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Abstract. We present in this paper an efficient implementation of the
code-based cryptosystem ROLLO, a candidate to the NIST PQC project,
on a device available on the market. This implementation benefits of the
existing hardware by using a crypto co-processor contained in an already
deployed microcontroller to speed-up operations in F2m . Optimizations
are then made on operations in Fn

2m . Finally, the cryptosystem outper-
forms the public key exchange protocol ECDH for a security level of 192
bits showing then the possibility of the integration of this new cryptosys-
tem in current chips. According to our implementation, the ROLLO-I-128
submission takes 173,6 ms for key generation, 12 ms for encapsulation
and 79.4 ms for decapsulation on a microcontroller featuring ARMR©

SecurCoreR© SC300TMcore running at 50 MHz.
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1 Introduction

In 2016, the National Institute of Standards and Technology (NIST) issued a
report announcing the launch of an international process in order to propose
new cryptographic schemes, resistant to a quantum computer. Since 2017, 69
proposals were accepted to the NIST post-quantum project.
After a year of study, withdrawn and merge schemes, the NIST reduced the
candidates’ list by announcing the second round and the 26 accepted submis-
sions. Among these candidates, 8 signature schemes and 17 public-key encryption
schemes or key-encapsulation mechanisms (KEMs) based their security on hard
mathematical problems in codes, lattices, isogenies or multivariate. In addition
to that, one more signature scheme based on a zero-knowledge proof system has
been submitted.
In this paper, we focus on submissions based on codes. Code-based cryptography
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was introduced by R. McEliece in 1978 [17] but his self-titled cryptosystem did
not interest the cryptography community due to the use of large key size.
However, the development of new cryptosystems based on different codes from
those used in the McEliece cryptosystem as well as the introduction of codes
embedded with the rank metric have resulted in a considerable reduction of key
sizes of code-based cryptosystems and thus reach key sizes comparable to those
used in lattice-based cryptography. Despite the evolution of research in this
field, some post-quantum cryptosystems submitted to the NIST PQC project
required a large number of resources notably concerning the memory which be-
comes binding when we have to implement them into constrained environments
as microcontrollers. It is then hardly conceivable to imagine that these cryp-
tosystems may replace the ones in use today in chips. In that sense, we decided
to study the real cost of a code-based cryptosystem implementation. This study
seems to be essential to prepare the transition to post-quantum cryptography.
For our study, we chose an embedded commercialized system to implement the
targeted cryptosystem.
One of the main criteria for the selection of the cryptosystem has been the RAM
available on the microcontroller to run cryptographic protocols. We first decided
to observe the memory required to store elements for different cryptosystems.
The respective sizes are reported in Table 1. As we have only 4 kB of RAM,
we implement ROLLO submission and more specifically ROLLO-I. Indeed, for
this cryptosystem, the size of the public key and the ciphertext are by far the
smallest. It is not the case for the private key, but the cryptosystems in Table 1
with a small secret key have very big public key and ciphertext. Operations on
ROLLO-II and ROLLO-III being similar, they could be integrated quickly.

Parameter
Algorithm BIKE HQC RQC ROLLO

scheme number I II III I II III
public key 8,188 4,094 9,033 14,754 3,510 947 2,493 2,196
secret key 548 548 532 532 3,510 1,894 4,986 2,196
ciphertext 8,188 4,094 9,033 14,818 3,574 947 2,621 2,196

Table 1. Size of parameters in bytes, stored in RAM for some code-based cryptosys-
tems with security level 5

According to Table 1, for practical implementation, we then decided to study
the KEM cryptosystem ROLLO-I [18] which parameter’s size are well-balanced.
The second round submission ROLLO is a merge of the first round submissions
LAKE (renamed ROLLO-I), Locker (renamed ROLLO-II), and Ourobouros-R
(renamed ROLLO-III).

