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Abstract. RISC-V is a promising free and open-source instruction set
architecture. Most of the instruction set has been standardized and several
hardware implementations are commercially available. In this paper we
highlight features of RISC-V that are interesting for optimizing imple-
mentations of cryptographic primitives. We provide the first optimized
assembly implementations of table-based AES, bitsliced AES, ChaCha,
and the Keccak-f [1600] permutation for the RV32I instruction set. With
respect to public-key cryptography, we study the performance of arbitrary-
precision integer arithmetic without a carry flag. We then estimate the
improvement that can be gained by several RISC-V extensions. These
performance studies also serve to aid design choices for future RISC-V
extensions and implementations.
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1 Introduction

The RISC-V project started out in 2010 as a research project at the University of
California, Berkeley. The goal was to design an open-source reduced instruction set
that was free and practical to use by academics and industry. Today, it comprises
a foundation1 with well over two hundred member organizations, including major
industry partners such as Google, Qualcomm, and Samsung. The fact that many
large companies are joining this efforts indicates that RISC-V might await a
bright future. In particular, no longer having to pay any license fees makes it an
attractive alternative and a serious competitor to ARM microcontrollers.

Together, the foundation’s members developed a specification for the RISC-
V instruction set architecture [RIS17]. RISC-V targets both embedded 32-bit
devices and larger 64-bit and even 128-bit devices. While some parts of the
specification are still in development, the most important parts have been frozen
such that hardware and software could be implemented. Compilers, debuggers,
and software libraries with RISC-V support have been around for several years2.

1 https://riscv.org/
2 https://riscv.org/software-status

https://riscv.org/
https://riscv.org/software-status
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Commercial boards with fully functional RISC-V SoCs have been available for
sale since 20163.

There exist several open-source RISC-V CPU designs designed to be easily
extensible. This makes the platform an ideal candidate for software-hardware
co-design, as was exemplified by a recent implementation of the hash-based
signature scheme XMSS [WJW+18]. The underlying hash-function, SHA-256,
was implemented in hardware to increase the performance of the full signature
scheme. However, it is not always possible to ‘simply’ add a hardware co-processor
of a required cryptographic primitive. In practice, one may have to deal with
whatever hardware is available or a developer might lack the capabilities to modify
a hardware implementation. More importantly, adding a co-processor to an ASIC
will most likely increase the production cost of that chip. In order to make any
trade-off decision for software-hardware co-design meaningful, some numbers
need to exist to have an idea about the cost of software implementations. To the
best of our knowledge, we are the first to provide such numbers for cryptographic
primitives.

We explain how AES-128, ChaCha20, and Keccak-f [1600] can be implemented
efficiently on RISC-V and we optimize 32-bit RISC-V assembly implementations.
We also study the speed of arbitrary-precision addition, schoolbook multiplica-
tion, and Karatsuba multiplication for unique and redundant or reduced-radix
integer representations. We then draw a parallel to the ARM Cortex-M line of
microcontrollers and we show how architectural features such as the availability
of native rotation instructions, a carry flag, and the number of available registers
impact the performance of these primitives. We continue by estimating what the
performance would be if a RISC-V core were to be extended with these features.

In Section 2 we first explain details about the RISC-V instruction set and
our benchmarking platform. Sections 3, 4, and 5 cover implementation strategies
that are specific to AES, ChaCha, and Keccak, respectively. Arbitrary-precision
integer arithmetic is discussed in Section 6. Finally, in Section 7 we compare the
relative performance of cryptographic primitives to that on the ARM Cortex-M4
and estimate what the performance would be with RISC-V extensions for several
architectural features.

Our software implementations are open-source and placed into the public
domain. They are available at https://github.com/Ko-/riscvcrypto.

2 The RISC-V Architecture

The RISC-V instruction set architecture (ISA) specification is split into a user-
level ISA and a privileged ISA. The privileged ISA specifies instructions and
registers that are useful when creating, for example, operating systems, but for
our purpose we only need to consider the user-level ISA. The user-level ISA is
divided in a base ISA and in several standardized extensions that are discussed in
Section 2.2. At the time of writing, the base ISAs for 32-bit and 64-bit machines,

3 https://www.sifive.com/boards/hifive1
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called RV32I and RV64I respectively, have been frozen at version 2.0. A base ISA
for 128-bit machines (RV128I) and a smaller 32-bit variant with fewer registers
(RV32E) still have draft status. In this work we focus on the 32-bit RV32I
instruction set.

