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Abstract. This works studies the use of the AES block-cipher for Picnic-style signatures, which work
in the multiparty-computation-in-the-head model. It applies advancements to arithmetic circuits for
the computation of the AES S-box over multiparty computation in the preprocessing model to obtain
an improvement of signature sizes of 40% on average compared to using binary circuits for AES-128,
AES-192 and AES-256 in combination with previous techniques. This work also discusses other methods
for the computation of the S-box and provides insights into the reaches and limits of the multiparty-
computation-in-the-head paradigm.

1 Introduction

With the possible advent of a quantum computer, cryptographers have turned their attention
to building “post-quantum” variants of standard cryptographic functionalities such as public key
encryption and digital signatures. Among the various paradigms for producing post-quantum sig-
natures, one of the most promising is that of MPC-in-the-head (MPCitH), which was introduced
in [IKOS07]. In this paradigm, the security of signatures is based on the security of a semi-honest
multiparty computation (MPC) protocol against a dishonest majority, and of a given PRF family
Fk(·), such as a block-cipher. Given the nature of the MPC protocol, the concrete security of the
resulting signature scheme relies on the underlying PRF.

The secret key for such signature schemes is the key k used to select the PRF Fk(·), with
the public key being an input-output pair of the PRF, i.e. values (x, y) such that y = Fk(x). The
signature itself is then a non-interactive zero-knowledge proof of knowledge (NIZKPoK) of the secret
key k produced using the MPCitH paradigm. To do so, the signer first computes a commitment to
an execution of an MPC evaluation of the PRF on input x, which constitutes the first component
of the signature; then they hash the commitment to obtain the NIZKPoK challenge, according to
the Fiat-Shamir heuristic, and include the message to be signed in the hash of the commitment;
finally they respond to this challenge by outputting the views of a subset of parties as the final
component of the signature. That this process reveals nothing about the secret key k follows from
the security of the MPC protocol, and the security of the PRF. That it also convinces a verifier
that the signer knows k follows from [IKOS07].

While originally considered as a theoretical construction, MPCitH has been used to success-
fully create practical NIZKPoKs. ZKBoo [GMO16], ZKBoo++ [CDG+17] and Ligero [AHIV17]
are examples of such schemes. While ZKBoo and Ligero provide schemes for proofs of knowledge
for SHA-256 pre-images, the ZKBoo++ paper makes use of the LowMC cipher [ARS+15], which
was designed as a cipher optimized for evaluation in FHE and MPC applications. This construc-
tion (ZKBoo++ and LowMC) is the main idea behind the submission to the NIST Post-Quantum
Cryptography project [Nat16] titled Picnic [CDG+19b].



The first applications of MPCitH drew inspiration from traditional MPC protocols. In recent
years many practical improvements to these have been made in the so-called preprocessing model
(such as VIFF, BDOZ and SPDZ [BDOZ11,DGKN09,DPSZ12]). Following the paradigm of MPC
with preprocessing, an adaptation of the MPCitH paradigm to use the preprocessing model was
presented recently in [KKW18]. This technique allows for both smaller and more compact signatures
together with faster verification and signing times. It is this later technique which, combined with
the LowMC cipher, is used in the Round 2 updated Picnic submission [CDG+19a].

The choice of the LowMC block-cipher as the PRF was made as it has a particularly simple
circuit design. However, using LowMC comes with a risk. It is a less studied cipher, compared
to standardized ones such as AES, and thus it is possible that future cryptanalytic attacks be
developed which would then render the above digital signature schemes insecure. However, using
a standard block cipher such as AES comes with a penalty. For example, the standard circuit for
AES is far more complex than that for LowMC in terms of non-linear AND gates, and this results
in larger signature sizes and computation times.

However, the above intuitive comparison assumes that a binary circuit for AES would be used
within the MPCitH. There are however other ways to evaluate AES over MPC, see for exam-
ple [DK10,DKL+12,KOR+17]. Many of these approaches use arithmetic circuits, and thus exploit
the algebraic structure of the AES block cipher.

Contributions. In this work, we show how one can use the MPCitH with preprocessing paradigm
of [KKW18] for arithmetic circuits over F28 to define a signature scheme whose security rests on
AES as opposed to LowMC. We estimate that our approach produces signatures that are on average
40% smaller than those that would be obtained using a binary circuit for AES. Our estimates are
2.5, 3.1 and 2.8 times larger than the Picnic signatures using on LowMC for the L1, L3 and L5
security levels of the NIST project respectively. Thus our technique enables one to achieve security
based on a block-cipher component which is better understood, with a better-than-expected penalty
in terms of signature size.

To achieve this improvement compared to binary circuits, we make use of MPC techniques to
compute the AES S-box. The problem is in computing the only non-linear component in AES is
the S-Box inversion, namely the computation of s 7→ s254 in the finite field F28 , which is well known
to be equal to the function s 7→ 1/s when s 6= 0. This inversion function is easy to evaluate in
MPC but different methods to capture the s = 0 case require more or less communication between
parties, which directly translates to signature size.

Our main solution to the problem of zero S-box inputs is for the signer to select his private
key k and the x component of the public key so that the computation of y = Fk(x) (when Fk is
the AES function) involves no zero-inputs to any S-Box. While this may seem restrictive, it in fact
only reduces the key space by approximately 1.1, 2.4 and 2.9 bits for the AES-128, AES-192 and
AES-256 circuits respectively. Thus, making this reduction in the key-space bypasses the problem
one faces in producing an inverse of zero. This provides our most efficient solution and we obtain
signature size estimates of 31.6 kB, 86.9 kB and 133.7 kB for circuits achieving L1, L3 and L5
security levels respectively.

Interestingly, we can observe that scaling up the key size of AES (and using AES-192 or AES-
256) does not automatically scale up the security parameter when used in the MPCitH paradigm.
The problem lies in the fact that the block-length of the circuit stays the same (128 bits in all
AES versions), resulting in spurious keys if only single block input/output pairs are used in the
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public key. To solve this and achieve the L3 and L5 security levels, we come up with a way to
construct simple circuits with appropriate block-lengths out of the AES cipher. We also consider
the use of the original Rijndael block-cipher on which AES is based and which has parametrisable
block-length.

Finally, we also discuss other solutions to address the case of s = 0 during the inversion compu-
tation. These would enable the use of any k and x for the signature key and therefore not reduce
the bit-security of the cipher, but they would require significantly more communication in the MPC
protocol and thus produce longer signatures. However, these alternative solutions provide insights
on the added capabilities of the MPCitH paradigm could direct the design of more appropriate
MPC protocols for this purpose.

2 Preliminaries

We let κ denote the computational security parameter. We also let H denote a collision-resistant
hash function with co-domain {0, 1}2κ and let com be a non-interactive commitment scheme where
x is committed to by sampling a random r ∈ {0, 1}κ and computing γ = com(x, r); decommitment
is done by opening x and r. (The Picnic scheme [CDG+19a] uses a hash function to instantiate
com.) We use bold lower case letters for tuples, overset small arrow to indicate elements of a vector
space, like ~v, and bold upper case letters for matrices. We also write [n] = {1, . . . n}.