Our contribution. In this paper, we present two practical software implementa-
tions of ROLLO-I. In the best of our knowledge, it is the first implementations
of this cryptosystem on a microcontroller. The chosen target features an ARM R©

SecurCore R© SC300TMand 4 kB of RAM are dedicated to cryptographic data.
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The first implementation is optimized depending on the memory and the sec-
ond is optimized in time of which the source code can be available on request.
We finally prove the practicability of such an algorithm on current products by
comparing the execution time with an Elliptic Curve Diffie-Hellman (ECDH)
key exchange that is widely used today and implemented in the same target.

Organization of this paper. This paper is organized as follows: we start with some
preliminary definitions in Section 2, we then present the ROLLO cryptosystem
in Section 3 and our optimized implementations in Section 4. Finally, we expose
our results in Section 5.

2 Background

In this section, we recall some generalities on codes, more specifically rank metric
codes. For more details, the reader is referred to [8,18]. For fixed prime numbers
m and n, we denote by:

q a prime number
Fq the finite field with q elements
Fqm the finite field with qm elements
Fn
qm the vector space that can be identified with the ring Fqm [X]/(P ),

with P a polynomial of degree n
v an element of Fn

qm

M(v) the matrix (vi,j) 1≤i≤n
1≤j≤m

Let k, n two integers such that k ≥ n. A linear code over Fqm of length n and
dimension k is a subspace of Fn

qm of dimension k. It is denoted [n, k]qm .
A linear code can be represented by its generator matrix G ∈ Fk×n

qm as:

C = {x.G, x ∈ Fk
qm}.

The code C can also be given by its parity check matrix H ∈ F(n−k)×n
qm as:

C = {x ∈ Fn
qm : H.xT = 0}.

Thus, sx = H.xT is called the syndrome of x.
In code-based cryptography, codes can be embedded with two different metrics:
Hamming and rank . As ROLLO cryptosystem is based on codes embedded with
rank metric over Fn

qm , we will leave aside the Hamming metric for the rest of
this paper.
In rank metric, the distance between two words x = (x1, · · · , xn) and y =
(y1, · · · , yn) in Fn

qm is defined as

d(x,y) = ‖x− y‖ = ‖v‖ = Rank M(v),
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withM(v) = (vi,j) 1≤i≤n
1≤j≤m

and ‖v‖ is called the rank weight of the word v = x−y.

The rank of a word x can also be seen as the dimension of its support given by

Supp(x) = 〈x1, · · ·xn〉Fq . (1)

In order to define codes used in ROLLO cryptosystem, we first need to define
circulant and double circulant matrices.
An n × n circulant matrix is defined as a matrix where each row is rotated by
one element to the right depending on the preceding row:

a0 a1 · · · an−2 an−1
an−1 a0 · · · an−3 an−2
...

...
. . .

...
...

a1 a2 · · · an−1 a0

 .

We denote the set of circulant matrices of size n over Fqm as Circn(Fqm) ⊂
Mn(Fqm). Thus, there exists an isomorphism

φ : Fqm [X]/(Xn − 1) −→ Circn(Fqm),

n∑
i=0

aiX
i 7−→


a0 a1 · · · an−2 an−1
an−1 a0 · · · an−3 an−2
...

...
. . .

...
...

a1 a2 · · · an−1 a0

 .

An [2n, n]qm-linear code C is called double circulant if its generator matrix G is
of the form G = (A1|A2) with A1 and A2 two n× n circulant matrices.

The authors of [18] introduced the family of ideal codes that allows them to
reduce the size of the code’s representation, the associated generator matrix is
based on ideal matrices.
Given a polynomial P ∈ Fq[X] and a vector v ∈ Fn

qm , an ideal matrix generated
by v is an n× n square matrix defined as:

IM(v) =


v

Xv mod P
...

Xn−1v mod P

 .

An [ns, nt]qm-code C, generated by the vectors (gi,j)i∈[1,··· ,s−t] ∈ Fn
qm , is an ideal

code if its generator matrix under systematic form is given by:

G =

 IM(g1,1) · · · IM(g1,s−t)

Int
...

