈ RLt,

where ` = |ID|.

C needs to generate any item in (a) in the secret key generation query and return it to the
adversary A in the secret key reveal query. In the revoke & key update query (and in the
secret key generation query, and at the beginning), C must return the corresponding items
in (b) to A. Similarly, A is allowed to query any item in (c) as a decryption key reveal query.

Firstly, we consider the items in (a). Undoubtedly, C is able to generate BTID for any ID ∈
(ID)6L. For ID 6= ID∗[i∗], we have that ĨD /∈ prefix(ĨD∗[i∗]) always holds. According to Lemma 8,
for any vector upa(ID),θ ∈ Znq , C is able to construct a short vector distributed statistically

close to D
Λ

upa(ID),θ
q ([A|E(ĨD)]),σ`−1

, where ` = |ĨD| = |ID|. Then C just sets this short vector

as eID,θ. This shows that C is able to construct (θ, eID,θ)θ∈Path(BTpa(ID),ηID). For ID = ID∗[i∗],
C has already constructed (θ, eID∗

[i∗],θ
)θ∈Path(BTpa(ID∗

[i∗])
,ηID∗

[i∗]
) since we change the way that

(upa(ID∗
[i∗]),θ

)θ∈BTpa(ID∗
[i∗])

are generated. Therefore, C can construct (θ, eID,θ)θ∈Path(BTpa(ID),ηID)

for any ID ∈ (ID)6L. Again due to Lemma 8, the condition for C to construct T[A|E(ID)] is

ID /∈ prefix(ĨD∗[i∗]), which is exactly equivalent to ID /∈ prefix(ID∗[i∗−1]). As a conclusion, C is

able to construct SKID for any ID ∈ (ID)6L \ prefix(ID∗[i∗−1]). Note that C can also generate
(θ, eID,θ)θ∈Path(BTpa(ID),ηID) for any ID ∈ prefix(ID∗[i∗−1]), which will play an important role in
the construction of (dID[i],t)i∈[`] in (b) and (c).

Secondly, let us deal with the items in (b). Suppose that (ID,t) 6= (ID∗[i∗−1], t
∗). If

|ID| = i∗ − 1 and t = t∗, then ID 6= ID∗[i∗−1] must hold. Thus we have ID /∈ prefix(ĨD∗[i∗]). If
|ID| 6= i∗ − 1 or t 6= t∗, then we have (|ID|+ 1, t) 6= (i∗, t∗). According to Lemma 8, for any
vector u − uID,θ ∈ Znq , C is able to construct a short vector distributed statistically close
to D

Λ
u−uID,θ
q ([A|E(ID)|F(`+1,t)]),σ`

, where ` = |ID|. Then C just sets this short vector as eID,t,θ.

This shows that C is able to construct (θ, eID,t,θ)θ∈KUNode(BTID,RLID,t). For the case of (ID,t) =
(ID∗[i∗−1], t

∗) where ID∗[i∗−1] = pa(ID∗[i∗]), C is able to construct epa(ID∗
[i∗]),t

∗,θ for any θ ∈
BTpa(ID∗

[i∗])
\ Path(BTpa(ID∗

[i∗])
, ηID∗

[i∗]
), since we change the way that (upa(ID∗

[i∗]),θ
)θ∈BTpa(ID∗

[i∗])

are generated. By definition of the Type-I-i∗ strategy, we must have ID∗[i∗] ∈ RLt∗ . There-
fore, either there is no need to construct KUpa(ID∗

[i∗]),t
∗ (if pa(ID∗[i∗]) ∈ RLt∗), or we have

KUNode(BTpa(ID∗
[i∗])

,RLpa(ID∗
[i∗]),t

∗) ⊂ BTpa(ID∗
[i∗])
\ Path(BTpa(ID∗

[i∗])
, ηID∗

[i∗]
). Therefore, C is

able to construct any (θ, eID,t,θ)θ∈KUNode(BTID,RLID,t) in (b). As for (dID[i],t)i∈[`] in (b), we note

that if ID′ /∈ RLt, C is able to create any dID′,t from combining (θ, eID′,θ)θ∈Path(BTpa(ID′),ηID′ )

and (θ, epa(ID′),t,θ)θ∈KUNode(BTpa(ID′),RLpa(ID′),t)
, which can be generated by C as stated above. As

a conclusion, C has the ability to construct KUID,t for ID ∈ {KGC} ∪ (ID)6L−1, t ∈ T and
ID /∈ RLt.

Thirdly, there remain the items in (c). The method to construct (dID[i],t)i∈[`] in (c) is

similar to the above. Here we only need to consider gID,t. If |ID| = i∗, then ID /∈ prefix(ĨD∗[i∗]).
If |ID| 6= i∗, then (|ID|, t) 6= (i∗, t∗). According to Lemma 8, for any vector u ∈ Znq , C is able
to construct a short vector distributed statistically close to DΛu

q ([A|E(ID)|F(`,t)]),σ` , where

` = |ID|. Then C just sets this short vector as gID,t. As a conclusion, C is able to construct
DKID,t for (ID,t) ∈ (ID)6L × T \ {(ID∗, t∗)} and ID /∈ RLt. Note that ID∗[i∗] ∈ RLt∗ , thus we
have ID∗ ∈ RLt∗ , which implies that dID∗,t∗ does not exist.