2.1 The RV32I Base Instruction Set

RV32I specifies 32 32-bit registers named x0 to x31. However, not all of them
can be used freely. The registers have aliases that makes their purpose more clear.
For example, x0 is also known as zero: writes to it are ignored and it always
reads as the value 0. The others are: ra (return address, x1), sp (stack pointer,
x2), gp (global pointer, x3), tp (thread pointer, x4), a0-a7 (function arguments
and return value), s0-s11 (saved registers), and t0-t6 (temporary registers).
That means that 27 registers can be used without complications and maybe a
few more depending on the environment. Only sp and s0-s11 are callee-saved.

As a true RISC, the number of available instructions is fairly limited. We
therefore include a concise but complete overview in this section. All instructions
are described in more detail in the official specification [RIS17].

Arithmetic and bitwise instructions have three register operands, or two
register operands and a sign-extended 12-bit immediate, denoted by the I suffix.
The following self-explanatory instructions are available: ADD, ADDI, SUB, AND,
ANDI, OR, ORI, XOR, and XORI. There is no SUBI, because that is just an ADDI
with a negative immediate. Similarly, there is no real NOT instruction, because
it can be implemented with XORI and −1 as immediate. NOT is recognized as a
pseudo-instruction by assemblers.

Regarding shifts, the following instructions exist: SLL, SLLI, SRL, SRLI, SRA,
and SRAI. These naming convention that is used here is Shift (Left or Right)
(Logical or Arithmetic) (Immediate). Note that the base ISA does not specify a
rotation instruction.

To load a value from memory, LW, LH, LHU, LB, and LBU can be used. The W
stands for word (32 bits), the H for half-word (16 bits), and the B for byte (8
bits). With LH and LB, the value is assumed to be signed and will therefore be
sign-extended to a 32-bit register. LHU and LBU are their unsigned counterparts
that perform zero-extension instead of sign-extension. To store a register value to
memory, one can use SW, SH, and SB. For all load and store instructions, the base
address needs to be in a register. An immediate offset can be specified in the
instruction. For example, LW a1, 4(a0) loads a word from a0+4 in a1. It is not
possible to specify the offset in a register or to automatically increment/decrement
the address.

The JAL and JALR instructions specify unconditional jumps. The target address
can be specified relative to the program counter (JAL) or as an absolute address in
a register (JALR). On the other hand, BEQ, BNE, BLT, BLTU, BGE, and BGEU denote
conditional jumps based on a comparison. Their first two operands are registers
of which the values are compared. The U suffix denotes that the operands are
interpreted as unsigned values for the comparison. The third operand specifies
the destination address relative to the program counter.
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It is also possible to compare without branching. The SLT, SLTU, SLTI, and
SLTIU instructions set a destination register to one if the second operand (a
register) is less than (signed or unsigned) the third operand (either a register or
an immediate). Otherwise, the destination register is set to zero.

The LUI (load upper immediate) and AUIPC (add upper immediate to program
counter) instructions can be used to set values larger than 12 bits in a register.

Finally, for the sake of completeness, there are specialized instructions to
deal with synchronization (FENCE and FENCE.I), to deal with control and status
registers (6 CSR* variants), to call an operating system (ECALL) and to signal
debuggers (EBREAK). We will not use them, except for reading a cycle counter.

2.2 Standardized Extensions

A RISC-V core has to implement a base ISA, and optionally it can implement
one or several standardized extensions to the instruction set. Most extensions
are denoted by a single letter. The extensions with a frozen specification are M
(with instructions for integer multiplication/division), A (atomic instructions),
F (single-precision floating point), D (double-precision floating point), Q (quad-
precision floating point), and C (compressed instructions).

Other extensions, such as those for bit manipulation, vector instructions, and
user-level interrupts still have draft status. To the best of our knowledge the
extensions in draft status have not yet been implemented by any commercially
available core4.

2.3 Benchmarking Platform

We use a HiFive1 development board as our benchmarking platform, as they are
relatively easily available. This contains the FE310-G000 SoC [SiF17] with an E31
core [SiF18]. The core implements the RV32IMAC instruction set, i.e., the RV32I
base ISA with the extensions for multiplication/division, atomic instructions,
and compressed instructions. Of these, only the M extension is relevant to us.

