
Practical Forgery Attacks on Limdolen and HERN

Raghvendra Rohit and Guang Gong

Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Ontario, N2L 3G1, CANADA.

{rsrohit, ggong}@uwaterloo.ca

Abstract. In this paper, we investigate the security of Limdolen and HERN which are Round 1 sub-
missions of the ongoing NIST Lightweight Cryptography Standardization Project. We show that some
non-conservative design choices made by the designers solely to achieve a lightweight design lead to
practical forgery attacks. In particular, we create associated data-only, ciphertext-only and associated
data and ciphertext forgeries which require a feasible number of forging attempts.

Limdolen employs a tweaked PMAC based construction to offer authenticated encryption functional-
ity. It has two variants, Limdolen-128 and Limdolen-256 with key sizes 128 and 256 bits, respectively. The
designers claim 128(256)-bit integrity security for Limdolen-128(256). Our main observation is that it
uses a sequence of period 2 consisting of only two distinct secret masks. This structural flaw attributes to
a successful forgery (all three types) with probability 1 after observing the output of a single encryption
query. While, HERN is a 128-bit authenticated encryption scheme whose high level design is inspired
from the CAESAR finalist Acorn. We show a message modification strategy by appending/removing a
sequence of consecutive ‘0’ bits. Accordingly, we can construct associated data-only, ciphertext-only and
associated data and ciphertext forgery with the success rate of 2−1, 2−1 and 1 after 2, 4 and 2 encryption
queries, respectively.

Overall, our attacks defeat the claim of 128(256) and 128-bit integrity security of Limdolen-128(256)
and HERN, respectively. We have experimentally verified the correctness of our attacks with the
reference implementations. Notably, these are the first cryptanalytic results on both algorithms.
Consequently, our results are expected to help in further understanding of similar designs.

Keywords. NIST lightweight cryptography standardization project · AEAD · Limdolen · HERN ·
Forgery

1 Introduction

The Internet of Things (IoT), sensor networks, distributed control systems and cyber physical
systems are the most pre-eminent buzzwords these days. They have applications ranging from
smart locks to wearable technology to home automation and healthcare. Typically, they operate
in constrained environments and require reasonable efficiency with low implementation cost and
sufficient security. The current standardized cryptographic primitives are designed for desktop and
server environments, and many of them do not fit into the resource requirements of constrained
devices. As a result, National Institute of Standards and Technology (NIST) initiated a lightweight
cryptography project in 2013 and published the call for submissions of lightweight Authenticaed
Encryption with Associated Data (AEAD) algorithms and hash functions, in August 2018 [NIS19].
In total, NIST received 57 submissions and 56 out of them were announced as the Round 1 candidates
in April 2019. Two of such submissions are Limdolen [Meh19] and HERN [YSMW19].

Limdolen is a family of lightweight AEAD algorithms with key sizes 128 and 256 bits. At a high
level, it adopts a Parallelizable Message Authentication Code (PMAC) [BR02] mode to compute
tag and then use counter mode of encryption to generate the ciphertext. The XOR value of tag and
nonce serve as the initial counter. However, compared to PMAC where random and indistinguishable
secret masks1 are used, Limdolen-128/(256) utilizes two distinct 128(256)-bit secret masks only. The
designers state that

1 masks derived from PMAC key where PMAC key equals EK(0n)

“Due to Limdolen’s target of constrained environments, rather than a series of calculations, we
will alternate between i = 0 and i = 1, the two most common values of i in γiL.”

Moreover, during the tag computation phase, the associated data and message are first combined
together to form a single input and then the padding procedure ie executed. Based on the design
choices and security proofs of PMAC and counter mode of encryption2, the designers claim 128(256)-
bit integrity security for Limdolen-128(256).

On the other hand, HERN is a 128-bit authenticated encryption scheme and adopts a stream
cipher style construction similar to the CAESAR finalist Acorn [cae, Wu16]. The state size is 256
bits and at each clock cycle, 4 nonlinear bits are feedback to the state (except during ciphertext
and tag generation phase). After processing the associated data, the state is updated 512 times by
adding ‘0’ bit stream to the feedback bits. A similar procedure is applied after plaintext processing.
Accordingly, they claim that HERN achieves 128-bit integrity security.

Analyzing the security of NIST LWC Round 1 submissions with respect to forgery attacks is
crucial before they are standardized and put in practice. A strong motivation is the recent forgery
and plaintext recovery attacks on OCB2 [IM18, Poe18, IIMP19]. Its worth noting that OCB2 was
included in ISO/IEC 19772:2009 [ISO] and forgeries are found a decade later. On a same note,
practical forgeries are found for Round 1 submission SNEIKEN v1 [Saa19] by exploiting 1 round
iterative differential [Per19, Kha19].

In this work, we investigate the security of Limdolen and HERN with reference to associated data-
only, ciphertext-only and associated data and ciphertext forgeries in the nonce-respecting scenario.
Table 1 presents a summary of our forgery attacks.

Table 1: Summary of forgery attacks on Limdolen and HERN. ‘−’ denotes that input could be either
empty or non-empty.

Algorithm Forgery type # Enc. queries #
Dec.
queries

Success
prob.

blocks

Limdolen-128

associated data-only 1 1 1 ≥ 1

ciphertext-only 1 1 1 ≥ 4

associated data and ciphertext 1 1 1 ≥ 1

Limdolen-256

associated data-only 1 1 1 ≥ 1

ciphertext-only 1 1 1 ≥ 4

associated data and ciphertext 1 1 1 ≥ 1

HERN

associated data-only 2n (1 ≤ n ≤ 63) 2n 1 −

ciphertext-only 22n (1 ≤ n ≤ 31) 2n 1 −

associated data and ciphertext 2n (1 ≤ n ≤ 63) 1 1 −

Our contributions. We present the practical forgery attacks on Limdolen and HERN in the nonce-
respecting setting. Our attacks exploit the structural flaws in the underlying design of these algo-
rithms. Thus, our contributions are summarized as follows.

2 they consider it as SIV mode [RS07] in the reference document

2

– We exploit the period 2 secret masks of Limdolen-128/256 and show that the XOR sum value
before the last block cipher call is always a constant even if we add/remove/permutate blocks
arbitrary number of times.

