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Abstract. Single-trace side-channel attacks are a considerable threat to
implementations of classic public-key schemes. For lattice-based cryptog-
raphy, however, this class of attacks is much less understood, and only a
small number of previous works show attacks. Primas et al., for instance,
present a single-trace attack on the Number Theoretic Transform (NTT),
which is at the heart of many efficient lattice-based schemes.
They, however, attack a variable-time implementation and also require
a rather powerful side-channel adversary capable of creating close to a
million multivariate templates. Thus, it was an open question if such
an attack can be made practical while also targeting state-of-the-art
constant-time implementations.
In this paper, we answer this question positively. First, we introduce sev-
eral improvements to the usage of belief propagation, which underlies the
attack. And second, we change the target to encryption instead of decryp-
tion; this limits attacks to the recovery of the transmitted symmetric key,
but in turn, increases attack performance. All this then allows successful
attacks even when switching to univariate Hamming-weight templates.
We evaluate the performance and noise resistance of our attack using sim-
ulations, but also target a real device. Concretely, we successfully attack
an assembly-optimized constant-time Kyber implementation running on
an ARM Cortex M4 microcontroller while requiring the construction of
only 213 templates.

Keywords: side-channel attacks · post-quantum cryptography · lattice-
based cryptography · belief propagation

1 Introduction

For implementations of classic public-key schemes, such as RSA, DH, and ECC,
there exist many side-channel attacks capable of retrieving the secret key using
just a single execution trace. Ranging from the textbook example of distin-
guishing squarings and multiplications with the naked eye to more sophisticated
methods, such as horizontal collision correlation [9] capable of attacking even
constant-time implementations, such single-trace attacks can be considered to
be a prime threat and are able to bypass many randomization countermeasures.

For lattice-based cryptography, the largest family of schemes currently run-
ning in the second round of the NIST post-quantum standardization process [21],



2 Peter Pessl, Robert Primas

the sincerity of this threat is much less clear. Compared to most classic con-
structions, it is relatively straightforward to make implementations of lattice-
based cryptography both constant time1 and free of secret-dependent memory
accesses, thereby eliminating the most glaring side-channel leaks. Possibly due
to this reason, many previous works on secure implementations of lattice-based
cryptography primarily focused on masking and thus differential side-channel
attacks [25,24,22,8].

Still, single-trace attacks have received some prior attention and were shown
to be possible. In particular, Primas et al. [23] proposed an attack on the Number
Theoretic Transform (NTT), which is an integral part of efficient implementa-
tions of many lattice-based schemes, e.g., NewHope [2] and Kyber [6]. Simply
speaking, the NTT resembles a Fast Fourier Transform (FFT), but works over
Zq instead of over the complex plane. It enables fast multiplication of polyno-
mials in the ring Rq = Zq[x]/〈xn + 1〉, which are a common sight in schemes
based on structured lattices. The attacks of Primas et al. follow the path of soft-
analytical side-channel attacks [28]. That is, they first perform a side-channel
template matching [12] on certain intermediates, construct a graph describing
the NTT and all of its intermediate computations, include the observed leakage
information in this graph, and finally run a message-passing algorithm known
as belief propagation. The recovered secret input is either the key itself or can
be used to recover said key.

However, while this attack can even bypass certain countermeasures, it does
leave open the question of practicality. For their evaluations on a real device, they
build close to one million templates. Besides, they attack a variable-time imple-
mentation. While the attack, as such, does not require timing differences, it does
benefit from them. And finally, they mainly focus on attacking the decryption
process. While the most apparent target, the involvement of long-term secrets
makes the need for side-channel protections obvious. Encryption, however, only
deals with ephemeral secrets and might thus see less care in side-channel pro-
tections. Still, a successful attack on encryption can lead to a compromise of the
entire system.

Our Contribution. In this paper, we address the above limitations and show
that single-trace attacks on the NTT can be made truly practical. Several im-
provements to the attack, alongside the choice of a different target, allow us
to attack a constant-time microcontroller implementation of the Kyber lattice-
based key exchange [6], all while requiring only 213 univariate Hamming-weight
templates.

More concretely, we include three improvements to belief propagation in the
context of side-channel attacks on the NTT. We merge certain nodes in the
graph representation of the NTT, make use of message damping, and introduce
a new message schedule. These changes lead to higher accuracy of computed
marginal probabilities and thus to better attack performance. The runtime of
belief propagation, while increased, still stays very reasonable.

1 At least when using a simple error distribution, such as centered binomials.
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As already hinted above, we change the concrete target of our attack. Primas
et al. attacked the inverse NTT transformation during decryption. Decryption
involves the private key, which makes not only attacks worthwhile, but also the
need for careful side-channel protection obvious. We target encryption instead.
While this limits attacks to recovering the exchanged symmetric keys, it focuses
on a part seemingly requiring less side-channel protection. Also, in encryption,
the inputs of the NTT are confined to a narrow interval, which further aids
attack performance.

These changes and performance improvements allow a simplification of the
physical part of the attack. That is, by switching to Hamming-weight templates
and targeting load/store operations instead of multiplications, the number of
required templates and thus also traces for template building is cut down dras-
tically.

