
A Composable Security Treatment of the
Lightning Network

Aggelos Kiayias1,2 and Orfeas Stefanos Thyfronitis Litos1

1 University of Edinburgh
2 IOHK

akiayias@inf.ed.ac.uk, o.thyfronitis@ed.ac.uk

Abstract. The high latency and low throughput of blockchain proto-
cols constitute one of the fundamental barriers for their wider adoption.
Overlay protocols, notably the lightning network, have been touted as
the most viable direction for rectifying this in practice. In this work
we present for the first time a full formalisation and security analy-
sis of the lightning network in the (global) universal composition set-
ting that leverages a global ledger functionality, for which realisability
by the Bitcoin blockchain protocol has been demonstrated in previous
work [Badertscher et al., Crypto’17]. As a result, our treatment delin-
eates exactly how the security guarantees of the protocol depend on the
properties of the underlying ledger and the frequent availability of the
protocol participants. Moreover, we provide a complete and modular de-
scription of the core of the lightning protocol that highlights precisely
its dependency to underlying basic cryptographic primitives such as dig-
ital signatures, pseudorandom functions, identity-based signatures and
a less common two-party primitive, which we term a combined digital
signature, that were originally hidden within the lightning protocol’s im-
plementation.

1 Introduction

Improving the latency of blockchain protocols, in the sense of the time it takes
for a transaction to be “finalised”, as well as their throughput, in the sense of
the number of transactions they can handle per unit of time, are perhaps the
two most crucial open questions in the area of permissionless distributed ledgers
and remain fundamental barriers for their wider adoption in applications that
require large scale and reasonably expedient transaction processing, c.f. [1]. The
Bitcoin blockchain protocol, introduced by Nakamoto [2], provides settlement
with probability of error that drops exponentially in the number of blocks k
that accumulate over a transaction of interest. This has been informally argued
in the original white paper, and further formally demonstrated in [3], from where
it can be inferred that the total delay in actual time for a transaction to settle
is linear in k in the worst case. These results were subsequently generalised
to the setting of partial synchrony [4] and variable difficulty [5]. Interestingly,
this latency “deficiency” is intrinsic to the blockchain approach (see below), i.e.,

latency’s dependency on k is not a side-effect of the security analysis but rather
a characteristic of the underlying protocol and the threat model it operates in.

Given the above state of affairs, one has to either change the underlying
settlement protocol or devise some other mechanism that, in conjunction with
the blockchain protocol, achieves high throughput and low latency. A number of
works proceeded with the first direction, e.g., hybrid consensus [6], Algorand [7].
A downside of this approach is that the resulting protocols fundamentally change
the threat model within which Bitcoin is supposed to operate, e.g., by reducing
the threshold of corrupted players, strengthening the underlying cryptographic
assumptions or complicating the setup assumption required (e.g., from a public
to a private setup).

The alternative approach is to build an overlay protocol that utilises the
blockchain protocol as a “fall back” layer and does not relax the threat model in
any way while it facilitates fast “off-chain” settlement under certain additional
assumptions. We note that in light of the impossibility result regarding protocol
“responsiveness” from [6] that states that no protocol can provide settlement in
time proportional to actual network delay (i.e., fast settlement) and provide a
security threshold over 1/3, we know that maintaining Bitcoin’s threat model
will require some additional assumption for the overlay protocol to offer fast
settlement.

The first instance of this approach and by far the most widely known and
utilised to date, came with the lightning network [8]3 that provided an overlay
mechanism over the Bitcoin blockchain, which introduces and leverages the con-
cept of a bilateral payment channel. The latency for a transaction becomes linear
to actual network delay and one more factor that equals the number of bilateral
payment channel hops in the path that connects the two end-points of the trans-
action. If a payment is confirmed by the implicated parties then it is guaranteed
that, should the parties wish it, eventually the ledger will record “gross” settle-
ment transactions between the parties in the path of the payment that reflect
the balance resulting from all in-channel payments. Deviations from this guar-
antee are cryptographically feasible but disincentivised via on-chain penalties: a
malicious party trying to commit to an outdated state will lose funds to a peer
that provides evidence of a subsequent state. Moreover, note that no record of
a specific payment transaction need ever appear on-chain thus the number of
lightning transactions that can be exchanged can reach the maximum capac-
ity that the network allows between the parties, without being impeded by any
restrictions of the underlying blockchain protocol.

The lightning network has been very influential in the space and spun a num-
ber of follow up research and implementations (see below for references). We note
that the lightning network is not the only option for building an overlay over
a blockchain. See e.g., [9] for an alternative approach focussing on reducing la-

3 The specification (available at https://github.com/lightningnetwork/
lightning-rfc/blob/master/02-peer-protocol.md) is a more descriptive
reference for the inner workings of the protocol. See also the raiden network that
implements Lightning over Ethereum, https://raiden.network.

2

https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://raiden.network

tency, where it is shown that if the assumption is raised to a security threshold of
3/4 plus the honesty of an additional special player, then it is possible to obtain
optimal latency on the blockchain. Nevertheless, this approach still needs trans-
actions to be confirmed by consensus and therefore does not offer the throughput
benefits that are intrinsic to the lightning network.

Despite the importance of the lightning network for blockchain scalability
there is still no work so far providing a thorough formal security analysis. This
is a dire state of affairs given the fact that the protocol is actually currently
operational4 and its complexity makes it difficult to extract precise statements
regarding the level of security it offers.

