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Abstract

We study a question whether the currently known families of quadratic APN polynomials
are pairwise different up to CCZ-equivalence. We reduce the list of these families to those
CCZ-inequivalent to each other. In particular, we prove that the families of APN trinomials
(constructed by Budaghyan and Carlet in 2008) and multinomials (constructed by Bracken
et al. 2008) are CCZ-equivalent to the APN hexanomial family introduced by Budaghyan
and Carlet in 2008. We also prove that a generalization of these trinomial and multinomial
families given by Duan et al. (2014) is CCZ-equivalent to the family of hexanomials as
well.
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1. Introduction

Let n and m be two positive integers, an (n,m)-function, or vectorial Boolean function,
is a function F from the finite field F2n with 2n elements to the finite field F2m with 2m

elements. When m = 1 such functions are simply called Boolean functions. Boolean
functions and vectorial Boolean functions have been intensively studied due to the large
number of applications both in mathematics and computer science. In particular, they
have a crucial role in the design of secure cryptographic primitives, such as block ciphers.
In this context, vectorial Boolean functions are also called S-boxes.

The differential attack, introduced by Biham and Shamir [1], is among the most efficient
attacks on block cipher. To measure the resistance of an S-box to this attack, in [26], Nyberg
introduced the notion of differential uniformity. A vectorial Boolean function F is called
differentially δ-uniform if the equation F (x) +F (x+a) = b has at most δ solutions for any
non-zero a and for all b. The smallest possible values for δ is 2, and functions achieving
such differential uniformity are called almost perfect nonlinear (APN).
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Boolean function used in cryptography must have low differential uniformity. For this
reason, functions with low differential uniformity, and in particular APN functions are an
important domain of research for symmetric cryptography.

The differential uniformity, and thus the APN property, is preserved by some transfor-
mations of functions, which define equivalence relations between vectorial Boolean func-
tions. Two of these equivalence notions are, the extended affine equivalence (EA-equivalence)
and Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence). EA-equivalence is a partic-
ular case of CCZ-equivalence, which is the more general known equivalence relation pre-
serving the differential uniformity.

An important aspect of the study and the analysis of APN functions, and vectorial
Boolean functions in general, is their classification with respect to these equivalence rela-
tions. Classifications of APN functions is a hard problem and a complete classification is
only known for n ≤ 5 [5]. There are only few infinite classes of APN functions known:
six classes of power functions and 14 classes of quadratic polynomials CCZ-inequivalent to
monomials presented in Tables 1 and 2. When constructed some of these 14 families have
not been checked for equivalence to already known classes.

In this work we reduce the list of known families of polynomial APN functions by
excluding all equivalent cases. Indeed, we show that the class of trinomial APN functions
introduced in [7] and the class of multinomials studied in [2] are equivalent. Moreover, we
prove that also their generalizations given in [19] coincide with the original ones. Finally
we show that these classes can be reduced to the hexanomials introduced in [7]. According
to the table of all CCZ-inequivalent functions which arise from known APN families (in
dimensions up to 11) [13], the remained families of APN functions are pairwise inequivalent
in general. We present a complete list of the known families of APN polynomials, which
are pairwise CCZ-inequivalent, in Table 3.

2. Preliminaries

Let n ≥ 2, we will denote by F∗2n the multiplicative group of F2n and by F2n [x] the uni-
variate polynomial ring defined over F2n . Any function F : F2n → F2n can be represented
as a univariate polynomial of degree at most 2n − 1 in F2n [x], that is

F (x) =

2n−1∑
i=0

cix
i, ci ∈ F2n .

The algebraic degree of a function F is equal to the maximum 2-weight of the exponent i
such that ci 6= 0, where the 2-weight of i is the (Hamming) weight of its binary represen-
tation. Functions of algebraic degree 1 are called affine and of degree 2 quadratic. Affine
functions without the constant term are linear functions and they can be represented as
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L(x) =
∑n−1

i=0 cix
2i . For any m ≥ 1 such that m|n,

Trmn (x) =

n/m−1∑
i=0

x2
im
,

denotes the trace function from F2n to F2m . When m = 1 we denote Tr1n(x) by Tr(x).
The derivative of F in the direction of a ∈ F∗2n is given by the function DaF (x) =

F (x + a) + F (x). The function F is APN if for every a 6= 0 and every b in F2n , the
equation DaF (x) = b admits at most 2 solutions, or equivalently |Im(DaF )| = 2n−1, where
Im(F ) = {F (x) |x ∈ F2n} is the image of F .

There are several equivalence relations of functions for which the APN property is
preserved. Two functions F and F ′ from F2n to itself are called:

• affine equivalent if F ′ = A1◦F ◦A2 where A1, A2 : F2n → F2n are affine permutations;

• EA-equivalent if F ′ = F ′′+A, where the mappings A : F2n → F2n is affine and F ′′ is
affine equivalent to F ;

• CCZ-equivalent if there exists some affine permutation L of F2n × F2n such that the
image of the graph of F is the graph of F ′, that is, L(GF ) = GF ′ , where GF =
{(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

The affine equivalence is, obviously, included in the EA-equivalence, and EA-equivalence
is a particular case of CCZ-equivalence [14]. Moreover, every permutation is CCZ-equivalent
to its inverse [14]. As proven in [12], CCZ-equivalence is more general than EA-equivalence
together with taking inverses of permutations. The algebraic degree of a function (if it
is not affine) is invariant under EA-equivalence but, in general, it is not preserved by
CCZ-equivalence. In general, neither EA-equivalence nor CCZ-equivalence preserves the
permutation property.