– For both variants of Limdolen, we show the general construction of associated data-only,
ciphertext-only and associated data and ciphertext forgeries which have a successful probabil-
ity of 1 after observing the output of a single encryption query. While, after one query, the
designers claim the success probability of 2−128 and 2−256 for Limdolen-128 and Limdolen-256,
respectively.

– By modifying input data with a sequence of consecutive zero bits, we show that HERN can
not distinguish between associated data and plaintext processing phases. This observation is
independent of number of rounds.

– For HERN, we create associated data-only, ciphertext-only and associated data and ciphertext
forgery with the success rate of 2−1, 2−1 and 1 after 2, 4 and 2 encryption queries, respectively.
For the same number of queries, designers claim the success rate of 2−127, 2−126 and 2−127,
respectively. We present a generalized version of our attack, i.e., for 1 ≤ n ≤ 63 (1 ≤ n′ ≤ 31) the
success rate of forgeries are 2−n, 2−n

′
and 1 after 2n, 22n

′
and 2n encryption queries, respectively.

– To validate our theory, we have experimentally verified the correctness with the reference im-
plementations. We have also provided examples for each type of forgery.

Organization of the paper. The rest of the paper is organised as follows. A brief description of
Limdolen is provided in Section 2. In Section 3, we present the details of forgery attacks on Limdolen
along with the experimental results. Section 4 and 5 present the specifications and forgery attacks
on HERN, respectively. Finally, the paper is concluded in Section 6.

We conclude this section by defining the notations used throughout the paper in Table 2.

Table 2: Notations

Notation Description

X � Y,X ⊕ Y,X|Y,X||Y bitwise AND, XOR, OR and concatenation of X and Y

|X| length of X in bits

{0, 1}≥n bitstring with length at least n

X
$←− {0, 1}n random n bitstring drawn from {0, 1}n

1n, 0n length n bitstring with all 1’s, 0’s

Xn n repetitions of bitstring X

� i, ≪ i Left shift (left cyclic shift) by i bits

(X0, · · · , Xl−1)
n←− X n-bit block parsing of X where |Xi|= n for 0 ≤ i ≤ l − 2 and

1 ≤ |Xl−1|≤ n
x0, · · · , x|X|−1 bit representation of X

X[i] i-th byte of X starting from left

K,N, T (ki, ni, ti) key, nonce and tag (in bits)

AD,M,C (adi,mi, ci) associated data, plaintext and ciphertext (in bits)

3

2 Specifications of Limdolen

Limdolen is a family of lightweight AEAD algorithms with key sizes 128 and 256 bits. We denote
an instance of Limdolen by Limdolen-n and its corresponding underlying block cipher by Limdolen-
BC-n where n ∈ {128, 256}. In this section, we first give a brief overview of Limdolen-BC-n and
Limdolen-n. We then list the security goals claimed by the designers.

2.1 Description of Limdolen Block Cipher

The block cipher Limdolen-BC-n takes as input an n-bit key K, n-bit plaintext P and outputs an n-
bit ciphertext after iterating the round function RF-n for r = 16 times. The round function consists
of bitwise XOR, bitwise AND and Li operations. The Li operation takes 4 bytes as input and then
performs left cyclic shift by i bits on each byte.

A pictorial depiction of RF-n is shown in Figure 1. Note that the round key is obtained by
simply XORing the master key with constants, i.e., RKi = K ⊕ consti. We omit the description of
constants as our attacks are independent of them and refer the reader to [Meh19] for more details.

pi qi ri si

RKi

�

�
L2 L7

L3 L5

≪ 8

pi+1 qi+1 ri+1 si+1

32 32 32 32

a) RF-128

b) RF-256

xi yi

xi+1 yi+1

RF-128 RF-128

128 128

Fig. 1: Round functions of Limdolen block ciphers

2.2 Description of Limdolen AEAD

Limdolen adopts a tweaked PMAC [BR02] based construction to provide AEAD functionality. It has
two variants Limdolen-n, n ∈ {128, 256}. For both the variants, the size of key, nonce and tag are
equal to n bits. A high level overview of Limdolen-n is illustrated in Algorithm 1 and the individual
phases are described below.

2.2.1 Padding The associated data AD and the message M are first concatenated together to
form a single input message. It is then divided into chunks of n-bit blocks, i.e., (X0, · · · , Xl−1)

n←−
AD||M . If |Xl−1|= n, then a single byte is XORed to the last byte of Xl−1. This pad byte equals
0xC0 (0x80) depending on whether the length of associated data is zero (non-zero). In case the
number of bytes of Xl−1 is less than n/8, first a pad byte is appended to Xl−1, followed by adding
zero bytes until the block length becomes n. This procedure is denoted by addPaddingMarker(·) in
Algorithm 1.

4

Remark 1. The padding rule described above follows the Limdolen’s specification document (cf.
Page 9 [Meh19]). However, in the reference implementation the pad byte is always XORed to the
last byte of Xl−1. Here, we emphasize that our attacks are independent of location of this byte.

2.2.2 Tag generation The tag computation of Limdolen-n is almost similar to PMAC [BR02]
and is shown in Figure 2. First the PMAC key is derived by encrypting nonce with the master key.
We denote it by aeadK where aeadK = Limdolen-BC-n(K,N). Next, three n-bit masks given by

α = Limdolen-BC-n(aeadK, 0n)

alpha x = LB(α)

alpha inv x = RB(α)

are computed where the function LB(α) (resp. RB(α)) rotates each byte of α left (resp. right) by 1.
Each n-bit block Xi (except the last block) is XORed alternately with α or alpha x which is then
encrypted with Limdolen-BC-n using aeadK as the key. At each iteration, the output is XORed to
δc which acts as a checksum. The tag is then given by

T = Limdolen-BC-n(aeadK, δc ⊕ alpha inv˙x ⊕ addPaddingMarker(Xl−1)).

Limdolen-BC-n

X0

aeadK Limdolen-BC-n

X1

aeadK Limdolen-BC-n

X2

aeadK Limdolen-BC-n

X3

aeadK · · ·

Xl−1

addPadddingMarker

α αalpha x alpha x

alpha inv x

Limdolen-BC-naeadK

(X0, · · · , Xl−1)
n←− AD‖M

Limdolen-BC-nK

N

aeadK

Limdolen-BC-naeadK

0n

α

δc

Fig. 2: Tag generation phase of Limdolen-n

2.2.3 Encryption The encryption is similar to the counter-mode of operation. The XOR value
of nonce and tag is used as the intial counter. This phase is shown in Figure 3.

