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Abstract

Dwork and Naor (FOCS’00) first introduced and constructed two message public coin witness
indistinguishable proofs (ZAPs) for NP based on trapdoor permutations. Since then, ZAPs have
also been obtained based on the decisional linear assumption on bilinear maps, and indistin-
guishability obfuscation, and have proven extremely useful in the design of several cryptographic
primitives.

However, all known constructions of two-message public coin (or even publicly verifiable)
proof systems only guarantee witness indistinguishability against computationally bounded ver-
ifiers. In this paper, we construct the first public coin two message witness indistinguishable
(WI) arguments for NP with statistical privacy, assuming the learning with errors (LWE) as-
sumption holds with an explicit, efficently computable upper bound on the adversary’s advan-
tage. Prior to this, there were no known constructions of two-message publicly verifiable WI
protocols under lattice assumptions, even satisfying the weaker notion of computational witness
indistinguishability.
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1 Introduction

Witness indistinguishability (WI) is one of the most widely used notions of privacy for proof systems.
Informally, WI protocols [FS90] allow a prover to convince a verifier that some statement X belongs
to an NP language L, with the following privacy guarantee: if there are two witnesses w0, w1 that
both attest to the fact that X ∈ L, then a verifier should not be able to distinguish an honest prover
using witness w0 from an honest prover using witness w1. WI is a relaxation of zero-knowledge and
has proven to be surprisingly useful. Since WI is a relaxation, unlike zero-knowledge, there are no
known lower bounds on the rounds of interaction needed to build WI protocols in the plain model.

Indeed, Dwork and Naor [DN00, DN07] introduced the notion of two-message public-coin wit-
ness indistinguishable proofs (ZAPs) without any setup assumptions, and also constructed it as-
suming trapdoor permutations. We observe that the public-coin feature of ZAPs yield public
verifiability of the resulting proof system, since a third party can use the public coins of the verifier
to determine whether or not the prover’s response constitutes a valid proof. Subsequently, Groth
et al. [GOS06] constructed ZAPs assuming the decisional linear assumption, and Bitansky and
Paneth [BP15] constructed ZAPs from indistinguishability obfuscation and one way functions.

Our goal: ZAPs with statistical privacy. As originally introduced, ZAPs satisfied soundness
against unbounded provers (i.e. were proofs), and witness indistinguishability against computation-
ally bounded verifiers. In this work, we examine whether these requirements can be reversed: can
we achieve witness indistinguishability against computationally unbounded verifiers, while achiev-
ing soundness against computationally bounded cheating provers? We call such objects statistical
ZAP arguments.

An analogue of this question has a long history of study in the context of zero-knowledge
protocols. Indeed, zero-knowledge protocols for NP were originally achieved guaranteeing privacy
to hold only against computationally bounded verifiers [GMW86]. In the case of zero-knowledge,
the notion of statistical zero-knowledge arguments was achieved soon after [BCR86, Cha86], that
strengthened the privacy requirement to hold against computationally unbounded verifiers, while
requiring soundness to hold only against computationally bounded provers.

Because ZAPs require a single message each from the verifier and the prover, a better comparison
would perhaps be to non-interactive zero-knowledge (NIZK) [BFM88]. Even in the case of NIZKs,
we have had arguments for NP satisfying statistical zero-knowledge since 2006 [GOS06]. And yet,
the following natural question has remained open since the introduction of ZAPs nearly two decades
ago.

Do there exist statistical ZAP arguments for NP in the plain model?

Statistical witness indistinguishability, just like its zero-knowledge counterpart, guarantees everlast-
ing privacy against malicious verifiers, long after protocols have completed execution. Of course,
to achieve statistical privacy, we must necessarily sacrifice soundness against unbounded provers.
But such a tradeoff could often be desirable, since soundness is usually necessary only in an online
setting: in order to convince a verifier of a false statement, a cheating prover must find a way to
cheat during the execution of the protocol.

The main challenge: achieving a public-coin protocol. The recent work of Kalai et
al. [KKS18] constructed the first two message statistically witness indistinguishable arguments
in the plain model under standard sub-exponential assumptions. However, their arguments are
only privately verifiable.

The blueprint of [KKS18], which builds on other similar approaches in the computational witness
indistinguishability setting [BGI+17, JKKR17], uses oblivious transfer (OT) to reduce interaction
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in a Σ-protocol. In all these approaches, the verifier obtains the third message of the Σ-protocol
via the output of the OT, and therefore these approaches fundamentally require the use of private
coins for verification. It is also worth noting that these protocols are not sound against provers
that have access to the private coins of the verifier, which restricts their applicability. Additionally,
the verifier’s message is not reusable, which means that soundness is not guaranteed if the same
verifier message is reused across multiple executions.

On the other hand, a public coin argument, which is the focus of this work, does not suffer from
any of these limitations. In fact, where the verifier’s message only needs to be a uniformly random
string. Such a string can easily be generated, for example, via an MPC protocol, and can then be
reused across multiple executions with no loss in soundness.

We stress that prior to our work, even two message statistically witness indistinguishable argu-
ments that were only publicly verifiable (and not necessarily public coin) were not known from any
falsifiable assumptions.

1.1 Our Results

In this paper, we construct the first two message public coin statistically witness indistinguishable
arguments for NP in the plain model. Our constructions assume explicit hardness of the learning
with errors (LWE) problem, where there is an efficiently computable upper bound µLWE on the
advantage of any polynomial-time adversary. In fact, these are the first known two-message public
coin (or even publicly verifiable) arguments based on lattice assumptions, satisfying any notion of
witness indistinguishability (computational/statistical). We provide an informal theorem below.

Informal Theorem 1. Assuming explicit hardness of the learning with errors (LWE) assumption,
there exist two message public-coin statistically witness indistinguishable arguments for NP in the
plain model.

Our results are obtained by combining two recent results in a new way: recent constructions
of correlation-intractable hash functions based on LWE [CCH+19] and the statistically hiding ex-
tractable commitments of [KKS18] (which are built upon [KS17]). This yields a new method of
using correlation intractable hash functions to instantiate the Fiat-Shamir transform, by extract-
ing messages from statistically hiding commitments, instead of from statistically binding trapdoor
commitments – that we believe may be of independent interest.

2 Overview of Techniques

In this section, we provide a brief overview of the techniques we use to build a two message public
coin statistical WI argument (henceforth referred to as a ZAP).

Our starting point is the popular technique to construct ZAPs for NP, due to Dwork and
Naor [DN02]. Their construction makes use of a statistically sound NIZK in the common random
string model, and can be described as follows.

◦ In the first round, the verifier picks uniformly random strings crs1, ...., crsλ, where λ denotes
the security parameter, and sends them to the prover.

◦ In the second round, the prover samples a uniformly random string crs′. It computes proofs
(π1, ..., π`) where πi is a NIZK proof for the instance x that verifies under crs′i = crs′ ⊕ crsi
The prover sends crs′ along with proof strings (π1, ..., π`) to the verifier.
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The soundness of this protocol can be proven based on the statistical soundness of NIZK, in the fol-
lowing way. Fix an instance x /∈ L. Statistical soundness of the NIZK implies that with probability
at least 1/2 over the choice of crs from the domain of the common random string of NIZK, there
does not exist a proof π that verifies for instance x with respect to crs. Put another way, for fixed
x, for at least 1/2 of the strings in the domain of the common random string of the NIZK, there
does not exist a proof for x. One can use this fact to argue combinatorially that over the choice of
random crs1, ..., crsλ, the probability that there exists crs′ for which there exist proofs with respect
to every member of the set {crs′i = crs′ ⊕ crsi}i∈[`], is negligible.

The proof of witness indistinguishability follows quite simply, by switching the witness in each
of the proofs one by one.

But when applied to our context, this approach immediately encounters the following problems.

1. The soundness argument outlined above crucially requires that with high probability over
the CRS of the NIZK, there just should not exist a proof for any fixed false instance. This
translates to requiring statistical soundness of the underlying NIZK.

2. One cannot hope to get a WI argument secure against unbounded verifiers via this transform,
unless the underlying NIZK also satisfies privacy against unbounded verifiers, i.e. satisfies
statistical zero-knowledge.

3. It is believed that statistically sound and statistical zero-knowledge NIZKs for all of NP cannot
exist.

4. Even if we only desired computational witness indistinguishability based on lattice assump-
tions, no statistically sound NIZKs in the common random string model are known from
lattice assumptions.

As an intermediate objective, we will first try to tackle problem #4 and build a publicly verifiable
computational WI argument based on LWE.

2.1 A Simple Two-Message Public-Coin Computational WI Argument

We make a few modifications to the template above so as to obtain a publicly verifiable computa-
tional WI argument based on LWE.

Before we describe these modifications, we list a few ingredients. We will assume that there
exists a dense public key encryption scheme PKE, that is, a scheme for which every string in
{0, 1}|pk| corresponds to a valid public key (and therefore every string has a valid secret key). We
will further assume the existence of a correlation intractable hash function family. Informally, a
hash function family H is correlation-intractable for a function family F if:

◦ Given a fixed function f ∈ F , and a randomly generated key K (that can depend on f), the
probability that an adversary outputs x such that (x,H(K,x)) = (x, f(x)) is at most ε.

◦ The hash key K statistically hides the function f , such that adversaries cannot distinguish a
random key from a key for f with advantage better than ε.

We will set ε = 2−2|pk|. We will use Π to denote a parallel repetition of Blum’s Σ-protocol for Graph
Hamiltonicity, represented as {ai = com(âi)}i∈[λ], {ei}i∈[λ], {zi}i∈[λ], where {ai}i∈[λ] represents the
first commitments sent by the prover, {ei}i∈[λ] is a challenge string sent by the verifier and {zi}i∈[λ]

represents the corresponding third message by the prover. Let the instance be x and its witness be
w. Then, the protocol is described as follows.
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1. In the first round, the verifier randomly samples a key K for the correlation intractable hash
function H for bounded size NC1 functions.

2. In the second round, the prover picks a key pair (pk, sk) for the scheme PKE. Then the
prover uses PKE.Enc(pk, ·) as a commitment scheme to compute the commitments {ai}i∈[λ].

Next, the prover computes e = H(K,x, {ai}i∈[λ]) ∈ {0, 1}λ, and uses (x,w, a, e) to compute
z = (z1, ..., zλ) according to the protocol Π. It outputs (pk, {ai = PKE.Enc(pk, âi)}i∈[λ], e, z)

While witness indistinguishability of this protocol is easy to see, arguing soundness is trickier.
In order to argue soundness, the reduction will simple try to guess the public key pk∗ that the
prover will use, and will abort if this guess is not correct. Note that such a guess is correct with
probability at least 2−|pk

∗|.
Suppose a cheating prover convinces a verifier to accept false statements with probability 1

p(λ)

for some polynomial p(·). Then, with probability at least 1
p(·) · 2

−|pk∗|, the reduction guesses pk∗

correctly, and the prover provides a convincing proof of a false statement using pk∗.
In the next hybrid, the challenger guesses pk∗ together with the corresponding secret key sk∗,

and then samples a correlation intractable hash key for a specific function fsk∗(·). The function
fsk∗(·) on input x, along with a (the messages committed in the Σ-protocol), outputs the only
possible string ebad for which there exists a string z such that (a, ebad, z) verifies for x /∈ L.1

Note that this function is in NC1. By ε-security of the correlation intractable hash family (where

ε = 2−2|pk|), with probability at least
(

1
p(·) − 2−|pk|

)
· 2−|pk|, the reduction guesses pk∗ correctly,

and the prover provides a convincing proof of a false statement using pk∗.
Finally, since the correlation intractable hash function is ε-secure, in the final hybrid adversary

cannot produce a proof for x with probability greater than ε, as this will mean that he output
a∗, e∗, z∗ such that e∗ = fbad(x, a

∗).
The protocol sketched above is public-coin, because when we instantiate the correlation-intractable

hash family with the LWE-based one by [PS19], the hash keys are statistically close to uniform.
In the description above, we also relied on a dense public key encryption scheme, which is

unfortunately not known to exist based on LWE. However, we note that we can instead use a scheme
with the property that at least 1/2 of the strings in {0, 1}`PKE correspond to correct encryption
keys with a valid secret key, and the property that public keys are pseudorandom. Then, the
verifier sends λ public keys pk1, . . . , pkλ, and the prover outputs pk′, and then uses the public
keys {(pk′ ⊕ pki)}i∈[λ] to compute λ proofs. Soundness can be obtained by arguing that with
overwhelming probability, there will exist an index i ∈ [λ] such that (pk′ ⊕ pki) has a secret key,
just like the [DN02] technique described at the beginning of this overview.

However, the construction above falls short of achieving statistical witness indistinguishability
against malicious verifiers. The reason is the following: arguing that the construction described
above satisfies soundness requires relying on correlation intractability of the hash function. In order
to invoke the correlation intractable hash function, it is crucial that the prover be “committed” to a
well-defined, unique message {ai}i∈[λ], that can be extracted using the secret key sk∗ of the public
key encryption scheme. At first, statistical hiding, together with such extraction, may appear to
be contradictory objectives.

Indeed, we will try obtain a weaker version of these contradictory objectives, and specifically,
we will rely on a two-message statistically hiding extractable commitment scheme [KKS18].