There are six known infinite families of power APN functions presented in Table 1. Some
results on CCZ-inequivalence between the functions in Table 1 were proven in [9]. Recently,
in both [28] and [15] Yoshiara and Dempwolff show that two APN power functions are
CCZ-equivalent if and only if they are cyclotomic-equivalent, i.e. they are EA-equivalent
or one is EA-equivalent to the inverse of the second one. Since the algebraic degree is
preserved by the EA-equivalence, and families in Table 1 have different algebraic degrees
in general, then all these families differ up to CCZ-equivalence (although they can intersect
in some particular cases). There are also fourteen known infinite families of quadratic APN
polynomials CCZ-inequivalent to power functions listed in Table 2. W will show that this
list can be reduced to 12 pairwise CCZ-inequivalent families represented in Table 3.

3. Equivalence between known families

In [13], the authors present a table of all possible pairwise CCZ-inequivalent functions
which can be derived from the known families of APN functions, up to dimension n = 11.
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Table 1: Known APN power functions xd over F2n

Functions Exponents d Conditions Degree In

Golden 2i + 1 gcd(i, n)=1 2 [21, 26]

Kasami 22i − 2i + 1 gcd(i, n)=1 i+1 [23, 24]

Welch 2t + 3 n = 2t+ 1 3 [16]

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1 t+2

2 [17]

2t + 2
3t+1

2 − 1, t odd t+1

Inverse 22t − 1 n = 2t+ 1 n− 1 [4, 26]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [18]

According to this table, families C3 and C11 coincide on small dimensions and are con-
tained in C4. In this section we will study the equivalence between families C3 and C11.
Moreover, we will consider also two generalizations of these families given in [19]. We will
show that such generalizations coincide with the original families.

First of all, note that, considering family C11, for i such that gcd(i,m) = 1 the condition
given in Table 2, that is, i odd and d not a cube is equivalent to request just d /∈ {x2i+1 :
x ∈ F22m} (recall that m is odd). Indeed, if i is odd, then {x2i+1 : x ∈ F22m} = {x3 : x ∈
F22m}. If i is even, recalling that (cf. Lemma 11.1 in [25])

gcd(2i + 1, 2n − 1) =

{
1 if gcd(i, n) = gcd(2i, n)

2gcd(i,n) + 1 if 2 gcd(i, n) = gcd(2i, n)

we get {x2i+1 : x ∈ F22m} = F22m , implying existence of no choice for d.

Moreover, for family C3, we have that coefficients c and d satisfying the constrains in
Table 2 exist if and only if gcd(2i+1, 2m+1) 6= 1 (see [7]). This implies that m is odd since i
and m are coprime (it can be easily deduced from gcd(22i−1, 22m−1) = 2gcd(2i,2m)−1 = 3).
Moreover, as above, if i is even we have no choice for d, so also i must be odd.

The generalizations of these families, given in [19], are the following

cx2
m+1 +

m−1∑
`=1

γ`x
2`(2m+1) + L(dx2

i+2j + d2
m
x2

m(2i+2j)), (C11*)

defined over F22m where m, i and j integers such that gcd(i − j,m) = 1 (i > j), γ` ∈ F2m

for all `, c /∈ F2m , d is not in {x2i+2j : x ∈ F22m} and L(x) =
∑

k∈K x
2k such that

{0, 1} 6= K ⊆ {0, ..., n} and
∑

k∈K x
2k−1 is irreducible.
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Table 2: Known classes of quadratic APN polynomial over F2n CCZ-inequivalent to power functions

N◦ Functions Conditions In

n = pk, gcd(k, p)= gcd(s, pk)=1,

C1-C2 x2
s+1 + u2

k−1x2
ik+2mk+s

p ∈ {3, 4}, i = sk mod p, m = p− i, [8]

n ≥ 12, u primitive in F∗2n
q = 2m, n = 2m, gcd(i,m)=1,

C3 x2
2i+2i + cxq+1 + dxq(2

2i+2i) gcd(2i + 1, q + 1) 6= 1, dcq + c 6= 0, [7]

d 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, dq+1 = 1

q = 2m, n = 2m, gcd(i,m)=1,

C4 x(x2
i

+ xq + cx2
iq) c ∈ F2n , s ∈ F2n \ Fq, [7]

+x2
i
(cqxq + sx2

iq) + x(2
i+1)q X2i+1 + cX2i + cqX + 1

has no solution x s.t. xq+1 = 1

C5 x3 + a−1Tr(a3x9) a 6= 0 [10]

C6 x3 + a−1Tr3n(a3x9 + a6x18) 3|n, a 6= 0 [11]