2.1 Efficient NIZKPoK in the MPC-in-the Head Paradigm

In 2007, Ishai et al. [IKOS07] showed how to use any MPC protocol to construct a zero-knowledge
(ZK) proof for an arbitrary NP relation R. The high level idea is the following: zero knowledge can
be seen as a special function evaluation, and hence as a two-party computation between a prover P
and a verifier V, with common input the statement x, and P’s private input w, which is a witness
to the assertion that x belongs to a given NP language L. The function they want to compute is
then fx(w) = R(x,w), which checks if w is a valid witness or not. The verifier V will accept the
proof if fx(w) = R(x,w) = 1.

In the MPCitH paradigm the prover P simulates an n-party MPC protocol Π in “its head”: P
first samples n random values w(1), . . . , w(n), subject to the condition

∑
i∈[n]w

(i) = w, as private

inputs to the parties, and then emulates the evaluation of f(w(1), . . . , w(n)) = R(x,w(1)+ · · ·+w(n))
by choosing uniformly random coins r(i) for each party Pi, i ∈ [n]. Note that, once the inputs and
random coins are fixed, for each round j of communication of the protocol Π and for each party Pi,
the messages sent by Pi at round j are deterministically specified as a function of the internal state
of Pi, i.e. Pi’s private inputs w(i) and randomness r(i), and the messages msg(i) that Pi received in
previous rounds. The set with the state and all messages received by party Pi during the execution
of the protocol constitutes the view of Pi, denoted as ViewPi .

After the evaluation, the prover P commits to the views of each party and sends them to V. At
this point, the verifier “corrupts” a random subset of parties, challenging the prover to open their
committed views and finally verifies that the computation was done correctly from the perspective
of these corrupt parties, by checking that the opened views are all consistent with each other. To
obtain the desired soundness it is often necessary to iterate the above procedure many times.

Using the MPCitH paradigm, some recent works [AHIV17,CDG+17,GMO16] have constructed
efficient NIZKPoK for Boolean circuits and signature schemes [CDG+17,KKW18]. In particular,
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the work of Katz et al. [KKW18] constructs an honest-verifier zero-knowledge (HVZK) proof of
knowledge (HVZKPoK) by instantiating the MPCitH paradigm using an MPC protocol designed
in the preprocessing model. We now describe their protocol adapted for arithmetic circuits.

Arithmetic MPCitH in the Preprocessing Model. We consider some finite field F. The
HVZK protocol we introduce here provides a proof of knowledge of a witness w ∈ Fι such that
C(w) = y ∈ Fo, for a given circuit C : Fι → Fo and output y.

As the underlying protocol ΠC is designed in the preprocessing model (and therefore has a
preprocessing phase followed by an online phase), the HVZK proof also happens in two stages.
In the first stage, P commits to a number of preprocessing executions (which consist only of
input-independent randomness). Then V requests that some of these are opened, and checks that
they are consistent preprocessing computations. In the second stage, the prover uses the unopened
preprocessing material to execute parallel and independent executions of the online phase of the
MPC protocol ΠC . It then commits to these executions and, for each of them, is challenged by the
verifier to open a random selection of n − 1 parties’ views. By receiving these views, V is able to
perform checks to ensure that the prover did not falsify the executions of ΠC .

Since we will make use of an arithmetic circuit C over a field F, C is composed of addition and
multiplication gates operating on values in F. This is a generalization of [KKW18] as that work
considers circuits operating on only bits with XOR and AND gates. The online evaluation of C is
done by a SPDZ-like [DPSZ12] protocol, simplified as we only require security against semi-honest
adversaries (notably, we use broadcast as the only communication channel).

This protocol is executed by n parties. For every value x ∈ F in the arithmetic circuit C, the
protocol uses an additive secret sharing 〈x〉 which denotes the sharing x(1), . . . , x(n), such that∑n

i=1 x
(i) = x and every party Pi holds x(i).

To reconstruct, or “open”, a shared value 〈x〉, each party Pi broadcasts its share x(i) and each
party Pj can then reconstruct x =

∑n
i=1 x

(i). With such a secret sharing, the following operations
can be performed locally, i.e. without communication between parties:

– Addition with public constant: To compute 〈z〉 ← 〈x+ a〉 given 〈x〉 and a public value a, party
P1 sets his share to be z(1) ← x(1) + a and every other party Pi (i 6= 1) sets z(i) := x(i).

– Addition of two shared values: To compute 〈z〉 ← 〈x+ y〉 given 〈x〉 and 〈y〉, every party Pi sets
his share to be z(i) ← x(i) + y(i).

– Multiplication by public constant: To compute 〈z〉 ← 〈a · x〉 given 〈x〉 and a, every party Pi sets
his share to be z(i) ← a · x(i).

However, computing the multiplication of two shared values, i.e. 〈z〉 ← 〈x · y〉 given 〈x〉 and 〈y〉,
cannot be done locally; it requires both preprocessing material and communication during the
online phase. Namely, given a precomputed triple (〈a〉, 〈b〉, 〈c〉), such that c = a · b, the parties can
compute 〈z〉 as follows:

1. Locally compute 〈α〉 := 〈x− a〉 and 〈β〉 := 〈y − b〉.
2. Open α and β.

3. Locally compute 〈z〉 = 〈c〉 − α · 〈b〉 − β · 〈a〉+ α · β.
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This technique is due to [Bea92] and is easily checked to be correct:

z = c− α · b− β · a+ α · β
= a · b− (x− a) · b− (y − b) · a+ (x− a) · (y − b)
= x · y.

Before we describe the HVZK protocol of [KKW18], we present the execution of both phases
of ΠC that the prover will have to simulate; namely the preprocessing and online phases.

1) Preprocessing phase. The only preprocessing required is the generation of random multiplication
triples {(〈am〉, 〈bm〉, 〈cm〉)}m∈[mult], where mult is the number of multiplication gates in C. As noted
in [KKW18] for its preprocessing computation, for each triple, the i-th share of 〈a〉 and 〈b〉 is
uniform and therefore can be generated by party Pi applying a pseudorandom generator (PRG)
to a short random seed seed(i). Each share of 〈c〉 can also be generated in that way, but then the
actual generated value c̃ =

∑n
i=1 c

(i) would not equal a · b with very high probability. Instead, for
each triple (〈am〉, 〈bm〉, 〈cm〉), party Pn is given a “correction value” ∆m = a · b −

∑n−1
i=1 c

(i) and
directly sets c(n) ← ∆m.

In summary, the outcome of the preprocessing is that every party Pi is given a κ-bit seed
seed(i) ∈ {0, 1}κ and Pn is also given mult values {∆m} denoted by aux(n). This information is
called the state of party Pi and is denoted by state(i).

2) Online phase. The online computation can itself be divided into three components: input dis-
tribution, computation and output reconstruction.

Unlike for real MPC, the input w = (w1, . . . , wι) is global and must be distributed by the
prover, outside of the view of any n − 1 parties. To do so, each party Pi uses seed(i) to generate

a random share w
(i)
j , for j ∈ [ι]. Identically to the generation of multiplication triple, a correction

value Λj must then be computed so that wj = Λj +
∑n

i=1w
(i)
j . The values (w

(1)
j , . . . , w

(n)
j , Λj) now

constitute an n-out-of-(n + 1) sharing of wj and therefore it is safe for P to communicate the Λj
values to V in addition to n − 1 of the seeds seed(i). Before the computation begins, we let Pn be

the one to set w
(n)
j ← w

(n)
j + Λj , for j ∈ [ι].