The decryption is similar to encryption and hence the details are omitted.

2.3 Security Claims

The security claims of Limdolen in the nonce-respecting setting are summarized in Table 3.

3 Forgery Attacks on Limdolen

In this section, we present the details of forgery attacks on both variants of Limdolen. First, we
give a brief overview of the adversarial model and the main idea of our attack. Next, we show the
construction of associated data-only, ciphertext-only and associated data and ciphertext forgeries that
require a single encryption query and one forging attempt for successful verification. Finally, we
provide the experimental results.

5

Limdolen-BC-n

C0

K

M0

Limdolen-BC-n

C1

K

M1

· · ·

· · ·

· · ·

· · ·

Limdolen-BC-n

Cl−1

K

Ml−1

(M0, · · · ,Ml−1)
n←−M

T ⊕N +1 +1

Fig. 3: Encryption phase of Limdolen-n

Algorithm 1 Limdolen-n AEAD
1: function tag generation(K,N,AD,M):

2: T ← 0n

3: aeadK← Limdolen-BC-n(K,N)

4: α← Limdolen-BC-n(aeadK, 0n)

5: alpha x← LB(α)

6: alpha inv x← RB(α)

7: (X0, · · · , Xl−1)
n←− AD‖M

8: blockToggle = 1

9: for i = 0 to l − 1 do:

10: if i == l − 1 do:

11: T ← T ⊕ addPaddingMarker(Xi)

12: else if blockToggle = 1 do:

13: T ← T ⊕ Limdolen-BC-n(aeadK, Xi ⊕ α)

14: else if blockToggle = 0 do:

15: T ← T ⊕ Limdolen-BC-n(aeadK, Xi ⊕ alpha x)

16: blockToggle = blockToggle⊕ 1

17: T ← T ⊕ alpha inv x

18: T ← Limdolen-BC-n(aeadK, T)

19: return T

20: function encryption(K,N,AD,M):

21: T = tag generation(K,N,AD,M)

22: C ← ε

23: ctr = T ⊕N
24: (M0, · · · ,Ml−1)

n←−M
25: for i = 0 to l − 2 do:

26: C ← C‖Limdolen-BC-n(K, ctr)⊕Mi

27: ctr = ctr + 1 mod 2n

28: Z = Limdolen-BC-n(K, ctr)

29: (i0, · · · , i|Ml−1|−1)
1←−Ml−1

30: C ← C‖z0 ⊕ i0‖· · · ‖z|Ml−1|−1 ⊕ i|Ml−1|−1
31: return C, T

1: function addPaddingMarker(X):

2: if |AD| = 0 :

3: pad byte = 0xC0

4: else :

5: pad byte = 0x80

6: if |Xl−1| == n :

7: Xl−1[
n
8 − 1]← Xl−1[

n
8 − 1]⊕ pad byte

8: else :

9: u : # bytes of Xl−1
10: Xl−1[u] = pad byte

11: for i = u+ 1 to n
8 − 1 do:

12: Xl−1[i] = 0x00

13: return Xl−1

14: function LB(α):

15: for i = 0 to n
8 − 1 do:

16: α[i]← α[i]� 1

17: return α

18: function RB(α):

19: for i = 0 to n
8 − 1 do:

20: α[i]← α[i]� 1

21: return α

3.1 Adversarial Model

We assume that the adversary A is nonce-respecting, which means it never makes two queries to the
encryption oracle with the same nonce. Nevertheless, A is allowed to repeat nonces in decryption
queries. We say that “A forges” if decryption oracle ever returns a plaintext other than error

6

Table 3: Security claims of Limdolen in bits [Meh19]

Goal Limdolen-128 Limdolen-256

Confidentiality of plaintext 128 256

Integrity of plaintext 128 256

Integrity of associated data 128 256

Data limit (in blocks) 264 2128

symbol ⊥ on input of (N,AD,C, T) where (C, T) has never been output by encryption oracle on
input of a query (N,AD,M) for some AD and M [Rog02].

In the sequel, we classify three types of forgeries based on the input modification.

– associated data-only: “A forges” by changing AD only

– ciphertext-only: “A forges” by changing C only

– associated data and ciphertext: “A forges” by changing both AD and C.

3.2 Core Idea of Forgery

For simplicity, we explain the idea for a single complete block of associated data which is given in
Lemma 1.

Lemma 1. Let K
$←− {0, 1}n be fixed. Let N

$←− {0, 1}n, AD0
$←− {0, 1}n, M = ε and (ε, T) be

the corresponding ciphertext and tag pair. Then for a positive integer i ≥ 1 and AD′0
$←− {0, 1}n,

AD′1
$←− {0, 1}n and AD′ = (AD′0‖AD′1‖AD′0‖AD′1)i‖AD0, we have C ′ = ε and T ′ = T .

Proof. Since M ′ = M = ε =⇒ C ′ = C = ε. We now look at the tag generation of AD and AD′.
The respective tags are given by

T = Limdolen-BC-n(aeadK, alpha inv˙x ⊕ addPaddingMarker(AD0))

T ′ = Limdolen-BC-n(aeadK, δ′c ⊕ alpha inv˙x ⊕ addPaddingMarker(AD0)),

where δ′c = 0n (see Figure 4 for i = 1 case). Thus T ′ = T . ut

Corollary 1. To construct forgery for arbitrary number of blocks, we only need to ensure that the
XOR sum δc (see Figure 2) before the last call of block cipher is a constant.

Remark 2. Lemma 1 trivially holds for partial last block.

3.3 Basic Forgery

We describe the basic minimal example of the forgery attack against Limdolen-n. We assume
that blocks are complete and the number of blocks is at least 1. From now onwards, we refer
Limdolen-BC-n with key K by EnK(·).