1Note that this property is satisfied by any Σ-Protocol with a 1/2−special soundness where the bad challenge ebad
can be computed efficiently from the precommitted values {âi}, such as Blum’s Σ-protocol.
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2.2 Using Correlation-Intractable Hashing with Statistically Hiding Extractable
Commitments

In the recent exciting work on using LWE-based correlation-intractable hashing [PS19, CCH+19]
for achieving soundness, as well as in the “warm up” ZAP protocol described above, the correlation-
intractable hash function is used as follows. Because the LWE-based CI-hash function is designed
to avoid an efficiently computable function f of the prover’s first message, it is used together with
a public-key encryption scheme: the prover’s first message is encrypted using the public key, and
the function f is built to contain the secret key of the encryption scheme, so that it can decrypt
the prover’s first message in order to calculate the challenge that must be avoided.

Our work imagines a simple modification of this strategy of using correlation-intractable hashing
for arguing soundness. The main idea is that we want to replace the encryption scheme (which
necessarily can only at most provide computational hiding) with an extractable statistically hiding
commitment scheme. We will describe what this object entails in more detail very shortly, but the
main observation is that such an extractable commitment in fact reveals the value being committed
to with a tiny (but tunable) probability – crucially in a way that prevents a malicious prover from
learning whether the commitment will reveal the committed value or not. With such a commitment
scheme, the efficient function f underlying the correlation-intractable hash function will only “work”
in the rare case that the commitment reveals the value being committed. But since a cheating prover
can’t tell whether its committed values will be revealed or not, soundness will still hold overall,
even though the actual guarantee of the correlation-intractable hash function is only invoked with
a tiny probability in the proof of soundness. We now elaborate.

2.3 Statistically Hiding Extractable Commitments

Any statistically hiding commitment must lose all information about the committed message, ex-
cept with negligible probability. This makes it challenging to define notions of extraction for
statistically hiding commitments. In 4 rounds or more, this notion is easier to define, as extrac-
tion is possible even from statistically hiding commitments, simply by rewinding the adversary.
However, traditional rewinding techniques break down completely when considering two-message
commitments.

Nevertheless, the recent work of [KKS18], building on [KS17], defined and constructed two-
message statistically hiding extractable commitments, which they used to construct two-message
statistical WI arguments, that were privately verifiable. In what follows, we abstract out the
properties of a statistically hiding extractable commitment. A more formal description can be
found in Section 5. We point out that we only need to rely on significantly simpler definitions than
the ones in [KKS18], and we give much simpler proofs that the constructions in [KKS18] according
to our new definitions. This may be of independent interest.

Defining Statistically Hiding Extractable Commitments. We start with an important
observation about statistically hiding commitments, which gives a hint about how one can possibly
define (and construct) two-message statistically hiding extractable commitments. Namely, any
statistically hiding commitment must lose all information about the committed message, but may
retain this information with some small negligible probability. Specifically,

◦ A commitment that leaks the committed message with probability ε (where ε is a fixed
negligible function in the security parameter) and statistically hides the message otherwise,
will continue to be statistically hiding.
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◦ At the same time, one could ensure that no matter the behavior of the committer, the message
being committed does get leaked to the honest receiver with probability at least ε.

◦ Moreover, the committer does not know whether or not the committed message was leaked
to the receiver. This property is important and will be crucially used in our proofs.

In spirit, this corresponds to establishing an erasure channel over which the committer transmits
his message to the receiver. This channel almost always erases the committed message, but is
guaranteed to transmit the committed message with a very small probability (ε). Moreover, just
like cryptographic erasure channels, the committer does not know whether or not his message was
transmitted. Additionally, because this is a commitment, we require computational binding: once
the committer transmits his message (that is, commits), he should not be able to change his mind
about the message, even if the message did not get transmitted. Finally, we say that “extraction
occurs” whenever the message does get transmitted, and we require that extraction occur with
probability at least ε, even against a malicious committer.

Next, we describe how we interface these commitments with correlation intractable hash func-
tions to obtain two-message statistical ZAP arguments.

2.4 Statistical ZAP Arguments

With this tool in mind, we make the following observations:

1. We would like to replace the encryption scheme used for generating the first message a for the
sigma protocol, sent by the prover in the second round, with a statistically hiding commitment.

2. The first message of this commitment will be generated by the verifier. Furthermore, because
we want a public coin protocol, we require this message to be pseudorandom.

3. We will require that with some negligible probability ε, all messages committed by the prover
get transmitted to the verifier, that is with probability ε, the verifier can recover all the
messages committed by the prover in polynomial time given his secret state. Next, using
an insight from the simple protocol in Section 2.1, we will set the security of the correlation
intractable hash function, so that it is infeasible for any polynomially sized adversary to break
correlation intractability with probability ε.

The protocol is then as follows:

◦ In the first round, the verifier samples a hash key K for the correlation intractable hash
function H, for the same function family F as Section 2.1. The verifier also samples strings
q = {c1,j}j∈[poly(λ)] uniformly at random, where poly is a polynomial denoting the number of
commitments made by the prover. The verifier sends q and K over to the prover.

◦ In the second round, the prover computes the first message of the sigma protocol a (where
the number of parallel repetitions equals the output length of correlation intractable hash
function). This message a is generated using the statistically hiding extractable commitment
scheme com with q as the first message. The prover computes e = H(K, a) and uses e to com-
pute the third message z of the sigma protocol, by opening some subset of the commitments
made by the prover. The prover outputs (a, e, z).

We now provide some intuition for the security of this protocol.
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◦ Soundness: To argue soundness, we follow an approach that is similar to the soundness
proof for the computational ZAP argument described in Section 2.1 (although with some
additional technical subtleties). We discuss one such subtlety here:

Let ` = |e|. For simplicity, at this point, let’s assume that the correlation-intractable hash

function is subexponentially secure. In other words, it is at most 2−`
δ
-secure2. For this reason,

we require the commitments to be jointly extractable in polynomial time with probability at
least 2−`

δ
. Note that the total number of commitments is N = ` · poly(λ).

However, statistically hiding commitments, as originally constructed in [KKS18], are such
that if a single commitment can be extracted with probability ε, then N commitments can be
extracted with probability roughly εN . Setting N = ` · poly(λ) as above implies that trivially,
the probability of extraction will be roughly O(2−`·poly(λ)), which is smaller than the required

probability 2−`
δ
.

However, we observe that the commitments constructed in [KKS18] can be modified very
slightly so that the probability of extraction can be 2−g(λ) for any efficiently computable
function g that is bounded by any polynomial in λ. Thus, for example, the probability of
extraction can be made to be λ− log(λ). In other words, this extraction probability can be made
to be independent of the total number of commitments, N . We describe this modification in
additional detail in Section 4.2.

Using commitments that satisfy the property stated above, we observe that we can switch
to a hybrid where the challenger samples the commitment messages on behalf of the verifier,
and hardwires the secret state used for extraction inside the hash key. The function is defined
such that in the event that extraction occurs (given the secret state), the verifier can use the
extracted values to compute the bad challenge ebad (just as in Section 2.1), by evaluating a
depth bounded function fbad on the extracted values, and otherwise ebad is set to 0. If the
adversary breaks soundness with noticeable probability ε, then with probability roughly at
least 2−g(λ) · ε, the outputs of the adversary satisfy:

H(K, a) = ebad

We set the function g so that 2−g(λ) · ε is significantly larger than the advantage of the hash
function, and then the event above suffices to contradict correlation intractability. It also
turns out that because g is tunable independently of the strength of any of the cryptographic
primitives that we are using, the hash function does not need to be subexponentially secure.
In fact, it suffices to have security with any explicit, efficiently computable advantage µ. We
explain this further in Section 5.

◦ Statistical Witness Indistinguishability: Statistical witness indistinguishability com-
poses under parallel repetition, and therefore can be proven index-by-index based on the
statistical hiding property of the commitment.

Additional details about the construction and the proof can be found in Section 5.

Related Work. In a concurrent and independent work, [GJJM] also constructed a 2-message
public-coin statistically witness indistinguishable argument from quasipolynomial LWE. Another
concurrent and independent work is that of [LVW], who construct another 2-message statistical

2More formally, if the output of the hash function is ` bits long, then even if we rely on sub-exponential assumptions,

we cannot hope to have the guessing advantage be smaller than 2−`
δ

for a small positive constant δ < 1.
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witness indistinguishable argument, which is private-coin but publically verifiable, from a bilinear
map assumption. The authors call this a “ZAPR”. ZAPRs were previously constructed by [Gro,
Lip, GGPR] under a different name, but these three older constructions all rely on non-standard
non-falsifiable assumptions.

2.5 Organization

The rest of this paper is organized as follows. In Section 3, we describe some of the preliminaries
such as correlation intractability, oblivious transfer and proof systems. In Section 4, we define a
simplified variant and present a slightly modified construction of extractable statistically hiding
commitments, first proposed by [KKS18]. Finally, in Section 5, we construct and prove the security
of our statistical ZAP argument.

3 Preliminaries

Notation. Throughout this paper, we will use λ to denote the security parameter, and negl(λ)
to denote any function that is asymptotically smaller than 1

poly(λ) for any polynomial poly(·).
The statistical distance between two distributions D1, D2 is denoted by ∆(D1, D2) and defined

as:

∆(D1, D2) =
1

2
Σv∈V |Prx←D1 [x = v]− Prx←D2 [x = v]|.

We say that two families of distributions D1 = {D1,λ}, D2 = {D2,λ} are statistically indistinguish-
able if ∆(D1,λ, D2,λ) = negl(λ). We say that two families of distributions D1 = {D1,λ}, D2 = {D2,λ}
are computationally indistinguishable if for all non-uniform probabilistic polynomial time distin-
guishers D, ∣∣Prr←D1,λ

[D(r) = 1]− Prr←D2,λ
[D(r) = 1]

∣∣ = negl(λ).

Let Π denote an execution of a protocol. We use ViewA(Π) denote the view, including the
randomness and state of party A in an execution Π. We also use OutputA(Π) denote the output of
party A in an execution of Π.

Remark 1. In what follows we define several 2-party protocols. We note that in all these protocols
both parties take as input the security parameter 1λ. We omit this from the notation for the sake
of brevity.

Definition 1 (Σ-protocols). Let L ∈ NP with corresponding witness relation RL. A protocol
Π = 〈P, V 〉 is a Σ-protocol for relation RL if it is a three-round public-coin protocol which satisfies:

◦ Completeness: For all (x,w) ∈ RL, Pr[OutputV 〈P (x,w), V (x)〉 = 1] = 1− negl(λ), assum-
ing P and V follow the protocol honestly.

◦ Special Soundness: There exists a polynomial-time algorithm A that given any x and a
pair of accepting transcripts (a, e, z), (a, e′, z′) for x with the same first prover message, where
e 6= e′, outputs w such that (x,w) ∈ RL.

◦ Honest verifier zero-knowledge: There exists a probabilistic polynomial time simulator SΣ

such that for all (x,w) ∈ RL, the distributions {SΣ(x, e)} and {ViewV 〈P (x,w(x)), V (x, e)〉}
are statistically indistinguishable. Here SΣ(x, e) denotes the output of simulator S upon input
x and e, such that V ’s random tape (determining its query) is e.

8



3.1 Correlation Intractable Hash Functions

We adapt definitions of a correlation intractable hash function family from [PS19, CCH+19].

Definition 2. For any polynomials k, (·), s(·) = ω(k(·)) and any λ ∈ N, let Fλ,s(λ) denote the class

of NC1 circuits of size s(λ) that on input k(λ) bits output λ bits. Namely, f : {0, 1}k(λ) → {0, 1}λ
is in Fλ,s if it has size s(λ) and depth bounded by O(log λ).

Definition 3. [µCI-Correlation Intractable Hash Function Family] A hash function family H =
(Setup,Eval) is µCI-correlation intractable (CI) with respect to F = {Fλ,s(λ)}λ∈N as defined in
Definition 2, if the following two properties hold:

◦ Correlation Intractability: For every f ∈ Fλ,s, every non-uniform polynomial-size adver-
sary A, every polynomial s, and every large enough λ ∈ N,

PrK←H.Setup(1λ,f)

[
A(K)→ x such that (x,H.Eval(K,x)) = (x, f(x))

]
≤ µCI(λ).

◦ Statistical Indistinguishability of Hash Keys: Moreover, for every f ∈ Fλ,s, for every
unbounded adversary A,and every large enough λ ∈ N,∣∣∣PrK←H.Setup(1λ,f)[A(K) = 1]− PrK←{0,1}` [A(K) = 1]

∣∣∣ ≤ 2−λ
Ω(1)

,

where ` denotes the size of the output of H.Setup(1λ, f).

The work of [PS19] gives a construction of correlation intractable hash functions with respect
to F = {Fλ,s(λ)}λ∈N, based on polynomial LWE with polynomial approximation factors. We
observe that their construction also satisfies Definition 3, assuming LWE with an explicit efficiently
computable advantage upper bound.

3.2 Oblivious Transfer

Definition 4 (Oblivious Transfer). Oblivious transfer is a protocol between two parties, a sender S
with input messages (m0,m1) and receiver R with input a choice bit b. The correctness requirement
is that R obtains output mb at the end of the protocol (with probability 1). We let 〈S(m0,m1), R(b)〉
denote an execution of the OT protocol with sender input (m0,m1) and receiver input bit b. We
require OT that satisfies the following properties:

◦ Computational Receiver Security. For any non-uniform PPT sender S∗ and any (b, b′) ∈
{0, 1}, the views ViewS∗(〈S∗, R(b)〉) and ViewS∗(〈S∗, R(b′)〉) are computationally indistin-
guishable.

We say that the OT scheme is µOT -secure if all PPT malicious senders have distinguishing
advantage less than µOT (λ).