C7 x3 + a−1Tr3n(a6x18 + a12x36) 3|n, a 6= 0 [11]

n = 3k, gcd(k, 3)= gcd(s, 3k)=1,

C8-C10 ux2
s+1 + u2

k
x2
−k+2k+s

+ v, w ∈ F2k , vw 6= 1, [2, 3]

vx2
−k+1 + wu2

k+1x2
s+2k+s

3|(k + s) u primitive in F∗2n
q = 2m, n = 2m, gcd(i,m)=1, i,m odd,

C11 dx2
i+1 + dqxq(2

i+1)+ c 6∈ F2m , γs ∈ F2m , [2]

cxq+1 +
∑m−1

s=1 γsx
2s(q+1) d not a cube

(x+ xq)2
i+1+ q = 2m, n = 2m, m ≥ 2 even,

C12 u′(ux+ uqxq)(2
i+1)2j+ gcd(i,m) = 1 and j even [29]

u(x+ xq)(ux+ uqxq) u primitive in F∗2n , u′ ∈ F2m not a cube

a2x2
2m+1+1 + b2x2

m+1+1+ n = 3m, m odd

C13 ax2
2m+2 + bx2

m+2 + (c2 + c)x3 L(x) = ax2
2m

+ bx2
m

+ cx satisfies [6]

the conditions in Theorem 6.3 of [6]

u(uqx+ xqu)(xq + x) + (uqx+ xqu)2
2i+23i q = 2m, n = 2m, gcd(i,m)=1

C14 +a(uqx+ xqu)2
2i

(xq + x)2
i

+ b(xq + x)2
i+1 a, b ∈ F2m and X2i+1 + aX + b [27]

has no solution over F2m

The second APN family introduced in [19] is given by

cx2
m+1 +

m−1∑
`=1

γ`x
2`(2m+1) + L(x2

i+2j ) + dL(x2
m(2i+2j)), (C3*)
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such that m, i and j are integers with the same properties as above, L(x) =
∑

k∈K x
2k such

that {0, 1} 6= K ⊆ {0, ..., n} and
∑

k∈K x
2k−1 is irreducible and the coefficients c, d and γ`’s

such that c+c2
m
d 6= 0, d not in {x2i+2j : x ∈ F22m} and d = γ1−2

m

` for all ` such that γ` 6= 0.

Before proving the equivalence with C3 and C11, we will correct the results of [19].
Indeed, the first family when m is even cannot be APN. While, for the second one, in
addition to restriction of m to be odd, in general it seems to be not APN if L(x) 6= x2

k

(tested by MAGMA in small dimensions).

3.1. Correction of family C11* and family C3*

Consider the function

F (x) = cx2
m+1 +

m−1∑
`=1

γlx
2`(2m+1) + L(dx2

i+2j + d2
m
x2

m(2i+2j)).

First of all note that from the conditions above we have that L is a linear permutation,
indeed we can directly suppose that L is any linear permutation with coefficients in F2m .

Following the proof given in [19] we have that if the equation

∆(x) = F (x) + F (x+ a) + F (a) = 0

has solution x, then x = at with t ∈ F2m (obtained from ∆(x) + (∆(x))2
m

= 0), which
reduces the equation above to the condition

L((da2
i+2j + d2

m
a2

m(2i+2j))(t2
i

+ t2
j
)) = 0.

Since L is a linear permutation, this implies that (da2
i+2j + d2

m
a2

m(2i+2j))(t2
i

+ t2
j
) =

0. Now, from the fact that d /∈ {x2i+2j : x ∈ F22m} the authors in [19] claim that
(da2

i+2j + d2
m
a2

m(2i+2j)) 6= 0 for all nonzero a. However, while for m odd the condition
d /∈ {x2i+2j : x ∈ F22m} is sufficient to guarantee da2

i+2j /∈ F2m , such claim is incorrect
when m is even.
We will prove that, when m is even, for any d there exists a ∈ F∗22m such that da2

i+2j ∈ F2m .
Indeed, if m is even, then 3 | (2m − 1) and 3 - (2m + 1). Now, let d = αk, with α a prim-
itive element of F22m , and k some integer. Since gcd(i − j,m) = 1 we have that i − j is
odd and thus gcd(2i−j + 1, 2n − 1) = 3. So, finding a such that da2

i+2j ∈ F2m is equiva-
lent to finding a′ such that da′3 ∈ F2m . Let a′ = αh, we want to determine h such that
(2m + 1) | (3h + k). Suppose d /∈ F2m , otherwise a′ can be just 1. We have two cases,
k ≡ 1, 2 mod 3. If k ≡ 1 mod 3, then 3h + k = 3(h + k′) + 1 for some k′. Since m is
even 2m+1 + 1 is equal to 3h′ for some h′, thus considering h = h′ − k′ we would have
3h+ k = 3(h+ k′) + 1 = 3h′+ 1 = 2(2m + 1). If k ≡ 2 mod 3, then 3h+ k = 3(h+ k′) + 2
for some k′. Since m is even 2m−1 is equal to 3h′ for some h′, thus considering h = h′−k′
we would have 3h + k = 3(h + k′) + 2 = 3h′ + 2 = 2m + 1. This concludes our proof. So
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the first family of functions needs the restriction of m odd.

For the second family, the steps of the proof in [19, Theorem 2] do not work, in general.

When L(x) = x2
k
, family (C3*) results to be APN, this can be proved following the steps

given in [19], which became legit when L has only one monomial.

While if L is not of type x2
k
, from computational tests done using MAGMA in small

dimensions, the function in (C3*) in general is not APN. Thus, we will consider (C3*) only

with L(x) = x2
k
.