7

Limdolen-BC-naeadK Limdolen-BC-naeadK Limdolen-BC-naeadK Limdolen-BC-naeadK

AD′0 AD′1 AD′0 AD′1 AD0

addPadddingMarker
α αalpha x alpha x

alpha inv x

Limdolen-BC-naeadK

T

Limdolen-BC-nK

N

aeadK

Limdolen-BC-naeadK

0n

α

AD0

addPadddingMarker

Limdolen-BC-naeadK

alpha inv x

T

δ′c = 0n

Fig. 4: Limdolen forgery for a single AD block

3.3.1 Associated data-only forgery Let u ≥ 1 and i ≥ 1 be two positive integers. Fix K
$←−

{0, 1}n. We construct forgery as follows.

Step 1 Let N
$←− {0, 1}n, AD ← {0, 1}u×n, (AD0, · · · , ADu−1)

n←− AD and M = ε. Encrypt
(N,AD,M) and observe (C, T).

Step 2 Let X,Y
$←− {0, 1}n and W = X‖Y ‖X‖Y .

Step 3 Forge with (N,AD′, C, T) where

AD′ = AD0‖· · · ‖ADu−2‖W i‖ADu−1.

Note that AD′ 6= AD =⇒ the decryption query is valid. This will pass the verification with
probability 1 and returns empty plaintext as the output. To see why this forgery works, consider
the values of δc and δ′c, which are given by

δc =
i<u−1⊕

i mod 2=0

EnaeadK(ADi ⊕ α)
i<u−1⊕

i mod 2=1

EnaeadK(ADi ⊕ alpha x)

If u− 1 is even then

δ′c =
i<u−1⊕

i mod 2=0

EnaeadK(ADi ⊕ α)
i<u−1⊕

i mod 2=1

EnaeadK(ADi ⊕ alpha x)

2i
⊕

(EnaeadK(X ⊕ α)⊕ EnaeadK(Y ⊕ alpha x))

= δc ⊕ 0n =⇒ T ′ = T.

Similarly, if u is odd then δ′c = δc⊕ 0n and T ′ = T . The only difference is that masks α and alpha x
are interchanged.

Some observations on associated data-only forgery.

1. The converse also holds true, i.e., given AD = AD0‖· · · ‖ADu−2‖W i‖ADu−1, the modified asso-
ciated data of the form AD0‖· · · ‖ADu−2‖W l‖ADu−1 will give the same tag for all l satisfying
1 ≤ l < i.

8

2. The forgery is independent of whether the last block is a partial AD/M block or consists of
both AD and M bytes.

3. We can modify AD in a number of ways. For instance, the following modification also results in
a successful forgery.

AD′ =

{
X‖Y ‖AD0‖· · · ‖ADu−2‖X‖Y ‖ADu−1 if u is odd,

Y ‖X‖AD0‖· · · ‖ADu−2‖X‖Y ‖ADu−1 o.w.

3.3.2 Ciphertext-only forgery Fix a integer u ≥ 4 and K
$←− {0, 1}n. Let Se = {0, 2, · · · , } and

So = {1, 3, · · · , } be the set of even and odd integers less than u − 1. Consider two permutations
π and ψ which permutates the set Se and So, respectively. Assume that π and ψ are not identity
permutations simultaneously. We now construct forgery as follows.

Step 1 LetN
$←− {0, 1}n, AD = ε,M

n←− {0, 1}u×n and (M0, · · · ,Mu−1)
n←−M . Encrypt (N,AD,M)

and observe (C, T).

Step 2 Let (C0, · · · , Cu−2, Cu−1) n←− C and compute Zi = Mi ⊕ Ci for i = 0, · · · , u− 2.

Step 3 Forge with (N,AD,C ′, T) where

C ′ = Z0 ⊕Mπ(0)‖Z1 ⊕Mψ(0)‖Z2 ⊕Mπ(1)‖Z3 ⊕Mψ(1)‖· · · ‖Cl−1.

We have C ′ 6= C =⇒ the decryption query is valid. This will always pass the verification and
returns

Mπ(0)‖Mψ(0)‖Mπ(1)‖Mψ(1)‖· · · ‖Ml−1

as the output.

To see the correctness of this forgery, we look at the decryption of (N,AD,C ′, T). First note that
ciphertext computation is done via counter mode of operation (see Figure 3). Since the counter T⊕N
is same for both encryption and decryption queries, then M ′ = Mπ(0)‖Mψ(0)‖Mπ(1)‖Mψ(1)‖· · · ‖Ml−1
is obtained (not released yet). Next, to see if the tags of M ′ and M are same it is enough to show
that δ′c = δc. This follows trivially as the masking value is α and alpha x for each element in Se
and So, respectively. So, permutating these sets individually will not change the XOR sum value.
Formally, we have

δ′c =
⊕

π(i),i∈Se

EnaeadK(Mπ(i) ⊕ α)
⊕

ψ(i),i∈So

EnaeadK(Mψ(i) ⊕ alpha x)

=
⊕
i∈Se

EnaeadK(Mi ⊕ α)
⊕
i∈So

EnaeadK(Mi ⊕ alpha x)

= δc =⇒ T ′ = T.

Remark 3. If π and ψ both are identity permutations then C ′ = C =⇒ the decryption query is not
valid. The number of valid forgeries then equals du2 edu−12 e − 1. Furthermore, these are independent
of the length of the last message block.

Remark 4. Associated Data and Ciphertext Forgery is a direct application of associated data-only and
ciphertext-only forgeries.

9

3.4 Forgeries Associated with Last Block

Until now, we have consider the cases where the last block is not modified. To forge the last block,
all the previous blocks before it must contain AD bytes. Assume there is only 1 block and it consists
of u bytes of AD and v bytes of M such that u+ v ≤ n/8. The forgery then proceed as follows.

Step 1 Let N
$←− {0, 1}n. Encrypt (N,AD,M) and observe (C, T).

Step 2 Compute the keystream bytes Z[i] = M [i]⊕ C[i] for i = 0, · · · , v − 1

Step 3 For 1 ≤ l ≤ v, forge with (N,AD′, C, T) where AD′ = AD‖M [0]‖M [l − 1] and

C ′ =

{
ε if l = v,

Z[0]⊕M [l]‖· · · ‖Z[v − l − 1]⊕M [v − 1] o.w.

We have AD′ 6= AD and C ′ 6= C. Thus, the decryption query is valid and will pass the verification
with probability 1 as AD′‖M ′ = AD‖M . The output is M ′ = M [l]‖· · · ‖M [v−1]. Further note that
this is a special case of associated data and ciphertext forgery.