Next, the parties compute the intermediary values in the computation of C(w). Whenever
multiplication gate m is encountered, each party Pi recalls their share of the next unused triple

a
(i)
m , b

(i)
m , c

(i)
m from the preprocessing phase. This yields the triple (〈am〉, 〈bm〉, 〈cm〉) which can then

be used to compute multiplication gate m. Whenever Pi needs to sample a random value, it does
so using seed(i).

Once the parties have computed the shared output values 〈y1〉, . . . , 〈yo〉, they jointly reconstruct

y = C(w). To do so, they open each value yj , for j ∈ [o], by having each party broadcast its share y
(i)
j

As noted above during the description of the MPCitH paradigm, this online phase is entirely
deterministic. In particular, the next broadcast message of party Pi at a given time in ΠC depends
only on state(i) and the messages received by Pi so far. Denoting by A the set of “corrupt” parties,
this implies that when the verifier V checks the views of these n− 1 parties in the execution of ΠC ,
they only need to be given the n− 1 states of parties in A together with the messages broadcast by
the unopened party during each multiplication gate; they can then recompute the internal values
of C(w) since they can infer the broadcast messages sent by the opened parties. This means that
instead of sending ViewPi , for each i ∈ A, P only needs to send ViewA = {state(i)}i∈A∪{msg(j)}j 6∈A,
where {msg(j)}j 6∈A are the messages sent by the “honest” parties.

5



Parameters: Let H : {0, 1}∗ → {0, 1}2κ and G be collision-resistant hash functions and com be a commitment
scheme. Note G is only used in the non-interactive variant of the protocol.
Other parameters are T and τ , that indicate the total number of preprocessing executions emulated by P and the
number of online executions, respectively.

Inputs: Both parties hold a description of C over F, the value y ∈ Fo. The prover P also holds w ∈ Fι such that
C(w) = y.

Round 1: Protocol execution emulation.

1. For each t ∈ [T ], P emulates the preprocessing phase as follows:

(a) Sample a uniform master seed seedt ∈ {0, 1}κ and use it to generate seed
(1)
t , . . . , seed

(n)
t ∈ {0, 1}κ and

r
(1)
t , . . . , r

(n)
t ∈ {0, 1}κ used in the commitments.

(b) For each multiplication gate m ∈ [mult]:

i. Use seed
(i)
j to sample a

(i)
t,m, b

(i)
t,m and also c

(i)
t,m for i = 1, . . . , n− 1.

ii. Compute at,m =
∑n
i=1 a

(i)
t,m and bt,m similarly.

iii. Compute the offset ∆t,m = at,m · bt,m −
∑n−1
i=1 c

(i)
t,m.

(c) Set aux
(n)
t = (∆t,m)m∈[mult].

(d) Set state
(i)
t = seed

(i)
t for i ∈ [n− 1] and set state

(n)
t = (seed

(n)
t , aux

(n)
t ).

(e) For each i ∈ [n], compute γ
(i)
s,t = com(state

(i)
t , r

(i)
t ).

(f) Compute hs,t = H(γ
(1)
s,t , . . . , γ

(n)
s,t ).

2. For each t ∈ [T ], given w = (w1, . . . , wι), P emulates the online phase as follows:
(a) Generate the input offsets for each j ∈ [ι]:

1. Use seed
(i)
t to sample w

(i)
t,j for i ∈ [n].

2. Compute w̃t,j =
∑n
i=1 w

(i)
t,j .

3. Compute Λt,j = wj − w̃t,j .
(b) Compute C by proceeding through the gates in topological order. For each party Pi, record each broadcast

message in msg
(i)
t .

(c) Compute hm,t = H({Λt,j}j∈[ι],msg
(1)
t , . . . ,msg

(n)
t ).

3. Compute hs = H(hs,1, . . . , hs,T ), hm = H(hm,1, . . . , hm,T ) and send h∗ = H(hs, hm) to V.

Fig. 1: 3-round HVZK proof (part 1).

The HVZKPoK Protocol. In Figures 1 and 2, we give a slightly modified version of the 3-
round protocol presented by Katz et al. [KKW18] to compute their proof of knowledge, so that
it can use our ΠC protocol for an arithmetic circuit C over F. We refer the reader to the original
paper [KKW18] for a more in-depth explanation of the protocol. We adopt their optimization of
performing a more general cut-and-choose by having the prover run T independent preprocessing
phases and the verifier choosing τ of them to be used for independent online phases. For each of
these online phases, V challenges P on n− 1 parties which it then checks, together with the T − τ
preprocessing phases that were not used.

From the 3-round protocol, it is possible to obtain a non-interactive ZKPoK by applying the
Fiat-Shamir [FS87] transform, as indicated in the description of Round 2 in Figure 2. The system
we obtain in this way consists of two stages, Prove and VerifyProof.

– Prove(y,w) takes as input (y,w) and consists of Round 1, 2 and 3 of Fig. 1 and 2; i.e.
P computes the first round message and then locally computes the challenge by hashing this
message using a collision-resistant hash function G. The resulting proof, σ, consists of the
concatenation of the first-round message and the response to the challenge.

– VerifyProof(y, σ) does the Verification step (Fig. 2) and returns b ∈ {0, 1}.
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Round 2: Challenge.
V challenges P on the executions indexed by a set T ⊂ [T ], with |T | = τ . For each of these, it chooses a party that
remains honest, i.e. it chooses a vector (it)t∈T ∈ [n]τ . It then sends (T , (it)t∈T ) to P.
In the NIZKPoK variant, P locally computes (T , (it)t∈T ) = G(h∗).

Round 3: Opening.
P sends (seedt, hm,t)t∈T and ((state

(i)
t , r

(i)
t )i∈[n]\{it}, γ

(it)
s,t , {Λt,j}j∈[ι],msg

(it)
t )t∈T , to V.

Verification:

1. For each t ∈ T , use (state
(i)
t , r

(i)
t )i∈[n]\{it} to reconstruct γ

(i)
s,t for i ∈ [n] \ {it}. Then compute h′s,t =

H(γ
(1)
s,t , . . . , γ

(n)
s,t ) using γ

(it)
s,t sent by P.

2. For t ∈ T , use seedt to compute h′s,t as an honest P would.
3. Then compute h′s = H(h′s,1, . . . , h

′
s,T ).

4. For each t ∈ T , use {state(i)t }i∈[n]\{it}, (Λt,j)j∈[ι] and msg
(it)
t to recompute the online phase. Check that the

output reconstruction yields the correct value of y, and compute h′m,t = H({Λt,j}j∈[ι],msg
(1)
t , . . . ,msg

(n)
t ).

5. Then compute h′m = H(h′m,1, . . . , h
′
m,T ) using (h′m,t)t∈T sent by P.

6. Check that h∗
?
= H(h′s, h

′
m).

Fig. 2: 3-round HVZK proof (part 2).