◦ Statistical Sender Security. This is defined using the real-ideal paradigm, and requires that
for any distribution on the inputs (m0,m1) and any unbounded adversarial receiver R∗, there
exists a (possibly unbounded) simulator SimR∗ that interacts with an ideal functionality Fot

on behalf of R∗. Here Fot is an oracle that obtains the inputs (m0,m1) from S and b from
SimR∗ (simulating the malicious receiver), and outputs mb to SimR∗. Then SimFot

R∗ outputs a
receiver view that is statistically indistinguishable from the real view of the malicious receiver
ViewR∗(〈S(m0,m1), R∗〉). We say that the OT protocol satisfies (1 − δ) statistical sender
security if the statistical distance between the real and ideal distributions is at most δ.
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We use the following sender security property in our protocols (which follows from the definition
of sender security in Definition 4 above).

Claim 1. For any two-message OT protocol satisfying Definition 4, for every malicious receiver
R∗ and every first message mR∗ generated by R∗ such that the sender does not reject given mR∗, we
require that there exists an unbounded machine E which extracts b such that either of the following
statements is true:

◦ For all m0,m1,m2, ViewR∗〈S(m0,m1), R∗〉 and ViewR∗〈S(m0,m2), R∗〉 are statistically in-
distinguishable and b = 0, or,

◦ For all m0,m1,m2, ViewR∗〈S(m0,m1), R∗〉 and ViewR∗〈S(m2,m1), R∗〉 are statistically in-
distinguishable and b = 1.

Proof. From the (unbounded) simulation property of the two-message OT, there exists a simulator
that extracts a receiver input bit b from the first message of R∗, sends it to the ideal function-
ality, obtains mb and generates an indistinguishable receiver view. Then, by the definition of
sender security, when b = 0, the simulated view must be close to both ViewR∗〈S(m0,m1), R∗〉, and
ViewR∗〈S(m0,m2), R∗〉. Similarly, when b = 1, the simulated view must be statistically close to
both ViewR∗〈S(m0,m1), R∗〉, and ViewR∗〈S(m2,m1), R∗〉.

Throughout the paper, we focus on two-message oblivious transfer. We now discuss an addi-
tional specific property of two-message OT protocols.

Property 1. The message sent by the receiver is pseudorandom - in particular, this means that
the receiver can just sample and send a uniformly random string as a valid message to the sender.

Two-message OT protocols with this additional property have been constructed based on the
DDH assumption [NP01], LWE assumption [BD18], and a stronger variant of smooth-projective
hashing, which can be realized from DDH as well as the N th-residuosity and Quadratic Residuosity
assumptions [Kal05, HK12]. Such two-message protocols can also be based on witness encryption
or indistinguishability obfuscation (iO) together with one-way permutations [SW14].

3.3 Proof Systems

An n-message interactive protocol for deciding a language L with associated relation RL proceeds
in the following manner:

◦ At the beginning of the protocol, P and V receive the size of the instance and security
parameter, and execute the first n− 1 messages.

◦ At some point during the protocol, P receives input (x,w) ∈ RL. P sends x to V together
with the last message of the protocol. Upon receiving the last message from P , V outputs 1
or 0.

An execution of this protocol with instance x and witness w is denoted by 〈P (x,w), V (x)〉. One can
consider both proofs – with soundness against unbounded provers, and arguments – with soundness
against computationally bounded provers.

Definition 5 (Two-Message Interactive Arguments). A two-message delayed-input interactive pro-
tocol (P, V ) for deciding a language L is an interactive argument for L if it satisfies the following
properties:

10



◦ Completeness: For every (x,w) ∈ RL,

Pr
[
OutputV 〈P (x,w), V (x)〉 = 1

]
= 1− negl(λ),

where the probability is over the random coins of P and V , and where in the protocol P receives
(x,w) right before computing the last message of the protocol, and V receives x together with
the last message of the protocol.

◦ Non-Adaptive Soundness: For every (non-uniform) PPT prover P ∗ that on input 1λ (and

without access to the verifier’s message) outputs a length 1p(λ) and x ∈ {0, 1}p(λ) \ L,

Pr
[
OutputV 〈P ∗, V 〉(x) = 1

]
= negl(λ),

where the probability is over the random coins of V .

Witness Indistinguishability. A proof system is witness indistinguishable if for any statement
with at least two witnesses, proofs computed using different witnesses are indistinguishable. In this
paper, we only consider statistical witness indistinguishability, which we formally define below.

Definition 6 (Statistical Witness Indistinguishability). A delayed-input interactive argument (P, V )
for a language L is said to be statistical witness-indistinguishable if for every unbounded verifier
V ∗, every polynomially bounded function n = n(λ) ≤ poly(λ), and every (xn, w1,n, w2,n) such that
(xn, w1,n) ∈ RL and (xn, w2,n) ∈ RL and |xn| = n, the following two ensembles are statistically
indistinguishable:{

ViewV ∗〈P (xn, w1,n), V ∗(xn)〉
}

and
{
ViewV ∗〈P (xn, w2,n), V ∗(xn)〉

}
4 Extractable Commitments

4.1 Definitions

We take the following definition of statistically hiding extractable commitments from [KKS18]. As
before, we use λ to denote the security parameter, and we let p = poly(λ) be an arbitrary fixed

polynomial such that the message space is {0, 1}p(λ).
We restrict ourselves to commitments with non-interactive decommitment, and where the (hon-

est) receiver is not required to maintain any state at the end of the commit phase in order to execute
the decommit phase. Our construction will satisfy this property and this will be useful in our ap-
plications to constructing statistically private arguments.

Definition 7 (Statistically Hiding Commitment Scheme). A commitment 〈C,R〉 is a two-phase
protocol between a committer C and receiver R, consisting of algorithms Commit,Decommit and
Verify. At the beginning of the protocol, C obtains as input a message M ∈ {0, 1}p. Next, C and R
execute the commit phase, and obtain a commitment transcript, denoted by τ , together with private
states for C and R, denoted by stateC,τ and stateR,τ respectively. We use the notation

(τ, stateC,τ , stateR,τ )← Commit〈C(M),R〉.

Later, C and R possibly engage in a decommit phase, where the committer C computes and
sends message y = Decommit(τ, stateC,τ ) to R. At the end, R computes Verify(τ, y) to output ⊥ or

a message M̃ ∈ {0, 1}p.3
A statistically hiding commitment scheme is required to satisfy three properties:

3 We note that in our definition, R does not need to use private state stateR,τ from the commitment phase in
order to execute the Verify algorithm in the decommitment phase.
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◦ (Perfect) Completeness. If C,R honestly follow the protocol, then for every M ∈ {0, 1}p:

Pr[Verify(τ,Decommit(τ, stateC,τ )) = M ] = 1

where the probability is over (τ, stateC,τ )← Commit〈C(M),R〉.

◦ Statistical Hiding. For every two messages M1,M2 ∈ {0, 1}2p, every unbounded malicious
receiver R∗ and honest committer C, a commitment is δ(λ)-statistically hiding if the statistical
distance between the distributions ViewR∗(Commit〈C(M1),R∗〉) and ViewR∗(Commit〈C(M2),R∗〉)
is at most δ(λ). The scheme is statistically hiding if δ(λ) ≤ 1

poly(λ) for every polynomial poly(·).

◦ Computational Binding. Consider any non-uniform PPT committer C∗ that produces
τ ← Commit〈C∗,R〉, and then outputs y1, y2. Let M̃1 = Verify(τ, y1) and M̃2 = Verify(τ, y2).
Then, we require that

Pr
[
(M̃1 6= ⊥) ∧ (M̃2 6= ⊥) ∧ (M̃1 6= M̃2)] = negl(λ),

over the randomness of sampling τ ← Commit〈C∗,R〉.

We also define an extractor E that given black-box access to C∗, and then without executing
any decommitment phase with C∗, outputs message M̃ committed by C∗ with probability at least
ε: we require “correctness” of this extracted message M̃ . We also require that no PPT adversary
can distinguish transcripts where extraction is successful from those where it is unsuccessful. This
is formally described in Definition 8.

Definition 8 (ε-Extractable Statistically Hiding Commitment). We say that a statistically hid-
ing commitment scheme is ε-extractable if the following holds: Denote (τ, stateC,τ , stateR,τ ) ←
Commit〈C∗,R〉. We require that there exists a deterministic polynomial time extractor E that on

input (τ, stateR,τ ) outputs M̃ such that the following properties hold.

◦ Frequency of Extraction. For every PPT committer C∗,

Pr[E(τ, stateR,τ ) 6= ⊥] = ε

where the probability is over (τ, stateC,τ , stateR,τ )← Commit〈C∗,R〉.

◦ Correctness of Extraction. For every PPT committer C∗, every (τ, stateC,τ , stateR,τ ) ∈
Supp(Commit〈C∗,R〉), and every y, denoting M̃ = E(τ, stateR,τ ) and M = Verify(τ, y), if

M̃ 6= ⊥ and M 6= ⊥, then M̃ = M .

◦ Indistinguishability of Extractable Transcripts. For every C∗,∣∣Pr[C∗(τ) = 1 | E(τ, stateR,τ ) 6= ⊥]− Pr[C∗(τ) = 1 | E(τ, stateR,τ ) = ⊥]
∣∣ = negl(λ)

where the probability is over (τ, stateR,τ )← Commit〈C∗,R〉.

We also consider a stronger definition, of ε-extractable statistically hiding ` multi-commitments,
where we require that an entire sequence of ` commitments can be extracted with probability ε,
that is independent of `. We will also modify the Verify algorithm so that it obtains as input
the transcript τ := (τ1, τ2, . . . τ`) of all ` commitments, together with an index i ∈ [`] and the
decommitment stateC,τ,i to a single commitment.
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Definition 9 (ε-Extractable Statistically Hiding ` Multi-Commitments). A sequence of commit-
ments 〈C,R〉 is a two-phase protocol between a committer C and receiver R, consisting of algo-
rithms Commit,Decommit and Verify. At the beginning of the protocol, C obtains as input ` mes-
sages (M1, . . . ,M`) ∈ {0, 1}p`. Next, C and R execute the commit phase, and obtain a commit-
ment transcript, denoted by τ := (τ1, . . . τ`), together with private states for C and R, denoted by
{stateC,τ,i}i∈[`] and {stateR,τ}i∈[`] respectively. We use the notation

(τ, {stateC,τ,i}i∈[`], {stateR,τ,i}i∈[`])← Commit〈C(M),R〉.

Later, C and R possibly engage in a decommit phase, where the committer C computes and sends
message y = Decommit(τi, stateC,τ,i) to R. At the end, R computes Verify(τ, i, yi), where i ∈ [`],

to output ⊥ or a message M̃i ∈ {0, 1}p.4 A statistically hiding commitment scheme is required to
satisfy three properties:

◦ (Perfect) Completeness. If C,R honestly follow the protocol, then for every M1, . . . ,M` ∈
{0, 1}p` and every i ∈ [`]:

Pr[Verify(τ, i,Decommit(τi, stateC,τ,i)) = Mi] = 1

where the probability is over (τ, {stateC,τ,i}i∈[`])← Commit〈C(M),R〉.

◦ Statistical Hiding. A set of commitments is δ(λ)-statistically hiding if for every set I ⊆ [`],
every set of messages {Mi}i∈[`], {M ′i}i∈[`] ∈ {0, 1}2p` such that (Mi = M ′i) for every i ∈ I,
every unbounded malicious receiver R∗ and honest committer C, the statistical distance be-
tween the distributions ViewR∗(Commit〈C(M1, . . .M`),R∗〉), {Decommit(τi, stateC,τ,i)}i∈I and
ViewR∗(Commit〈C(M ′1, . . . ,M ′`),R∗〉), {Decommit(τi, stateC,τ,i)}i∈I is at most (` − |I|) · δ(λ).
The scheme is statistically hiding if δ(λ) ≤ 1

poly(λ) for every polynomial poly(·).

◦ Computational Binding. Consider any non-uniform PPT committer C∗ that produces
τ ← Commit〈C∗,R〉 and then outputs y1, y2. For any i ∈ [`], let M̃1 = Verify(τ, i, y1) and

M̃2 = Verify(τ, i, y2). Then, we require that

Pr
[
(M̃1 6= ⊥) ∧ (M̃2 6= ⊥) ∧ (M̃1 6= M̃2)] = negl(λ),

over the randomness of sampling τ ← Commit〈C∗,R〉.

Definition 10 (ε-Extractable Sequence of ` Statistically Hiding Commitments). We say that a
sequence of ` statistically hiding commitments is ε-extractable if the following holds:
For every i ∈ [`], Denote {(τi, stateC,τ,i, stateR,τ,i)}i∈[`] ← Commit〈C∗,R〉 and let τ := (τ1, τ2, . . . τ`)
denote the transcript of all ` commitments. We require that there exists a deterministic polyno-
mial time extractor E that on input {(τi, stateR,τ,i)}i∈[`] outputs {M̃i}i∈[`] such that the following
properties hold.

◦ Frequency of Extraction. Let (M̃1, . . . , M̃`) := E({(τi, stateR,τ,i)}i∈[`]), then

Pr[∃i such that M̃i = ⊥] ≤ (1− ε)

where the probability is over τ and over the random coins of R.