. . .
...

IM(gt,1) · · · IM(gt,s−t)

 .

In [18], they restrain the definition of ideal LRPC (Low Rank Parity Check) codes
to (2, 1)-ideal LRPC codes that they used to construct ROLLO cryptosystem.
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Let F be a Fq-subspace of Fqm such that dim(F ) = d. Let (h1,h2) be two vectors
of Fn

qm , such that Supp(h1,h2) = F , and P ∈ Fq[X] be a polynomial of degree
n.
An [2n, n]qm code C is an ideal LRPC code if its parity check matrix is of the
form:

H =

IM(h1)
T IM(h2)

T

 .

The decoding algorithm of LRPC codes presented in Algorithm 1 is described
in [18]. Let E and F be two Fq-subspace of Fqm with respectively basis (e1, · · · , er)
and (f1, · · · , fd). Let s = (s1, · · · , sn) ∈ Fn

qm be a syndrome of an error e of
weight r and such that Supp(e) = E, given F and s, the RSR algorithm, pre-
sented in Algorithm 1 recovers the support E of the error e.

Algorithm 1: Rank Support Recovery (RSR) algorithm
Input: A Fq-subspace F = 〈f1, · · · , fd〉, s = (s1, · · · , sn) a syndrome of an error

e, r the error’s rank weight
Output: A candidate E for the support of e

1 Compute the support S of the syndrome s

2 Precompute every Si = f−1
i S for i = 1 to d

3 Precompute every Si,i+1 = Si

⋂
Si+1 for i = 1 to d− 1

4 for i = 1 to d− 2 do
5 tmp← S + F (Si,i+1 + Si+1,i+2 + Si,i+2)
6 if dim(tmp) ≤ rd then
7 S ← tmp
8 end
9 end

10 E ←
⋂

1≤i≤d

f−1
i S

11 return E

In Algorithm 1, the support S is a subspace of EF given by:

EF = 〈{ef, e ∈ E and f ∈ F}〉 ,

with Rank(E) = r and Rank(F ) = d, then dim(S) ≤ rd. In the RSR algorithm,
the loop for (line 4 - Algorithm 1) allows to recover the whole vector space EF
in case of dim(S) < rd.
Once S = 〈EF 〉 = 〈e1f1, · · · , erf1, · · · , e1fi, · · · erfi, · · · , erfd〉 , since Si = f−1i S,
we have for all 1 ≤ i ≤ d,

E ⊂ Si ⇒ E =
⋂

1≤i≤d

Si.

In rank metric code-based cryptography, the support recovery is considered as a
hard problem, ROLLO bases a part of its security proof on the 2-Ideal Rank
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Support Recovery (2-IRSR) [18] problem that consists in, given a polynomial
P ∈ Fq[X] of degree n, vectors x and y in Fn

qm , and a syndrome s, recovering
the support E of (e1, e2) with dim(E) ≤ r and such that:

e1x+ e2y = s mod P.

Hereafter, we will focus on ROLLO-I submission that presents small parameter
sizes compared to ROLLO-II and ROLLO-III (see Table 1).

3 Target cryptosystem: ROLLO-I

3.1 Presentation

ROLLO-I is a rank-based code (LRPC codes) Key Encapsulation Mechanism
(KEM) composed by three probabilistic algorithms: the Key generation (Key-
gen), Encapsulation (Encap) and Decapsulation (Decap) defined respectively in
Algorithms 2, 3 and 4.
The KeyGen algorithm presented in Algorithm 2 creates randomly the private
key used in Decap, and the public key used to hide the shared secret.
Let us first define two integers n, m and the two associated irreducible poly-
nomials in Fqm P , Pm such that deg(Pm) = m and deg(P ) = n as well as the
private key’s rank d and the error’s rank r given in Table 3.