F (x) = cx2
m+1 +

m−1∑
`=1

γ`x
2`(2m+1) + x2

i+2j + dx2
m(2i+2j), (C3*)

such that m, i and j integers with the same properties as above and the coefficients c, d and
γ`’s are such that c+ c2

m
d 6= 0, d not in {x(2i+2j)(2m−1) : x ∈ F22m} and d = γ1−2

m

` for all
` such that γ` 6= 0. We dropped the exponent 2k of the linear function L because k can be
included in i and j. Note that, as for C3, from the constrains on c and d we need m odd.

3.2. C11 and C3 are equivalent

Computational results performed in [13] for m = 3, 4, 5 show that all APN functions of
family C11 are equivalent to functions of C3. This leads us to the idea that family C11 is
contained in family C3. In the following we are going to show that it is true, firstly showing
that family C11 without the sum

∑m−1
`=1 γ`x

2`(2m+1) is equivalent to family C3, secondly
that every function in family C11 is equivalent to a function in the same family without
the sum.

Let us consider a simplified version of C11, without the sum component,

F (x) = cx2
m+1 + dx2

i+1 + d2
m
x2

m(2i+1). (1)

Since c ∈ F22m \ F2m we have F22m = cF2m ⊕ F2m . Then, considering the linear function L
which is the identity map on cF2m and the power linear function x2

i
on F2m we obtain

L(F (x))

d2i
= c′x2

m+1 + x2
2i+2i + d′x2

m(22i+2i),

with c′ =
c

d2i
and d′ = d2

i(2m−1). Since, m is odd and d /∈ {x2i+1 : x ∈ F22m} we have

d′ /∈ {x(2i+1)(2m−1) : x ∈ F22m}. Indeed, if d′ ∈ {x(2i+1)(2m−1) : x ∈ F22m} we have that d′

is a cube, but 3 - (2m − 1) and d is not a cube.
Moreover, since c /∈ F2m

c′2
m
d′ + c′ =

c2
m

d2i
+

c

d2i
6= 0,
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implying that F in (1) is equivalent to an APN function contained in C3.
Consider now the general formula for C11:

F (x) = cx2
m+1 +

m−1∑
`=1

γ`x
2`(2m+1) + dx2

i+1 + d2
m
x2

m(2i+1),

we will show that it is possible to reduce it to a function of the type (1).
Assume 1 ≤ t ≤ m − 1 be such that γt 6= 0. We can suppose that γt = 1. Indeed,

since γt ∈ F2m , there exists a non-zero element λt such that γt = λ
2t(2m+1)
t . Applying the

substitution x→ λ−1t x we obtain an equivalent function such that γt = 1.
Consider the following linear function with w ∈ F∗2m (we will study its permutation property
later)

L(x) = (w + (c+ c2
m

)2
t
)x+ x2

t
+ wx2

m
+ x2

m+t
. (2)

Let u = dx2
i+1 + d2

m
x2

m(2i+1) ∈ F2m , then we obtain

L(F (x)) = (w + (c+ c2
m

)2
t
)[u+ cx2

m+1 +
m−1∑
l=1

γlx
2l(2m+1)]

+ u2
t

+ c2
t
x2

t(2m+1) +

m−1∑
l=1

γ2
t

l x
2l+t(2m+1)

+ w[u+ c2
m
x2

m+1 +
m−1∑
l=1

γlx
2l(2m+1)]

+ u2
t

+ c2
m+t

x2
t(2m+1) +

m−1∑
l=1

γ2
t

l x
2l+t(2m+1)

= (w + (c+ c2
m

)2
t

+ w)u+ ((w + (c+ c2
m

)2
t
)c+ wc2

m
)x2

m+1

+ (c+ c2
m

)2
t
x2

t(2m+1) +
m−1∑
l=1

γl(w + (c+ c2
m

)2
t

+ w)x2
l(2m+1)

= (c+ c2
m

)2
t
u+ (w(c+ c2

m
) + c(c+ c2

m
)2

t
)x2

m+1

+

m−1∑
l=1,l 6=t

γl(c+ c2
m

)2
t
x2

l(2m+1)

Hence

L(F (x))

(c+ c2m)2t
= u+ (w(c+ c2

m
)1−2

t
+ c)x2

m+1 +

m−1∑
l=1,l 6=t

γlx
2l(2m+1).
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Let c′ = w(c+ c2
m

)1−2
t

+ c, also the condition on c′ is satisfied since we have

c′
2m

+ c′ = w2m(c+ c2
m

)1−2
t

+ c2
m

+ w(c+ c2
m

)1−2
t

+ c

= (w2m + w)(c+ c2
m

)1−2
t

+ (c+ c2
m

)

= (c+ c2
m

).

Therefore we managed, from the original general formula C11, to obtain a similar one in
which the monomial x2

t(2m+1) is not present any more and the rest of the components of
the sum is left unchanged. If the same procedure is applied for any j such that γj 6= 0 we
are able to obtain a function of the form (1).

Now we only need to show that L(x) of equation (2) is a permutation.
We have that

L(x) = (x+ x2
m

)2
t

+ w(x+ x2
m

) + (c+ c2
m

)2
t
x.

Assume that x ∈ F2m then L(x) = (c + c2
m

)2
t
x is null if and only if x = 0. Otherwise

consider x 6∈ F2m and let y = x + x2
m ∈ F∗2m , we have L(x) = y2

t
+ wy + (c + c2

m
)2

t
x. If

L(x) = 0 then

x =
y2

t
+ wy

(c+ c2m)2t
.