4 We point out that in this definition, R does not need to use private state stateR,τ from the commitment phase
in order to execute the Verify algorithm in the decommitment phase. We also point out that the verify algorithm can
be modified so that the committer can open a subset of commitments together, instead of one at a time.
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◦ Correctness of Extraction. For every {(τi, stateC,τ,i, stateR,τ,i)}i∈[`] ∈ (Supp(Commit〈C∗,R〉))`,
denoting M̃1, . . . M̃` = E({(τi, stateR,τ,i)}i∈[`]), we require the following. For every i ∈ [`] and

every string y, denoting M = Verify(τ, i, y), if M 6= ⊥ and M̃i 6= ⊥, then M̃i = M .

◦ Indistinguishability of Extractable Transcripts. For every PPT adversary C∗,∣∣Pr[C∗(τ) = 1 | ∃i such that M̃i = ⊥]− Pr[C∗(τ) = 1 |6 ∃i such that M̃i = ⊥]
∣∣ = negl(λ)

where M̃1, . . . , M̃` := E(τ, stateR,τ ) and where the probability is over (τ, stateR,τ )← Commit〈C∗,R〉.

4.2 Protocol

In this section, we construct two-message statistically hiding, extractable commitments according
to Definition 8 assuming the existence of two message oblivious transfer (OT). Our construction is
described in Figure 1.

Primitives Used. Let OT = (OT1,OT2) denote a two-message string oblivious transfer protocol
according to Definition 4, also satisfying Property 1. Let OT1(b; r1) denote the first message of the
OT protocol with receiver input b and randomness r1, and let OT2(M0,M1; r2) denote the second
message of the OT protocol with sender input strings M0,M1 and randomness r2.5

Extraction parameter: m.
Committer Input: Message M ∈ {0, 1}p.
Commit Stage:
Receiver Message.

1. Pick challenge string ch
$←{0, 1}m.

2. Sample uniform randomness {r1,i}i∈[m].

3. Compute and send {OT1(chi, r1,i)}i∈[m] using m instances of two-message OT.

Committer Message.

1. Sample a random string r
$←{0, 1}m.

For every i ∈ [m] and every b ∈ {0, 1}, sample M b
i

$←{0, 1}p subject to
⊕

i∈[m]M
ri
i = M .

2. For every i ∈ [m] compute o2,i = OT2(M0
i ,M

1
i ; r2,i) with uniform randomness r2,i.

3. Send (r, {o2,i}i∈[m]).

Reveal Stage: The committer reveals M , and all values {M0
i ,M

1
i }i∈[m] as well as the

randomness r2,i. The receiver accepts the decommitment to message M if and only if:

1. For all i ∈ [m], o2,i = OT2(M0
i ,M

1
i ; r2,i),

2.
⊕

i∈[m]M
ri
i = M .

Figure 1: Extractable Commitments

5Note that OT2 also depends on OT1. We omit this dependence in our notation for brevity.
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Observe that the protocol satisfies the property mentioned in the definition that the verify
algorithm in the decommitment phase does not require the private randomness used by the receiver
in the commit phase. Further, observe that if the oblivious transfer protocol satisfies Property 1,
the receiver’s message can alternately be generated by just sampling a uniformly random string.
Thus, this would give an extractable commitment protocol where the receiver’s algorithms are
public coin.

We will now prove the following main theorem.

Theorem 1. Set ε = 1/2m(1−2m ·m·µot). Assuming that the underlying OT protocol is µOT -secure
against malicious senders, (1 − δOT) secure against malicious receivers according to Definition 4,
and satisfies Property 1, the scheme in Figure 1 is a (1−2−m−δOT) statistically hiding, ε-extractable
commitment scheme according to Definition 8. Further, the receiver’s algorithms are public coin.

Recall that such two-message OT protocols with this additional property have been constructed
based on the DDH assumption [NP01], LWE assumption [BD18], and a stronger variant of smooth-
projective hashing, which can be realized from DDH as well as the N th-residuosity and Quadratic
Residuosity assumptions [Kal05, HK12]. Further, we note that in all these OT constructions,
computing the output of the protocol can be represented by an NC1 circuit and we will use this
fact later. Instantiating the OT protocol in the above construction, we get the following corollary:

Corollary 2. Set ε = 1/2m(1 − 2m · m · µot). There exists some c > 0 such that, assuming µcot
secure LWE/DDH/QR/N th-residuosity, the scheme in Figure 1 is a (1 − 2−m − δOT) statistically
hiding, ε-extractable commitment scheme according to Definition 8 where the receiver’s algorithms
are public coin.

We now prove the above theorem by showing statistical hiding, computational binding, and
extractability in Lemma 1, Lemma 2 and Lemma 3 below respectively.

Lemma 1. Assuming the underlying OT satisfies (1− δOT) statistical sender security according to
Definition 4, the scheme in Figure 1 is (1−2m− δOT) statistically hiding according to Definition 7.

Proof. Fix any (unbounded) malicious receiver R∗. Let mR∗ be the message sent by R∗ during the
commit phase. By Claim 1, mR∗ uniquely defines a receiver challenge ch. With probability 2−m,
r 6= ch for r chosen uniformly at random by an honest committer. Conditioned on r 6= ch, there
exists at least one index j ∈ [m] such that rj 6= chj . When rj 6= chj , by (1− δOT) statistical sender
security of OT, M

rj
j is (1− δOT)-statistically hidden from any malicious receiver. Since M

rj
j is one

of the shares in an XOR secret sharing of M , the message M is (1−2−m−δOT) statistically hidden
from any malicious receiver.

Lemma 2. Assuming that the underlying OT satisfies receiver security according to Definition 4,
the scheme in Figure 1 is computationally binding against non-uniform PPT malicious committers,
according to Definition 7.

Proof. Suppose for contradiction that there exists a non-uniform malicious PPT cheating committer
C∗ and a polynomial p(·) such that outputs transcript τ ← Commit〈C∗,R〉, y1, y2 such that M̃1 =

Verify(τ, y1), M̃2 = Verify(τ, y2), and

Pr[(M̃1 6= ⊥) ∧ (M̃2 6= ⊥) ∧ (M̃1 6= M̃2)] =
1

p(λ)

We will construct a reduction A that has black-box access to such a committer C∗, and breaks
receiver OT security according to Definition 4. A takes as input o′ = OT1(b) and is required to
distinguish the case when b = 0 from when b = 1. A does the following:
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1. Sample `
$← [m], {chi}i∈[m]\{`}

$←{0, 1}m−1.

2. Sample r1,i uniformly at random and compute {o1,i = OT1(chi; r1,i)}i∈[m]\{`}. Set o1,` = o′.

3. Forward {o1,i}i∈[m] as the first message of the scheme in Figure 1 to the adversary C∗.

4. Obtain r, {o2,i}i∈[m] from C∗. This is the end of the commit phase, denote transcript by τ .

5. Obtain y1, y2 from C∗. If Verify(τ, y1) = Verify(τ, y2) or if either of them are ⊥, abort and
output ⊥. Else continue.

6. Parse y1 as M, {M b
i , r2,i}i∈[m],b∈{0,1} and y2 as M̃, {M̃ b

i , r̃2,i}i∈[m],b∈{0,1}.

7. Define S = {j ∈ [m] : M
rj
j 6= M̃

rj
j }. Since M 6= M̃ , |S| > 1. If ` ∈ S, output 1 − r`, else

output ⊥.

We prove the following claim, which will contradict OT security according to Definition 4 and
complete the proof of the lemma.

Claim 2. Let b′ denote the output of A. Then, Pr[b′ = b] ≥ 1
m·p(λ) .

Proof of Claim. By assumption, with probability at least 1
p(λ) , the following event E occurs: A

proceeds to Step 5 and obtains M 6= M̃ .
After A proceeds to Step 5, it first creates the set S of indices j ∈ [m] where M

rj
j 6= M̃

rj
j . Since

M 6= M̃ , |S| > 1. Since A samples ` independently and uniformly at random, Pr
[
` ∈ S

∣∣E] ≥ 1
m .

Thus, Pr[(` ∈ S) ∧ E] ≥ 1
m·p(λ) .

Let us now condition on (` ∈ S) ∧ E. For any i ∈ [m], by correctness of the ith parallel OT, the ith

OT statistically binds the sender to a unique input value M chi
i . Thus, for any i ∈ [m], the existence

of M ri
i 6= M̃ ri

i that reconstruct to o2,i implies that chi 6= ri (except with probability negl(λ)). Since

we conditioned on ` ∈ S, we have that M r`
` 6= M̃ r`

` , and therefore (b = ch`) = (1− r`) = b′.

Thus, Pr
[
b′ = b

∣∣∣(` ∈ S) ∧ E
]

= 1. This implies that Pr
[
b′ = b ∧ (` ∈ S) ∧ E

]
≥ 1

m·p(λ) . Since

A outputs ⊥ if either of the events (` ∈ S) and E did not occur, we have that Pr[b′ = b] ≥ 1
m·p(λ) ,

proving the claim.

Lemma 3. The scheme in Figure 1 is an ε-extractable commitment scheme, where ε = 2−m(1 −
2m · µOT ).

Proof. We begin by describing the extractor E from Definition 8. We denote the first message of
transcript τ by τ1 and the second message by τ2. In the following, we assume that if the committer’s
message τ2 is malformed or blank then it is treated as if r and M̃i for i ∈ [m] are the all-zeros
string. E obtains transcript (τ1, τ2) together with stateR,τ , and does the following:

◦ Parse τ2 = (r, {o2,i}i∈[m]).

◦ If r 6= ch, output ⊥.

◦ Else, use stateR,τ to obtain {M̃ chi
i }i∈[m] from {o2,i}i∈[m].

◦ Compute M̃ = ⊕i∈[m]M̃
chi
i and output M̃ .
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We will now analyze the extractor E . First, before describing the properties, we quickly observe
that the extractor can be represented by an NC1 circuit since computing the output of the OT
protocol can be represented by an NC1 circuit.

Frequency of Extraction. Recall that extraction succeeds from a trial when the r chosen by
the committer is equal to the ch chosen by the extractor in this trial. We now prove the following
claim, which asserts that the event r = ch occurs with probability at least ε.

Claim 3. The probability (over the coins of R) that r = ch is at least 2−m · (1− 2m ·m · µOT ).

Proof of Claim. Suppose the claim is not true. We will use this to contradict the receiver security
of the OT protocol. To do so, we describe our reduction algorithm Â and distinguisher D̂ for the
receiver security game.

The reduction Â picks two challenges ch1, ch2
$←{0, 1}m at random, and creates auxiliary infor-

mation consisting of these two challenges. We will use OT1(ch;R) to denote {OT1(chi;Ri)}i∈[m],
created using randomness R.

Now, D̂ will obtain from the OT challenger as challenge either τ1 = OT1(ch1;R) or τ1 =
OT1(ch2;R). D̂ runs the malicious sender C∗ on the message τ1, obtaining τ2. It obtains r from τ2:
if r = ch1, it outputs 1. Otherwise, it aborts and outputs ⊥.

We will now analyze the probability that D̂ outputs 1 in the two cases where ch = ch1 or ch =
ch2. If ch = ch1, then by assumption, we have that Pr[D̂ = 1|ch = ch1] < 2−m ·(1−m ·2m ·m ·µOT ).
On the other hand, if ch = ch2, then no information about ch1 is given to the distinguisher D.
Therefore, Pr[D̂ = 1|ch = ch2] = 2−m.

Thus, we have that |Pr[D̂ = 1|ch = ch1]−Pr[D̂ = 1|ch = ch2]| ≥ m·µOT , which is a contradiction
since the underlying single instance OT is µOT -secure against malicious senders.

Claim 4. Let µOT be an efficiently computable negligible function. For any constant c ∈ (0, 1), set
m = c · log2 µ

−1
OT , then in the scheme described above, ε > µcOT /2.

Proof. The previous claim shows that ε = 2−m(1− 2m ·m ·µOT ). Choose m such that 2−m = µcOT .
This implies that m = c·log2 µ

−1
OT . Then, plugging this value of m above gives ε = µcOT (1−m·µ1−c

OT ).
As µ1−c

OT is a negligible function, ε > µcOT /2.

Correctness of Extraction. The following claim proves that the extraction is “correct”.

Claim 5. Whenever the extraction algorithm E(τ, stateτ,R) outputs M̃ 6= ⊥, the following holds:
The transcript (τ1, τ2) statistically binds C∗ to either an invalid message, or a single message M ,

such that M̃ = M .

Proof. First, when r 6= ch, the extractor outputs ⊥.
When r = ch, the extractor obtains {M chi

i }i∈[m] as OT ouptut, and outputs M̃ =
⊕

i∈[m]M
chi
i .

By correctness of OT and since r = ch, M̃ =
⊕

i∈[m]M
ri
i , correctness of extracted value follows.

Moreover, by correctness of OT, the committer is statistically bound to a single input for each
index i ∈ [m], and therefore to a unique message in all transcripts where r = ch.

Indistinguishability of Extractable Transcripts. Towards a contradiction, suppose there is
a committer C∗ and a polynomial p(·) such that:∣∣Pr[C∗(τ) = 1|M̃ = ⊥]− Pr[C∗(τ) = 1|M̃ 6= ⊥]

∣∣ > 1

p(λ)
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We will use this committer to contradict the receiver security of the OT protocol. We now
describe our reduction algorithm Â and distinguisher D̂ for the receiver security game.

The reduction Â chooses two challenges ch1, ch2
$← {0, 1}m at random, and creates auxiliary

information consisting of these two challenges. Next, Â obtains as input (from the OT challenger)
either τ1 = OT1(ch = ch1;R) or τ1 = OT1(ch = ch2;R).
A now runs the malicious sender C∗ on the message τ1, obtaining τ2, aux. It generates the joint

distribution (τ1, τ2, aux). If r 6= ch1, it outputs C∗(τ1, τ2, aux). Otherwise, it aborts and outputs ⊥.