We evaluate our attack for different noise levels using simulations. Further-
more, we study the effects of masking and recent implementation techniques,
such as lazy reduction, on the attack performance. Finally, we demonstrate the
attack using real power measurements of an STM32F4 microcontroller running a
constant-time ASM-optimized Kyber implementation. Using just 213 univariate
Hamming-weight templates, the entire secret NTT input can be recovered with
a probability of up to 95%. Finally, we note that our attacks can be easily ported
to many other implementations that make use of the NTT.

Outline. In Section 2, we briefly describe the concrete target of our attacks,
namely the Kyber key exchange, and discuss its implementation aspects. In Sec-
tion 3, we present details of the attack by Primas et al. [23] and also discuss its
shortcomings. After having covered the necessary background, we show all our
improvements and adaptations in Section 4. We then evaluate the attack using
simulations in Section 5 and target a real device in Section 6. In Section 7, we
discuss the applicability and effectiveness of previously proposed countermea-
sures.

2 Lattice-Based Cryptography

In this section, we briefly recall the lattice-based key-exchange Kyber. We also
describe efficient implementation techniques, both for Kyber and lattice-based
cryptography in general.

2.1 Kyber

The Kyber key exchange [6] is currently running in the second round of the
NIST standardization process [21]. In its core, Kyber resembles the Ring-LWE
encryption scheme proposed by Lyubashevsky, Peikert, and Regev [18], but it
bases its security on the Module Learning-With-Errors assumption (MLWE) [16]
instead of Ring-LWE. This means that it operates with matrices/vectors con-
taining polynomials defined over the ring Rq = Zq[x]/〈xn + 1〉. We use boldface
letters to differentiate matrices/vectors of polynomials from single polynomials.
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Already in its specification, Kyber prescribes usage of the NTT for efficient
polynomial multiplication. Via point-wise multiplication of transformed polyno-
mials, i.e., ab = NTT−1(NTT(a) ◦ NTT(b)), multiplication can be performed in
time O(n log n). We use â as shorthand for the NTT-transformed of a, with â
we denote vectors where all component polynomials are transformed.

The core public-key encryption scheme (PKE) only offers IND-CPA security.
For this reason, the Kyber authors apply a variant of the Fujisaki-Okamoto trans-
form [14] to build an IND-CCA2 secure key-encapsulation mechanism (KEM).
In essence, the transform requires a re-encryption of the decrypted message us-
ing the randomness seed used for the original encryption, which is embedded
in the ciphertext. Only if the recomputed and the received ciphertexts match,
the decrypted message is released. Since recovering the key/message used in the
underlying PKE directly leads to key/message recovery of the KEM, we omit
details of the transform and only focus on the PKE. We further omit aspects
regarding, e.g., efficient packing, and give a simplified but conceptually identical
description. For further details, we refer to the Kyber specification [6].

Algorithm 1 gives the key-generation procedure. The function SampleU sam-
ples the (k × k)-matrix Â from uniform using the seed ρ, which is also part of
the public key. The sampling is performed directly in the NTT domain. Then,
the coefficients of s and e are sampled following a centered binomial distribution
with support [−η, η] using SampleB with seed σ. Afterward, the NTT is applied
to all component polynomials of s independently to receive the secret key ŝ. The
result t := As + e is the public key.

Algorithm 1 Kyber-PKE Key Generation (simplified)

Output: Public key pk , private key sk
1: Choose uniform seeds ρ, σ
2: Â ∈ Rk×k

q := SampleU(ρ) . Generate uniform Â in NTT domain
3: s ∈ Rk

q := SampleB(σ||0) . Sample private key s (binomial distribution)
4: e ∈ Rk

q := SampleB(σ||1) . Sample error e (binomial distribution)
5: ŝ := NTT(s) . NTT for efficient multiplication
6: t := NTT−1(Â ◦ ŝ) + e . t := As + e
7: return (pk := (t, ρ), sk := ŝ)

Encryption is shown in Algorithm 2. After recomputation of Â from the
seed ρ, the variables r, e1, e2 are sampled. The seed τ used for this sampling is
made explicit to allow the re-encryption required for the CCA2 transform. The
ciphertext c consists of two parts, where the second component c2 contains m
encoded as an element in Rq. The decryption process (Algorithm 3) requires to
recover this m from a noisy version.

The Kyber authors originally specified three parameter sets. In this paper,
we primarily focus on the original Kyber768 set given by (n = 256, k = 3, q =
7681, η = 4). Kyber512 and Kyber1024 mainly differ in the used k. Since we
will target individual NTT executions, k does not impact attack performance,
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Algorithm 2 Kyber-PKE Encryption (simplified)

Input: Public key pk = (t, ρ), message m, seed τ
Output: Ciphertext c
1: Â ∈ Rk×k

q := SampleU(ρ) . Regenerate uniform Â
2: r ∈ Rk

q := SampleB(τ ||0)
3: e1 ∈ Rk

q := SampleB(τ ||1) . Sample noise r, e1, e2
4: e2 ∈ Rq := SampleB(τ ||2)
5: r̂ := NTT(r) . NTT for efficient multiplication

6: c1 := NTT−1(Â
T ◦ r̂) + e1 . c1 := AT r + e1

7: c2 := NTT−1(NTT(t)T ◦ r̂) + e2 + Encode(m) . c2 := tT r + e2 + Encode(m)
8: return c := (c1, c2)

Algorithm 3 Kyber-PKE Decryption (simplified)

Input: Public key pk = (t, ρ), secret key sk = ŝ, ciphertext c = (c1, c2)
Output: Message m
1: m := Decode(c2 − NTT−1(̂sT ◦ NTT(c1))) . m := Decode(c2 − sT c1)
2: return m

at least as long the success probability on single NTTs is close to 1. We note
that very recently, the Kyber parameters were tweaked for round 2 of the NIST
standardization process. All parameter sets now feature (q = 3329, η = 2).2 We
will later show that this change is beneficial to our attack. Note that we will
always use the original parameter set unless stated otherwise.