To obtain a formula for our proof size estimates we analyze each of the elements communi-
cated by the prover in Rounds 1 and 3. We present and incorporate the optimizations discussed
in [KKW18] and thus obtain a formula very close to theirs. At the end of Round 1, P sends
h∗ = H(hs, hm) to V, which contributes 2κ bits to the proof size. In Round 3, P sends two sets
of elements; the first corresponds to the T − τ opened preprocessing executions and the second
corresponds to the τ executions of the online phase of the protocol. By generating the master seeds
as the leaves of a binary tree expanding from a single root, all-but-τ of the seeds can be sent by only
sending τ · log(T/τ) elements, each of κ bits. By computing the hash hm in a similar way, i.e. as the
root of a tree where the hm,t values are the leaves, then it also suffices to send at most τ · log(T/τ)
values, each of 2κ bits. This implies that the opening of the T − τ preprocessing executions adds
τ · log(T/τ) · 3κ to the proof size. To open the τ online executions, P sends, for each execution, the

commitment γ
(it)
s,t of 2κ bits, the input correction values {Λt,j}j∈[ι] of size |w| bits, the messages

of the unopened party of size |msg(i)| and the states of the openened parties. To reduce the com-

munication here, it is observed in [KKW18] that there is sufficient entropy contained in state
(i)
t to

not require a separate randomness r
(i)
t . Combining this with a tree-like structure thus reduces the

communication to only κ · log n for the states. In the worst case when party Pn is opened, the prover
also has to send the auxiliary information of size |aux(n)|. This results in the following estimate for
the proof sizes.

2 · κ+ τ · log (T/τ) · 3 · κ+ τ · (κ · log n+ 2 · κ+ |aux(n)|+ |w|+ |msg(i)|). (1)

We have aux(n) = {∆m}m∈[mult] and typically, the majority of messages in msg(i) are the openings
of α and β during the multiplications. We see that when κ, n, T and τ are fixed, the final proof size
is strongly correlated with the number of multiplications in the circuit.

2.2 The Picnic Signature Scheme

It is straightforward to use the NIZKPoK described in the previous section to obtain the Picnic
signature scheme [CDG+17]. Given a block cipher Fk(x) : K×X → Y, presented as a binary circuit,
the scheme is described by three algorithms:
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– Gen(1κ): Sample x in X = {0, 1}κ, and k ∈ K = {0, 1}κ and then compute y = Fk(x). The
public key pk is given by (y,x) and the secret key is sk = k.

– Sign(sk,m): Given a message m to be signed, compute σ ← Prove(pk, k). Compute the challenge
internally as H(σ̃,m), where σ̃ denotes the message sent in Round 1 of the proof.

– Verify(pk,m, σ) : Compute VerifyProof(pk, σ) and the challenge as H(σ̃,m). Return 1 if the
result of VerifyProof is 1 and 0 otherwise.

The Picnic signature scheme is thus a NIZKPoK of k realized with the HVZKPoK protocol
of [KKW18] for binary circuits. The size of the proof σ then depends on the number of AND gates
required for the evaluation of the symmetric primitive F . In the submission to the NIST’s Post-
Quantum Cryptography project [Nat16,CDG+19b], F is instantiated with LowMC [ARS+15], an
“MPC friendly” block-cipher explicitly designed to have low AND depth and lower multiplication
complexity. LowMC is a very parametrizable scheme, the number s of 3-bits S-boxes per round
and the number of rounds r can both be modified to favor either low round complexity or low
multiplication complexity. The block-size and key-size κ does not affect the number of S-boxes, it
only imposes the condition that 3s ≤ κ; bits of the state that are not affected by the S-box layer
are left unchanged. In [CDG+19a], the Picnic submission team provides parameters (κ, s, r) for
the LowMC block-cipher and parameters (n = 64, κ, T, τ) for the NIZKPoK. We reproduce these
parameters in Table 1 together with the number of AND gates in each circuit and the estimated
signature size using the formula given in (1). As per the MPC protocol for binary circuits given
in [KKW18], we use |aux(n)| = |msg(i)| = (#ANDs) and |w| = κ in our estimates. We note that
these estimated proof sizes consistently fall in between the maximum and averages sizes reported
in the Picnic submission [CDG+19a] and we will therefore compare our estimations to these.

Scheme κ s r #ANDs T τ est. size

picnic2-L1-FS 128 10 20 600 343 27 12.7 kB

picnic2-L3-FS 192 10 30 900 570 39 28.1 kB

picnic2-L5-FS 256 10 38 1140 803 50 47.9 kB

Table 1: Picnic parameters and estimated proof sizes.

Key generation security. As discussed in [CDG+17, Appendix D], the security of the key generation
relies on the assumption that the block cipher Fk(x) is a one-way function with respect to k. That
is, for a fixed plaintext block x ∈ X , the function fx : K → Y defined by fx : k 7→ Fk(x) is a OWF.
This is indeed the correct assumption since x and y as part of the public-key, thus fixing the function
fx and posing the challenge of recovering a suitable pre-image k̃ ∈ K such that fx(k̃) = Fk̃(x) = y.
This also shows that first picking x and then picking k during key generation is the natural way of
first fixing the function fx and then computing the challenge image y.

In the full version of the original Picnic work [CDG+17], the authors go on to prove that if the
block cipher Fk(x) is a PRF family with respect to x (that is for a fixed k, the function Fk : X → Y
is a PRF) then it is also a OWF with respect to k.
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2.3 The Advanced Encryption Standard

AES is a 128-bit block-cipher based on a substitution-permutation network (SPN). It allows key
lengths of 128, 192 or 256 bits and the corresponding number of rounds for the SPN is respectively
10, 12 or 14. The state always consists of 128 bits and can be considered as a 4×4 matrix of elements
in F28 . The cipher can thus be considered either as a Boolean circuit over F2 or as an arithmetic
circuit over F28 . We consider the latter. The round function is composed of four operations on the
state, of which only one is non-linear: SubBytes.

AddRoundKey takes the 128-bit round key produced by the key schedule and performs an exclusive-
or (XOR) operation with the current state to obtain the new state. As F28 has characteristic 2, the
XOR operation can be computed by simply adding two elements together.

SubBytes is the only non-linear block of the round function, which transforms each of the 16
bytes of the state by means of a substitution function, known as the S-box. The AES S-box is a
multiplicative inverse in the field F28 , followed by an invertible affine transformation. In some sense,
the S-box can be seen as

S : s 7→ φ−1
(
A · φ

(
s−1
)

+~b
)

(2)

where φ : F28 → (F2)
8 is an isomorphism of vector spaces (mapping bytes in F28 to vectors of eight

bits in F2) and A ∈ (F2)
8×8 and ~b ∈ (F2)

8 are the public parameters of the affine transformation.

ShiftRows is a permutation of the 16 state bytes, obtained by rotating row i of the state by i bytes
to the left. Hence, the first row (row zero) remains the same, the second row is rotated to the left
by one byte, etc.

MixColumns is the final phase and linear component. It consists of a mixing operation that is
applied to each column of the state separately. Column i is transformed by a matrix multiplication
with a 4× 4 matrix defined over F28 .

Key Schedule. The key schedule is mostly linear except for the application of the same AES S-box
to up to four bytes of the round key.

As the S-box is the only non-linear block, Table 2 presents how many times it needs to be computed
for each AES circuit.