Note that M̃ 6= ⊥ ⇐⇒ r = ch, and therefore, we have that∣∣Pr[C∗(τ) = 1|r 6= ch]− Pr[C∗(τ) = 1|r = ch]
∣∣ > 1

p(λ)

We now analyze two cases.

◦ Suppose ch = ch1. Then, r 6= ch =⇒ r 6= ch1, and r = ch =⇒ r = ch1. In this case,∣∣Pr[C∗(τ) = 1|r 6= ch1, ch = ch1]− Pr[C∗(τ) = 1|r = ch1, ch = ch1]
∣∣ > 1

p(λ)

which implies that

Pr[D̂(τ) = 1|ch = ch1] =

Pr[D̂(τ) = 1 ∧ r 6= ch1|ch = ch1] >

Pr[C∗(τ) = 1 ∧ r 6= ch1|ch = ch1] =

Pr[C∗(τ) = 1|r 6= ch1, ch = ch1] · Pr[r 6= ch1|ch = ch1] >

1

p(λ)
· (1− 2−m − ε) > 1

2p(λ)
.

◦ Suppose ch = ch2. In this case, no information about ch1 is given to C∗, and therefore

Pr[D∗(τ) = 1|ch = ch2] ≤ Pr[C∗(τ) = 1 ∧ r 6= ch1|ch = ch2] = 2−m · 1− 2−m

Therefore,

|Pr[D∗(τ) = 1|ch = ch1]− Pr[D∗(τ) = 1|ch = ch2]| > 1

2p(λ)
− 2−m >

1

3p(λ)

This contradicts receiver security, and therefore the lemma follows.

We will rely on a simple variant of this commitment scheme that for any ` = poly(λ), results in
an ε-extractable sequence of ` commitments where ε > µcOT /2 (independent of `) for any constant

c ∈ (0, 1). This variant requires the committer to sample a single random string r
$←{0, 1}m (refer

to Step 1 of the committer message), and reuse the same string r across all ` commitments. Since
the committer outputs r in the clear, a receiver obtaining such a sequence can efficiently check,
during the verify phase of decommitment, whether all ` commitments use the same randomness r,
and output ⊥ if this is not the case. This sequence of ` commitments is statistically hiding by a
simple hybrid argument, and is computationally binding for the same reason as Lemma 2.

The extractor E is modified so that on input a transcript of ` commitments, it outputs 0` if
the random string r is not identical across all commitments. Therefore, the extractor outputs
(M̃1, . . . M̃`), where there exists an i ∈ [`] such that M̃i = ⊥ if and only if the committer used r
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identically across all commitments, and ch 6= r. Therefore, frequency of extraction follows by Claim
3, correctness of extraction follows by Claim 5 together with the fact that when r is not identical
across all commitments, the Verify algorithm outputs ⊥. Finally, indistinguishability of extractable
transcripts follows identically as in the case of a single commitment. Because poly(λ) · µcOT < µc

′
OT

for c′ < c for any constant c, c′ ∈ (0, 1) and any polynomial poly we have that, setting m = c′ logµ−1
OT

for any c′ < c for this construction gives us the following corollary.

Corollary 3. Let µOT be an efficiently computable negligible function. For any ` = poly(λ) and
any c ∈ (0, 1), there exists an ε-extractable sequence of ` statistically hiding commitments, where

ε > µcOT /2, assuming µ
O(1)
OT -secure LWE/DDH/QR/N th-residuosity 6. Further, the extractor E can

be represented by an NC1 circuit.

5 Our Statistical WI Protocol

5.1 Modified Blum Protocol

We begin by describing a very simple modification to the Blum Σ-protocol for Graph Hamiltonicity.
The protocol we describe will have soundness error 1

2 − negl(λ) against adaptive PPT provers, and
will satisfy statistical zero-knowledge. Since Graph Hamiltonicity is NP-complete, this protocol can
also be used to prove any statement in NP via a Karp reduction. This protocol is described in
Figure 2.

We give an overview of the protocol here. Note that the only modification to the original pro-
tocol of Blum [Blu86] is that we use two message statistically hiding, extractable commitments in-
stead of non-interactive statistically binding commitments. The proofs of soundness and statistical
honest-verifier zero-knowledge are fairly straightforward. They roughly follow the same structure
as [Blu86], replacing statistically binding commitments with statistically hiding commitments.

Lemma 4. Assuming that extcom is computationally binding, the protocol in Figure 2 satisfies
soundness against PPT provers that may choose x adaptively in the second round of the protocol.

Proof. The proof of soundness follows by the computational binding property of extcom and the
soundness of the (original) Blum protocol.

Let L denote the language consisting of all graphs that have a Hamiltonian cycle. Consider a
cheating prover P ∗ that convinces a malicious verifier about a statement x 6∈ L with probability
1
2 + h(n), where h(·) > 1

poly(·) for some polynomial poly(·). By an averaging argument, this means
that there exists at least one transcript prefix τ consisting of the first two messages of the protocol,
where for G 6∈ L sent by the prover in the third message, Pr[V accepts|τ,G 6∈ L] > 1

2 . This implies
that there exists a cheating prover that generates a transcript prefix τ , for which it provides an
accepting opening corresponding to both b = 0 and b = 1, with probability at least h(n). Next, we
argue that such a cheating prover must break the (computational) binding of com.

Since G 6∈ L, it is information theoretically impossible for any cheating prover to generate
a commitment to a unique string π, π(G) such that there exists a Hamiltonian cycle in π(G).
Therefore, any prover that opens a transcript prefix τ,G corresponding to both b = 0 and b = 1 for
G 6∈ L, must open at least one commitment in the set {extcomP , {extcomi,j}i,j∈p×p} to two different
values, thereby giving a contradiction to the binding of the commitment scheme.

Lemma 5. Assuming that extcom is statistically hiding, the protocol in Figure 2 satisfies honest-
verifier statistical zero-knowledge.

6The constant O(1) indicates the constant required to build µOT−secure OT secure against malicious senders.
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Modified Blum Argument

1. Verifier Message: The verifier does the following:

◦ Sample the first message extcom1,i,j for independent instances of the extractable
commitment, where i, j ∈ [p(λ)]× [p(λ)], uniformly at random.

◦ Send an additional first message extcom1,P for another independent instance of
the extractable commitment, again sampled uniformly at random.

2. Prover Message: The prover gets input graph G ∈ {0, 1}p(λ)×p(λ) represented as
an adjacency matrix, with (i, j)th entry denoted by G[i][j]), Hamiltonian cycle H ⊆ G.
Here p(·) is an a-priori fixed polynomial. The prover does the following:

◦ Sample a random permutation π on p(λ) nodes, and compute cP = extcom2,P (π)
as a commitment to π using extcom.

◦ Compute π(G), which is the adjacency matrix corresponding to the graph G when
its nodes are permuted according to π. Compute ci,j = extcom2,i,j(π(G)[i][j]) for
(i, j) ∈ [p(λ)]× [p(λ)].

◦ Send G, cP , ci,j for (i, j) ∈ [p(λ)]× [p(λ)].

3. Verifier Message: Sample and send c
$←{0, 1} to the prover.

4. Prover Message: The prover does the following:

◦ If c = 0, send π and the decommitments of extcomP , extcomi,j for (i, j) ∈ [p(λ)]×
[p(λ)].

◦ If c = 1, send the decommitment of extcomi,j for all (i, j) such that π(H)[i][j] = 1.

5. Verifier Output: The verifier does the following:

◦ If c = 0, accept if and only if all extcom openings were accepted and π(G) was
computed correctly by applying π on G.

◦ If c = 1, accept if and only if all extcom openings were accepted and all the opened
commitments form a Hamiltonian cycle.

Remark: Observe that since the receiver’s algorithms in the extractable commitment scheme
are public coin, the above protocol is also public coin.

Figure 2: Modified Blum SZK Argument

Proof. The simulation strategy is identical to that of [Blu86]. The simulator Sim first guesses the
challenge bit c′. It begins an interaction with the malicious verifier. On obtaining the first message
from the verifier, if c′ = 0, it samples π uniformly at random and generates a commitment to
π, π(G) following honest prover strategy to generate the commitment. If c′ = 1, it samples π,H ′

uniformly at random where H ′ is an arbitrary hamiltonian cycle, and generates a commitment
to π, π(H ′) following honest prover strategy to generate the commitment. Next, it waits for the
verifier to send c, and if c 6= c′, it aborts and repeats the experiment. If c = c′, then it decommits
to the commitments according to honest prover strategy.
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Note that when c = c′ = 1, the resulting simulation is perfect zero-knowledge since the simulated
view of the verifier is identical to the view generated by an honest prover. On the other hand when
c = c′ = 0, it follows from the statistical hiding property of the commitment extcom that the verifier
cannot distinguish the case where extcom is a commitment to π, π(G) and a hamiltonian cycle is
opened in π(G), from the case where extcom is not a commitment to π(G), but instead to some
π(H ′) for a hamiltonian cycle H ′.

Since honest-verifier zero-knowledge composes under parallel repetition, we can repeat the pro-
tocol several times in parallel to get negligible soundness error. Formally, we have the following
lemma:

Lemma 6. Assuming that extcom is statistically hiding, the protocol in Figure 2 satisfies honest
verifier statistical zero-knowledge under parallel repetition.

Finally, Cramer et al. [CDS94] showed that honest verifier zero knowledge where the receiver’s
algorithms are public coin implies witness indistinguishability even against malicious verifiers. As
a result, we get the following lemma:

Lemma 7. Assuming that extcom is statistically hiding, the protocol in Figure 2 satisfies statistical
witness indistinguishability under parallel repetition.

5.2 Statistical ZAPs

In this section, we prove the following theorem:

Theorem 4. There exists a two message public-coin statistical witness indistinguishable argument
system for NP in the plain model assuming that the following primitives exist:

◦ Two-message oblivious transfer (OT) that is µOT secure against malicious senders, satisfying
Definition 4 and Property 1, and

◦ µCI-correlation intractable hash functions,

where µCI and µOT are efficiently computable negligible functions in λ.

Recall from previous sections that we can use the above OT to build the extractable commitment
which is then used to build a four message Σ-protocol that is a modification to Blum’s protocol.
As mentioned before, we can instantiate both the OT and the correlation intractable hash function
assuming the learning with errors (LWE) problem is hard. More specifically, assuming any PPT
adversary has advantage at most µLWE for LWE, where µLWE is an efficiently computable function,
we can efficiently compute upper bounds µCI and µOT on the advantages of the CI and OT
constructions, respectively, as well.

Therefore, instantiating both the primitives in the above theorem gives us the following:

Theorem 5. Assuming µLWE-hard LWE for some efficiently computable negligible function µLWE,
there exists a two message public-coin statistical witness indistinguishable argument system for NP
in the plain model.

Notations and Primitives used.

◦ Let λ be the security parameter.

◦ Let µ = max{µOT , µCI}.
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◦ Let Σ := (Σ1, . . . ,Σλ) denote λ parallel repetitions of the modified Blum Sigma protocol con-
structed in Section 5.1, where for i ∈ [`],Σi = (qi, ai, ei, zi). Let the underlying commitment
scheme be instantiated with m = c logµ, where 0 < c < 1.

◦ Let H be a correlation intractable hash function with respect to {Fλ,s(λ)}λ∈N according to
Definition 3 that outputs strings of length λ, where s(λ) = 2s1(λ) where s1 is the size of the
extractor E used in the commitment scheme and F denotes the class of all NC1 circuits of size
s(λ) as defined in Definition 2. Recall the correlation-intractability advantage is assumed to
be at most µCI .

Construction. Let x be any instance in {0, 1}λ and let w be the corresponding witness for the
statement x ∈ L.

1. Verifier’s message to the Prover:

◦ Sample q := {qi}i∈[λ].

◦ Sample K ← H.Setup(1λ, 0`).

◦ Output (q,K).

2. Prover’s message to the Verifier:

◦ Compute {ai}i∈[λ] as a response to {qi}i∈[λ].

◦ Compute e← H.Eval(K, a).

◦ Compute {zi}i∈[λ] with respect to the challenge string e.

◦ Output (x, a, e, z).

3. Verification: The verifier does the following:

◦ If H.Eval(K, a) 6= e, output reject.

◦ Else if (x, q, a, e, z) does not verify according to the Σ protocol, output reject.

◦ Else output accept.

Completeness. Completeness of the protocol can be easily observed from the correctness of the
underlying primitives: the protocol Σ and the hash function H.

Public Coin. Recall from the statistical indistinguishability of hash keys property that an honest
verifier can just sample a uniformly random string as the hash key K. This, along with the fact
that the underlying protocol Σ is public coin results in the above protocol also being public coin.

Soundness. We now prove computational soundness of the protocol above. Towards a contra-
diction, fix any adversary A that breaks soundness of the protocol with probability 1

p(λ) for some

polynomial p(·).
We consider a sequence of hybrids where the first hybrid corresponds to the real soundness

experiment.

◦ Hybrid0 : This hybrid corresponds to the experiment where the challenger behaves identically
to the verifier in the actual protocol.
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◦ Hybrid1: In this hybrid, instead of generating the verifier’s first message as uniformly random
string, the challenger Ch now computes the first message of the extractable commitment
scheme used in the underlying protocol Σ as done in the protocol description in Figure 1. In
particular, the underlying OT receiver messages are not sampled as uniformly random strings
but instead are computed by running the OT receiver algorithm. As a result, Ch now has
some internal state rstate as part of the extractable commitment scheme that is not public.