Algorithm 2: KeyGen
Input: n and m to define the code, d the private key’s rank weight
Output: public key pk = h and private key sk = (x,y)

1 Generate a random support F of rank d.
2 Create one random element sk = (x,y) ∈ F2n

2m from the support F.
3 Compute h = x−1 · y mod P
4 return pk, sk

The random generation of support and the generation of an element from a sup-
port are given respectively by Algorithm ?? and 5.

Algorithm 3: Encap
Input: n and m to define the code, h the public key, r the error’s rank weight
Output: ciphertext c and shared secret K

1 Generate a random support E of rank r.
2 Create two random elements (e1, e2) ∈ F2n

2m from the support E.
3 Compute c = e2 + e1 · h mod P
4 Derive the shared secret K = Hash(E)
5 return c,K

The Encap algorithm presented in Algorithm 3 randomly creates two vectors e1
and e2 depending on one support E used to derive the shared secret using an
hash function.
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Algorithm 4: Decap
Input: (x,y) the private key, r the error’s rank weight, d the private key’s rank

weight, c the ciphertext
Output: shared secret K

1 Compute s = x · c mod P
2 Retrieve error’s support: E = RSR(F, s, r)
3 Derive the shared secret: K = Hash(E)
4 return K

The Decap algorithm presented in Algorithm 4 first computes the syndrome of
the received ciphertext c and then uses the Rank Support Recovery Algorithm
presented in Algorithm 1 to retrieve the error’s support.

3.2 Operations

Support generation: As defined in Equation (1) the support of an element
x = (x0, x1, · · · , xn−1) is the vector subspace’s basis generated by the coordi-
nates of x. Therefore, to generate a support in Fn

2m of a given dimension d, we
choose d linearly independent vectors in F2m and we apply a Gaussian elimina-
tion on the matrix associated to the d vectors to obtain the support.

Element generation from a support: Starting from a random support of
dimension d we can get a random element of the same dimension by computing
its n coefficients as linear combinations of the vectors defining the support, as
described in Algorithm 5.

Algorithm 5: Element generation from support
Input: S ∈ Fd

2m support of dimension d
Output: x ∈ Fn

2m generated from support S

1 for i from 0 to n− 1 do
2 Pick a random integer r in [2, d− 1]
3 Compute xi as a linear combination in S of r random coefficients
4 end

5 return x

Intersection of two sub-spaces:
Let U = 〈u0, u1, · · · , un−1〉 and V = 〈v0, v1, · · · , vn−1〉 be two sub-spaces over
Fn
2m . Considering the two vectors u = (u0, u1, · · · , un−1) and v = (v0, v1, · · · , vn−1),

elements in Fn
2m , the intersection IU,V = U ∩ V can be computed by following

the Zassenhaus algorithm [16], described with the above steps:

• Create the block matrix ZU,V =

(
M(u)M(u)
M(v) 0

)
;
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• Apply the Gaussian elimination on ZU,V to obtain a row echelon form ma-
trix;

• The resulting matrix has the following shape:

M(c) ∗
0 IU,V

0 0

,

with c = (c0, · · · , cn−1) ∈ Fn
2m .

3.3 Parameters

The submission of ROLLO-I allows three different levels of security achiev-
ing 128, 192 and 256 bits of security according respectively to NIST’s security
strength categories 1, 3 and 5 [21], we recall them in Table 3. As described
in Section 3, the parameters n and m correspond respectively to the degrees
of irreducible polynomials P and Pm used to construct the field Fn

qm and the
parameters d and r correspond respectively to the private key and the error’s
rank.

Algo.
Param.

n m d r P Pm Security level (bits)

ROLLO-I-128 47 79 6 5 X47 +X5 + 1 X79 +X9 + 1 128
ROLLO-I-192 53 89 7 6 X53 +X6 +X2 +X + 1 X89 +X38 + 1 192
ROLLO-I-256 67 113 8 7 X67 +X5 +X2 +X + 1 X113 +X9 + 1 256

Table 3. ROLLO-I parameters for each security level

Therefore, the size of the public key, secret key and ciphertext involved by this
parameters are given in Table 4.