The RISC-V specification does not specify how long instructions take to
execute or what kinds of memory are available. This is left open to the hardware
core implementer. Benchmarks across different RISC-V cores therefore need to
be compared with caution. To provide more insight, we briefly describe some
characteristics of this particular RISC-V core.

The E31 is designed as a 5-stage single-issue in-order pipelined CPU that
runs at 320+ MHz, although the PLL clock generator has an output of at most
384 MHz. The core has support for up to 64 KiB of DTIM memory that is used
as RAM, but the HiFive1 only has 16 KiB. Outside of the core, there is another
16 MB of QSPI flash memory. To accelerate instruction fetches from the flash
memory, the E31 comes with 16 KiB of 2-way instruction cache.

Most instructions have a result latency of a single cycle. There are a few
exceptions. For example, word-loads have a result latency of 2 cycles with a cache
4 https://riscv.org/risc-v-cores

https://riscv.org/risc-v-cores


Efficient Cryptography on the RISC-V Architecture 5

hit. With a cache miss, it highly depends on the relative clock frequency of the
flash controller compared to the core. Half-word-loads and byte-loads have a
result latency of 3 cycles in the event of a cache hit. Misaligned DTIM accesses
are not allowed and result in a trap signal.

The E31 has an elaborate branch predictor, consisting of a branch target
buffer, a branch history buffer, and a return address stack. Correctly predicted
branches should suffer no penalty, while wrong guesses receive a penalty of 3
cycles.

The RISC-V specification describes a 64-bit increasing cycle counter that is
accessible through two CSR registers. This can be used for accurate benchmarking
of code. We aim to unroll the code as much as possible as long as the code still
fits in the instruction cache. Tables and constants are stored in the DTIM
memory. This way, we manage to get very consistent measurements. Occasionally,
a measurement ends up taking much longer than expected. These outliers are
ignored.

3 AES

32-bit software implementations of AES usually fall into two categories, depend-
ing on whether it it safe to use table lookups or not. The fastest encryption
implementations for a single block use the idea that the various steps of the round
function can be combined in large lookup tables, usually called T -tables [DR02].
However, this type of implementation is known to be vulnerable to cache-based
timing attacks [Ber05a,OST06]. A CPU cache can leak information about which
memory address has been accessed during a computation. When this memory
address depends on a secret intermediate value as is the case with the T -table
approach, it can be used to extract secret information.

When multiple blocks can be processed in parallel (e.g., in CTR or GCM
mode) and the CPU registers are large enough to accommodate multiple blocks,
bitsliced implementations can be more efficient [KS09,Kön08]. This type of
AES implementation has the additional advantage that lookup tables are easily
avoidable, allowing a careful implementer to make it resistant against timing
attacks.

Our particular benchmarking platform does not have a data cache. Therefore,
it should be safe to use a table-based AES implementation on this device.
However, this might not be the case on other RISC-V platforms. Table-based
implementations might also demand an unreasonable amount of memory on small
embedded RISC-V-based devices. This is why we treat both implementation
categories.

3.1 Table-based Implementations

At Indocrypt 2008, Bernstein and Schwabe explained how to optimize table-based
AES implementations for a variety of CPU architectures [BS08]. They describe a
baseline of 16 shift instructions, 16 mask instructions, 16 load instructions for



6 Ko Stoffelen

table lookups, 4 load instructions for round keys, and 16 xor instructions per AES
round, plus 16 additional mask instructions in the last round and 4 additional
round-key loads and 4 xor instructions for the initial AddRoundKey. This baseline
excludes the cost of loading the input into registers, writing the output back to
memory, and some overhead such as setting the address of the lookup table in a
register and storing callee-save registers on the stack when necessary. They then
continue by listing various architecture-dependent optimizations.

On RISC-V, very few of these techniques are possible, which is no surprise
given that the instruction set is intentionally kept very simple. The LBU byte
load instruction allows to save 4 mask instructions in the final round. On the
other hand, the baseline count assumes that it is possible to load from an address
specified by a base value in one register and an offset in another register. While
this holds for many architectures, it is not true for RISC-V. Instead, the full
address needs to be explicitly computed each time. This means that we require
16 extra ADD instructions per round.

With round-key recomputation, only 14 round-key words have to be stored
and loaded instead of 44. This saves 30 SW instructions in the key expansion, but
more importantly, it allows to swap 30 LW instructions for 30 XOR instructions at
the cost of using 4 extra registers of which their values need to be saved on the
stack. We expected this to improve performance for encryption on our platform.
However, it turned out that this was not the case so we did not employ this
technique.