◦ Hybrid2: This hybrid is the same as the previous hybrid except that the hash key K is
generated as follows. K ← H.Setup(1λ, Rx,q) where the relation Rx,q consists of tuples of the
form (a, y) where y is computed by an efficient function fbad,x,q described below. fbad,x,q has
the statement x, verifier’s first messages q and secret state rstate corresponding to q hardwired,
takes as input the prover’s message a and does the following.

1. Run the extractor algorithm E on input (rstate, τ = (q, a)) to compute m. Note that E
can be represented by an NC1 circuit of size s1(λ) for some polynomial s1.

2. If m 6= ⊥, this means that m is the tuple of messages committed to in the set of λ
commitment tuples (cP , {ci,j}). For each k ∈ [λ], check whether the message committed
to by the tuple {ci,j} is indeed equal to π(G) where π is the permutation committed to
in cP . If so, then set ek = 0 and else set ek = 1. Set y = (e1, . . . , eλ).7

3. If m = ⊥, set y = 0λ.

Before proving the soundness of the protocol using the hybrids, we define an event that helps
us in the proof.

Event E: Let τ denote the transcript of an execution of the above protocol and let τC denote the
transcript of the commitment scheme in the execution. Let stateR denote the state of the verifier
when it runs the receiver algorithm of the commitment scheme. We will say that the event E occurs
if for any honest verifier V :

[V (τ) = 1 ∧ E(τC , stateR) 6= ⊥].

We now continue the proof of soundness with the following claims.

Lemma 8. Assuming the pseudorandomness of receiver messages of the OT protocol used in the
underlying extractable commitment scheme (Property 1),

|Pr[V (τ) = 1|Hybrid1]− Pr[V (τ) = 1|Hybrid0]| = negl(λ)

Proof. The only difference between the two hybrids is that in Hybrid0, the OT receiver messages in
the extractable commitment scheme used in the underlying protocol Σ are generated as uniformly
random strings while in Hybrid1, they are generated by running the algorithm OT1 on behalf of the
OT receiver. It is easy to see that if the difference in the adversary’s success probability in breaking
soundness between these two hybrids is non-negligible, we can break the pseudorandomness of
receiver messages property (Property 1) of the underlying two message OT protocol, which is a
contradiction.

Lemma 9. Assuming the frequency of extraction property and the indistinguishability of extractable
transcripts property of the extractable commitment scheme, there exists a polynomial p(·) such that

Pr[E occurs in Hybrid1] ≥ ε · 1

p(λ)
,

7Essentially, since x /∈ L, if the cheating prover has to succeed, it can either generate a successful response zk for
verifier’s query bit ek = 0 or ek = 1 and this function determines which bit it is.
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where the probability is over the randomness of V , and where ε is the extraction probability of the
underlying commitment scheme.

Proof. Fix x 6∈ L. We will consider a reduction B that interacts with the adversary and relies on
the frequency of extraction property and the indistinguishability of extractable transcripts property
of the extractable commitment scheme to prove the lemma.
B interacts with a challenger Ch for the commitment scheme and receives a first round message

com1 for the `-extractable commitment scheme. It then interacts with the adversary A as the
verifier in the ZAP protocol, setting com1 as its message on behalf of the receiver in the underlying
commitment scheme, and sampling the hash key K ← H.Setup(1λ, 0`). After completing the
protocol execution with A, B forwards the commitments sent by A as its message com2 of the
commitment scheme to the challenger Ch. Further, B outputs 1 in its interaction with Ch if the
proof provided by A verifies, and 0 otherwise.

Let τ denote the transcript of the ZAP protocol and τC the transcript of the underlying com-
mitment scheme. Let stater be the state of the receiver in the commitment scheme as sampled by
the challenger Ch.

First, we observe that by Lemma 8, there exists a polynomial p(·) such that adversary A
breaks the soundness property in Hybrid1 with non-negligible probability 1

p(λ) . This implies that

Pr[B(τC) = 1] ≥ 1
p(λ) over the random coins of B,Ch. This gives us the following equation.

Pr[B(τC) = 1] = (Pr[B(τC) = 1 | E(τC , stateR) 6= ⊥] · Pr[E(τC , stateR) 6= ⊥]

+Pr[B(τC) = 1 | E(τC , stateR) = ⊥] · Pr[E(τC , stateR) = ⊥]) ≥ 1

p(λ)

(1)

From the indistinguishability of extractable transcripts property, we have that:∣∣Pr[B(τC) = 1 | E(τC , stateR) 6= ⊥]− Pr[B(τC) = 1 | E(τC , stateR) = ⊥]
∣∣ = negl(λ) (2)

From the frequency of extraction property, we have that :

Pr[E(τC , stateR) 6= ⊥] ≥ ε (3)

where all equations are over the random coins of the challenger Ch and reduction B. Combining
Equations (1) and (2) implies that there exists a polynomial q(·) such that

Pr[B(τC) = 1 | E(τC , stateR) 6= ⊥] ≥ 1

q(λ)
,

which, by Equation (3), implies that

Pr[B(τ) = 1 ∧ E(τC , stateR) 6= ⊥] = Pr[B(τC) = 1 | E(τC , stateR) 6= ⊥] · Pr[E(τC , stateR) 6= ⊥] ≥ 1

q(λ)
· ε.

Thus we have

Pr[E occurs in Hybrid1] ≥ ε · 1

q(λ)
.

This completes the proof of the Lemma.

Lemma 10. Assuming the statistical indistinguishability of hash keys of the correlation intractable
hash function, there exists a polynomial p(·) such that

Pr[E occurs in Hybrid2] ≥ ε · 1

p(λ)
,

where the probability is over the randomness of V , and where ε is the extraction probability of the
underlying commitment.

24



Proof. Assume for the sake of contradiction that the lemma is not true. We will show that we can
break the statistical indistinguishability of hash keys property of the correlation intractable hash
function.

We will design a reduction B that interacts with A, where B acts as verifier in the above ZAP
protocol. B interacts with a challenger Ch for the correlation intractable hash function. Initially, B
samples the first round message q for the underlying Sigma protocol just as in Hybrid1, along with
associated receiver state stateR for the commitment scheme, and sends both to Ch. B obtains a
hash key K sampled either uniformly at random (as in Hybrid1) or by running the setup algorithm
of the hash function as described in Hybrid2. B uses this key K in its interaction with the adversary
A and completes executing the ZAP protocol. Observe that if Ch sampled a hash key uniformly at
random, the interaction between A and B is identical to Hybrid1 and if Ch sampled as hash key as
described in Hybrid2, the interaction between A and B is identical to Hybrid2.

Now, B tests if event E occurs. That is, it checks if the ZAP protocol verifies and if so, runs
the extractor E(τC , stateR) using the transcript τC for the commitment scheme. If the extractor cE
does not output ⊥, then event E occurs and B guesses that the hash key was uniformly sampled in
its interaction with the challenger Ch. Otherwise, it guesses that the hash key was not uniformly
sampled. Thus, if the event E occurs with probability ≥ ε · 1

p(λ) in Hybrid1, and occurs with

probability ε · negl(λ) in Hybrid2, B can distinguish between the hash keys with advantage ε
q(λ) for

some polynomial q. This is a contradiction, and this completes the proof of the lemma.

Lemma 11. Assuming the µCI-correlation intractable property of the hash function, the soundness
of the underlying protocol Σ and the correctness of extraction of the extractable commitment scheme,

Pr[E occurs in Hybrid2] ≤ ε · negl(λ).

Proof. Suppose the claim is not true. This implies that

Pr[V (τ) = 1 ∧ E(τC , stateR) 6= ⊥] = ε · 1

p(λ)

for some polynomial p. Let us consider any transcript on which event E occurs. Let (q,K) denote
the verifier’s message and (x, a, e, z) denote the prover’s message. Then, from the correctness of the
ZAP protocol, it must be the case that (q, a, e, z) verifies according to protocol Σ and e = H(K, a).
Further, since the extractor E succeeds on this transcript, the commitment scheme is statistically
binding. Therefore, we can invoke the special soundness of the underlying modified Blum Σ protocol
(as in the case of the regular Blum protocol) to state that for the statement x /∈ L and prefix (q, a)
there can exist at most one pair (e∗, z∗) such that (q, a, e∗, z∗) verifies successfully. Therefore, the
adversary’s message e must be equal to this value e∗.

Now, from the description of the relation R used in defining the hash key K in Hybrid2, we
observe that, by the correctness of extraction, fbad,x,q(a) = e∗ = H(K, a). Thus, for any transcript
that satisfies the conditions in event E, fbad,x,q(a) = e∗ = H(K, a). Fix q which maximizes the
probability of E occurring. We can build a reduction B that on input K, using the adversary A,
produces a such that fbad,x,q(a) = e∗ = H(K, a) with probability at least ε · 1

p(λ) > µc · 1
2p(λ) > µ ≥

µCI . Since by Definition 3 the advantage of any polynomial-time adversary in this game must be
at most µCI , this yields a contradiction.

Note that Lemma 10 and Lemma 11 contradict each other, and therefore the adversary does not
break soundness in the real experiment. This completes the proof of soundness.

Statistical Witness Indistinguishability. LetA denote the unbounded time adversarial verifier
and Ch denote the challenger. Let x be the challenge instance of length λ and w0 and w1 be a pair
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of witnesses for x ∈ L. Consider a pair of hybrids where the first hybrid Hybrid0 corresponds to
Ch running the honest prover algorithm with witness w0 being used and the second hybrid Hybrid1

corresponds to Ch running the honest prover algorithm with witness w1 being used. We now show
that these two hybrids are statistically indistinguishable to complete the proof.

Claim 6. Assuming the Σ-protocol is statistically witness indistinguishable, Hybrid0 is statistically
indistinguishable from Hybrid1.

Proof. We now show that if there exists an unbounded time adversary A for which the two hybrids
are not statistically indistinguishable, we can build a reduction B that can break the witness
indistinguishability of the underlying modified Blum’s Sigma protocol which is a contradiction
to Lemma 7. B acts as the challenger in its interaction with the adversary A that is trying to
distinguish between these two hybrids. Further, B acts as the adversary in its interaction with a
challenger C in trying to break the WI property of the modified Blum Sigma protocol. Initially, A
sends a statement x, a pair of witnesses (w0, w1) and a first round message (q,K) for the above
ZAP construction. B forwards (x,w0, w1) to the challenger C and sends q as its first message of
the underlying protocol Σ. C responds with its round two message a on behalf of the prover.
B computes e ← H.Eval(K,x, (q, a)) and sends it to C. Finally, C responds with the last round
message z on behalf of the prover. Now, B sends the tuple (x, a, e, z) to A as the prover message
for the above ZAP protocol. Observe that if the challenger C interacted using witness w0, then the
interaction between the reduction B and the adversary A is identical to Hybrid0 and if the challenger
C interacted using witness w1, then the interaction between the reduction B and the adversary A is
identical to Hybrid1. Thus, if these two hybrids are not statistically indistinguishable to A, B can use
the same guess used by A to distinguish them, to break the statistical witness indistinguishability
property of the protocol Σ which is a contradiction.

6 Statistical ZK Arguments with Super-Polynomial Simulation

In this section, we prove that the protocol given in Section 5.2, essentially unmodified, is a statistical
zero-knowledge argument with super-polynomial simulation assuming subexponential LWE, mean-
ing that the simulator runs in super-polynomial time and the protocol is zero-knowledge against
unbounded verifiers. The only modification we make to the Zap protocol is that the OT protocol
underlying the extractable commitment is instantiated with a smaller security parameter λγ rela-
tive to the security parameter λ of the CI hash function, where γ < 1. This is in order to allow a
subexponential-time simulator to extract the receiver’s bit. In order to still have receiver’s security
of the OT protocol, we need to make the stronger assumption of subexponential hardness of LWE.

We begin with the definition of statistical zero knowledge arguments with superpolynomial
simulation.

Definition 11 (TSim-SPS Statistical Zero Knowledge Arguments). We call an interactive protocol
between a PPT prover P with input (x,w) ∈ RL for some language L, and PPT verifier V with input
x, denoted by 〈P, V 〉(x,w), a TSim-super-polynomial simulation (SPS) statistical zero-knowledge
argument for L if it satisfies the following properties:

◦ Completeness. For every (x,w) ∈ RL, Pr [〈P ∗, V 〉(x,w) = 1] ≥ 1 − negl(λ), where the
probability is over the random coins of P and V .

◦ Soundness. For every PPT non-uniform prover P ∗, that given 1λ chooses an input length
1p, and then chooses x ∈ {0, 1}p \ L, Pr [〈P ∗, V 〉(x,w) = 1] ≤ negl(λ), where the probability
is over the random coins of V .
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◦ TSim-Statistical Zero Knowledge. There exists a (uniform) simulator Sim that runs in
time TSim, such that for every x ∈ L, every unbounded verifier V ∗, the two distributions
ViewV ∗ [〈P, V ∗〉(x,w)] and SV

∗
(x, z) are statistically close.

For this section we use the following definition for statistical sender’s security of the OT protocol.

Definition 12 (Statistical Sender’s Security of OT). An OT protocol (OT1,OT2) satisfies statistical
sender’s security if there exists a (possibly exponential time) extractor OTExt which on any input

ot1 outputs 0 or 1, such that for all ot1 and M0,M1, M̃0, M̃1 with MOTExt(ot1) = M̃OTExt(ot1), we
have that OT2(ot1,M

0,M1) is statistically indistinguishable from OT2(ot1, M̃
0, M̃1).