2.2 Efficient and Secure Implementation

The rising popularity of lattice-based cryptography in the last decade has also
led to many efficient constant-time implementation techniques. We now give
details to the two most relevant for this work.

Number Theoretic Transform (NTT). As already stated above, the NTT
allows efficient multiplication in Rq by pointwise multiplying two forward trans-
formed polynomials and transforming the result back3. In essence, the NTT is
a Discrete Fourier Transform (DFT) over a prime field Zq and can thus be im-
plemented using the same techniques as found in the Fast Fourier Transform
(FFT). As shown in Fig. 1 with the example of a 4-coefficient NTT, the trans-
formation consists of chaining log2 n layers of so-called butterflies. A butterfly
takes two inputs, one of them is multiplied with a certain power of ωn, where
ωn is a primitive n-th root of unity in Zq. The product is then both added to
(upper branch) and subtracted from (lower branch) the second input.

2 The new parameter set also requires some minor modifications to the NTT, such as
different constants and omission of the last butterfly layer.

3 Here, the NTT is defined to include the scaling required to compute products in
Zq[x]/〈xn + 1〉 instead of Zq[x]/〈xn − 1〉. We point to [6] for further details.
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Fig. 1. 4-coefficient NTT

Constant-time and efficient reductions. Early implementations of the NTT
often used straight-forward and variable-time modular reduction techniques. For
instance, de Clercq et al. [13] use ARMs conditional operations for reductions
after additions and subtractions, as well as integer divisions for reductions after
multiplications. On most embedded devices, such divisions do not run in constant
time.

More recent implementations, e.g., the Cortex-M optimized NewHope imple-
mentation by Alkim, Jakubeit, and Schwabe [4], frequently make use of constant-
time variants of the established Montgomery and Barret reduction techniques.
Constant-time is reached by omitting the final conditional subtractions. In other
words, the result is not always reduced back to [0, q− 1], but can be larger. This
can also be used for efficiency gains by, e.g., skipping reductions after additions
(lazy reduction).

2.3 Protected Implementations

Constant-time operations mitigate timing attacks, both on small devices such as
microcontrollers and large ones like PCs. Protecting against other types of side-
channel attacks, e.g., Differential Power Analysis (DPA), requires more effort.
There do already exist works addressing this issue and proposing DPA-secured
implementations of lattice-based cryptography; they use masking as their main
protection mechanism [25,22,8].

Since the NTT is a linear transformation, it is trivial to mask. When s is the
sensitive input, then one can sample a uniformly random masking polynomial
m ∈ Rq, compute the NTT on m and (s −m) independently, and finally add
the shares back again if needed. Masking the sampling of error polynomials and
the decoding of the noisy message in decryption is much more intricate. Since
we do not attack these operations, we refer to Oder et al. [22] for details.

Oder et al. [22] further employ hiding techniques. They shuffle the ordering
of linear operations, such as the pointwise multiplication, and blind polynomials
with a random scalar. The latter method was first introduced by Saarinen [26].
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3 Single-Trace Attacks on Lattice-Based Cryptography

Masking is very efficient in protecting against DPA-like attacks. Still, single-trace
attacks are potentially able to bypass masking as well as other defenses. There
do already exist earlier works showing the feasibility of such attacks in the con-
text of lattice-based cryptography. Recently, horizontal side-channel attacks on
matrix-vector multiplications found in schemes over unstructured lattices, such
as Frodo [3], were demonstrated [7,11]. These attacks, however, do not carry over
to schemes using structured lattices, as they typically use faster multiplication
methods such as the NTT or Karatsuba’s method.4

Primas et al. [23] propose a single-trace attack on the NTT. Since this attack
is the basis of our work, we now introduce the required background. First, we
recall soft-analytical side-channel attacks and the belief propagation algorithm,
which form the basis of the attack. Then, we will present the attack details and
discuss some of its shortcomings.

3.1 Soft-Analytical Side-Channel Attacks

The attack of Primas et al. is an instance of a soft-analytical side-channel at-
tack (SASCA), which were first proposed by Veyrat-Charvillon et al. [28]. In
SASCA, one first performs a side-channel template attack [12] on certain inter-
mediates and retrieves probabilities conditioned on the leakage. In other words,
one gets Pr(T = t|`), where T is an attacked intermediate, t runs through all
of the possible values of T , and ` is the observed side-channel leakage. Then,
one constructs a factor graph modeling the attacked algorithm and its specific
implementation. After including the conditioned probabilities into this graph,
the belief-propagation algorithm is run, which returns marginal probabilities for
all inputs (including the involved key components), outputs, and intermediates
processed by the algorithm. We now give a more thorough explanation.