There is more that can be done with the free registers that are available.
Some of the round keys could also be cached in registers such that they do not
have to be loaded for every block when encrypting multiple blocks. However, to
keep the implementation as versatile as possible, we decided not to do this and
to encrypt just a single block. This makes it possible to straightforwardly build
any mode around it.

Result. We implemented and optimized the AES-128 key expansion and encryp-
tion algorithms. Both use the same 4 KiB lookup table. Key expansion finishes in
340 cycles and requires no stack memory. Encryption of a single 16-byte block is
performed in 912 clock cycles. This uses 24 bytes on the stack to store callee-save
registers.

3.2 Bitsliced Implementations

With bitsliced AES implementations, the internal parallelism in the SubBytes
step usually means that the AES state is represented in such a way that a register
is made to contain the ith bit of every byte of the state. This means that 8
registers are needed to represent the AES state, but then only 16 bits in the
register are used, which is suboptimal. However, when multiple AES blocks can
be processed in parallel, they can be stored in the same registers in order to
process them simultaneously. Especially when the registers are large, this yields
very high throughputs [KS09].
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We implement an optimized bitsliced implementation of AES-128 in CTR
mode. With 32-bit registers, only 2 blocks can be processed in parallel. The
implementation is inspired by an earlier implementation optimized for the ARM
Cortex-M4 architecture [SS16].

For the most expensive operation, SubBytes, we use the smallest known
circuit by Boyar and Peralta of 113 gates [BP10]. On the Cortex-M4, this could
not be implemented directly because there were not enough registers available.
With RV32I, carefully rearranging the instructions permits not having to spill
any intermediate value to the stack. We can therefore implement SubBytes in
exactly 113 single-cycle bitwise instructions.

ShiftRows with a ‘regular’ state representation uses rotations over the full
rows of the AES state that are stored in registers. The equivalent for the bitsliced
state representation requires to do rotations within a byte of a register, which is
trickier to implement. The RV32I base ISA does not offer convenient instructions
to do this or to extract bits from a register. It therefore has to be implemented
by simply masking out a group of bits, shifting them to their correct position
and inserting them in a result register. This takes 6 OR instructions, 7 AND(I)
instructions and 6 shift instructions per state register. There are 8 state register,
so this has to be done 8 times for one AES round.

On the Cortex-M4, MixColumns could be implemented with just 27 xor
instructions, heavily using the fact that one operand could be rotated for free.
RISC-V, however, does not have a native rotation instruction in the base ISA
at all. Therefore the rotation has to be implemented with two shifts and an
OR instruction. We study the impact of rotation instructions in more detail in
Section 7.2. In total, our MixColumns implementation uses 27 XOR instructions
and 16 rotations.

The other parts of the implementation are straightforward or are very similar
to the Cortex-M implementation [SS16].

Result. Key expansion and conversion of all round keys to the bitsliced format
takes 1239 clock cycles and 16 stack bytes. For benchmarking encryption, we
selected a fixed plaintext size of 4096 bytes. This can be encrypted or decrypted
with AES-128-CTR in 509622 cycles, or at 124.4 cycles per byte. 60 stack bytes
are used to store callee-save registers and copies of a few other values.

4 ChaCha

ChaCha is a family of stream ciphers based on Salsa20 [Ber08]. It is known for
its high speed in software and together with a message authentication code called
Poly1305 it is used in TLS and OpenSSH [Ber05b,LCM+16,NL18].

ChaCha starts by loading constants, a 256-bit key, a 96-bit nonce, and a
32-bit counter into a 512-bit state. With RV32I, there are enough registers to
keep the full state in registers during the whole computation. ChaCha20 is the
most commonly used ChaCha variant that performs 20 rounds. Every round
contains 4 quarter-rounds and every quarter-round consist of 4 additions, 4 xors,
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and 4 rotations. Because the RV32I base ISA lacks rotation instructions, every
rotation has to be replaced by 2 shift instructions and an OR instruction. In total
we require 20 single-cycle instructions to implement the ChaCha quarter-round.