Since w ∈ F2m then we have that the right hand-side belongs to F2m that leads to a con-
tradiction. Therefore L is a linear permutation.

We have that C3 can be reduced to C11 reversing the computation done for (1) (an
explicit computation is given in the next section when we prove that (C3*) is included in
(C11*)). So we have proved:

Lemma 3.1. Families C3 and C11 are equivalent.

3.3. (C11*) is equivalent to C11

Obviously, C11 is a particular case of (C11*). However, also (C11*) can be reduced to
C11.

Let us consider

F (x) = cx2
m+1 +

m−1∑
`=1

γ`x
2`(2m+1) + L(dx2

i+2j + d2
m
x2

m(2i+2j)),

satisfying the constrains of (C11*). First of all, we can suppose that j is equal to 0,
otherwise we can just include the power 2j in the linear permutation L and substitute d
with d1/2

j
. So, we have

F (x) = cx2
m+1 +

m−1∑
`=1

γ`x
2`(2m+1) + L(dx2

i+1 + d2
m
x2

m(2i+1)).
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Now we can also suppose that in (C11*) the coefficients γ` are all equal to 0. Indeed as
in section 3.2, supposing γh = 1 (in case γh 6= 1 we can perform the change of variable x 7→

γ
− 1

2h(2m+1)

h x) and applying the linear permutation L′(x) = (w+(c+c2
m

)2
h
)x+x2

h
+wx2

m+h

we can delete the coefficient γh obtaining a function equivalent to (C11*), that is,

L′(F (x))

(c+ c2m)2h
= c′x2

m+1 +
m−1∑
`=1
`6=h

γ′`x
2`(2m+1) + L(dx2

i+1 + d2
m
x2

m(2i+1)),

where d is exactly the same coefficient as in F , and c′ and γ′` satisfying the constrains of

(C11*). So, we can suppose that F (x) = cx2
m+1 + L(dx2

i+1 + d2
m
x2

m(2i+1)).
Now, c ∈ F22m \F2m and, as above, we have F22m = cF2m ⊕F2m . Then, considering the

linear function L′ which is the identity map on cF2m and the linear function L−1 on F2m

(recall that L is a permutation with coefficient in F2m) we obtain

L′(F (x)) = cx2
m+1 + dx2

i+1 + d2
m
x2

m(2i+1).

Since the constrains on the coefficients are the same for (C11*) and (C11), we have obtained
our claim.

Lemma 3.2. Families (C11*) and C11 coincide.

3.4. (C3*) is equivalent to C11

Now we will prove that family (C3*), which contains C3, is equivalent to C11.
First of all, consider c, d, γ` satisfying the constrains of (C3*). Since d2

m+1 = 1, there
exists d′ such that d′2

m−1 = d. Moreover, since d is not in {x(2i+2j)(2m−1) : x ∈ F22m} we
have d′ /∈ {x(2i+2j) : x ∈ F22m}.
Let F (x) = cx2

m+1 +
∑m−1

`=1 γ`x
2`(2m+1) + x2

i+2j + dx2
m(2i+2j). Multiplying F by d′, we

obtain

F ′(x) = d′F (x) = d′cx2
m+1 +

m−1∑
`=1

d′γ`x
2`(2m+1) + d′x2

i+2j + d′2
m
x2

m(2i+2j).

Since c+ c2
m
d 6= 0 we have that d′c+ (d′c)2

m
= d′(c+ c2

m
d) 6= 0, so d′c /∈ F2m . Moreover,

since d = γ1−2
m

` for all ` such that γ` 6= 0, we have that (d′γ`)
2m = d′(dγ2

m

` ) = d′(γ1−2
m

` γ2
m

` )
which implies d′γ` ∈ F2m for all γ`. Thus F ′(x) is an element of (C11*), which is equivalent
to C11.

Lemma 3.3. Families C11 and (C3*) are equivalent.

We summarize our results in the following theorem.

Theorem 3.4. Families C3, C11, (C3*) and (C11*) are all equivalent to each other.
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We conclude this section showing that for any fixed i, all the functions contained in
these families are equivalent to each other.

Proposition 3.5. Let n = 2m with m odd and let i be such that gcd(n, i) = 1. Let

F (x) = cx2
m+1 + dx2

i+1 + d2
m
x2

m(2i+1)

and
F ′(x) = c′x2

m+1 + d′x2
i+1 + d′2

m
x2

m(2i+1).

be two APN functions of family C11. Then F and F ′ are affine equivalent.

Proof. Let us fix d not a cube, consider c, c′ ∈ F2n \ F2m , and the functions

F (x) = cx2
m+1 + dx2

i+1 + d2
m
x2

m(2i+1)

and
F ′(x) = c′x2

m+1 + dx2
i+1 + d2

m
x2

m(2i+1).

Then, considering the linear permutation L which is the identity on F2m and that maps
cF2m into c′F2m with the map cx 7→ c′x, we immediately have L ◦ F = F ′.

Now, let us fix the coefficient c ∈ F2n \F2m and d not a cube. Consider the two functions

F (x) = cx2
m+1 + dx2

i+1 + d2
m
x2

m(2i+1)

and
F ′(x) = cx2

m+1 + d2x2
i+1 + (d2)2

m
x2

m(2i+1).