From the description of the algorithm TrapGen, the two matrices A in Game 1 and
Game 2 are statistically indistinguishable. Moreover, according to Lemma 8 and Lem-
ma 2, the distributions of SKID,KUID,t,DKID,t provided to the adversary A in Game 2
are statistically close to those in Game 1, and so are the distributions of the vectors
(upa(ID∗

[i∗]),θ
)θ∈BTpa(ID∗

[i∗])
. As a conclusion, the adversary A’s advantage in Game 2 is at most

negligibly different from its advantage in Game 1.
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Game 3. Recall that in the challenge query, upon a query (M0,M1) with |M0| = |M1| fromA,

C picks the challenge bit b
$← {0, 1}, and runs Encrypt(PP, ID∗, t∗,Mb)→

(
c0, (ci)i∈[`], cL+1

)
.

In this game, we reset c0 and ci∗ as follows. Recall that in the algorithm Encrypt, we have

already selected si
$← Znq for i ∈ [`∗] ∪ {L + 1}, and x ←↩ DZ,αq. Besides, let C sample

x ←↩ DZm,αq. Then define w := u>si∗ ,w := A>si∗ , and compute v := w + x ∈ Zq,v :=
w + x ∈ Zmq . Next, C sets{

c0 := v + u>(
∑
i∈[`∗]\{i∗} si) + u>sL+1 + Mbb q2c,

ci∗ ← ReRand([Im | R∗],v, αq, α
′

2α ), where R∗ := [R∗1 | · · · | R∗i∗ | R∗L+1].

Here the algorithm ReRand is introduced in [13] for noise re-randomization. One can also
refer to [12] for its definition. Besides, the proof in [12] also shows that the change of ci∗

alters the view of A only negligibly. In addition, the generation for c0 is actually unchanged.
As a conclusion, Game 2 and Game 3 are statistically indistinguishable.

Game 4. In this game, we further change the way that the challenge ciphertext CT∗ is

created. Instead of setting w := u>si∗ ,w := A>si∗ in Game 3, we let C sample w
$← Zq,w

$←
Zmq . The remainder of Game 4 is the same as Game 3. As the proof in [12] shows, Game 3
and Game 4 are computationally indistinguishable for the PPT adversary A, assuming the
hardness of the problem LWEn,m+1,q,χ where χ = DZm+1,αq.

In Game 4, according to w
$← Zq and c0 = w+[x+u>(

∑
i∈[`∗]\{i∗} si)+u>sL+1]+Mbb q2c,

the probability of A guessing whether b = 0 or b = 1 is exactly 1/2. Namely, A’s advantage
in Game 4 is zero. According to the analysis for the above games, it is obtained that A’s
advantage in Game 0 is negligible, and thus we complete the proof of Lemma 3.

Appendix B: Proof of Lemma 4

The proof of Lemma 4 is similar to that of Lemma 3 in Appendix A. Below we only point
out the part different from Appendix A in each game.

In Game 1, the challenger C sets (Cj)j∈[L+1] as follows:

Cj :=


AR∗j −H(id∗j )G for j ∈ [`∗],
AR∗j for j ∈ [`∗ + 1, L],
AR∗j −H(`∗‖t∗)G for j = L+ 1.

In Game 2, similar to Lemma 8, for any CH ∈
(
Znq \ {0n}

)6L
with |CH| = `, and any

i ∈ [L], t ∈ Zn−1q ,v ∈ Znq , the challenger C is able to construct a short basis T[A|E(CH)] dis-

tributed statistically close toDBasis(Λ⊥q ([A | E(CH)]), σ`−1), and a short vector e distributed
statistically close to DΛv

q ([A|E(CH)]),σ`−1
, if CH /∈ prefix(ID∗); and C is also able to construc-

t a short basis T[A|E(CH)|F(i,t)] distributed statistically close to DBasis(Λ⊥q ([A | E(CH) |
F(i, t)]), σ`), and a short vector e distributed statistically close to DΛv

q ([A|E(CH)|F(i,t)]),σ` , if

CH /∈ prefix(ID∗) or (i, t) 6= (`∗, t∗).
Besides, we need to change the way that the vectors (upa(ID∗),θ)θ∈BTpa(ID∗) stored in nodes

of BTpa(ID∗) are generated. When the vector upa(ID∗),θ for some θ ∈ BTpa(ID∗) must be defined
for C to answer A’s query, C first samples epa(ID∗),t∗,θ ←↩ DZ(`∗+1)m,σ`∗−1

, and then sets

upa(ID∗),θ := u − [A | E(pa(ID∗)) | F(`∗, t∗)]epa(ID∗),t∗,θ. C keeps the obtained epa(ID∗),t∗,θ

secret.
Similarly, with the preparation above, we can also prove that the challenger C is able

to answer any allowed queries made by the adversary A that follows the Type-II strategy.
Namely, C is able to construct the following items:

– (a) SKID for ID ∈ (ID)6L \ prefix(ID∗);
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– (b) KUID,t for ID ∈ {KGC} ∪ (ID)6L−1, t ∈ T and ID /∈ RLt;
– (c) DKID,t for (ID,t) ∈ (ID)6L × T \ {(ID∗, t∗)} and ID /∈ RLt.