Remark 5. The above forgery incorporates both cases of Remark 1 whether pad byte is XORed to
the last byte of block or it is appended after AD and M bytes in case of u+ v < n/8.

3.5 Experimental Verification

We have verified the attacks using the reference implementation of Limdolen[Meh19]. In Tables 4
and 5, we list the examples of forgeries for Limdolen-128 and Limdolen-256, respectively.

4 Specifications of HERN

HERN adopts a stream cipher based construction similar to the CAESAR finalist Acorn [Wu16]. The
state consists of four 64-bit registers which are updated in an LFSR based style by feeding the two
nonlinear bits a and b to the registers. A pictorial representation of HERN state update function is
shown in Figure 5 and the individual core components are illustrated in Algorithm 2.

s00s
0
1 · · · s063 s10s

1
1 · · · s163 s20s

2
1 · · · s263 s30s

3
1 · · · s363

31 13 1 26

0, 31, 32
︸ ︷︷ ︸

0, 28, 30
︸ ︷︷ ︸

0, 22, 27
︸ ︷︷ ︸

0, 8, 19
︸ ︷︷ ︸

a b a b

Fig. 5: Schematic of HERN state update function

4.1 Description of HERN AEAD

The HERN AEAD algorithm takes as input a 128-bit key K, 128-bit nonce N , adlen bits associated
data AD, mlen bits plaintext M and outputs a mlen bits ciphertext C and 128-bit authentication
tag T . The encryption consists of 3 phases, namely 1) Initialization, 2) Processing plaintext and 3)
Finalization, which are described as follows.

10

Table 4: Examples of forgeries for Limdolen-128

Input data associated data-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 6B22729F7CEA8F9E1EDFB968365BF23B 6B22729F7CEA8F9E1EDFB968365BF23B

BE0A1CDB4142106B5F2BB5BC8911E75E A5687AF34938ED433536D8AB281FED78

AD 5D1808F6DDD8D60B23EE9E0E061A5B93

A5687AF34938ED433536D8AB281FED78

5D1808F6DDD8D60B23EE9E0E061A5B93

BE0A1CDB4142106B5F2BB5BC8911E75E

M Empty string Empty string

C Empty string Empty string

T EF4F60E08694CABB285D3841C433645D EF4F60E08694CABB285D3841C433645D

Input data ciphertext-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 92C2A61831DCDE2EF3DB6060DF03DD0A 92C2A61831DCDE2EF3DB6060DF03DD0A

AD Empty string Empty string

ACCC9952DBB1CC0C8FA8106D463F483A 19B86CF46A3800F9E01066264FAF600E

M BF23441F82A4BC61D2BF42AF6E4C1F1A BF23441F82A4BC61D2BF42AF6E4C1F1A

19B86CF46A3800F9E01066264FAF600E ACCC9952DBB1CC0C8FA8106D463F483A

D2A42D5449E9B51BA9F8CB1744EA315D D2A42D5449E9B51BA9F8CB1744EA315D

07AC6C25FAF2BA41F3B808502BA15F66 B2D899834B7B76B49C007E1B22317752

C 13237F247E2777389835C8C5B88BC655 13237F247E2777389835C8C5B88BC655

E5EB9286DF5EE3FB8140B3588BC18C11 509F67206ED72F0EEEF8C5138251A425

FBF38906197E5B6E069E50E4D8FABF45 FBF38906197E5B6E069E50E4D8FABF45

T EDFDDE9B652A0FB16A7BFF22FD3B44D8 EDFDDE9B652A0FB16A7BFF22FD3B44D8

Input data associated data and ciphertext

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 2B2CC56156A6ACF4D3B1CCE369F4C934 2B2CC56156A6ACF4D3B1CCE369F4C934

AD 0C558F14C1E88FED 0C558F14C1E88FED60D1B7E5BA6EDC

M 60D1B7E5BA6EDC62 62

CT 93C6C56CBBF3B39D 91

T C248D7D75062DE6163AFC13CADEBC55B C248D7D75062DE6163AFC13CADEBC55B

4.1.1 Initialization The initialization consists of loading the key K and constants into the state
and processing the nonce N , associated data AD and running H if step (see Algorithm 2) for 512
steps with zero input.

– Load the state with K and constants. We refer the reader to [YSMW19] for more details as this
part is irrelevant for our attack.

11

Table 5: Examples of forgeries for Limdolen-256
Input data associated data-only

K 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F

N F1C79DD92DA67B984480270726EAB7568B4F1AA10C3BB0B525549E4239265B99 F1C79DD92DA67B984480270726EAB7568B4F1AA10C3BB0B525549E4239265B99

5DA7FC78E3F3692D526069F6DD622EA81E2929484787D3F4354C5CC42DF07CE6 9A0F11FDF7A50B9B8F7C4CF1EB76932DF7E3ED26188C255317E18DE9E9BF6EAB

E8B5B01D38A75A30F02DBE8517460F2E3C09E0E4CB2327B4CF63D2795F7DEC65

AD 9A0F11FDF7A50B9B8F7C4CF1EB76932DF7E3ED26188C255317E18DE9E9BF6EAB

E8B5B01D38A75A30F02DBE8517460F2E3C09E0E4CB2327B4CF63D2795F7DEC65

5DA7FC78E3F3692D526069F6DD622EA81E2929484787D3F4354C5CC42DF07CE6

M Empty string Empty string

C Empty string Empty string

T 301A471671BDF1CFAE68714DE61562000F8012DA449F8562E58B7635DC819CAC 301A471671BDF1CFAE68714DE61562000F8012DA449F8562E58B7635DC819CAC

Input data ciphertext-only

K 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F

N 8196CF5D26A4D3728EC8D8B2CA5CA01EF7394366A2A98A09EA6CE9FBF3CCAAB5 8196CF5D26A4D3728EC8D8B2CA5CA01EF7394366A2A98A09EA6CE9FBF3CCAAB5

AD Empty string Empty string

9EEE67E185CE4A27D8F49C630FA67BF978E7BB6106B714F90FE08CB9CA425A68 E769E176FDBEDE8537A91D56F0AEED1EFAE552FEF17F10DE38DC963401B660E8