Algo.
Param. Public key Private key Ciphertext Shared secret

ROLLO-I-128 465 930 465 64
ROLLO-I-192 590 1.180 590 64
ROLLO-I-256 947 1.894 947 64

Table 4. Parameter size (bytes)

4 Implementation

4.1 Target platform and memory usage for implementation

Our goal was to demonstrate that ROLLO-I can be implemented in an existing
product. We chose the MS6001 [23] microcontroller which is based on a widely
used 32-bit ARM R© SecurCore R© SC300TM, due to its embedded 32-bit mathe-
matical crypto co-processor to perform operations in Fp and Fqm available on
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the market. This product features 24 kB of RAM (4 kB are available to the
cryptographic computations), and a True Random Number Generator (TRNG).
In our implementations, all the operations in F2m take advantage of the crypto
co-processor to speed them up. Even if low-level implementations cannot be
described in this paper due to confidentiality issues, the algorithms described
in Sections 4.3 and 4.4 can be implementable on microcontroller containing a
crypto co-processor which can perform operations in F2m (multiplication, addi-
tion, inversion and modular reduction).
The crypto co-processor embeds a 32-bits multiplier able to work with F2m , in
memory every element in F2m has to be represented on dm/32e · 4 bytes.

4.2 Target operations for optimization

Firstly, we try to find which operations can be optimized. In this paper, we
do not consider operations over F2m as they are already implemented in the
crypto-processor. Thus, we focused on optimizing the operations over Fn

2m .

Fig. 1. Number of operations in Fn
2m featured on ROLLO cryptosystem.

Figure 1 shows that Gaussian elimination and multiplication in Fn
2m are often

performed in the ROLLO-I cryptosystem.
Gaussian elimination is principally involved in the RSR Algorithm to compute to
the intersection and sum between two vector spaces, and it is performed on big
matrices. We then decided to focus on the multiplication and the RSR algorithm
in order to optimize them.
The inversion is only performed during the key generation process and does not
favour ephemeral keys. In this way, even if the extended Euclidean algorithm
[15], used to compute the inverse in Fn

2m , is very costly, it is not considered in
this paper.

For the rest of this section, we focus on the optimization of the two main op-
erations in ROLLO cryptosystem: the multiplication in Fn

2m and the RSR algo-
rithm. The Memory size implementation is described in Section 4.3 and the one
described in Section 4.4 is optimized in speed.
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4.3 Optimized implementation depending on the memory

4.3.1 Multiplication in Fn
2m

Let P be an irreducible polynomial of degree n, and x,y ∈ F2m/(P ) be two
polynomials in F2m of degree strictly lower than n, thus r = x ·y is a polynomial
of degree lower than 2n−1 that we have to reduce modulo P . The multiplication
following by a modular reduction implies a major issue in terms of memory usage:
x and y require each n ·dm/32e·4 bytes, and the result r needs the double of this
value. For instance, ROLLO-I-128 should require 2256 bytes for this operation.
Therefore, we decided to merge the two algorithms to get one which directly
returns the result after the modular reduction, thus dividing the length of the
result by 2. However, this choice requires the use of a simple polynomial multi-
plication: Schoolbook multiplication algorithm that involves n2 multiplications
in F2m . Even if the complexity of this algorithm is quadratic, as the modulo P is
parse, it is straightforward to combine modular reduction and Schoolbook mul-
tiplication, as presented in Algorithm 6, and then save memory usage, ROLLO-
I-128 takes only 1692 bytes.