Belief propagation. We base our descriptions of belief propagation (BP) on
MacKay [19, Chapter 26], as also done by previous works using SASCA [28,23].

BP allows efficient marginalization in certain probabilistic models. Given is a
function P ∗(x) =

∏M
m=1 fm(xm) , which is defined over a set of N variables x ≡

{xn}Nn=1 and the product of M factors. Each of the factors fm(xm) is a function
of a subset xm of x. The problem of marginalization is then defined as computing
the marginal function Zn(xn) =

∑
{xn′},n′ 6=n P

∗(x), or the normalized version

Pn(xn) = Zn(xn)/Z, with Z =
∑

x

∏M
m=1 fm(x).

BP solves this task efficiently by exploiting the known factorization of P ∗.
First, it represents the factorization in a probabilistic graphical model called
factor graph (FG). Factor graphs are comprised of variable nodes, each repre-
senting one variable xn ∈ x, and factor nodes, each representing one fm. Factor

4 Aysu et al. [7] do also run their attack for the RLWE-based scheme NewHope [2].
However, their attacked implementation uses schoolbook multiplication instead of
the NTT, resulting in a drastically increased runtime.
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fm and variable xn are connected in the graph if fm depends on xn. Second, it
performs message-passing on the factor graph. Concretely, it iteratively runs the
following two steps until convergence is reached:

1) from variable to factor:

un→m(xn) =
∏

m′∈M(n)\{m}

vm′→n(xn), (1)

where M(n) denotes the set of factors in which n participates.

2) from factor to variable:

vm→n(xn) =
∑
xm\n

fm(xm)
∏

n′∈N (m)\m

un′→m(x′n)

 , (2)

where N (m) denotes the indices of the variables that the m-th factor depends
on and xm\n denotes the set of variables in xm without xn.

After convergence, the marginal function Zn(xn) can be computed by multi-
plying all incoming messages at each node: Zn(xn) =

∏
m∈M(n) vm→n(xn). The

normalized marginals are given by Pn(xn) = Zn(xn)/Z, where Z =
∑
xn
Zn(xn).

BP is guaranteed to return the correct marginals only if the factor graph is
acyclic. If this is not the case, then the same update rules can still be used in
what is then called loopy BP. This variant might not even converge, but when it
does, it often gives sufficiently precise approximations to the true marginals. The
performance of loopy BP, i.e., the quality of the approximations and converge
properties, is inversely proportional to the length of the loops. Put simply, loops
in the factor graph introduce positive feedback, which can cause overconfidence
in certain beliefs and subsequently even oscillations, especially when determinis-
tic factors are involved. Longer loops are less susceptible to this effect. Note that
there do exist approaches, such as generalized belief propagation [30], aiming at
significantly improving the quality of the marginal probabilities in loopy graphs.
They, however, can come with significantly increased computational runtime.

3.2 Single-Trace Attacks on the NTT

By running a soft-analytical side-channel attack, Primas et al. [23] can recover
the secret NTT inputs after observing just a single trace. Concretely, they recover
the inputs of the inverse NTT in decryption (Algorithm 3), and can then derive
the key s.5 The NTT appears to be a fitting target for SASCA since each stored
intermediate is computed using relatively simple combinations (additions and
subtractions) of just two intermediates of the previous NTT layer.

5 They target the original LPR scheme, which has very similar encryption and de-
cryption routines.
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Fig. 2 demonstrates how one can construct a factor graph for the NTT.
Fig. 2a shows a single butterfly for reference. Note that since such a butterfly
is equivalent to a length-2 NTT, we denote the outputs as x̂0 and x̂1. Fig. 2b
then depicts the corresponding factor graph as constructed by Primas et al.
In this graph, variable nodes and factor nodes are represented by circles and
squares, respectively. The factor nodes can be further split into two groups.
Factor f` models the observed side-channel information, i.e., the outcome of the
template matching. More concretely, we have f`(i) = Pr(x = i|`), where x is the
matched intermediate. Primas et al. perform template matching on the modular
multiplication with ω, which is why they receive information on x1.

The second group of factors, consisting of fadd and fsub, then model the
deterministic relationships between the variable nodes as specified by the NTT.
For, e.g., the addition in the upper branch, we get:

fadd(x0, x1, x̂0) =

{
1 if x0 + x1ω = x̂0 mod q

0 otherwise

Due to the deterministic nature of fadd and fsub, the factor-to-variable update
rule stated in Eq. 2 can be computed in time O(q2) by simply enumerating all q2

possible input combinations. Primas et al. can decrease the runtime to O(q log q)
by using cyclic properties of modular addition and FFTs of length q.
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Fig. 2. Comparison of a single butterfly with possible factor-graph representations

Shortcomings. While Primas et al. demonstrate the possibility of side-channel
attacks on the NTT, their attack falls somewhat short of being fully practical.

They perform template matching on modular multiplications. This requires
constructing templates for all possible combinations of x1 and ω taking q and
n/2 possible values, respectively. For their evaluated parameter set, also featuring
(n = 256, q = 7681), close to a million templates are required. Each template
is constructed using 100 traces, thus summing up to 100 million traces used for
evaluation. They also assume time-invariance of leakage, which allows them to
condense analysis to just that of butterflies without regarding its position in the
trace. We found that this assumption might not always hold (cf. Section 6.2).
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In addition, they attack the variable-time NTT implementation by de Clercq
et al. [13], which makes use of ARMs conditional instructions and variable-time
integer division. Note that the attack as such does not require timing leakage, it
can easily be adapted to constant-time implementations. However, the inclusion
of timing information is beneficial to attack performance. Thus, the applicability
to constant-time implementations is unknown.