The other parts are straightforward. As long as the input to the stream cipher
is longer than 64 bytes, we generate the key-stream and xor it with the input
in blocks of 64 bytes. If the input length is not divisible by 64 bytes, there will
be some bytes remaining that still need to be encrypted. For those, another 64
bytes of key-stream is generated. These are xored with the input first per word
(4 bytes) and finally per byte.

4.1 Result

Our implementation of the complete Chacha20 stream cipher requires 32 bytes
in the DTIM memory to store constants and another 40 bytes on the stack to
store callee-save registers. We benchmark speed with the same fixed input size of
4096 bytes as we used for the bitsliced AES-128-CTR implementation. This can
be encrypted or decrypted in 114365 clock cycles, or at 27.9 cycles per byte.

5 Keccak

The Keccak-f family of permutations was designed in the course of the SHA-3
competition [BDPA08]. The Keccak-f [1600] instance is now at the core of the
SHA-3 hash functions and the SHAKE extendable output functions standardized
by NIST [NIS15]. It it also used in various other cryptographic functions. An
optimized implementation of the Keccak-f [1600] permutation therefore benefits
all those schemes. In the Keccak implementation overview a number of imple-
mentation techniques are discussed, including those relevant to 32-bit software
implementations [BDP+12].

5.1 Efficient Scheduling

The permutation operates on a relatively large state of 1600 bits. Having the
RV32I architecture in mind, this state is clearly too large to be able to contain
the full state in registers. It is therefore required to swap parts between memory
and registers during the computation. Loads from memory and stores to memory
are relatively expensive, so for an efficient implementation it is important to keep
the number of loads and stores at a manageable level.

The permutation iterates a round function consisting of the steps θ, ρ, π, χ,
and ι. The first four steps each process the full state. Computing them one by one
would therefore use many loads and stores. The designers described a technique
to merge the computation of these steps such that only two passes over the full
state are required per round. This is explained in detail in the implementation
overview document [BDP+12]. We follow the same approach for our RISC-V
implementation.
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5.2 Bit Interleaving

The state is structured as 5× 5 64-bit lanes. On a 32-bit architecture, one could
simply split the lanes into two halves that are stored in separate registers, but
it is more efficient to interleave the bits. The bits with an ‘even’ index are then
stored in one register and those with an ‘odd’ index in another. The lane-wise
translations in θ and in ρ then become 32-bit rotations. It has been mentioned
before that the RV32I base ISA does not contain rotation instructions.

In fact, with both approaches a lane-wise translation costs 6 single-cycle
instructions. The difference is that with the interleaved representation, for trans-
lation offsets of 1 or -1 only a single register has to be rotated. Those then only
cost 3 single-cycle instructions. Because this is the case for 6 out of 29 lane
translations per round, bit interleaving still provides a nice improvement.

5.3 Lane Complementing

The χ step computes 5 XOR, 5 AND, and 5 NOT (64-bit) operations on the
lanes of every plane of the state. There are 5 such planes and we only have
32-bit instructions, so in total χ requires 50 XOR instructions, 50 AND instructions,
and 50 XORI instructions with −1 as immediate per round. The number of
XORI instructions can be reduced to 10 by representing certain lanes by their
complement and by changing some AND instructions into OR instructions. This
comes at the cost of applying a mask at the beginning and at the output of
Keccak-f . This technique is also described in more detail in the implementation
overview document [BDP+12]. This is a useful technique on the RISC-V, because
there is no instruction that combines an AND with a NOT of one of its operands,
as is the case on some other architectures.

5.4 Result

Our RISC-V implementation is inspired by the fastest Cortex-M3/M4 imple-
mentation known to us, which is the KeccakP-1600-inplace-32bi-armv7m-le
implementation in the eXtended Keccak Code Package5. The main differences
are that we add lane complementing and that we keep more variables in registers
instead of having to store them on the stack.

Memory-wise our implementation requires 192 bytes in the DTIM memory
for the round constants and 20 bytes on the stack. To benchmark speed, we
measure a single execution of the permutation from the instruction cache. This
takes 13774 clock cyles, or 68.9 cycles per byte.

6 Arbitrary-Precision Arithmetic

Arbitrary-precision arithmetic on integers, also called big-integer arithmetic, is a
core component of public-key cryptographic systems such as RSA and elliptic-
curve cryptography. We consider addition and two multiplication algorithms,
5 https://github.com/XKCP/XKCP

https://github.com/XKCP/XKCP
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schoolbook and Karatsuba multiplication. The multiplication algorithms make
heavy use of the RISC-V M extension. This provides a 32× 32-bit multiplier and
the MUL and MULHU instructions, among some others that we will not use. MUL
gives the lower 32 bits of the 64-bit multiplication result, MULHU the higher 32
bits, interpreting its operands both as unsigned values. On the E31, they each
have a result latency of 2 clock cycles.