Algorithm 6: Multiplication
Input: x,y ∈ Fn

2m , Pm modulo for F2m , P = (p1, · · · , pn) modulo for Fn
2m

Output: r = x · y
1 for i from 0 to n-1 do
2 for j from 0 to n-1 do
3 tmp← xi · yj mod Pm

4 if i+ j ≥ n then
5 for each pk 6= 0 and k < n do
6 if (i+ j mod n) + k ≥ n then
7 for each pl 6= 0 and l < n do
8 r(i+j+k+l) mod n ← r(i+j+k+l) mod n + tmp

9 else
10 r(i+j+k) mod n ← r(i+j+k) mod n + tmp

11 else
12 ri+j ← ri+j + tmp

13 return r

4.3.2 Rank Support Recovery algorithm

The RSR algorithm, see Algorithm 1, defined in the ROLLO submission needs
pre-computed values making it by far the most costly operation of the decapsu-
lation process in terms of memory.
We can compute the average memory cost as follows:

1. Compute the Si will lead us to store r · d ·m bits at most. Thus, the cost for
the computation of all Si is rd2m bits.

2. Compute the Si,i+1 will lead us to store (d− 1) · r ·m bits on average.

We thus decided to get rid of the pre-computation phase steps to save memory.



ROLLO-I implementation on microcontroller 11

4.4 Optimized implementation in time

4.4.1 Multiplication in Fn
2m

The multiplication in Fn
2m is one of the most used operations of this cryptosys-

tem: it’s involved in the computation of the public key, the cipher, and the
syndrome.
The Schoolbook multiplication requires n2 multiplications in F2m , this can be
reduced by implementing a combination of Schoolbook multiplication and Karat-
suba method [22] as presented in Algorithm 7.

Let P = p0 + p1X and Q = q0 + q1X be two polynomials of degree 1. The result
of the product is

P ·Q = p0q0 + (p0q1 + p1q0)X + p1q1X
2.

Naively, we have to compute 4 multiplications and 1 addition. The Karatsuba
algorithm is based on the fact that:

(p0q1 + p1q0) = (p0 + p1)(q0 + q1)− p0q0 − p1q1.

The Karatsuba algorithm takes advantage of this method which leads the com-
putation of PQ to require only 3 multiplications and 4 additions.

Algorithm 7: Karatsuba multiplication
Input: two polynomials f and g ∈ Fn

2m and N the number of coefficients of f
and g

Output: f · g in Fn
2m

1 if N odd then
2 result ← Schoolbook(f ,g, N)
3 return result

4 N
′
← N/2

5 Let f(x) = f0(x) + f1(x)x
N

′

6 Let g(x) = g0(x) + g1(x)x
N

′

7 R1 ← Karatsuba(f0,g0, N
′
) // Compute recursively f0g0

8 R2 ← Karatsuba(f1,g1, N
′
) // Compute recursively f1g1

9 R3 ← f0 + f1
10 R4 ← g0 + g1

11 R5 ← Karatsuba(R3, R4, N
′
) // Compute recursively R3R4

12 R6 ← R5 −R1 −R2

13 return R1 +R6x
N′

+R2x
2N

The fourth step (line 4 - Algorithm 7) requires to divide the polynomial’s degree
by 2, as consequence, we have to add a padding to the polynomials involved in
the multiplications with zero coefficients to make the number of coefficients of
the polynomials even.
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Fig. 2. Number of multiplications in F2m in function of the degree

We compare the number of multiplications required by the Schoolbook algorithm
and Karatsuba in Figure 2 which shows that multiplications’ number required
by the Karatasuba method is not strictly increasing, this is due to the division
by 2 of the polynomial’s degree involved in the method.
Depending on the memory available for a multiplication in Fn

2m , we can thus
choose to add more or less padding. For example, in ROLLO-I-128 with n = 47
we have to add one zero coefficient to reach a degree 47 (which induces 48
coefficients); however, in ROLLO-I-192 with n = 53 we have two possibilities:

• Pad the polynomials with 3 coefficients which leads to 1323 multiplications
in F2m .