Finally, we note that the butterfly factor graph shown in Fig. 2b contains
short loops, which is detrimental to the performance of BP. In fact, due to
the bipartite and singly-connected nature of factor graphs, no shorter loops are
possible in any such graph.

4 Reaching Practical Single-Trace Attacks

We now address these problems and show how single-trace attacks on the NTT
can be made truly practical, even on constant-time implementations. First, in
Section 4.1, we decrease the number of required templates. In combination with
the lack of timing information, the attack now fails. For this reason, we adopt
several improvements to the belief-propagation algorithm for our scenario, as ex-
plained in Section 4.2. Then, in Section 4.3, we explain why attacking encryption
instead of decryption can boost performance even further.

4.1 Decreasing the Number of Templates

Our method to decrease the number of required templates and thus also traces
for template building to a more considerate amount is relatively simple. Instead
of performing a template matching on modular multiplication and constructing
templates for each possible input combination, we target loading/storing of but-
terfly inputs/outputs to and from RAM (cf. Fig. 2c using leakage of just loading
inputs). In addition, we do not construct templates for every single possible
value, but only for Hamming weights. Under ideal circumstances, this limits the
number of templates to just dlog2 qe+ 1 = 14, which, compared to the previous
attack, is a reduction by a factor of over 70 000. Apart from this reduction, (uni-
variate) Hamming-weight templates are also significantly easier to port from one
device to another (compared to multivariate value-based templates).

As it turns out, however, the information loss due to switching to such simpler
templates and additionally losing all timing leakage–we only target constant-
time implementations–is too high. The attack fails, even for the noise-free case.
For this reason, we will now propose improvements to the attack, which allow
successful message recovery for such a more constrained attacker.

4.2 Improving Belief Propagation for the NTT

There already exists a large body of work studying ways to improve the perfor-
mance of belief propagation in cyclic factor graphs. We adopted three concrete
methods for use with the NTT and will now describe them in depth.
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Butterfly factors. The factor graph shown in Fig. 2b contains very short loops,
which, especially in conjunction with deterministic factors, can lead to conver-
gence problems and overall bad performance of loopy BP [27]. Such network
configurations and the resulting problems are however not exclusive to the NTT.
As shown by Storkey [27] and Yedidia [29], similar problems also appear when
applying BP to other FFT-like networks. Storkey analyzes BP in context of ordi-
nary real-valued FFTs, whereas Yedidia focuses on Reed-Solomon codes, which
can be represented by NTTs/FFTs over GF(q).

To increase BP performance, both Stork and Yedidia propose to cluster the
factors belonging to the same butterfly and thereby enforce all of its input/out-
put relations at once. We follow their approach and replace factors fadd, fsub
with a single butterfly factor fbf. As seen in Fig. 2c, this eliminates the loop inside
each butterfly. The full factor graph of the NTT, built by connecting multiple
instances of the butterfly FG (cf. Fig. 1), will still contain loops. These loops,
however, are longer, which will lead to increased performance. Yedidia notes that
this clustering constitutes a simple form of generalized belief propagation [29,30].

Butterfly factors are specified as:

fbf(x0, x1, x̂0, x̂1) =

{
1 if x0 + x1ω = x̂1 mod q and x0 − x1ω = x̂1 mod q

0 otherwise

With the increased accuracy, however, comes also an increase in computa-
tional runtime. By making use of an FFT of length q, the update rules for fadd
and fsub can be evaluated in time O(q log q). This does not carry over to fbf.
Instead, all input combinations need to be enumerated, thereby increasing the
runtime to O(q2).

For typical parameters of lattice-based encryption, with q ≈ 213 − 214 [6,2],
this is still very much practical, as will later be demonstrated. For the moduli
used by lattice-based signatures, e.g., the schemes Dilithium [17] and qTesla [10]
both use q ≈ 223, practicality cannot be claimed anymore. When also considering
that the NTT in, e.g., Dilitihium, consists of 210 butterfly invocations, then it
becomes clear that the previous method with split factors needs to be used there.

Optimized message schedule. Another property that can influence conver-
gence and accuracy in loopy BP is the chosen message schedule, i.e., the order
in which messages are computed and passed between nodes. The most straight-
forward schedule is to update all variable or factor nodes simultaneously. This
approach is followed by Primas et al. [23]. When using the original representa-
tion of Fig. 2b, then completing a loop requires just 2 iterations of evaluating
Equations (1) and (2) (for our proposed representation, this number increases
to 4). It, however, can take up to 2 log2 n iterations for any two nodes in the full
NTT graph to communicate.

This is clearly not ideal, which is why we adopt the schedule also used by
Storkey [27]. That is, we first pass messages from the NTT input to the out-
put (layer by layer), and then back again. This does not affect the number of
iterations required for completing a loop but allows any two nodes in the factor



12 Peter Pessl, Robert Primas

graph to communicate in just a single iteration. This becomes especially ad-
vantageous when changing the target to encryption, which features inputs with
small support.