Then we have that

F (x1/2)2 = c2x2
m+1 + d2x2

i+1 + (d2)2
m
x2

m(2i+1)

is equivalent to F ′ from the argument above. Thus, F is equivalent to F ′.
Now, let U := {x2i+1 : x ∈ F∗2n} = {x3 : x ∈ F∗2n} (i is odd), for any u ∈ U ,

F (x) = cx2
m+1 + dx2

i+1 + d2
m
x2

m(2i+1)

and
F ′(x) = cx2

m+1 + dux2
i+1 + (du)2

m
x2

m(2i+1)

are equivalent. Indeed, we can apply the substitution x 7→ λx for some λ ∈ F∗2n such

that λ2
i+1 = u, and we have that F (λx) = cλ2

m+1x2
m+1 + dux2

i+1 + (du)2
m
x2

m(2i+1) is
equivalent to F ′(x).

Now, since we can partitioned all non-cube elements as dU ∪d2U for some d not a cube,
from the arguments above we have our claim.

11



3.5. Equivalence with hexanomials (family C4 Table2)

The following family of APN hexanomials was constructed in [7].

Theorem 3.6 ([7]). Let n and i be any positive integers, n = 2m, gcd(i,m) = 1, and
c̄, d̄ ∈ F2n be such that d̄ /∈ F2m. Then, the function

H(x) = d̄x2
i(2m+1) + x(2

m+1) + (x2
i+1 + x2

m(2i+1) + c̄x2
m+i+1 + c̄2

m
x2

i+2m)

is APN if and only if the equation

x2
i+1 + c̄x2

i
+ c̄2

m
x+ 1 = 0

has no solution x such that x2
m+1 = 1.

Coefficient c̄ satisfying the conditions of the theorem above are characterized in [22,
Theorem 11] as well as the number of such c̄’s [22, Theorem 12] .

We are going to show below that C11 (and thus C3) is contained in C4. In the
previous sections, we have proved that we can consider functions C11 without the part∑m−1

`=1 γ`x
2`(2m+1), that is, it is sufficient to consider function (1) which we transform as

follows
F (x) = cx2

m+1 + x2
i(2m+1) + dx2

i+1 + d2
m
x2

m(2i+1), (3)

with c ∈ F22m \ F2m and d /∈ {x2i+1 : x ∈ F22m}. Indeed, using linear permutations as in
(2), we can obtain from functions (3) all possible functions (1), and vice versa.

Consider a linear permutation of the type x+γx2
m

(γ2
m+1 6= 1). Evaluating F (x+γx2

m
)

and deleting terms of algebraic degree less than 2, we obtain

F̃ (x) = (c+ cγ2
m+1)x2

m+1 + (1 + γ2
i(2m+1))x2

i(2m+1)

+(d+ d2
m
γ2

m(2i+1))x2
i+1 + (d2

m
+ dγ2

i+1)x2
m(2i+1)

+(dγ2
i

+ d2
m
γ2

m
)x2

m+i+1 + (d2
m
γ2

m+i
+ dγ)x2

i+2m

}
= u

Now, using a linear permutation as in (2), it is possible delete the monomial (1 +
γ2

i(2m+1))x2
i(2m+1) since (1 + γ2

i(2m+1)) and u are in F2m . Indeed, let γ′ = (1 + γ2
i(2m+1))

and L(x) = (w+ (c+ c2
m

)2
i γ′

γ′2i
)x+x2

i
+wx2

m
+x2

m+i
for some w ∈ F∗2m . Then, following

the same steps as above, we have

F ′(x) =
L(F̃ (x)/γ′)(
c
γ′ + c2m

γ′

)2i = c′x2
m+1 + u,

12



for some c′ /∈ F2m depending on L. Denoting by a = (d + d2
m
γ2

m(2i+1)) and b = (dγ2
i

+
d2

m
γ2

m
) we get

F ′(x) = c′x2
m+1 + (ax2

i+1 + a2
m
x2

m(2i+1) + bx2
m+i+1 + b2

m
x2

i+2m). (4)

Now, since i and m are odd and gcd(i,m) = 1 then x2
m+i+1 is a permutation of F2n ,

which means that there exists λ ∈ F∗2n such that λ2
m+i+1 = b. Then, substituting x 7→ λ−1x

in (4) we obtain

F ′′(x) = c′′x2
m+1︸ ︷︷ ︸

c′′F2m

+
a

λ2i+1
x2

i+1 +

(
a

λ2i+1

)2m

x2
m(2i+1) + x2

m+i+1 + x2
i+2m︸ ︷︷ ︸

F2m

.

Since F2n = c′′F2m ⊕ F2m we can perform a substitution x 7→ x2
m−i

and then apply a
linear map L which is x1/2

m−i
on c′′F2m and the identity on F2m . Thus, denoting by

c = (c′′)1/2
m−i

, we obtain the equivalent function

F̄ (x) =L(F ′′(x2
m−i

)) = cx2
m+1+

a

λ2i+1
x2

m+2j+

(
a

λ2i+1

)2m

x(2
m+j+1)+x2

j+1+x2
m(2j+1), (5)

where j = m− i is even and gcd(j,m) = 1.

On the other hand, let i be an integer with gcd(i,m) = 1 and consider a hexanomial

H(x) = d̄x2
i(2m+1) + x(2

m+1) + (x2
i+1 + x2

m(2i+1) + c̄x2
m+i+1 + c̄2

m
x2

i+2m).