In this section we will prove the following theorem.

Theorem 6. For any c > 0, there exists a two message public-coin TSim-SPS statistical zero knowl-
edge argument system for NP in the plain model, where TSim = 2λ

c
, assuming that the following

primitives exist:

◦ Two-message oblivious transfer (OT) that is subexponentially secure against malicious senders,
satisfying Definition 12 and Property 1, and

◦ Quasi-polynomially correlation intractable hash functions, satisfying Definition 3.

Instantiating the CI hash function and the OT protocol with subexponential LWE to achieve
the desired level of security, we obtain the following:

Corollary 7. Assuming subexponential LWE, for any cSim > 0, there exists a TSim-SPS statistical
zero knowledge argument for NP in the plain model, where TSim = 2λ

cSim .

The OT Extractor. When we construct the simulator, we will need to bound the running time
of OTExt. Specifically, the LWE-based OT protocol [BD18] has the receiver send a matrix A in the
first round, and in the second round the sender sends two encryptions, using A as a public key in
two different ways. [BD18] prove that at most one of these public keys is non-lossy; we need that
there exists an exponential-time extractor that determines which one. We prove that OTExt takes
at most time 2λ

C
, with C a constant, when we instantiate the OT scheme using [BD18]. First we

describe the extractor from [BD18]. The ot1 message is a matrix A ∈ Zn×mq which defines a q-ary
lattice Λq(A). The behavior of OTExt(ot1 = A) is as follows, where γ, σ and q are all poly(λ):

1. Calculate r = rank(Λq(A) ∩ γB). If r > n/2 then return 0.

2. If r ≤ n/2 then approximate x = ρσ(Λq(A)) to within ±2n/2−1.

(a) If x > 2n/2 + 2n/2−1 then return 0.

(b) Otherwise, return 1.

Theorem 8 (Theorem 5.5 in [BD18]). The OT scheme satisfies Definition 12 using the OTExt
defined above.

In order to analyze the running time of OTExt, we import the following two theorems.

Theorem 9 (Theorem 2.2 in [BD18]). For any lattice Λ ∈ Rm, parameter σ > 0 and u ≥ 1/
√

2π,
it holds that

ρσ(Λ \ 2σ
√
mB) ≤ 2−cumρσ(Λ),

where cu = − log(
√

2πeu · e−πu2
).

27



Theorem 10 (from [BLR+18]). There exists an algorithm that, for any lattice Λq(A) of dimension

m and bound x = poly(m), enumerates all vectors of length at most x in Λq(A) in time 2m
C

, where
C is a constant.

Claim 7. There exists a constant C such that the running time of OTExt is 2λ
C

.

Proof. We prove the claim by showing that there are two constants C1 and C2 such that calculating
rank(λq(a) ∩ γb) takes time 2λ

C1 and approximating x = ρσ(Λq(A)) to within ±2n/2−1 takes time

2λ
C2 . The claim then follows taking any C ′ > max{C1, C2}.

We note that rank(Λq(A) ∩ γB) can be computed exactly by enumerating all Λq(A) ∩ γB and
then finding the maximum number of linearly independent vectors in this set. By Theorem 10, this
can be done in 2λ

C1 for some constant C1.
To approximate ρσ(Λq(A)), we note that Theorem 9 and the fact that

∫∞
−∞ ρσ(x)dmx = σm/2

imply that, setting u = σ,

ρσ(Λ ∩ 2σ
√
mB) ≥ ρσ(Λ)(1− 1/2cum)

> ρσ(Λ)− 2log σ·m/2

2cum

> ρσ(Λ)− 1

2m/2
,

with the last inequality following because cu > u asymptotically. This is well within our approx-
imation requirements, so it suffices to calculate ρσ(Λ ∩ 2σ

√
mB) by enumerating all elements in

Λ ∩ 2σ
√
mB. By Theorem 10, it is possible to do this in 2λ

C2 for some constant C2.

Construction. Consider the protocol in Section 5.2, with one small modification: the extractable
commitment scheme is instantiated with security parameter λγ , for a γ > 0 which we specify
later. In the following we prove this protocol still satisfies soundness and that it also satisfies SPS
statistical zero knowledge.

Soundness. We show that instantiating the extractable commitment with security parameter λγ

preserves the security properties of the extractable commitment and thus preserves soundness of
the modified protocol.

We first state a fact which is commonly used in complexity-leveraging proofs, that assuming
a primitive is subexponentially secure, instantiating the primitive with a much smaller security
parameter still satisfies polynomial security.

Fact 1. Let λ be a security parameter. Assume subexponential receiver’s security of the OT scheme.
For any γ > 0, if we set λ′ = λγ and instantiate the OT scheme with security parameter λ′ then
the OT scheme satisfies (polynomial) receiver’s OT security with respect to the original security
parameter λ.

Claim 8. Let λ be a security parameter. Assuming subexponential receiver’s security of the OT
scheme, for any γ > 0, instantiating the extractable commitment scheme from Section 4 with
security parameter λ′ = λγ satisfies computational binding, frequency of extraction, correctness
of extraction and indistinguishability of extractable transcripts with respect to the original security
parameter λ.
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Proof. Recall that in Section 4, Lemmas 2 and 3 prove the extractable commitment scheme satisfies
computational binding, frequency of extraction, correctness of extraction and indistinguishability
of extractable transcripts, assuming computational receiver’s security of the underlying OT scheme.
Thus by Fact 1 these lemmas apply to an extractable commitment scheme instantiated with λ′ =
λγ .

Theorem 11. Assuming subexponential receiver’s security of the OT scheme and quasi-polynomially
correlation intractable hash functions, the protocol described above satisfies computational soundness
against malicious PPT provers.

Proof. By Claim 8, it follows that the same argument for soundness in Section 5.2 holds for the
protocol described above.

Zero Knowledge.
In order to construct the simulator, we first show that we can use the exponential-time OT

extractor OTExt to equivocate the extractable commitment scheme defined in Section 4.
We define two exponential-time algorithms Equiv1 and Equiv2. Equiv1 takes as input an extcom1

message, and outputs an extcom2 message along with a state σ. Equiv2 takes the extcom2 message
and state generated by Equiv1, along with an arbitrary message M̃ , and outputs a valid opening
for the extcom2 message generated by Equiv1.

More formally, Equiv1(extcom1) performs the following steps:

1. Parse extcom1 = {ot1,i}i∈[m].

2. Run OTExt(ot1,i) to get chi for each i ∈ [m].

3. Sample a random string r
$←{0, 1}m such that r 6= ch.

4. For each i ∈ [m], compute ot2,i ← OT2(ot1,i,M
0
i ,M

1
i ; r2,i) where all M b

i and r2,i are uniform
random.

5. Output
(
extcom2 =

(
r, {ot2,i}i∈[m]

)
, σ =

({
M b
i

}
i∈[m],b∈{0,1} , {chi}i∈[m]

))
.

Equiv2(extcom2, σ, M̃) performs the following steps:

1. Parse extcom2 as
(
r, {ot2,i}i∈[m]

)
and σ as

({
M b
i

}
i∈[m],b∈{0,1} , {chi}i∈[m]

)
.

2. Generate random strings M̃ b
i for i ∈ [m] and b ∈ {0, 1} such that M̃ chi

i = M chi
i and

⊕
i M̃

ri
i =

M̃ . (Note that this is possible since there is at least one i such that ri 6= chi.)

3. For each i ∈ [m]:

(a) Find a random r′2,i such that ot2,i = OT2(ot1,i, M̃
0
i , M̃

1
i ; r′2,i).

(b) If no such r′2,i exists, set r′2,i = ⊥.

4. Output

(
M̃,
{
M̃ b
i

}
i∈[m],b∈{0,1}

,
{
r′2,i

}
i∈[m]

)
.
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Claim 9. Assume statistical sender’s security of the OT protocol. Then for all M̃ and all (poten-
tially malicious) receivers A,

(extcom1, extcom2, extcomo) ≈s (extcom1, extcom
′
2, extcom

′
o),

where extcom1 ← A, extcom2 is generated by an honest committer committing to M̃ , extcomo is the
corresponding honest opening, (extcom′2, σ)← Equiv1(extcom1), and extcom′o ← Equiv2(extcom′2, σ, M̃).

We prove this claim via a sequence of hybrids:

◦ Hybrid0: This hybrid corresponds to the case where extcom1, extcom2, and extcomo are gen-

erated by an honest committer committing to and opening M̃ .

◦ Hybrid1: This hybrid is identical to the previous hybrid, except that the committer uses OTExt
on extcom1 to obtain ch and sets r in extcom2 to be a random string such that r 6= ch.

◦ Hybrid2: This hybrid is identical to the previous hybrid, except that the committer uses Equiv2

to generate extcomo.

◦ Hybrid3: This hybrid is identical to the previous hybrid, except that for the messages M b
i sent

in the ot2 message in extcom2, the committer sets M1−chi
i to be a uniform random string.

◦ Hybrid4: This hybrid is identical to the previous hybrid, except that the committer sets
all messages M b

i sent in the ot2 message in extcom2 to be uniform random strings. This
corresponds to the case where the committer uses Equiv1 and Equiv2 to interact with the
receiver.

Claim 10. Hybrid0 is statistically indistinguishable from Hybrid1.

Proof. Assume that there is an M̃ and an unbounded adversary A that distinguishes between
Hybrid0 and Hybrid1 with non-negligible probability. Fixing the randomness of A, it is straight-
forward to construct a reduction which distinguishes with non-negligible probability between the
uniform distribution over {0, 1}m and the uniform distribution over {0, 1}m \ {ch}, of which the
statistical distance is exponentially small in λ, a contradiction.

Claim 11. Assuming statistical sender’s security of the OT protocol, Hybrid1 is statistically indis-
tinguishable from Hybrid2.

In order to prove this claim, we first define a game Gb which we will use to contradict the existence
of a distinguishing adversary. In round one of the game, the adversary sends m ot1 messages to
the challenger, along with messages {M b

i }i∈[m],b∈{0,1}. In round 2, the challenger first runs OTExt
on each ot1 to obtain the choice bits ch ∈ {0, 1}m. Then, if b = 0, the challenger responds with
{OT2(ot1,i,M

0
i ,M

1
i }i. If b = 1, the challenger sets M1−chi

i ← 0n before again responding with
{OT2(ot1,i,M

0
i ,M

1
i }i.

Claim 12. Assuming statistical sender’s security of the OT protocol, G0 is statistically indistin-
guishable from G1.

Proof. We prove this claim via a sequence of m + 1 subhybrids, where at hybrid Subhybridj , for

each i ≤ j, the challenger responds with M1−chi
i ← 0n, and for all i > j the challenger responds

with the original M0
i and M1

i . Subhybrid0 is identical to the case where b = 0 and Subhybridm is
identical to the case where b = 1, so it suffices to prove indistinguishability for each successive pair
of subhybrids.
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Assume that there is an unbounded adversary A which can distinguish between Subhybridj−1

and Subhybridj . We construct a reduction R to statistical sender’s security of the OT protocol. Fix
the randomness of A. This fixes ot1,j , M

0
j and M1

j . R sends this ot1,j to the challenger C, who ex-

tracts the choice bit chj and responds either with OT2(ot1,j ,M
0
j ,M

1
j ) or OT2(ot1,j , M̃

0
j , M̃

1
j ), where

M̃
chj
j = M

chj
j and M̃

1−chj
j = 0n. R then constructs its response to A identically to Subhybridj−1

except that for ot2,j it uses the ot2 message from C. R then outputs the output of A.
If C responds with OT2(ot1,j ,M

0
j ,M

1
j ) then the view of A is identical to Subhybridj−1. Moreover,

if C responds with OT2(ot1,j , M̃
0
j , M̃

1
j ) then the view of A is identical to Subhybridj . Thus since A

distinguishes these two hybrids R contradicts statistical sender’s security of the OT protocol.

Additionally, we use the following lemma:

Lemma 12. For each λ, let Dλ : Xλ × Yλ → {0, 1} be any function and let Dλ,1 be a distribution
on Xλ and Dλ,2 and D′λ,2 distributions on Yλ. Assume that there is a polynomial p and λ0 such
that for all λ > λ0,∣∣∣Prx←Dλ,1,y←Dλ,2 [Dλ(x, y) = 1]− Prx←Dλ,1,y′←D′λ,2

[
Dλ(x, y′) = 1

]∣∣∣ ≥ 1/p(λ)

Then there exist polynomials q and r such that for all λ > λ0,

Prx←Dλ,1

[∣∣∣Pry←Dλ,2 [Dλ(x, y) = 1]− Pry′←D′λ,2

[
Dλ(x, y′) = 1

]∣∣∣ ≥ 1/q(λ)
]
≥ 1/r(λ).

Proof. Assume for the sake of contradiction that there exist p, Xλ Dλ, Yλ, Dλ,1, Dλ,2 and D′λ,2 such
that ∣∣∣Prx←Dλ,1,y←Dλ,2 [Dλ(x, y) = 1]− Prx←Dλ,1,y′←D′λ,2

[
Dλ(x, y′) = 1

]∣∣∣ ≥ 1/p(λ), (4)

but for all polynomials q and r there is some λ′ > λ0 such that

Prx←Dλ′,1

[∣∣∣Pry←Dλ′,2 [Dλ′(x, y) = 1]− Pry′←D′
λ′,2

[
Dλ′(x, y

′) = 1
]∣∣∣ ≥ 1/q(λ′)

]
< 1/r(λ′).