M 30C149B58F94DC688879CB971F4691972E4CF834030C2D12EDB9CBB7FB25202C 30C149B58F94DC688879CB971F4691972E4CF834030C2D12EDB9CBB7FB25202C

E769E176FDBEDE8537A91D56F0AEED1EFAE552FEF17F10DE38DC963401B660E8 9EEE67E185CE4A27D8F49C630FA67BF978E7BB6106B714F90FE08CB9CA425A68

1F415F1DFF3DA236E7BF8CD76D79F5685E476650C6762EFE52C432547A923C9A 1F415F1DFF3DA236E7BF8CD76D79F5685E476650C6762EFE52C432547A923C9A

DF35A5881ADE06A920E381ADC2DE31A12E33E72C969EE55F35BF7DE2955FE1A1 A6B2231F62AE920BCFBE00983DD6A746AC310EB36156E1780283676F5EABDB21

C 4462C84E15647050EFDFC01B37FEBC0A0AC1EE3E02BED877CC233A9C2FE38900 4462C84E15647050EFDFC01B37FEBC0A0AC1EE3E02BED877CC233A9C2FE38900

2086D28CD3FF11D08F27CFE769BE4C914806A3DAE1676EFC7CC3135A508CA7E3 5901541BAB8F8572607A4ED296B6DA76CA044A4516AF6ADB4BFF09D79B789D63

9CEE6811416763C0AA2A012395D883F5C2C9FC12EDDBCB509381739F0A9738EA 9CEE6811416763C0AA2A012395D883F5C2C9FC12EDDBCB509381739F0A9738EA

T 3B4230CF23BB7D7E413E13451E8B899856A45A9C7ECB77FF32F257C7BD8780DA 3B4230CF23BB7D7E413E13451E8B899856A45A9C7ECB77FF32F257C7BD8780DA

Input data associated data and ciphertext

K 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F

N 7C5734DCCA90853A2959276055D75ABDD4A0AD9BA48B4A845BD99D935FFDA78F 7C5734DCCA90853A2959276055D75ABDD4A0AD9BA48B4A845BD99D935FFDA78F

AD CF84ACF34B794508DA221B691F332141 CF84ACF34B794508DA221B691F3321412F7C1F507F95FDA0E177B57A66C6C2

M 2F7C1F507F95FDA0E177B57A66C6C2F0 F0

C 8341876562C3BF87B49A155858082690 5C

T 5D8D4291C38C8FC922D7B697E873860593FD26971E590710D30A1F348A41E665 5D8D4291C38C8FC922D7B697E873860593FD26971E590710D30A1F348A41E665

– Process N = n0, n1, . . . , n127. At each step, one bit of N is used to update the state, i.e,
H if step(ni), for i = 0, · · · , 127.

– Process AD = ad0, ad1, . . . , adadlen−1. At each step, one bit of AD is used to update the state,
i.e, H if step(adi), for i = 0, · · · , adlen− 1.

– Run the H if step for 512 steps with zero-stream, i.e., H if step(0), for i = 0, · · · , 511.

4.1.2 Processing plaintext The plaintext M = m0,m1, · · · ,mmlen−1 is used to update the state
bit-by-bit and the corresponding ciphertext bit is generated using the function H enc step(·) (see
Algorithm 2).

– C ← ε
– ci ← H enc step(mi), C ← C‖ci, for i = 0, · · · ,mlen− 1

4.1.3 Finalization After processing all the plaintext bits, the H if step runs for 512 times with
zero input, and then the tag is generated.

– H if step(0), for i = 0, · · · , 511.

12

Algorithm 2 Core components of HERN
1: function H core step:

2: a← SB(s030, s
0
29, s

1
32, s

1
24, s

2
31, s

2
4, s

3
15, s

3
14)

3: b← SB’(s030, s
0
29, s

1
32, s

1
24, s

2
31, s

2
4, s

3
15, s

3
14)⊕ s032

4: f0 ← s00 ⊕ s031 ⊕ s032 ⊕ s113
5: f1 ← s10 ⊕ s128 ⊕ s130 ⊕ s21
6: f2 ← s20 ⊕ s222 ⊕ s227 ⊕ s326
7: f3 ← s30 ⊕ s38 ⊕ s319 ⊕ s031
8: si ← si � 1, for i = 0, 1, 2, 3

9: si63 ← f i, for i = 0, 1, 2, 3

10: function SB(x0, y0, x1, y1, x2, y2, x3, y3):

11: return 1⊕ x0y0 ⊕ x1y1 ⊕ x2y2 ⊕ x3y3

12: function SB’(x0, y0, x1, y1, x2, y2, x3, y3):

13: return x0y2 ⊕ y0y3 ⊕ x1x3 ⊕ y1x2

1: function Adda:

2: s063 ← s063 ⊕ a
3: s263 ← s263 ⊕ a

4: function Addb:

5: s163 ← s163 ⊕ b
6: s363 ← s363 ⊕ b

7: function H if step(x):

8: H core step

9: a← a⊕ x
10: Adda

11: Addb

12: function H enc step(m):

13: H core step

14: a← a⊕m
15: Adda

16: c← b⊕m
17: return c

– T ← ε

– ti ← H enc step(0), T ← T‖ti, for i = 0, · · · ,mlen− 1

– return (C, T)

The decryption procedure is identical to encryption and hence the details are omitted.

4.2 Security Claims

The designers state that “HERN is designed to have confidentiality of the plaintexts under adaptive
chosen-plaintext attacks and the integrity of the ciphertexts under adaptive forgery attacks.” Con-
sidering the nonce-respecting setting and a data limit of 264 bits (i.e., adlen + mlen ≤ 264), they
claim 128-bit security for confidentiality and integrity.

5 Forgery Attacks on HERN

In this section, we provide the details of forgery attacks on HERN. In particular, we show that a
message can be modified by appending or removing a sequence of consecutive ‘0’ bits of length n.
Moreover, we show that the best success rate of forgery is achieved for n = 1 case.

5.1 Basic Forgery

The adversarial model is similar to Subsection 3.1. In the following, we explain the minimal example
of our forgery attack against HERN. For the description of forgeries, we let Si, ai, bi denote the state
of HERN and two nonlinear bits a and b at the beginning of i-th round.