Message damping. While the above two methods greatly increase accuracy,
convergence is still not guaranteed. For this reason, we finally also adopt message
damping. It aims to dampen oscillations by computing a weighted average of
the new and the previous message. When denoting α as the damping factor and
uprevn→m as the message sent from node to factor in the previous iteration, then
the dampened version of (1) is:

un→m(xn) = α

 ∏
m′∈M(n)\{m}

vm′→n(xn)

 + (1− α)uprevn→m(xn) (3)

For all of our later experiments, we set the damping factor α to 0.9.

4.3 Changing Targets

The decryption process described in Algorithm 3 involves the secret key s and
is thus the obvious first target of a side-channel attack. We now argue that
encryption, while not involving s, can also be a very interesting target and is
significantly easier to attack.

First, encryption only deals with ephemeral secrets. While this means that
the side-channel attack has to be performed for each individual message, the
lack of long-term secrets makes it very tempting to use implementations devot-
ing fewer resources for side-channel protections, or maybe even an unprotected
implementation. We want to prove this intuition wrong.

Second, the Fujisaki-Okamoto CCA2-transform employed by Kyber and many
other lattice-based KEMs requires a re-encryption of the message. The message
is then only released if the recomputed ciphertext matches the received one.
This means that attacks are not restricted to sending devices, but can also be
mounted on the receiving end, i.e., on devices having access to the secret key.

Third, encryption involves an NTT with inputs over a very narrow support:
error polynomials follow a centered binomial distribution over [−η, η], with η = 4
in our analyzed parameter set. The inputs to the inverse NTT in decryption,
however, can be considered uniform in Zq. Information on the narrow support
can easily be integrated into the factor graph; it suffices to apply Bayes’ theorem
to the leakage-likelihood obtained in the input layer and use the result in the
factor nodes f`. The first iteration of our forward-backward message passing
then immediately spreads the information to all later layers and ensures, e.g.,
that in the second layer, only (2η + 1)2 values have a non-zero probability. The
narrow support allows BP to pick the correct value under much more noise, as
we will later demonstrate.

Fourth and finally, we note that key generation (Algorithm 1) also features
an NTT with small inputs, namely that of the private key s. Thus, our attack
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also applies here. This becomes interesting on devices which either use the plain
IND-CPA secure scheme described in Section 2.1 and thus only use ephemeral
keys, or only store the seed σ and regenerate s each time to save space in secure
non-volatile storage.

Attacking encryption. For the actual attack on encryption, we target the
forward NTT of r, found in line 5 of Algorithm 2. We picked this invocation of
the NTT, since all others in Algorithm 2 work on polynomials which are uniform
over Zq. Since r ∈ Rkq is comprised of k polynomials, we have to attack all k
independent invocations of the NTT. Then, we can compute the message m by
using line 7. That is, m = Decode(c2 − tT r) = Decode(e2 + Encode(m)).

5 Evaluation and Additional Scenarios

After having described our attack in depth, we now evaluate it using leakage sim-
ulations and additionally explore more attack scenarios. First, in Section 5.1, we
analyze the improvements proposed for BP in the context of the NTT. Then, we
focus on implementations employing the masking countermeasure in Section 5.2.
In Section 5.3, we finally study the effects of state-of-the-art implementation
techniques.

Leakage simulation. For all our simulations, we make use of the established
Hamming weight with additive Gaussian noise model. Thus, when processing a
value x, we receive simulated leakage ` = HW(x)+N (0, σHW). Here, HW denotes
the Hamming-weight function, and N (0, σHW) describes a random sample from
the normal distribution with zero mean and standard deviation σHW.

For each simulation run, we generate one such sample for each intermediate
state variable. Thus, we have n samples in each layer (including inputs and
outputs), this sums up to n(log2(n) + 1) = 2 304 samples. Note that in practice,
intermediates in inner layers of the NTT would leak twice: once during storing,
once during loading. For the sake of simplicity, we only generate a single sample
here. Finally, we perform a template matching on all generated samples and
retrieve the corresponding conditioned probabilities Pr(X = x|`).

Attack implementation. We implemented our evaluations and attacks, in-
cluding the belief-propagation algorithm, in Matlab. The most time-critical com-
ponent, namely the factor-to-variable update of butterfly factors fbf, was out-
sourced to multi-threaded C++ code. We performed up to 50 full message-passing
iterations but abort as soon as convergence is reached for all variable nodes in
the network. All experiments were run on an Intel Xeon E5-4669 v4 (2.2 GHz).

Evaluation of attack performance is done for varying values of σHW. For each
scenario and analyzed noise level, we performed at least 100 experiments. We
computed the success rate by counting the experiments where belief propagation
correctly classifies all n NTT inputs, i.e., assigns the highest probability to the
correct values.
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5.1 Evaluating Improvements to BP

For our first evaluations, we analyze the effects of the improvements proposed
in Section 4.2: the introduction of butterfly factor nodes, a changed message
schedule, and the use of damping. This evaluation also doubles as a general
analysis of the noise resistance of our attack.

We target a generic constant-time but otherwise unprotected implementation
of the Kyber-NTT. The exact internal operations of this implementation are not
important, at least as long the factor graph model and the actual implementation
are consistent regarding the attacked intermediates. As we target the loads and
stores at the inputs and outputs of butterflies, the exact methods used for, e.g.,
modular multiplication, are mostly irrelevant.