6.1 Carries and Reduced-Radix Representations

An arbitrarily large integer is usually represented as a vector of CPU words. The
part of the integer that fits in a single CPU word is called a limb. Arithmetic
on arbitrary-precision integers then translates to an algorithm that performs
arithmetic with the limbs, as those are the only units that a CPU can work with.

The addition of two limbs may result in an overflow. On most CPU archi-
tectures, whether an overflow occurred is stored in a carry flag. This can then
subsequently be used in an add-with-carry operation.

RISC-V, however, does not specify the existence of a carry flag. Instead, the
carry needs to be explicitly computed every time. The SLTU instruction (set less
than unsigned) is very useful for this. Let r = a+b, where r, a, and b are unsigned
32-bit values. Then the addition produces a carry c whenever r < a (or r < b).
In assembly, this can be implemented with ADD r, a, b; SLTU c, r, a.

This explicit carry handling can be the cause of a significant overhead. One
way to avoid this is by guaranteeing that a carry will not occur. This is possible
by using a reduced-radix representation, also known as a redundant integer
representation. Instead of the full 32 bits, one can use the least significant k bits
of every limb, such that the most significant 32 − k bits are zero at the start.
This radix-2k representation requires more limbs to store an integer of the same
bit length, but the advantage is that one can do one or even many additions
without producing a carry. The carries are accumulated in the most significant
32− k bits of the same limb. Only in the end they may need to be added to the
next limb to get back to a unique integer representation.

What is more efficient is highly application-dependent, as that determines how
many and which operations are computed on the integers. We aim to keep this
generic by studying the performance of both types of addition and multiplication
algorithms for an arbitrary number of limbs, without specifying a precise radix.

6.2 Addition

Arbitrary-precision addition is a simple operation that consists of a carry chain for
full-limb (radix-232) integer representations. The operands are added limb-wise,
where every such addition may result in an overflow that has to be carried to the
next limb.

Figure 1 shows how both reduced and full representations compare. It ap-
pears that carry handling is a significant part of the computational effort. A
reduced-radix representation is approximately 37% faster than a non-redundant
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representation. However, one should note that with a reduced-radix represen-
tation, more limbs will be required. For example, it is fairer to compare the
reduced-radix representation with 12 limbs to the full-radix representation with
10 limbs, when only 27 bits are used in every limb, i.e., in radix 227. The cost of
carrying at the end to get back to a unique representation also needs to be taken
into account.

Still, it appears that reduced-radix representations can be beneficial when
multiple additions have to be computed.

Figure 1 also shows the estimated cost of full-limb addition if there were a
carry flag and add-with-carry operation. This is discussed in Section 7.4.

Fig. 1. Performance of arbitrary-precision addition.
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6.3 Schoolbook Multiplication

Many algorithms exist to implement arbitrary-precision multiplication. One
of the simplest ones is called schoolbook multiplication. With the schoolbook
multiplication method multiplying two n-limb integers takes n2 single-limb (in
our case: 32× 32-bit) multiplications.

A non-reduced representation still has to perform some carry handling, but
the cost of this is much less significant with multiplication compared to addition,
as can be seen in Figure 2. Schoolbook multiplication with reduced-radix repre-
sentations is only 8% faster than multiplication with non-reduced representations.
And because more limbs will be required, there is actually very little advantage
to using a reduced-radix representation.

This can be explained by the fact that the LW, SW, MUL, and MULHU instructions
take more CPU cycles compared to the simpler bitwise and arithmetic instructions.
A reduced-radix representation does not avoid this more significant part of the
cost of the inner loop of the algorithm.
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6.4 Karatsuba Multiplication

The Karatsuba algorithm was the first multiplication algorithm that was discov-
ered that has a lower asymptotic time complexity than O(n2) [KO63]. Instead, it
can recursively multiply arbitrary-precision integers in O(nlog2 3). It succeeds in
this by effectively trading an n-limb multiplication for 3 n

2 -limb multiplications
and several additions.