AES- 128 192 256

# Rounds 10 12 14

# Round S-boxes 160 192 224

# Key schedule S-boxes 40 32 52

Total # S-boxes 200 224 276

Table 2: Number of S-boxes in the AES circuits.
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Rijndael. The AES is the standardized version of the Rijndael cipher [DR99]. The most prominant
difference between the two is that Rijndael allows both a variable key size κ and a variable block-
length β. The round transformations are the same, with SubBytes performing S-box on each of
the β

8 state bytes and MixColumns transforming each of the β
32 state columns. The key schedule

is identical to that of AES-κ, but keep in mind that the expanded key is larger in the former case
and hence the number of S-box calculations also differs. We summarize the number of S-boxes in
Rijndael-κ circuits with κ = β in Table 3.

Rijndael- 128 192 256

# Rounds 10 12 14

# Round S-boxes 160 288 448

# Key schedule S-boxes 40 48 112

Total # S-boxes 200 336 560

Table 3: Number of S-boxes in the Rijndael circuits.

3 Computing the S-box

To design an MPC protocol for the circuit fx(k) := AESk(x) over F28 , we design a communication-
efficient computation of the non-linear S-box in a distributed way using the advantages of MPCitH.
This computation happens in two stages: first an inversion stage described by the map

s 7→

{
s−1 if s 6= 0,

0 if s = 0,
over F28 ; (3)

and second, an affine stage where s−1 7→ φ−1(A ·φ(s−1) +~b) in (F2)
8 as described in Equation (2).

As the second stage is in fact local, we present it first and then address the inversion stage in
Section 3.1.

The affine transformation (being linear) can be applied by each party independently. Since
it operates on individual bits, the parties must first derive a sharing of the bit-decomposition of
s. As we only require semi-honest security for our protocol, this can be also be achieved locally.
Given the isomorphism φ : F28 → (F2)

8, each party can locally obtain ~s(i) = φ(s(i)) which then
corresponds to a sharing 〈~s〉 = φ(〈s〉). Each party can then locally compute the affine transformation
~t(i) := A ·~s(i)+~b; indeed, as A and ~b are both public values, the transformation can be computed as
a series of multiplications by and additions with public constants during the online phase.. Finally,
they can recompose 〈t〉 = φ−1(〈~t〉). Thus the affine phase of the S-box can be computed entirely
locally.

3.1 Computing the Inversion

To perform the Galois field inversion within the MPCitH paradigm, we use a masked inversion
method. Namely, given 〈s〉 ∈ F28 and a randomly sampled 〈r〉 ∈ F28 (where each party samples r(i)

at random from seed(i)), we run the following:
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1. Compute 〈s · r〉 (by using a preprocessed triple (〈a〉, 〈b〉, 〈c〉) and opening s− a and r − b).
2. Open(s · r).
3. Compute (s−1 · r−1) (done locally by each Pi).

4. Compute 〈s−1〉 = (s−1 · r−1) · 〈r〉.

Performing the multiplication and the opening of 〈s · r〉 results in every party broadcasting
three elements of F28 for each inversion. This implies that we have a base communication cost of 3
bytes per party per inversion in the online phase; i.e. for each Pi,

|msg(i)| = 8 · (3 ·#(S-boxes) + o),

where the additional o bytes come from the opening of the output values as fx outputs tuples in
(F28)o.

Also considering the inclusion of the offset value ∆ ∈ F28 in the auxiliary information aux(n),
for the triple that is used for the inversion, we also have that

|aux(n)| = 8 ·#(S-boxes).

There are however two complications with this method: when either r = 0 or s = 0. We first
present how to deal with the first one, assuming that the second does not happen. We then discuss
how to mitigate the second one.

Need for Non-Zero Randomness. Indeed, assuming that s 6= 0, we see that if r = 0, then s · r = 0
as well and the inversion computation cannot proceed. However, this does not leak any information
regarding s, so when the parties observe that Open(s · r) yields 0, they can restart the computation
of the inversion with a fresh 〈r′〉 and a new multiplication triple.

While this would not be a problem for real MPC executions of this protocol, here we are
restricted because of the commitment to aux(n), and therefore to the number of preprocessed triples,
that the prover P of the HVZKPoK must make before it emulates the online phase of the protocol.
The prover does emulate the online phase for every preprocessing phase, and it would therefore be
possible for them to observe exactly how many triples are required for an execution. However, this
would ultimately be dependent on the input.

In order to commit to the preprocessing, the prover would have to indicate how many triples
were generated and using which bits of randomness, given that those bits produced from seed(i)

would be mixed with bits used to produce other randomness, such as the input sharings. We do not
discuss here the design of a protocol which accounts for this flexible verification and the evaluation
of whether this would leak information regarding the input to the verifier.

Instead, we design our protocol to generate a fixed number m of additional triples for every
execution. In the rare cases that this additional number is not enough, we say that the prover
aborts the proof and restarts. Table 4 shows the probability that a proof aborts for each of the AES
circuits depending on the number of additional triples provided by P. If we want the probability
of needing to abort a proof to be less than 10−8 ≈ 2−20, then adding m = 9 additional triples is
sufficient.

The addition of these m additional triples then implies that, for each execution, the auxiliary
information contains (#(S-boxes) +m) elements in F28 and we therefore have

|aux(n)| = 8 · (#(S-boxes) +m).
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m 0 1 2 3 4 5 6 7 8 9 10

AES-128 2−0.9 2−2.4 2−4.5 2−6.9 2−9.7 2−12.7 2−15.9 2−19.3 2−22.9 2−26.6 2−30.5

AES-192 2−0.8 2−2.2 2−4.1 2−6.4 2−9.0 2−11.8 2−14.8 2−18.1 2−21.5 2−25.1 2−28.8

AES-256 2−0.6 2−1.8 2−3.4 2−5.4 2−7.7 2−10.2 2−13.0 2−15.9 2−19.0 2−22.3 2−25.7

Table 4: Probability of abort of each circuit (assuming Pr [r = 0] = 1
256).

Similarly, since parties are susceptible to repeat the computation of up to m inversions during the
protocol and therefore broadcast more than 3 bytes per inversion, we have that for each Pi

|msg(i)| ≤ 8 · (3 · (#(S-boxes) +m) + o).

One advantage of restricting the number of triples produced in this way is that it guarantees a
maximum proof size, independently of the randomness used.

3.2 Need for Non-Zero Input

In the previous section we assumed that s 6= 0 to say that if s · r = 0, then it must be that r = 0.
However, in general, it is possible for the input s to the AES S-box to be 0. If the inversion was
computed as above, with this possibility, then opening s · r = 0 would in fact reveal information
about s since r is not allowed to be zero in a correct inversion.

To avoid this leakage, we restrict our protocol to only prove knowledge of values of k for which
there is no zero as input to any S-box in the computation of fx(k). We write Kx ⊂ K to denote
the subset of such keys. While this reduces the number of applications of this protocol as a general
HVZKPoK for AES keys, this is not so significant in the context of Picnic signatures. Indeed, the
values x and k for which the proof must be given are fixed during key generation and used for all
signatures. It is therefore feasible to restrict the Keygen algorithm to first select a random x and
then sample values of k until one from Kx is found.

We note that a malicious prover could intentionally generate a key for which some zeroes do
appear in the computation of the circuit. However, in the context of PKI, users typically present a
signature of their certificate under their public-key as a proof of possession. Check such a signature
would immediately reveal whether a key was malformed and thus prevent verifiers from accepting
further signatures.