• Pad with 11 coefficients to lower the cost to 729 multiplications in F2m .

The second possibility presents 45% fewer multiplications but requires memory
additional cost of 11 × d79/32e × 4 = 132 bytes per polynomial. Thus the first
choice is a good balance between memory and speed.

4.4.2 Rank Support Recovery algorithm

At the opposite of the memory optimization, we decided to perform some pre-
computations taking into account the memory cost. In the Algorithm 8, these
steps are framed and correspond to lines 3 to 11. We can note that this algorithm
is running in constant time.
We can estimate the average memory cost of this pre-computation: we will have
at most three Si (rd coefficients) and 1 + 2 · (d − 2) intersections (r coefficients
each) as well as the private key’s support (d coefficients) and the error’s syn-
drome (rd coefficients). By adding the matrix (4rd coefficients) induced by the
Zassenhaus algorithm [16], we have a total memory cost of:

RAMpre−compute = (8rd+ d+ (1 + 2(d− 2))r)×mb,

with mb the length in bytes for one coefficient in F2m . With this formulae we can
predict that ROLLO-I-128 requires 3492 bytes to perform the pre-computation.
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Algorithm 8: RSR (Rank Support Recover)
1 Input: F = 〈f1, · · · , fd〉 a Fq vector subspace of F2m , s = (s1, · · · , sn) ∈ Fn

2m

syndrome of an error e and r the rank’s weight of e
Output: Vector subspace E

2 Compute S = 〈s1, · · · , sn〉
// Recall that Si = f−1

i S
tmp1 ← S1

tmp2 ← S2

tmp3 ← S3

Compute S1,2 = tmp1 ∩ tmp2
for i from 1 to d− 2 do

3 Compute Si+1,i+2 = tmpi+1 ∩ tmpi+2

4 Compute Si,i+2 = tmpi ∩ tmpi+2

5 tmpi%3 ← Si+3

6 end
7 for i from 1 to d-2 do
8 tmp← S + F · (Si,i+1 + Si+1,i+2 + Si,i+2)
9 if dim(tmp) ≤ rd then

10 S ← tmp;
11 end
12 end
13 E ←

⋂
1≤i≤d

f−1
i · S

14 return E

The memory cost of the pre-computation in the RSR algorithm required to store
every Si is too high, thus we decided to store in memory at most 3 of this Si and
compute every intersection keeping the algorithm’s constant time execution. As
consequence, we save (d−3) ·r ·d ·mb bytes at most: it represents 1080, 2016 and
4480 bytes for respectively ROLLO-I-128, ROLLO-I-192, and ROLLO-I-256.

5 Results and comparison

In this section, we present the performance evaluation of proposed implemen-
tations regarding memory usage and speed. Our implementations were imple-
mented in C. For performance measurements, we used IAR compiler C/C++
with high-speed optimization level and count the cycles with the debugging
functionality of the IAR Embedded Workbench IDE [1].
Table 5 provides the memory usage during the key encapsulation mechanism.
For this implementation, an element from Fn

qm will be represented as n·dm/32e·4
bytes. Considering this fact, the memory usage of ROLLO-I-128 and ROLLO-
I-192 will only differ according to n, indeed for ROLLO-I-128, m = 79 and for
ROLLO-I-192, m = 89, we thus obtain d79/32e = d89/32e = 3 32-bit words. In
contrast, every element in Fqm for ROLLO-I-256 requires one more 32-bit word,
it explains the huge difference of memory usage between the higher security and
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Memory optimised Speed optimised

Security
Algo. GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 2,640 1,928 2,168 3,148 3,376 3,660
ROLLO-I-192 2,972 2,156 2,748 3,520 3,508 5,076
ROLLO-I-256 4,850 3,328 4,832 5,792 4,424 8,976

Table 5. Memory usage for ROLLO-I (in bytes)

the two lowers. Moreover, Table 5 highlights the fact that the implementation
of ROLLO-I-256 needs more than 4kB of RAM, so it cannot be implemented in
our target.
Table 6 provides the number of cycles required by ROLLO-I-128 and ROLLO-
I-192 as well as the execution time in milliseconds of these two cryptosystems.