Applying the linear permutation (as in (2)) L(x) = (w+(d̄+d̄2
m

)1/2
i
)x+wx2

m
+x1/2

i
+x2

m−i

for some w ∈ F∗2m , we obtain

H ′(x)=
L(H(x))

(d̄+ d̄2m)1/2i
=d̄′x2

i(2m+1) + (x2
i+1 + x2

m(2i+1) + c̄x2
m+i+1 + c̄2

m
x2

i+2m),

where d̄′ /∈ F2m . Since F22m = d̄′F2m ⊕ F2m we can apply a linear permutation which is
x(1/2

i) on d̄′F2m and the identity on F2m in order to obtain the equivalent function

H ′′(x) = d′′x2
m+1 + x2

i+1 + x2
m(2i+1) + c̄x2

m+i+1 + c̄2
m
x2

i+2m , (6)

where d′′ = d̄′(1/2
i). Then, the family of the hexanomials can be expressed as pentanomials

and the constrain on the coefficient c̄ is the same of the hexanomials. Indeed, following
the same steps of the proof of [7, Theorem 2], a function H ′′ as in (6), with d′′ /∈ F2m and
gcd(i,m) = 1, is APN if and only if

x2
i+1 + c̄x2

i
+ c̄2

m
x+ 1 = 0

13



has no solution x such that x2
m+1 = 1.

Coming back to our function in (5), from the arguments above, since F̄ (x) is APN and

c′′ /∈ F2m , denoting ā =
(

a

λ2i+1

)2m
, we have that

x2
j+1 + āx2

j
+ ā2

m
x+ 1 = 0

has no nonzero solution such that x2
m+1 = 1. So, the function F̄ (x) is equivalent to a

hexanomials.

Hence we have proved the following result:

Theorem 3.7. The families C3, (C3*), C11 and (C11*) coincide and they are included in
C4. In particular, the hexanomials admit a representation as pentanomials in the following
form

H ′(x) = d̄x2
m+1 + x2

i+1 + x2
m(2i+1) + c̄x2

m+i+1 + c̄2
m
x2

i+2m ,

with d̄ /∈ F2m and c̄ such that the equation

x2
i+1 + c̄x2

i
+ c̄2

m
x+ 1 = 0

has no solution x such that x2
m+1 = 1.

Moreover, when m and i are odd, H ′(x) is equivalent to a pentanomial of type

H̄(x) = dx2
m+1 + x2

j+1 + x2
m(2j+1) + cx2

m+j+1 + c2
m
x2

j+2m ,

with j = m− i.

Proof. We need to prove only that when m is odd the case i odd is equivalent to a pen-
tanomial relative to the even case j = m− i. This can be done with the same steps as used
above to compute F̄ (x) in (5) from F ′′(x) of (4), with the only difference that in this case
the coefficient a of F ′′(x) is equal to 1.

3.6. The particular case of C12 with j = 0

In the following we will show that also for class C12 of Table 2 when j = 0 it is
equivalent to a hexanomial.

Let n = 2m = 4t and consider a function F of type C12 in the case of j = 0,

F (x) = (x+ x2
m

)2
i+1 + u′(ux+ u2

m
x2

m
)2

i+1 + u(x+ x2
m

)(ux+ u2
m
x2

m
),

with u a primitive element of F∗2n , u′ ∈ F2m not a cube and i such that gcd(i,m) = 1.
We can see, by a direct computation, that F is EA-equivalent to

F ′(x) = dx2
m+1 + ax2

i+1 + a2
m
x2

m(2i+1) + bx2
m+i+1 + b2

m
x2

i+2m ,
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with d = u2 + u2
m+1, a = 1 + u′ u2

i+1 and b = 1 + u′ u2
m+i+1.

We need to prove that there exists an element λ such that λ2
i+1 = 1 + u′ u2

i+1. Since
m is even we have that gcd(3, 2m + 1) = 1 and then we can divide the set F∗2n as

F∗2n = U ∪ ρU ∪ ρ2U

with
U := {x2i+1 : x ∈ F∗2n} = {x3 : x ∈ F∗2n}.

and ρ = u2
m+1 ∈ F2m .

Now, we can have three cases

• 1 + u′ u2
i+1 ∈ U ,

• 1 + u′ u2
i+1 ∈ ρU ,

• 1 + u′ u2
i+1 ∈ ρ2U .

If we have the first case the poof is done. Otherwise, suppose that 1 + u′ u2
i+1 ∈ ρU

(or 1 +u′ u2
i+1 ∈ ρ2U) and multiply F ′(x) by ρ2 ∈ F2m (or multiply by ρ ∈ F2m) obtaining

F ′′(x) = d′x2
m+1 + a′x2

i+1 + a′2
m
x2

m(2i+1) + b′x2
m+i+1 + b′2

m
x2

i+2m ,

with d′ /∈ F2m and a′ ∈ U . Let us consider an element lambda λ such that λ2
i+1 = a′, then

substituting x 7→ λ−1x we will obtain an APN function which is equivalent to H ′(x) as in
Theorem 3.7.

4. Some conditions on the coefficients of the hexanomials

From the equivalences of C11 and C12 (restricted to the case j = 0) with the family
C4, we can obtain some conditions on the coefficients of the hexanomials which permit to
determine some elements c ∈ F2n such that the equation

x2
i+1 + cx2

i
+ c2

m
x+ 1 = 0

has no solution x such that x2
m+1 = 1.