Loss of Security. This particular design of the Keygen procedure naturally affects the assumption
that fx(k) := AESk(x) is still a OWF family as required for Picnic signatures. While the random
selection of x still ensures that a random function fx is selected from the family, the restricted
selection of k ∈ Kx reduces the image space of fx and also the pre-image space for a given y.

We can first estimate this security loss by assuming that, for a given block x and a randomly
sampled key k ∈ K, the S-boxes are independent from one another and each has a probability of 1

256
of receiving 0 as input. Table 5 presents the proportion of keys that would also belong to Kx for the
three different AES circuits, i.e. (255/256)# S-boxes. For AES-256, we see that approximately 1

3 of
keys possess this property, which, from an attacker’s perspective, reduces by only log2(3) ≈ 1.4 the
bit-security of the problem of inverting the OWF fx and recovering k ∈ Kx. The assumption that
the S-boxes are independent is justified by the PRF-behaviour or AES. Moreover, our experiments
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Circuit AES-128 AES-192 AES-256

Number of S-boxes 200 224 276

No-zeroes probability 45.7% 41.6% 34.0%

Table 5: Probabilities of no zero-inputs to S-boxes.

confirmed that, for a fixed x, the same proportions of keys as shown in Table 5 yielded no zero-
inputs.

This also shows that it is not very computationally expensive for Keygen to re-sample k as it
will only have to do so three times on average. To emphasize the low cost of this, we also recall that
during Keygen, the signer samples and verifies that k ∈ Kx for a given x. While they do this, they
do not have to execute the AES circuit using the MPC protocol, the S-box inputs can be verified
using an un-shared execution.

A more formal analysis. In [CDG+17, Appendix D], the authors show that if an adversary A, on
input y has a high probability of inverting the OWF fx(k) = y, then one can build a distinguisher
D which has a high probability of distinguishing Fk from a random function. Recall that in our
case, Fk is the usual AESk PRF family and that fx is the AES function family considered on k
indexed by x.

Let us now assume that the adversary A has a high probability p of inverting fx(k) only if
k ∈ Kx. In the reduction proof, D queries the PRF oracle O on input x to receive y as its image
either under the PRF Fk for a random k ∈ K or under a random function. It then queries A on
input y in the hope of receiving the correct key k. The only difference between our situation and
theirs is that the key space Kx for which A is capable of returning the correct key is smaller than
the whole of K. In the case where O is indeed computing the PRF, there is then a probability of
|Kx|/|K| that the sampled hidden key will belong to the reduced key space and therefore A will
return the correct key with smaller probability p · |Kx|/|K|. All other aspects of the proof are the
same as in [CDG+17] and therefore, under the assumption that AES, over any key k ∈ K, is a
PRF with respect to x, it holds that it also is a OWF with respect to k ∈ Kx with a tightness gap
proportional to |Kx|/|K| for a given x.

We can therefore say that if our AES circuit with restricted keys would yield a weak OWF,
then there would be a similar proportion of keys for which it would be easy to distinguish the AES
function from a random one, thus contradicting the assumed and observed PRF behaviour of the
AES. Furthermore our experiments confirm that this proportion of keys is non-negligible, further
increasing confidence in our OWF construction.

3.3 Application to Picnic Signatures

We now estimate the signature size if our arithmetic circuit Cx(k) = AESk(x) were to be used
instead of the LowMC binary circuit in Picnic signatures and also present the interesting conclusion
that a naive application of AES-192 or AES-256 is not sufficient to achieve stronger levels of security.

AES-128: Table 6 presents our estimates using the AES-128 circuit instead of the LowMC circuit
with parameters (k = 128, s = 10, r = 20), specified by the Picnic submission [CDG+19a] as
achieving AES-128-like security. For the picnic2-AES-128-bin circuit, we used the state-of-the-art
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Level Circuit κ T τ |aux(n)| |w| |msg(i)| Est. size

L1
picnic2-AES-128-bin

128 343 27
6400 128 6400 51.9 kB

picnic2-AES-128-inv 1664 128 5120 31.6 kB

Table 6: Estimates for Picnic signatures with AES-128 circuit.

figure of 32 AND gates per AES S-box reported in the inversion circuit of [BMP13], thus yielding
|aux(n)| = |msg(i)| = 200 · 32 = 6400. We note that this differs from the figure of 5440 AND gates
stated in [CDG+17, Section 6.1]. While we cite the same work [BMP13], a figure of 5440 would
make sense if the AES-128 circuit contained only 170 S-boxes, or 160 S-boxes with 34 AND gates
per S-box. Our Table 2 shows that if the full circuit is considered, including the key schedule, then
200 S-boxes are necessary. Moreover, removing the key schedule is not possible as a fraudulent
prover would then be able to create a forgery by selecting a final round key which would make the
second-to-last state agree with the public key value y. Finally, for our picnic2-AES-128-inv circuit,
we used our costs of |aux(n)| = 8 · (200 + 8) = 1664 and |msg(i)| = 8 · (3 · (200 + 8) + 16) = 5120
accounting for m = 8 additional inversion operations and o = 16 bytes of communication per party
for output reconstruction.

We see that implementing AES-128 using the best current binary circuit would increase the
signature size by a factor of 4.07 compared to the estimated signature size for picnic2-L1-FS given
in Table 1. However, our inversion technique yields an increase only by a factor of 2.48, thus a
reduction of 39% over the binary circuit. We note that this improvement comes with the caveat
that our technique of Section 3.2 reduces the key-space for k by | log2(0.457)| = 1.13 bits from the
128 bit-security level.

AES-192 and AES-256: Such a direct comparison as the one presented above is not possible for
the AES-192 and AES-256 circuits. While these two algorithms are believed to provide respectively
192 and 256 classical bit-security when used as block-ciphers, this does not hold in this paradigm
due to the requirement for a one-way function for the key generation of Picnic-like signatures.

Indeed, as remarked in [CDG+17, Appendix D], the security of the key generation requires
the block-size and the key-size of the underlying block-cipher to be equal – in part to prevent
quantum attacks which benefit from a square-root speedup over the block-size. This is not the
case for AES-192 and AES-256 and therefore, interestingly, the shift to longer keys, without an
accompanying shift to longer blocks, does not translate into increased security against forgery
attacks for the signature scheme. Here, the standardized 128 bit block-length of the AES cipher
becomes an obstacle to easily achieving both stronger security and optimal efficiency. For AES-192,
for example, a single block of encryption would result in (an expected) 264 spurious keys per single
block x, y pair. Thus the probability of guessing a valid key, with a single block pair x, y will be
2−128 and not 2−192 as desired, and in addition applying Grover’s search for a valid key would only
be slightly more complex than in the AES-128 case.

This fixed block-length was actually not a part of the original Rijndael design [DR99]. Hence,
to obtain L3 (resp. L5) constructions, one could alternatively use the Rijndael cipher with 192-bit
(resp. 256-bit) blocks and key. Since these are not standardized, we first discuss some constructions
using AES.