Fig. 3 shows the outcome, for both the original (q = 7681, η = 4) and the
tweaked (q = 3329, η = 2) Kyber parameter sets. Without the improvements,
but still using the same load/store leakage, a success rate of more than 0.9
can be maintained up to and including σHW = 0.9. With our changes, this
threshold is increased to σHW = 1.5. When computing an SNR and thus looking
at the variance σ2

HW, then this difference corresponds to almost a tripling of the
acceptable noise level. The smaller values used by the new parameter set lead
to a slight improvement in the success rate.

0 0.5 1 1.5 2 2.5
0

0.5

1

Fig. 3. Comparison of the attack success rate, with and without the optimizations
proposed in Section 4.2. The improved version was evaluated for both the original
(q = 7681) and tweaked (q = 3329) parameter sets.

On a single core of our system, the runtime of a full forward-backward it-
eration of belief propagation using q = 7681 is roughly 2 minutes. In low-noise
cases, 2 such iterations are already sufficient. For σHW = 1.5, the average number
of iterations (for convergent experiments) rises to 9. For this noise level, all failed
experiments correspond to non-convergence of BP.

5.2 The Case of Masking

As noted in Section 2.3, masking the NTT is straightforward. So is, at least
in theory, the adaptation of a single-trace attack to the masked case. One can
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simply recover each share individually and add them up to receive the unmasked
input. This approach is used by Primas et al. [23]. In their evaluations, masking
alone does not significantly decrease the attack success rate. In our scenario, this
is no longer the case. We specifically target the NTT of r due to the small input
coefficients. When using masking, this advantage is lost, as all input coefficients
become uniformly distributed over Zq.

We reintroduce the information on the narrow support as follows. Instead
of running belief propagation on two factor graphs corresponding to the two
shares individually, we adjoin graphs at the input layer using factor nodes fbino.
These nodes ensure that the sum of the two inputs is consistent with the cen-
tered binomial distribution over [−η, η]. When using Bη to denote the density of
said distribution, and x′, x′′ as the two shares of the input, then we can write
fbino(x′, x′′) = Bη(x′ + x′′ mod q).

Fig. 4 shows the simulation results. Running BP on the shares independently
does not yield satisfactory results, even for perfect Hamming-weight leakage. The
introduction of fbino brings the success rate close to 1, at least when σHW ≤ 0.3.
While this is a drastic reduction compared to the unprotected case, it at least
allows attacks in low noise scenarios. Here, also note that our attacker only uses
Hamming-weight templates. A more powerful adversary might attack masked
implementations even in high-noise settings.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Fig. 4. Success rate of our attack on a masked implementation, both using independent
factor graphs and joined graphs

5.3 The Case of Lazy Reductions

Up until now, we analyzed a relatively generic implementation of the NTT.
There, operands are always in the range [0, q − 1]. As mentioned in Section 2.2,
this is not true for many recent implementations. They make use of constant-
time variants of the Montgomery and Barret reduction, both of which do not
necessarily reduce operands down to the base range. Instead, they reduce to
a representative (of the equivalence class) only guaranteed to be smaller than,
e.g., 216. Also, reductions after, e.g., additions, can be skipped for performance
improvements (lazy reduction).
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Such an implementation could, at least theoretically, be attacked using the
same factor-graph representation. After performing the template matching on
the now larger range of possible values, one could compute the probability of
each equivalence class by summing up the probability of each possible represen-
tative. Due to just using Hamming-weight leakages, we do not think that such
an approach is fruitful.

Instead, we modify the graph to directly model the changed operations. Con-
cretely, we target the assembly-optimized ARM Cortex M4 implementation of
Kyber provided by the PQM4 library [15].6 It uses Montgomery reductions after
modular multiplications and Barret reductions after additions and subtractions.
Reductions after additions are skipped in each other layer. We integrate all that
in the butterfly factors. When denoting MRed and BRed as the used reduction
routines, and looking at a layer where no reduction is skipped, then we have

fbf(x0, x1, x̂0, x̂1) =

1 if BRed(x0 + MRed(x1ω)) = x̂0 and
BRed(x0 + 4q −MRed(x1ω)) = x̂1

0 otherwise

The results of the simulations using this model are shown in Fig. 5. The
analyzed implementation only supports the original parameter set with q =
7681, which is why we limit analysis to this scenario. Note, however, that our
earlier results indicate better attack performance for the tweaked parameter set.
Compared to our earlier results, the 90% success-rate threshold is now decreased
to σHW = 1.3. As an effect of the larger input ranges, the single-core runtime of
a full iteration increases to approximately 8 minutes.