In Game 3, C defines w := u>sL+1,w := A>sL+1, and sets{
c0 := v + u>(

∑
i∈[`∗] si) + Mbb q2c,

cL+1 ← ReRand([Im | R∗],v, αq, α
′

2α ), where R∗ := [R∗1 | · · · | R∗`∗ | R∗L+1].

In Game 4, instead of setting w := u>sL+1,w := A>sL+1, C samples w
$← Zq,w

$← Zmq .
Similarly, for the PPT adversary A, we can prove that any two consecutive games of

Games 0, 1, 2 and 3 are statistically indistinguishable, and that Game 3 and Game 4 are com-
putationally indistinguishable, assuming the hardness of the problem LWEn,m+1,q,χ where
χ = DZm+1,αq. Besides, in Game 4 the probability of A guessing whether b = 0 or b = 1
is exactly 1/2, which implies that A’s advantage is zero in Game 4. Combining everything
together, we conclude that A’s advantage in Game 0 (the real security game) is negligible,
and thus we complete the proof of Lemma 4.

Appendix C: Proof of Lemma 7

Given the problem instance of LWEn,2m+1,q,χ as (Â, v̂) with Â = [ a0 | a1 | · · · | a2m ] ∈
Zn×(2m+1)
q and v̂ = (v0, v1, · · · , v2m) ∈ Z2m+1

q , the algorithm C sets u := a0 ∈ Znq , A0 :=

[ a1 | · · · | am ] ∈ Zn×mq such that Â = [ u | A0 | · · · ]. Besides, C selects `∗
$← [L] as

the guess for the length of the challenge identity ID∗, and samples Q∗1,j
$← [QH1

], R∗1,j ←↩
Dm×m for j ∈ [`∗ + 1]. Then C sets A := A0(R∗1,`∗+1 · · ·R∗1,2R∗1,1), and runs (B,TB) ←
TrapGen(1n, 1m, q). Finally, C publishes the public parameters PP := (A,B,u).

The random oracle H1 is operated just as that in the proof of Lemma 5, where the pa-
rameter i∗ should be replaced by `∗+1. Then similar to Lemma 6, for CH ∈ ({0, 1, 2}ω)6L+1

with |CH| = `, we can prove that the algorithm C is able to construct a short basis
TA·P1(CH) distributed statistically close to DBasis(Λ⊥q (A · P1(CH)), σ`−1), if CH /∈ CH1 :={

CH ∈ ({0, 1, 2}ω)6L+1 | |CH| 6 `∗ + 1, and H1(CH[j]) = R∗1,j for j = 1, 2, · · · , |CH|
}

. As for

the random oracle H2, once A queries H2 on some CH ∈ ({0, 1, 2}ω)6L, C just selects
R←↩ Dm×m and then returns H2(CH) := R to A. Note that C owns the trapdoor TB. As a
consequence, for any CH ∈ ({0, 1, 2}ω)6L with |CH| = `, the algorithm C is able to construct
a short basis TB·P2(CH) distributed statistically close to DBasis(Λ⊥q (B ·P2(CH)), σ`−1).

Set ID∗, t∗ as the challenge identity and time period, and let Success be the event that
|ID∗| = `∗, ID∗‖t∗ ∈ CH1 holds, and C does not fail due to collisions on H1 found by A.

Then we obtain Pr[Success] = 1/L ·1/Q`
∗+1

H1
· (1−negl(n)). Similar to the proof of Lemma 5,

we can prove that if Success happens, the algorithm C will successfully simulate the attack
environment for A, and otherwise, C will fail and abort at some point. Note that in the proof
of Lemma 7, C does not need to deal with BTID differently for any ID. When A makes the
challenge query on (ID∗, t∗,M0,M1), if |ID∗| = `∗, ID∗‖t∗ ∈ CH1 holds, C picks the challenge

bit b
$← {0, 1}, and runs Encrypt(PP, ID∗, t∗,Mb) →

(
c0, (ci,1, ci,2)i∈[`∗], cL+1

)
, where

c0, cL+1 are redefined as follows. Recall that v̂ = (v0, v1, · · · , v2m) ∈ Z2m+1
q , and we let

v1 := (v1, · · · , vm) ∈ Zmq . After that, C sets c0 ← v0 + u>(
∑
i∈[`∗] si) + Mbb q2c, cL+1 ← v1.

Then C returns the challenge ciphertext CT∗ :=
(
c0, (ci,1, ci,2)i∈[`∗], cL+1

)
to A.

When A outputs b′ ∈ {0, 1} as the guess for b at some point, C outputs 1 in case b′ = b,

and outputs 0 for b′ 6= b. The remaining analysis for the relation between AdvType-II
Π2,L,A (n) and

AdvLWE
C (n) is almost the same as that in the proof of Lemma 5, and finally we can complete

the proof of Lemma 7.
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