To design a circuit suitable for 192 (resp. 256) bit-security level Picnic signatures, we therefore
combine two copies of an AES-192 (resp. AES-256) circuit, keyed with the same key. To realize

14



such a cipher with longer block- and key-length, we propose to use AES in ECB mode. For our L3
construction using AES-192, we only require x and y to be 192 bits long. We therefore pad x with
64 0s to reach two full blocks, and then truncate the resulting ECB-mode encryption to its first
192 bits (one and a half blocks) to produce the output y. For our L5 construction using AES-256,
we use an x value of 256 bits, encrypted as two blocks in ECB mode, to produce a two-block value
y of 256 bits.

One side-effect of using ECB is that we have the problem of malleable public keys, for example
the public key (x0‖x1,y0‖y1) would be equivalent to (x1‖x0,y1‖y0). Whilst this does not break
the security of the signature scheme in the standard security game, this could be a problem in
practice. However, we can tie signatures to a specific public key by including it in the hash used to
generate the challenge in the NIZKPoK.

The security of key generation now depends on the ECB construction which is clearly not a
PRF family, but we can instead rely on the assumption that ECB mode is OW-CPA and we provide
a similar argument as in [CDG+17] to formalise this assumption.

Claim. If Fk(x) is OW-CPA then fx(k) is a OWF.

Proof (sketch). The proof follows similary to the proof in [CDG+17, Appendix D]. Indeed, given an
adversary A that can return k on input y = fx(k), we can build a adversary B against the OW-CPA
challenger for Fk as follows. First, B submits x to the encryption oracle and receives y = Fk(x) for
random k ∈ K chosen by the oracle. Then B runs A on input y to obtain k with high probability.
Finally, B requests the challenge ciphertext y∗ and uses k to compute x∗ = F−1k (y∗) and return it
as its answer to the OW-CPA challenge. With high probability, B returns the correct pre-image.

Both of the ECB-mode circuits result in executing two AES circuits but this drawback is
inherent to the fixed block-length of the AES block-cipher and therefore applies equally to our
inversion approach and the naive binary approach. We estimate the proof sizes obtained with these
designs in Table 7.

For the binary circuits, we use the same figure of 32 AND gates per S-box [BMP13]. In the
case of the picnic2-AES-192-bin and picnic2-AES-256-bin circuits, we double the number of round
S-boxes presented in Table 2 to obtain figures for |aux(n)| and |msg(i)|. We keep the same number
of key-schedule S-boxes as both circuits use the same key k and therefore the key-schedule needs
to be computed only once. For the inversion circuits, we also double the number of round S-boxes
in our formulæ for |aux(n)| and |msg(i)| but we must also change number m of additional triples
due to the increased risk of sampling zero randomness during the inversion computation. A quick
calculation similar to the one used for Table 4 shows that our doubled-up circuits for AES-192 and
AES-256 require m = 11 and m = 12 respectively to have a probability of abort below 2−20.

We see that implementing our doubled-up AES-192 and AES-256 using the best current binary
circuit would increase the signature sizes by a factor of 5.30 and 4.87 respectively compared to
the estimated signature size for picnic2-L3-FS and picnic2-L5-FS given in Table 1. However, our
inversion technique yields increases only by a factor of 3.09 and 2.79 respectively, thus reductions
of 41.7% and 42.8% over the binary circuits. We note that this improvement comes with the caveat
that our technique of Section 3.2 reduces the key-space for k by | log2(0.196)| = 2.35 bits and
| log2(0.141)| = 2.83 bits from the 192 and 256 bit-security levels respectively.

Rijndael-192 and -256. To avoid the reliance on ECB mode and on a slightly different security
assumption, we also provide estimates of proof sizes that make use of the original Rijndael-192
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Level Circuit κ T τ |aux(n)| |w| |msg(i)| Est. size

L3

picnic2-AES-192-bin

192 570 39

13312 192 13312 149.1 kB

picnic2-Rijndael-192-bin 10752 192 10752 124.2 kB

picnic2-AES-192-inv 3416 192 10440 86.9 kB

picnic2-Rijndael-192-inv 2768 192 8496 74.2 kB

L5

picnic2-AES-256-bin

256 803 50

16000 256 16000 233.7 kB

picnic-Rijndael-256-bin 17920 256 17920 257.7 kB

picnic2-AES-256-inv 4096 256 12544 133.7 kB

picnic2-Rijndael-256-inv 4576 256 13984 149.7 kB

Table 7: Estimates for Picnic signatures with AES-192, AES-256 and Rijndael circuits.

and -256 circuits which use an equal block and key size with the same S-box as AES. The number
of rounds in Rijndael-192 (resp. Rijndael-256) is the same as in AES-192 (resp. AES-256), i.e. 12
(resp. 14)3.

We use the figures of Table 3 to obtain figures for |aux(n)| and |msg(i)|, presented in Table 7. As
above, we calculate that values of m = 10 and m = 12 are required by the Rijndael-192 and -256
circuits respectively to have a probability of abort below 2−20.

We see that implementing the Rijndael-192 and -256 circuits using the best current binary
circuit would increase the signature sizes by a factor of 4.42 and 5.38 respectively compared to
the estimated signature size for picnic2-L3-FS and picnic2-L5-FS given in Table 1. However, our
inversion technique yields increases only by a factor of 2.64 and 3.12 respectively, thus reductions
of 40.2% and 41.8% over the binary circuits. We note that this improvement comes with the caveat
that our technique of Section 3.2 reduces the key-space for k by | log2(0.268)| = 1.90 bits and
| log2(0.112)| = 3.16 bits from the 192 and 256 bit-security levels respectively.

It is not surprising that the Rijndael-192 results are overall better those with AES-192, since
the ECB construction with extra padding performs more work than it should. On the other hand,
the AES-256 constructon is more efficient than the Rijndael-256 design since the latter has a larger
key schedule.

4 Alternative Computations of the AES S-box

Representing the AES S-box as the map s 7→ s−1 (with 0 7→ 0) over F28 is one of three methods
described by Damg̊ard and Keller [DK10] for this task in standard MPC. In fact, it is the most
efficient method of that work to compute the AES arithmetic circuit in real-world MPC. However,
their treatment of the s = 0 difficulty differs from ours, and they also present two alternative meth-
ods to compute the inversion operation. We discuss these methods and their cost here, along with
other methods, to study the possibilities for computing the AES circuit in the MPCitH paradigm.

Square-and-multiply. The first method of [DK10] is not to compute s 7→ s−1 but rather s 7→ s254.
As ord(F28

∗)−1 = 255−1 = 254, this achieves the same result with the additional advantage of not

3 See https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/

aes-development/rijndael-ammended.pdf.
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requiring a special case for s = 0 which maps to 0 naturally. However, s254 requires a square-and-
multiply chain to be computed. The shortest such chain given in [DK10] requires 11 multiplications.
Combining the cost of the openings and the auxiliary information required for triple generation,
this method would cost 11 · 3 = 33 bytes per S-box, compared to only 4 bytes per S-box for our
method in Section 3.