13

5.1.1 Associated data-only forgery Let 1 ≤ n ≤ 63 and K
$←− {0, 1}128 be fixed. To construct

the forgery we proceed as follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}? and M = ε. Encrypt (N,AD,M) and observe (C, T).

Step 2 Repeat Step 1 until we obtain a tag whose first n bits are all zero. Define this query as
Q :

def
= (N,AD,M,C, T).

Step 3 For each i = 0 to 2n − 1, decrypt (N ′, AD′, C ′, T ′) where

N ′ = N

AD′ = AD‖0n
C ′ = ε

T ′ = T � n | (i0‖· · · ‖in−1), and (i0, · · · , in−1) 1←− i.
If the verification succeeds with output as an empty plaintext, we stop.

S0

S128

S128+u

S640+u

S1152+u

S1152+u+n

a) Encryption for Q

Process N

Process AD

H if step(0) 512 times

H if step(0) 512 times

H if step(0) n times

(first n bits of T are zero)

S′0

S′128

S′128+u

S′128+u+n

S′640+u

S′640+u+n

S′1152+u

S′1152+u+n

a) Encryption for Q′

Process N

Process AD

H if step(0) n times
(last n bits of AD are zero)

H if step(0) 512 times

H if step(0) 512 times

Fig. 6: Associated data-only forgery of HERN

The decryption queries are valid as AD′ 6= AD and T ′ 6= T . To see why such a query work,
consider the encryption of Q and Q′

def
= (N,AD′, ε). This is illustrated in Lemma 2 (also shown in

Figure 6).

Lemma 2. Let Q and Q′ be defined as above and |AD| = u. Then T ′ = T � n | ∆ where ∆ is an
n-bit string.

Proof. After processing 128 bits of nonce and first u bits of AD, the states are same, i.e., S128+u =
S′128+u. For query Q, as M is empty, H if step(·) runs for 1024 times with zero input. For Q′, since
AD′ = AD‖0n and M ′ = ε, H if step(·) is iterated for n + 1024 times with zero bit. The tag
generation phase for Q and Q′ starts from S1152+u and S′1152+u+n, respectively.

Note that the first n bits of T are zero and they are not added to the state. This is equivalent to
the fact that H if step(0) runs for another n times starting from round 1152+u. Hence, S1152+u+n =
S′1152+u+n =⇒ the last 128 − n bits of T are the same as the first 128 − n bits of T ′. Since the
states are unknown, the last n bits of T ′ has to be guessed. Thus, T ′ = T � n | ∆. ut

14

Attack complexities. On average, step 2 requires 2n encryption queries while step 3 needs 2n

decryption queries. Thus, for 1 ≤ n ≤ 63, the success rate of forgery is 2−n. For n = 1 the success
rate is 2−1 after querying encryption oracle 2 times. This clearly violates the designers claim that
success rate of forgery is 2−127 after two encryption queries.

Some observations on associated data-only forgery.

1. The designers imposed a data limit of 264 bits before a re-keying is done. In order to satisfy this
constraint, we restrict the values of n in the range 1, · · · , 63. However, this is just a theoretical
reasoning and we do not need so many queries especially when we can construct forgery for
n = 1 case.

2. The forgery still works if we change 512 to some other number. Hence, it is independent of the
number of rounds.

5.1.2 Ciphertext-only forgery Let 1 ≤ n ≤ 31 and K
$←− {0, 1}128 be fixed. We construct

forgery as follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}?, M ← {0, 1}≥1. Encrypt (N,AD,M‖0n) and observe

(C, T).

Step 2 Repeat Step 1 until a ciphertext whose last n bits are zero is obtained. Denote this query
by (N,AD,M,C, T).

Step 3 Decrypt (N ′, AD′, C ′, T ′) where

N ′ = N

AD′ = AD

C ′ = c0‖· · · ‖c|M |−n−1
T ′ = 0n|T � n.

Step 4 If verification fails, repeat Step 2 and Step 3.

We have C ′ 6= C as the lengths are different and T ′ 6= T . Thus, each query in step 3 is a valid
decryption query. Upon successful verification, only first |M |−n bits of M are returned. A formal
proof of correctness of decryption query is given in Lemma 3.

Lemma 3. Let Q :
def
= (N,AD,M) satisy Step 2 with output as (C, T). Let AD′ = AD, M ′ =

m0‖· · · ‖m|M |−n−1 and Q′ :
def
= (N,AD′,M ′). Then T ′ = 0n | T � n iff the n nonlinear bits

b1152+|AD|+|M |−n, · · · , b1152+|AD|+|M |−1 are all zero.

Proof. We have AD′ = AD and m′i = mi =⇒ c′i = ci, for 0 ≤ i ≤ |M |−n − 1. Therefore,
S1152+u+|M |−n = S′1152+u+|M |−n. However, the tag generation phase for Q starts from S640+u+|M |,

and for Q′ it starts from S′640+u+|M |−n. The corresponding tag bits are given by:

ti = b1152+|AD|+|M |+i

t′i = b′1152+|AD|+|M |−n+i.

Now, the last n bits of both M and C being zero =⇒ S1152+|AD|+|M |−n = S′1152+|AD|+|M |−n.

So, given b1152+|AD|+|M |−n, · · · , b1152+|AD|+|M |−1 are all zero, then T ′ = 0n | T � n. ut

15

Attack complexities. Step 2 requires 2n encryption queries (on average), while to satisy both Step
2 and Step 3 simultaneously, 22n encryption queries (on average) are needed. Thus, for 1 ≤ n ≤ 31,
the success rate of forgery is 2−n after observing output of 22n encryption queries. The value of n
is chosen to satisfy the data limit restriction of 264 bits.

Remark 6. Similar to associated data-only forgery, the best success rate is achieved for n = 1 case
which is 2−1 after 4 encryption queries.

5.1.3 Associated data and ciphertext forgery Let 1 ≤ n ≤ 63 and K
$←− {0, 1}128 be fixed.

The forgery then proceed as follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}?, M = 0n. Encrypt (N,AD,M) and observe (C, T).

Step 2 Repeat step 1 until we obtain C = 0n. Denote this query by (N,AD,M,C, T).