0 0.5 1 1.5 2
0

0.5

1

Fig. 5. Success rate of our attack when modeling constant-time and lazy reductions

6 Attacking a Real Device

The previous section already analyzed an optimized microcontroller implemen-
tation, but still resorts to leakage simulations. We now show that our attack
carries over to an actual device.
6 Shortly after the initial publication of this paper, the Kyber implementa-

tion in PQM4 was updated. For reference, we used the version found at
https://github.com/mupq/pqm4/releases/tag/Round1.

https://github.com/mupq/pqm4/releases/tag/Round1
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6.1 Measurement Setup

The ARM Cortex M4 appears to be the standard target for embedded software
implementations of post-quantum cryptography [5]. For this reason, we also per-
formed our side-channel analysis on such a device. More concretely, we performed
power measurements of an STM32F405 microcontroller atop the STM32F4 tar-
get for the ChipWhisperer UFO board [20]. The power consumption was mea-
sured using an AD8129A differential amplifier across an onboard shunt resistor.
The 8 MHz device clock was externally generated using a function generator.
This was done to simplify synchronization across traces.

This device then ran the optimized Kyber implementation of the PQM4
library [15], which we already targeted in the previous section. More correctly,
we only run the forward NTT of error polynomials. Each trace captures an
entire NTT execution; we used a dedicated trigger pin to signal the start and
end of this operation. We recorded 2 000 traces and then split this set into 1 900
templating traces and 100 attack traces. Note that, while both sets of traces
were recorded on the same device, the use of simple univariate Hamming-weight
templates makes porting of templates to similar but different devices much more
realistic compared to the previous attack.

6.2 Trace Analysis and Attack

As we want to demonstrate practicality, we keep the trace analysis relatively
simple by using univariate Hamming-weight templates. For determining the po-
sition of leaking operations, we run a correlation analysis along the entire length
of the traces, for each of the 2 304 attacked intermediates. The single position of
the highest peak (in absolute value) was then selected as point of interest.

The switch to Hamming-weight templates would ideally allow a reduction
to just 14 templates. However, we found that the power leakage does show a
certain degree of time dependence. Even after basic trace normalization, such as
point-wise subtraction of the mean and normalization to a standard deviation
of 1, the same operation showed slightly different behavior when executed at a
different point in time. We suspect the different flow of instructions preceding
our attacked operations, alongside the low-pass behavior of the power network,
to be the cause.

Construction of templates for each position is still not required, as we follow
an intermediate approach. We build two sets of templates for each NTT layer.
The first set targets the upper branch in all butterflies of the respective layer,
the second set targets the lower branch (cf. Fig. 2a). Each template is thus used
n/2 = 128 times. As not all Hamming weights are possible in all layers, one has
to build a total of 213 templates.

After matching these templates on an attacked trace, we use the factor-
graph representation already established in Section 5.3. Out of our 100 performed
experiments, 83 yield the correct NTT input. Since we need to attack k = 3
independent NTTs, the total success rate can be estimated to be 0.833 ≈ 0.57.
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6.3 Increasing the Success Rate

The stated success rate can be improved by making use of lattice-reduction
techniques. Previously, we defined an attack to be successful if all n NTT inputs
are correctly recovered. For the full Kyber scheme, one needs to accomplish this
k times to recover all nk coefficients of r.

One can, however, also recover the message when only using the nk − l
most probable coefficients, for some small l. That is, one only picks the nk − l
coefficients where the final probability of the most likely value is closest to 1.
These values are then plugged into the equation c1 := AT r + e1, the remaining
l coefficients can then be recovered using lattice-reduction techniques. Such an
approach was also used by Primas et al. [23], which is why we do not give further
details here.

When using l = 120, a conversion to unique-SVP [1], and the BKZ lattice-
reduction algorithm with block size 25, then the unknown coefficients can be
recovered in approximately 5− 10 minutes. When picking k = 3 out of the 100
real experiments at random, then the success rate is increased to 0.95 when using
this approach with the stated parameters.

7 Countermeasures

In the previous sections, we established that single-trace attacks on the NTT
can be made truly practical. Several improvements to the underlying use of
belief propagation in conjunction with the exploitation of small coefficients allow
attacks even with simple Hamming-weight templates. This clearly shows that
countermeasures are needed even for encryption where no long-term secrets are
involved. We now discuss some possible options.

Masking. Masking is firstly a DPA countermeasure, but in our scenario also
somewhat counteracts single-trace attacks. They are still possible, as shown in
Section 5.2, but the acceptable noise level is drastically decreased. Nonetheless,
further countermeasures are likely needed to protect against more sophisticated
attackers.

Blinding. Saarinen [26] and Oder et al. [22] make use of a blinding tech-
nique, which can be seen as a simple form of masking. They blind the two
to-be-multiplied polynomials by first multiplying them with two random scalars
(a, b) ∈ Zq. The product is then unblinded via a multiplication with (ab)−1 mod q.
Note that this scalar blinding does keep the narrow support of, e.g., r, intact.
The concrete values of the support are however changed. Such a countermea-
sure might not be able to prevent attacks. First, one can mount a horizontal
side-channel template attack, e.g., on all n multiplications with a, to recover the
fixed blinding value. Second, one can model the blinding value as an additional
variable node in the factor graph and let belief propagation recover its value.
We do not further study these scenarios here.
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Shuffling. Similar to other algebraic side-channel attacks, shuffling is probably
a very effective countermeasure. By randomizing the order of executed opera-
tions within each NTT layer, the leakage points cannot be trivially assigned to
the correct variable nodes anymore. Note that shuffling linear operations, such
as pointwise multiplications, was proposed by Oder et al. [22], but does not af-
fect an attack on the NTT. We leave an analysis of the required granularity of
shuffling and the overall cost of this countermeasure for future work.
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