The details of the Karatsuba multiplication algorithm have been exten-
sively covered in other works. It is used in many implementations of crypto-
graphic schemes, most notably for RSA [SV93] and elliptic-curve cryptogra-
phy [BCL14,DHH+15,FA17], but also for more recent lattice-based [KRS19] and
isogeny-based [SLLH18] post-quantum cryptography.

We implement a single level of subtractive Karatsuba that multiplies two
equal-length operands with an even number of limbs. This restriction is only there
to simplify the performance analysis by being able to omit a few implementation
details for dealing with special cases. The case of equal-length operands with an
even number of limbs is also in fact the most common scenario in cryptography,
which is why it is not even necessarily a relevant restriction.

Figure 2 shows that even for a very small number of limbs, the Karatsuba
multiplication algorithm is already faster than schoolbook multiplication. This is
not obvious, as the cost of the extra additions and constants in the complexity
typically imply a certain threshold where Karatsuba starts to perform better.

The gap between reduced-radix representations and non-reduced or full-limb
representations is slightly larger than with schoolbook multiplication, which can
be partially explained by the extra additions that need to be computed. Its
difference is now approximately 21%. Whether this suffices to make a reduced-
radix representation more efficient in practice is hard to conclude from this data.
It will depend on the specific application.

Fig. 2. Performance of arbitrary-precision multiplication.
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7 Extending RISC-V and Discussion

7.1 Speed Comparison with ARM Cortex-M4

The RISC-V platform that we used has similarities with the ARM Cortex-M
family of microcontrollers. Both have 32-bit architectures and are designed for
cheap embedded applications. The main difference is that ARM microcontrollers
have a richer (proprietary) instruction set. For example, rotations are first-
class citizens in the ARMv7-M instruction set and can even be combined with
arithmetic instructions in a single CPU cycle. The architecture also provides nicer
bit-extraction instructions, a carry flag and a single-cycle add-with-carry. On the
other hand, RV32I comes with more registers, which may benefit cryptographic
primitives that have a larger state. This can save a lot of overhead of having to
spill values to the stack.

At first sight, it is unclear which weighs more heavily. We therefore compare
the relative performance of our optimized cryptographic primitives with their
counterpart on the Cortex-M4. There already exist AES, ChaCha20, and Keccak-
f [1600] assembly implementations optimized for that platform.

Table 1. Comparison between the E31 (RV32IMAC) and the Cortex-M4.

Scheme Cortex-M4 E31/RV32IMAC

Cycles Cycles/byte Cycles Cycles/byte

Table AES-128 key schedule 254.9 [SS16] 340
Table AES-128 644.7 [SS16] 40.3 912 57.0
Bitsliced AES-128 key schedule 1033.8 [SS16] 1239
Bitsliced AES-128-CTR 414617.6* 101.2 [SS16] 509622* 124.4
ChaCha20 encrypt 56934.4* 13.9 [HRS16] 114365* 27.9
Keccak-f [1600] permute 12969† 64.8 13774 68.9
* When encrypting 4096 bytes.
† We benchmarked KeccakP1600_Permute_24rounds from https://github.com/
XKCP/XKCP/blob/master/lib/low/KeccakP-1600/Optimized32biAsmARM/
KeccakP-1600-inplace-32bi-armv7m-le-gcc.s on an STM32F407.

Table 1 provides the exact numbers, while Figure 3 visualizes their relative
speed. It can be seen that all schemes require more cycles with the RV32I
architecture. Of course, this does not directly relate to speed in practice, as we
do not take the different CPU clock frequencies into account. It shows that all
schemes use instructions that can be computed in a single cycle on the Cortex-
M4, but not with RV32I. Relatively, it appears that ChaCha20 has the largest
disadvantage because of this. For this scheme, the lack of rotation instructions
seems to outweigh the possibility to keep the full state in registers without spilling
to the stack, something that is necessary on the Cortex-M4. When the algorithms

https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/Optimized32biAsmARM/KeccakP-1600-inplace-32bi-armv7m-le-gcc.s
https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/Optimized32biAsmARM/KeccakP-1600-inplace-32bi-armv7m-le-gcc.s
https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/Optimized32biAsmARM/KeccakP-1600-inplace-32bi-armv7m-le-gcc.s
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are compared to each other, their differences remain very similar with the RV32I
instruction set architecture.