Step 3 Forge with (N ′, AD′, C ′, T ′) where

N ′ = N

AD′ = AD‖0n
C ′ = ε

T ′ = T,

which will always be successful (with empty message as an output) as the states after 640+ |AD|+n
rounds are same. The proof is similar to Lemma 2 and 3, and hence omitted.

Attack complexities. Step 2 requires 2n encryption queries on average, while step 3 requires only
a single decryption query. Thus, for 1 ≤ n ≤ 63, the success rate of forgery is 1.

5.2 Experimental Verification

We have verified the attacks using the reference implementation of HERN [YSMW19]. In Table 6,
we list the examples for n = 8.

6 Concluding Remarks

We have demonstrated a series of practical forgery attacks on Limdolen and HERN in the nonce-
respecting scenario. Our attacks defeat the designer’s claim of 128(256) and 128-bit integrity security
of Limdolen-128(256) and HERN, respectively.

For both variants of Limdolen, we have shown the constructions of associated data-only, ciphertext-
only and associated data and ciphertext forgeries which require a single encryption and a single
decryption query, and have a successful probability of 1. The crux of our forgery attacks lie in
Lemma 1 and the observation that only a sequence of period 2 consisting of (α, alpha x) is used for
masking. Moreover, we have found a discrepancy for the padding in the specification document and
reference implementation (see Remark 1). However, the presented attacks are independent of this
inconsistency. To resist our attacks, the period 2 masking sequence has to be replaced by a sequence
with unpredictable properties.

For HERN, we have found that associated data and message processing phases are not
distinguishable. As a result one can modify a message by appending or removing a sequence of
zero bits. Accordingly, we have presented round independent associated data-only, ciphertext-only
and associated data and ciphertext forgeries with the success rate of 1 after 2(2), 4(2) and 2(1)

16

Table 6: Examples of forgeries for HERN

Input data associated data-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N D8A4ADC965EECE56330E5CC01A53C928 D8A4ADC965EECE56330E5CC01A53C928

AD CA5F CA5F00

M Empty string Empty string

CT Empty string Empty string

T 00FC40BF26954B37993E9C56C6C49ACA FC40BF26954B37993E9C56C6C49ACAB6

Input data ciphertext-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 3E1327BCC61246AC87901E0922C1A354 3E1327BCC61246AC87901E0922C1A354

AD 9524 9524

M 8500 85

CT 0D00 0D

T 8472B9D92F6AAC22CE3F188CC13D711C 008472B9D92F6AAC22CE3F188CC13D71

Input data associated data and ciphertext

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 7B8A185D3B33E4F906E02F291BEF6C06 7B8A185D3B33E4F906E02F291BEF6C06

AD 4328 432800

M 00 Empty string

CT 00 Empty string

T A72C78D89FAD7A7D785EF13AB2EC085B A72C78D89FAD7A7D785EF13AB2EC085B

encryption(decryption) queries, respectively. A simple fix to resist our attack is to complement a
state bit (except the last bit of each register) after 640 + |AD| and 640 + |AD|+|M | clock cycles.

Acknowledgement

This work is supported by NSERC.

References

[BR02] John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authenti-
cation. In International Conference on the Theory and Applications of Cryptographic Techniques, pages
384–397. Springer, 2002.

[cae] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. https:
//competitions.cr.yp.to/caesar.html.

[IIMP19] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering. Cryptanalysis of OCB2:
Attacks on Authenticity and Confidentiality. Cryptology ePrint Archive, Report 2019/311, 2019. https:
//eprint.iacr.org/2019/311.

[IM18] Akiko Inoue and Kazuhiko Minematsu. Cryptanalysis of OCB2. Cryptology ePrint Archive, Report
2018/1040, 2018. https://eprint.iacr.org/2018/1040.

[ISO] ISO: Information Technology - Security techniques - Authenticated encryption, ISO/IEC 19772:2009.
International Standard ISO/IEC 19772 (2009).

[Kha19] Mustafa Khairallah. Forgery Attack on SNEIKEN. 2019. https://eprint.iacr.org/2019/408.

17

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://eprint.iacr.org/2019/311
https://eprint.iacr.org/2019/311
https://eprint.iacr.org/2018/1040
https://eprint.iacr.org/2019/408

[Meh19] Carl E. Meher. Limdolen: A Lightweight Authenticated Encryption Algorithm. NIST LWC Round
1 Submssion. 2019. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/Limdolen-Spec.pdf.
[NIS19] NIST lightweight cryptography standardization process. https://csrc.nist.gov/projects/

lightweight-cryptography, accessed 31 May 2019.
[Per19] Leo Perrin. Probability 1 Iterated Differential in the SNEIK Permutation. Cryptology ePrint Archive,

Report 2019/374, 2019. https://eprint.iacr.org/2019/374.
[Poe18] Bertram Poettering. Breaking the confidentiality of OCB2. Cryptology ePrint Archive, Report

2018/1087, 2018. https://eprint.iacr.org/2018/1087.
[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of the 9th ACM con-

ference on Computer and communications security, pages 98–107. ACM, 2002.
[RS07] Phillip Rogaway and Thomas Shrimpton. The SIV mode of operation for deterministic authenticated-

encryption (key wrap) and misuse-resistant nonce-based authenticated-encryption. Aug, 20:3, 2007.
[Saa19] Markku Juhani O. Saarinen. SNEIKEN and SNEIKHA authenticated encryption and cryptographic

hashing. NIST LWC Round 1 Submission, 2019. Available online at https://github.com/pqshield/

sneik.
[Wu16] Hongjun Wu. ACORN: a lightweight authenticated cipher (v3). 2016. https://competitions.cr.yp.

to/round3/acornv3.pdf.
[YSMW19] Dingfeng Ye, Danping Shi, Yuan Ma, and Peng Wang. HERN and HERON: Lightweight AEAD and

Hash Constructions based on Thin Sponge (v1). 2019. https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/.

18

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Limdolen-Spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Limdolen-Spec.pdf
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://eprint.iacr.org/2019/374
https://eprint.iacr.org/2018/1087
https://github.com/pqshield/sneik
https://github.com/pqshield/sneik
 https://competitions.cr.yp.to/round3/acornv3.pdf
 https://competitions.cr.yp.to/round3/acornv3.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/