4.1. Case n = 2m with m odd

We have proved that an element of family C11 can be reduced to an element of C4. In
particular, from the proof we have immediately the following.
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Proposition 4.1. Let n = 2m with m odd and i ≤ m be an even integer such that
gcd(i,m) = 1. For all d /∈ {x2m−i+1 : x ∈ F∗2n} and γ ∈ F∗2n such that γ2

m+1 6= 1, define

a = d+ d2
m
γ2

m(2m−i+1) and b = dγ2
m−i

+ d2
m
γ2

m
.

Then, the element

c = a2
m
b
− 2n−i+2m

2n−i+1

is such that the equation
x2

i+1 + cx2
i

+ c2
m
x+ 1 = 0

has no solution x such that x2
m+1 = 1.

4.2. Case n = 2m with m even

In this case we have proved that the family C12 (restricted to the case j=0) can be
reduced to C4. In particular, from the proof we immediately get the following.

Proposition 4.2. Let n = 2m with m even and i ≤ m be an integer co-prime with n. For
all u′ /∈ {x2i+1 : x ∈ F∗2n} and u′ ∈ F2m, and for all primitive elements u of F2n, define
the sets

Λu
′
u,k := {λ : λ2

i+1 = ρk(1 + u′ u2
i+1)},

where ρ = u2
m+1 and k = 0, 1, 2.

Then, for any λ ∈ Λu
′
u,k the element

c =
ρk(1 + u′ u2

m+i+1)

λ2i+m+1

is such that the equation
x2

i+1 + cx2
i

+ c2
m
x+ 1 = 0

has no solution x such that x2
m+1 = 1.

Remark 4.3. Using the software MAGMA, when n = 2m with m = 3, 5, 7 (odd case), for
even values of i co-prime with m Proposition 4.1 provides all possible values c such that
the equation

x2
i+1 + cx2

i
+ c2

m
x+ 1 = 0

has no solution x such that x2
m+1 = 1.

For m = 2, 4, Proposition 4.2 covers all possible values c, for all integers i such that
gcd(i,m) = 1. However, for m = 6 Proposition 4.2 gives 1008 possible values of c’s out of
1344, for all integers i such that gcd(i,m) = 1.
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Table 3: Known classes of quadratic APN polynomial over F2n CCZ-inequivalent to power functions

N◦ Functions Conditions In

n = pk, gcd(k, p)= gcd(s, pk)=1,

F1-F2 x2
s+1 + u2

k−1x2
ik+2mk+s

p ∈ {3, 4}, i = sk mod p, m = p− i, [8]

n ≥ 12, u primitive in F∗2n
q = 2m, n = 2m, gcd(i,m)=1,

F3 sxq+1 + x2
i+1 + xq(2

i+1) c ∈ F2n , s ∈ F2n \ Fq, [7]

+cx2
iq+1 + cqx2

i+q X2i+1 + cX2i + cqX + 1

has no solution x s.t. xq+1 = 1

F4 x3 + a−1Tr(a3x9) a 6= 0 [10]

F5 x3 + a−1Tr3n(a3x9 + a6x18) 3|n, a 6= 0 [11]

F6 x3 + a−1Tr3n(a6x18 + a12x36) 3|n, a 6= 0 [11]

n = 3k, gcd(k, 3)= gcd(s, 3k)=1,

F7-F9 ux2
s+1 + u2

k
x2
−k+2k+s

+ v, w ∈ F2k , vw 6= 1, [2, 3]

vx2
−k+1 + wu2

k+1x2
s+2k+s

3|(k + s) u primitive in F∗2n
(x+ x2

m
)2

i+1+ n = 2m, m ≥ 2 even,

F10 u′(ux+ u2
m
x2

m
)(2

i+1)2j+ gcd(i,m) = 1 and j ≥ 2 even [29]

u(x+ x2
m

)(ux+ u2
m
x2

m
) u primitive in F∗2n , u′ ∈ F2m not a cube

a2x2
2m+1+1 + b2x2

m+1+1+ n = 3m, m odd

F11 ax2
2m+2 + bx2

m+2 + (c2 + c)x3 L(x) = ax2
2m

+ bx2
m

+ cx satisfies [6]

the conditions in Theorem 6.3 of [6]

u(uqx+ xqu)(xq + x) + (uqx+ xqu)2
2i+23i q = 2m, n = 2m, gcd(i,m)=1

F12 +a(uqx+ xqu)2
2i

(xq + x)2
i

+ b(xq + x)2
i+1 X2i+1 + aX + b [27]

has no solution over F2m

5. Conclusion

In this paper we proved that, after corrections, the generalizations introduced in [19] of
the families of APN trinomials and multinomials constructed in [7] and in [2], respectively,
coincide with the original families. Moreover, we showed that the APN trinomials and
multinomials are equivalent to each other and they are contained in the family of the
APN hexanomials, introduced in [7]. Further we proved that a particular case of the APN
family introduced by Zhou and Pott in [29] is equivalent to a function in the family of APN
hexanomials. In the last part, we derived precise conditions for coefficients of the APN
hexanimials from the equivalence proofs.
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Using the obtained results we reduce the list of known families of APN polynomials
(which are CCZ-inequivalent to power functions) to those pairwise CCZ-inequivalent to
each other. This refined list is presented in Table 3.
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