7.2 The RISC-V B Extension

The RISC-V foundation reserved the B extension for bit manipulation instructions.
In 2017 there was an active working group that would develop a specification for
the B extension. However, apparently the working group dissolved in November
2017 for bureaucratic reasons6. An independent fork was developed outside of the
RISC-V foundation, which was merged back and made official again in March
2019.

The latest V0.37 draft specification adds 37 new instructions7. While it is
unknown which will be used in the end, it is likely that this will include some type
of rotation, byte shuffle, and bit-extraction instructions. The current specification
also includes an and-with-complement instruction. This would imply that lane
complementing would no longer be advantageous for Keccak-f [1600].

We estimate the impact that this extension will have, focussing on rotations.
For each scheme, we counted all instruction sequences that could be replaced by
a rotation instruction. Our table-based AES does not use rotations, while the
bitsliced AES implementations uses 144 of them. ChaCha20 uses 320 rotation
instructions and Keccak-f [1600] 1248.

Assuming that the rotation would be possible in a single cycle, we then
calculated how many CPU cycles would be saved by having this instruction. The
results can be seen in Table 2 and Figure 3. For Keccak-f [1600] and especially
for ChaCha20, rotations are a significant part of their computational cost. From
Figure 3 it is clear that with rotations, the Keccak-f [1600] permutation can be
computed in fewer cycles than on the Cortex-M4. This is due to the fact that
more registers are available.

Table 2. Estimated improvement with a rotation instruction.

Scheme Rotations Improvement Cycles/byte

Table-based AES 0 0.0% 57.0
Bitsliced AES 144 7.0% 115.7
ChaCha20 320 35.8% 17.9
Keccak-f [1600] 1248 18.1% 56.4

7.3 Number of Registers

We already discussed some consequences of the large number of registers that are
available on the performance of these implementations. Especially ChaCha and
6 https://groups.google.com/forum/#!forum/riscv-xbitmanip
7 https://github.com/riscv/riscv-bitmanip

https://groups.google.com/forum/#!forum/riscv-xbitmanip
https://github.com/riscv/riscv-bitmanip
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Fig. 3. Speed of cryptographic primitives.
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Keccak-f [1600], but also the bitsliced AES implementation, benefit from having
to spill fewer intermediate values to the stack. It is noteworthy to mention that
the RV32E instruction set, which is nearing its completion and which is intended
to target embedded devices, will most likely decrease the number of registers
from 32 back to 16 [RIS17]. This will set back the performance of aforementioned
schemes, but this may be compensated by supporting the B extension with a
rotation instruction.

7.4 Carry Flag

In Section 6 we studied the performance of arbitrary-precision addition and
multiplication with and without reduced-radix integer representations. We now
estimate how full-limb representations would perform if an RV32I core was
extended with a carry flag and an add-with-carry instruction. We assume that
this instruction would have a result latency of a single CPU clock cycle, similar
to a regular addition instruction.

For addition, 4 cycles per limb would be saved in our implementation. We
then subtracted 4n cycles from the full-radix addition results, where n is the
number of limbs. The result can be seen in Figure 1. As is to be expected, addition
with this instruction is almost as fast as reduced-radix representation, the only
difference being the top (most significant) limb that gets set.

With schoolbook multiplication 2n2 cycles are subtracted, as we can save 2
cycles in the inner loop with the add-with-carry instruction, which is executed
n2 times. For Karatsuba multiplication we computed that the add-with-carry
instruction would save 27n

2 + 6
(
n
2

)2 cycles. The quadratic term comes from the
cycles that are saved with the schoolbook multiplications and the linear part
from the cycles that are saved with additions. Figure 2 contains plots for both
estimates. With an add-with-carry instruction both schoolbook and Karatsuba
multiplication would be approximately as fast as their reduced-radix counterparts.
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The reduced-radix implementations use more limbs and still need to carry at the
end, so it is appears that an add-with-carry instruction completely compensates
for any advantage that a reduced-radix implementation might give.

8 Conclusion

We showed how AES, ChaCha, and Keccak-f can be implemented efficiently on
the 32-bit variant of the promising open-source RISC-V architecture. We also
showed how arbitrary-precision addition and multiplication can be implemented
and studied the performance of all these primitives. As the RISC-V is an open
design intended to be extensible, we showed for several features, such as a rotation
instruction and an add-with-carry instruction, how much improvement exactly
could be gained by adding these features. These numbers are essential for making
reasonable trade-offs in software-hardware co-design and we hope that they will
be found useful by a wide audience.
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