Let q and r be such that for all λ, 1/q(λ) + 1/r(λ) < 1/p(λ). Let X0 be the set of all x such
that ∣∣∣Pry←Dλ′,2 [Dλ′(x, y) = 1]− Pry′←D′

λ′,2

[
Dλ′(x, y

′) = 1
]∣∣∣ ≥ 1/q(λ′).

The probability in Equation (4) can be written as∣∣∣∣∣∑
x̃

(
Pry←Dλ,2 [Dλ(x, y) = 1]− Pry′←D′λ,2

[
Dλ(x, y′) = 1

])
Prx←Dλ,1 [x = x̃]

∣∣∣∣∣
≤
∑
x̃

∣∣∣Pry←Dλ,2 [Dλ(x, y) = 1]− Pry′←D′λ,2

[
Dλ(x, y′) = 1

]∣∣∣Prx←Dλ,1 [x = x̃]

=
∑
x̃∈X0

∣∣∣Pry←Dλ,2 [Dλ(x, y) = 1]− Pry′←D′λ,2

[
Dλ(x, y′) = 1

]∣∣∣Prx←Dλ,1 [x = x̃]

+
∑
x̃ 6∈X0

∣∣∣Pry←Dλ,2 [Dλ(x, y) = 1]− Pry′←D′λ,2

[
Dλ(x, y′) = 1

]∣∣∣Prx←Dλ,1 [x = x̃] .

Setting λ = λ′, we have that this probability is less than 1/r(λ′) + 1/q(λ′) < 1/p(λ), a contra-
diction.

31



Proof of Claim 11. Assume that there is an M̃ and an unbounded adversary A that distinguishes
between Hybrid1 and Hybrid2 with non-negligible probability p(λ). Assume A = (A1, A2), where A1

generates ot1 and some private state σ, and A2 takes (r, ot2, M̃ , {M b
i }i,b, {r2,i}i, σ) and outputs one

bit.
We build a reduction R to Gb.
Let C be a challenger for Gb. First, R receives (ot1, σ) from A1, generates r and {M b

i }i,b as in
Hybrid1, and sends (ot1, {M b

i }i,b) to C. C then responds with ot2.
R then computes

Pr
[
Expc(ot1, r, {M b

i }i,b, ot2, σ) = 1
]
,

for both c = 0 and c = 1, where Exp is the experiment defined below. Note that R can compute
this probability exactly because R is unbounded.

Expc(ot1, r, {M b
i }i,b, ot2, σ) generates {M̃ b

i }i,b as in Hybrid2 and proceeds as follows:

◦ If c = 0, for each i ∈ [m], choose a random r′2,i such that ot2,i = OT2(ot1, i,M0
i ,M

1
i , r
′
2,i). If no

such r′2,i exists, R set r′2,i ← ⊥. Finally, output the result of A2(r, ot2, M̃ , {M b
i }i,b, {r′2, i}i, σ).

◦ If c = 1, for each i ∈ [m], R chooses a random r′2,i such that ot2,i = OT2(ot1, i, M̃0
i , M̃

1
i , r
′
2,i). If

no such r′2,i exists, R sets r′2,i ← ⊥. Finally, output the result ofA2(r, ot2, M̃ , {M̃ b
i }i,b, {r′2, i}i, σ).

Once R has computed these two probabilities, if |Pr[Exp0 = 1]− Pr[Exp1 = 1]| ≥ γ, for a fixed
γ which we specify below, R outputs 0. Otherwise, R outputs 1.

Assume C is acting according to G0. Define D(x, y), where x = (ot1, r, {M b
i }i,b, ot2, σ) and

y = (c, r), to be the output of Expc(ot1, r, {M b
i }i,b, ot2, σ; r) (where Exp uses randomness r). Let D1

be the distribution of x given from the interaction with R, C, and A1, letD2 be the distribution (0, r)
where r is uniform, and similarly let D′2 be the distribution (1, r). Then Prx∈D1,y∈D2 [D(x, y) = 1] is
exactly the probability that A outputs 1 in Hybrid1. Similarly, Prx∈D1,y∈D′2 [D(x, y) = 1] is exactly
the probability that A outputs 1 in Hybrid2. Then by the assumption and Lemma 12, There exist
polynomials q and r such that

Prx←D1

[∣∣∣Pry←D2 [D(x, y) = 1]− Pry′←D′2

[
D(x, y′) = 1

]∣∣∣ ≥ 1/q(λ)
]
≥ 1/r(λ),

so, setting γ = q(λ), it follows that in the case of G0 R outputs 0 with probability at least r(λ).
Now assume C is acting according to G1. In this case, for all x, the the view of A in Exp0(x)

and Exp1(x) are identical. Thus R outputs 0 with probability 0.
It follows that R distinguishes G0 from G1 with probability at least q(λ), contradicting Claim 12.

Claim 13. Assuming statistical sender’s security of the OT protocol, Hybrid2 is statistically indis-
tinguishable from Hybrid3.

Proof. We prove the claim via a sequence of subhybrids Hybrid2,j for j = 0, ...,m, where at each

subhybrid Hybrid2,j we switch M
1−chj
j over to be a uniform random string. The beginning of this

sequence is exactly Hybrid2 and the end is exactly Hybrid3, so it suffices to show indistinguishability
of each successive pair of subhybrids.

Assume for the sake of contradiction that there is an unbounded adversary A which can dis-
tinguish between a pair of subhybrids Hybrid2,j−1 and Hybrid2,j with non-negligible advantage. We
construct a reduction R to statistical sender’s security of the OT protocol.
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Fix the randomness of A and the choice of M0
j and M1

j . There must be a way to fix this such
that A still distinguishes with non-negligible probability. Let R run Hybrid2,j−1 with this fixed
randomness until A sends ot1. R then forwards ot1,j to the OT challenger C. When C responds
with ot2, R proceeds as in Hybrid2,j−1 except that it uses the ot2 response from C as ot2,j in its
response to A. R then outputs the output of A.

If C sends ot2 = OT2(ot1,j ,M
0
j ,M

1
j ), then the view of A is identical to that in Hybrid2,j−1. But

if C sends ot2 = OT2(ot1,j , M̂
0
j , M̂

1
j ), where M̂

chj
j = M

chj
j and M̂

1−chj
j is uniform random, then the

view of A is identical to that in Hybrid2,j . It follows that R distinguishes between the two cases
with non-negligible probability, contradicting statistical sender’s OT security.

Claim 14. Hybrid3 is identical to Hybrid4.

Proof. Since r 6= ch, there exists at least one j such that rj 6= chj . Since in Hybrid3 the receiver

receives no information about M
1−chj
j whenever rj 6= chj , and the distribution {M ri

i }i∈I in Hybrid3

is identical to the uniform random distribution assuming i ( [m], the claim follows.

Claim 15. There is some constant C ′ such that both Equiv1 and Equiv2 run in time 2λ
C′

.

Proof. Let C1 be the C given by Claim 7. It follows that Equiv1 runs in time poly(λ)2λ
C1 . Equiv2

also runs in time poly(λ)2λ
C2 for some constant C2, so taking C ′ > max{C1, C2}, we have that

both Equiv1 and Equiv2 run in time at most 2λ
C′

.

Recall that the protocol given in Section 5 relies on a variant of the extractable commitment
scheme which requires the committer, when committing to multiple messages, to reuse the string r
across all extcom2 messages. Equiv1 and Equiv2 extend to this case naturally, since the equiovocating
committer can take in all ot1 messages for every instance of the protocol, corresponding to a set
{chp}p of challenger strings chp ∈ {0, 1}m, and choose r during Equiv1 so that r 6= chp for all p.
The rest of the equivocation procedure works unmodified.

The Simulator. Before defining the zero-knowledge simulator for the protocol, we make some
notational assumptions. Assume the honest-verifier zero-knowledge simulator from Lemma 5 takes
input G and a verifier challenge e and generates the corresponding set of decommitted values z
that the verifier receives in the third round. That is,

z =
{
{zr,i,j}i,j∈[p(λ)]×[p(λ)] , zr,P

}
r∈[λ]

,

where for each r ∈ [λ], if er = 0 then {zr,i,j}i,j encodes a permuted adjacency matrix of G and zr,P
encodes the permutation, and if er = 1 {zr,i,j}i,j encodes only the edges of π(H), where H is an
arbitrary hamiltonian cycle, and where all other zr,i,j and zr,P are set to ⊥.
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We now define the zero-knowledge simulator Sim(G, q,K):

1. Parse q as
{
{extcom1,r,i,j}i,j∈[p(λ)]×[p(λ)] , extcom1,r,P

}
r∈[λ]

2. Run Equiv1 on each extcom1 in q to get a.

3. Compute e← H.Eval(K, (G, a)).

4. Run the honest-verifier ZK simulator from Lemma 5 with challenge e to get

z′ =
{
{vr,i,j}i,j∈[p(λ)]×[p(λ)] , vr,P

}
r∈[λ]

5. For each v = vr,i,j or vr,P that is not ⊥, run Equiv2(v, σv), where σv is the appropriate state
from step 2, to get an equivocated opening to v corresponding to the commitment generated
in step 2.

6. Output (a, e, z), where z is the family of all openings generated in step 5.

Theorem 12. For all x ∈ L, all witnesses w for x, and all (potentially malicious) verifiers V ∗,

(q,K, a, e, z) ≈s (q,K, a′, e′, z′),

where a, e, z are generated by the honest prover from the protocol in Section 5.2 using x and w, and
a′, e′, z′ are generated by Sim(x, q,K).

To prove the theorem, we use the following sequence of hybrids:

◦ Hybrid0: This hybrid corresponds to the experiment where the challenger behaves identically
to the verifier in the actual protocol.

◦ Hybrid1: This hybrid is identical to Hybrid0, except that instead of generating the commit-
ments honestly, the prover uses Equiv1 to generate a and Equiv2 to generate the openings z.
That is, for every extcom1 in q, the prover uses Equiv1 to generate a corresponding extcom2

(which contains no information), and keeps track of the value that the prover would have
committed to. If

◦ Hybrid2: This hybrid is the same as Hybrid1 except that instead of generating openings hon-
estly, the prover runs the honest-verifier zero knowledge simulator on the challenge e to
generate the openings. This is identical to the behavior of Sim defined above.

Claim 16. Assume statistical sender’s security of the OT protocol. Then Hybrid0 is statistically
indistinguishable from Hybrid1.

Proof. To prove this claim we rely on a sequence of λ(p(λ)2+1) subhybrids, where at each subhybrid
we switch one commitment over to use Equiv1 and Equiv2. The beginning of this sequence is exactly
Hybrid0 and the end is exactly Hybrid1, so it suffices to show indistinguishability of each successive
pair of subhybrids.

Assume for the sake of contradiction that there is an unbounded adversary A which can dis-
tinguish between a pair of subhybrids with non-negligible advantage. Without loss of generality,
assume the hybrid switches extcom2,r,i,j and extcomo,r,i,j from real to equivocated. We construct a
reduction R to the indistinguishability game from Claim 9, thus contradicting this claim.
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Fix all the randomness of the challenger CHybrid for the hybrid except the randomness used
to generate the commitments; there must be a way to fix this randomness that preserves the
advantage of A. Moreover, this fixes the values committed to by the challenger. Denote by CEquiv

the challenger for the equivocation game, with message M̃ the same as the fixed value committed
to by CHybrid in extcom2,r,i,j . R takes the first message q,K sent by A and passes extcom1,r,i,j to
CEquiv. After receiving extcom′2,r,i,j and extcom′o,r,i,j from CEquiv, it runs CHybrid to obtain (a, e, z)
and replaces the commitment extcom2,r,i,j in a with extcom′2,r,i,j and, if extcom2,r,i,j is opened in
z, it replaces extcomo,r,i,j in z with extcom′o,r,i,j . Finally, it sends this modified (a, e, z) to A and
outputs the output of A. Since view of A in this reduction is identical to the first subhybrid
in the case where CEquiv uses real commitments and identical to the second subcase when CEquiv

uses equivocated commitments (with appropriate randomness fixed), we have a distinguisher which
contradicts Claim 9.

Claim 17. The view of the verifier in Hybrid1 is identical to that in Hybrid2.

Proof. Because in both hybrids the commitments are generated using Equiv and contain no infor-
mation, the view of the verifier consists entirely of the decommitted values in z. For each r, if
er = 0 then the verifier learns a random permutation of G in both cases, so the views are identical
in this case. If er = 1 then the verifier learns either a random permutation of the witness H or a
random permutation of some arbitrary hamiltonian cycle H ′, so the views are identical in this case
as well. It follows that the views of the verifier are identical in Hybrid1 and Hybrid2.

Theorem 13. There is a γ > 0 such that if the OT protocol underlying the extractable commitment
is instantiated with security parameter λ′ = λγ, Sim runs in time at most 2λ

cSim .

Proof. The running time of Sim is bounded by poly(λ)(TEquiv1
+ TEquiv2

+ TH.Eval + TSimh), where
TEquiv1

, TEquiv2
, TH.Eval and TSimh are the running times of Equiv1, Equiv2, H.Eval and the honest

verifier simulator, respectively.
Choose γ > 0 such that γC ′ < cSim. Then, letting εγ = cSim − γC ′, the running time of Sim is

≤poly(λ)(TEquiv1
+ TEquiv2

)

≤poly(λ)(2(λγ)C
′
)

=poly(λ)(2λ
cSim−εγ )

≤2λ
cSim .
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