Masked Exponentiation. This second method of [DK10] computes the same map s 7→ s254 but
using the fact that (a + b)2

i
= a2

i
+ b2

i
in fields of characteristic 2. Here, they are able to take

advantage of the preprocessing model; they first pre-compute the squares 〈r〉, 〈r2〉, 〈r4〉, . . . , 〈r128〉
for a random value r ∈ F28 . Then, to invert 〈s〉, they additively mask 〈s〉 + 〈r〉, open (s + r) and
square locally to obtain (s + r)2, (s + r)4, . . . , (s + r)128. Finally, they unmask each power-of-two
with the corresponding shared power-of-two of r, (s + r)2

i
+ 〈r2i〉 = 〈s2i〉 and then perform an

online multiplication chain to obtain
∏7
i=1 〈s2

i〉 = 〈s254〉.
Unlike in [DK10], the requirement on the MPC protocol for only semi-honest security means

that the successive shared powers of 〈r〉 can be computed locally. Indeed, in characteristic 2, r2 =
(
∑n

i=1 r
(i))2 =

∑n
i=1(r

(i))2, so each party can compute their shares locally. Therefore the cost of
this method in our paradigm is the opening of (s+ r) and the six multiplications required for the
computation of 〈s128〉. This would still amount to 1 + 6 · 3 = 19 bytes per S-box (broadcast and
auxiliary information put together).

Masked Inversion. In [DK10], Damg̊ard and Keller also conclude that the masked inversion
method that we presented in Section 3 is the most efficient. Indeed, at its core it only requires 3
bytes in the online phase and 1 triple in the preprocessing phase. However, the leakage that occurs
when s = 0 must be prevented. While it is possible in our application to Picnic signatures to
generate the public-/private-key pairs so that this leakage does not take place, this is not possible
for generic computations of the AES circuit.

The solution given in [DK10] is to have the parties compute a shared “zero-indicator” value
〈δ(s)〉 defined as

δ(s) =

{
1 if s = 0,

0 otherwise.

It is then easily verified that the inversion mapping of (3) is equivalent to

s 7→ (s+ δ(s))−1 + δ(s)

When δ(s) is computed in shared form, then the parties can perform the inversion computation
with 〈s+ δ(s)〉 instead of 〈s〉. Once 〈(s+ δ(s))−1〉 is obtained, the parties can locally compute
〈(s+ δ(s))−1〉+〈δ(s)〉. This ensures that if s = 0 then s+δ(s) = 1 is instead inverted to (s+δ(s))−1 =
1 and that the second addition of δ(s) returns the value to 0, as F28 has characteristic 2.

This technique could be applied to our MPCitH circuit for AES to avoid the loss of generality
and security that come with the efficient method presented in the previous section. We present here
two methods to compute the zero-indicator δ(s) in secret-shared form.

Method 1. In [DK10], the value 〈δ(s)〉 is computed by first bit-decomposing 〈s〉, then NOT-ing each
bit and finally computing the joint AND of the eight bits of s. This joint AND requires 7 bit-wise
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AND gates to output the final value. If these gates are performed so that each party eventually
holds δ(s)(i) ∈ F2, then each party can embed its share into F28 to obtain its share of 〈δ(s)〉.

As before, bit-decomposition is trivially obtained by each party locally bit-decomposing its share
into ~s(i) = φ(s(i)). The NOT gates are then also performed locally by each party. For the AND
gates, we make use of the same technique of preprocessed multiplication triples, but over F2 instead
of F28 . For each AND gate, 1 bit then needs to be added to aux(n) to correct the triple and 2 bits
need to be opened in the online phase to compute the multiplication.

This method therefore results in 7 · 3 = 21 bits per S-box in addition to the 4 bytes required for
the inversion of 〈s+ δ(s)〉. This results in approximately 6.6 bytes per S-box which is only 17.5%
less than implementing the best binary circuit for AES in the model of [KKW18].

Method 2. In the world of MPC, the computation of the shared zero-indicator 〈δ(s)〉 can be seen
as an n-party functionality which takes 〈s〉 as input and distributes 〈δ(s)〉 to all the parties. As we
are in the MPCitH setting, the Prover can observe the value of s and act as this functionality by
providing each party with their share of δ(s). To further optimize this, we can assume that Pi, for
i = 1 → n − 1, samples their share of δ(s) pseudo-randomly and that the Prover only give Pn a
correction value which makes the reconstructed value equal to δ(s).

This approach is the first here that deviates from a normal MPC scenario and exploits the
MPCitH paradigm to reduce the cost. However, it comes with the caveat that a malicious Prover
is able to select an arbitrary correction value for Pn. This implies that they have the freedom to
arbitrarily modify the computation of the circuit. A partial fix for this is to specify that the shares
of δ(s) must be either 0 or 1 within F28 . This is only natural, as δ(s) can only take either of these
values and the sum of such values is again 0 or 1. In this way, the prover can at most substitute a
1 for a 0 or vice-versa thus greatly limiting their ability to cheat arbitrarily. They can only inject
an arbitrary F28 value into Pn and not get caught if Pn is the party that is not revealed to the
Verifier, which corresponds exactly to their usual cheating capability in Picnic. Furthermore, this
approach means that the additional auxiliary input required for Pn is only one bit of information,
as opposed to one byte.

The remaining drawback is then that a malicious Prover can arbitrarily change the value of δ(s)
from 0 to 1 in the computation. Note that this 1-bit fault can only be injected in the least significant
bit of the input of the AES inversion, and if injected, the same fault is automatically applied to the
inversion output as well, corresponding to the second XOR with δ(s). Unfortunately, it remains as
an open question to compute what the soundness would be of a proof which used this technique
for the computation of the AES circuit. This kind of fault injections have not been studied in the
side-channel analysis literature, since a fault attacker typically injects faults in order to obtain an
exploitable (non-zero) output difference in the ciphertext (i.e. Differential Fault Analysis [BS97]).
A malicious prover in MPCitH on the other hand would be trying to modify an execution yielding
a wrong ciphertext into an apparently correct one.

In the normal MPCitH scenario, a malicious prover who does not have knowledge of the
secret key k, has a probability 2−κ to produce a valid signature by guessing the key, where
κ ∈ {128, 192, 256} is the key and block size. In this adapted scenario with very specific 1-bit
faults, the size of the prover’s search space increases to 2κ · 2# S-boxes, since they can guess both a
key and a fault configuration by selecting which of the S-box computations to infect. Let k̃ be the
key guess and F̃ be the circuits of Section 3 with injected faults; then the prover succeeds if the
correct ciphertext is output at the end, i.e. for a public key (x,y), F̃k̃(x) = y. We again assume
that all S-box calculations are independent and treat AES as a PRF, hence we assume that each
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of the 2κ possible outputs are equiprobable. We thus estimate that the number of correct choices is

# correct choices ≈ total # choices

# outputs
=

2κ+#S-boxes

2κ
= 2#S-boxes.

This results in the following success probability for a malicious prover:

Pr[F̃k̃(x) = y] ≈ # correct choices

total # choices
=

2#S-boxes

2κ+#S-boxes
= 2−κ

which corresponds exactly to the success probability in the MPCitH scenario without fault injec-
tions.

This methods originates from using an n-party functionality within the MPCitH paradigm,
which is normally not permitted as a malicious Prover is then able to cheat arbitrarily. However
our analysis shows that, for this particular application, this additional freedom does not seem to
give the Prover further advantages to forge a signature. Therefore, while n-party functionalities may
not be permitted in general, this shows that case-by-case analysis may reveal that they do not affect
the soundness for specific proofs. This then raises the question of what other proofs may be realized
by taking advantage of such functionalities, which are in fact “free”, in terms of communication
between parties, as they can be computed outside of the MPC protocol by the Prover themselves.
We leave such a study for further work.
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