Memory optimised Speed optimised
Security Algorithm GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 cycles (×106) 9.7 1.51 10.17 8.68 0.6 3.97
ms 194 30.2 203.4 173.6 12 79.4

ROLLO-I-192 cycles (×106) 12.7 2.39 15.29 11.11 0.8 6.63
ms 254 47.8 305.8 222.2 16 132.6

Table 6. Cycles counts (×106) and execution time (ms) for ROLLO-I @50 MHz

The key generation performances are not really impacted by the speed opti-
mization since only the multiplication is optimized while the others operations
remains unchanged.

Fig. 3. Operations in ROLLO-I-128 according to memory optimization and time opti-
mization
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Fig. 4. Operations in ROLLO-I-192 according to memory optimization and time opti-
mization 2

Figure 3 and Figure 4 provide the cycle counts for the main operations performed
in ROLLO-I (128 and 192) and as we can predict it, we observe that the save of
the memory footprint for computations increases the number of cycles.

To give a rough idea, we decided to compare our implementation of ROLLO-I
with the Elliptic Curve Diffie-Hellman key exchange (ECDH) [2] implemented
in the same platform. To establish a shared secret between two entities, the
ECDH protocol required 2 scalars multiplications over E(Fq) that are executed
in parallel by these two entities. Thus, Table 7 gives the performances of a key
agreement for ECDH and ROLLO-I. For the cost’s estimation of ECDH, we only
consider the two scalar multiplications.

Security Algorithm Clock cycle (×106)
128 ROLLO-I-128 4.52

ECDH Curve 256 3.49
192 ROLLO-I-192 7.43

ECDH Curve 384 8.45
Table 7. Performance comparison between ROLLO-I and ECDH for two different
security levels.

This highlights that ROLLO-I could be a realistic alternative to the actual key
exchange schemes. In Table 8, we compare ROLLO-I with other candidates to
the NIST competition in terms of memory and speed roughly at the same se-
curity level. Since all the algorithms have not been implemented in the same
platform (Cortex-M3 vs Cortex-M4), the timings are given in cycle counts in
order to reduce the impact of the hardware. Nevertheless, it gives us a rough
overview of these candidates implemented on microcontrollers. In view of the
other cryptosystems, ROLLO-I seems to be a good compromise between the
memory allocation needed and the performances.
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Key generation Encapsulation Decapsulation
Scheme speed memory speed memory speed memory

ROLLO-I-192 (memory) 12,700k 2,972 2,390k 2,156 15,290k 2,748
ROLLO-I-192 (speed) 11,110k 3,520 800k 3,508 6,630k 4,908

Saber [14] 1,165k 6,931 1,530k 7,019 1,635k 8,115
Saber [12] 895k 13,248 1,161k 15,528 1,204k 16,624

Kyber768 [13] 1,200k 10,544 1,446k 13,720 1,477k 14,880
NewHope [13] 1,246k 11,160 1,966k 17,456 1,977k 19,656

NTRU-HRSS [12] 145,963k 23,396 404k 19,492 819k 22,140

Table 8. Speed (cycles) and memory(bytes) performances for other NIST submissions
on CORTEX-M4.

Conclusion

In this paper, we highlighted that ROLLO-I can be implemented in an microcon-
troller available on the market with 4 kB of RAM. Our implementations benefit
from an actual crypto co-processor. We also shown that our implementation can
compete in terms of performances with existing algorithms such as ECDH. Fi-
nally, the comparison with other candidates to the NIST PQC project, comfort
us in the idea that ROLLO-I is a protocol that could be implemented in low
resource embedded systems.
For future work, it would be interesting to evaluate a full hardware implemen-
tation of ROLLO-I.
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