1.1 Our Results

We present the first, to our knowledge, complete security analysis of the light-
ning network, which we carry out in the universal composition (UC) setting. We
model the payment overlay that the lightning network provides as a local ideal
functionality and we demonstrate how it can be implemented in a hybrid world
which assumes a global ledger functionality. Our treatment is general and does
not assume any specific implementation for the underlying ledger functionality.
The “paynet” functionality FPayNet that we introduce abstracts all the salient
security features achieved by the lightning network. We subsequently describe
the whole lightning protocol in this setting and we prove that it indeed realises
our FPayNet under standard cryptographic assumptions; the security guarantees
of the functionality reflect specific environmental conditions regarding the avail-
ability of the honest parties to poll the status of the network. In more details
our results are as follows.

1. We present the FPayNet functionality which abstracts the syntax and se-
curity properties that are provided by the lightning network. We describe
our FPayNet assuming a global ledger functionality GLedger as defined in [10],
and further refined in [11], which we know that is realised by the Bitcoin
blockchain. Our approach not only captures lightning, but it is also general
as it can be applied to any payment network by finely tuning the following
parts of the functionality: the exact channel opening message sequence, the
details of the on-chain checks performed by FPayNet, the negligence time
bounds and the penalty in case of a malicious closure being caught. Us-
ing FPayNet, parties can open and close channels, forward payments along
channel paths in the network as well as poll its status. Importantly, the func-
tionality keeps track of all the off-chain and on-chain balances of the parties
registered and ensures that when a channel closes, the on-chain balances are
in line with the off-chain balances. In order to handle realistic adversarial
deviations in multi-hop payments, the functionality > permits the adversary
to determine the outcome of each payment by choosing > one of the follow-
ing options: (i) let it go through as requested, (ii) charge it to an adversarial

4 For current deployment statistics see e.g., https://1ml.com/statistics.

3

https://1ml.com/statistics

party along the path, (iii) charge it to a negligent honest party along the
path. This last outcome is a crucial security characteristic of the lightning
network: honest parties are required to poll the functionality at a certain
specific frequency that corresponds to their level of involvement in the net-
work and the properties of the underlying ledger. If a party does not poll
often enough, FPayNet identifies it as negligent and it may lose funds.

2. We identify for the first time the exact polling requirements that are imposed
by the lightning network to the honest participating parties, i.e. how often
parties have to check the state of the ledger functionality GLedger (over which
the lightning network is overlaid) and how to act depending on what they
see. These requirements are a function of the parameters of GLedger and
ensure that honest parties do not lose funds. GLedger provides explicit security
guarantees with respect to consistency and liveness which in turn impact the
guarantees provided by FPayNet. The polling requirements for each party are
two-fold: (i) the first type of polling refers to monitoring for closures of
channels in which the party is one of the end-points, and is specified by
the parameter “delay” (chosen by the party), (ii) the second type refers to
monitoring for specific events related to receiving and relaying payments.
In detail, let Alice be an intermediary of a multi-hop payment. When the
payment starts, she specifies two blockheights h, h′. Also, let a be a (derived)
ledger parameter which is the upper bound to the number of blocks that may
be finalised in the ledger from the time a certain transaction is emitted to
the time it becomes finalised (i.e. it is included in a block in the “stable”
part of the ledger). Alice should then poll twice while her local view of the
chain advances from blockheight h to blockheight h′ − a. Moreover, the two
pollings should be separated by a time window that allows the chain to grow
by at least a blocks.

3. We provide a complete pseudocode description of the lightning network pro-
tocol ΠLN and we prove that it realises FPayNet under a specific set of crypto-
graphic assumptions, in the Random Oracle model. In order to express ΠLN
in a way that is succinct, we identify a number of underlying cryptographic
primitives that have been used in the specification of the lightning network
in a non-black-box fashion and without reference. Interestingly, while some
of these cryptographic primitives are quite standard (a PRF, a Digital Sig-
nature scheme and an Identity Based Signature scheme), there is also one
additional primitive that is somewhat less standard and requires a new defi-
nition. The combined digital signature – as we will call it – is a special case of
an asymmetric two-party digital signature primitive (e.g. see [12] and refer-
ences therein) with the following characteristic: one of the two parties, called
the shareholder, generates and stores a share of the signing key. The public
key of the combined signature can be determined non-interactively based on
public-key information produced by both parties. Issuing signatures requires
the availability of the share, which is verifiable given the public information
provided by the shareholder. We formalise the combined digital signature
primitive and show that the construction lying within the lightning speci-
fication realises it under standard cryptographic assumptions. In summary,

4

the realisation of FPayNet is achieved assuming the security of the underly-
ing primitives, which in turn can be based on EC-DLOG and the Random
Oracle model.

4. We prove that a more idealized ledger functionality, i.e. a ledger with instant
finality, is unrealisable even assuming a synchronous multicast network. This
result supports our decision to use the more realistic ledger functionality
of [10], since it establishes that if our analysis was based on such a perfect
ledger, it would not be relevant for any real world deployment of a payment
network since such software would – necessarily – depend on a non-perfect
ledger. This choice also distinguishes our work compared to previous at-
tempts [13,14,15,16] to formalize payment networks, as well as highlights
the considerable latency improvement that the protocol offers in comparison
to directly using the ledger.

1.2 Related Work

A first suggestion for building a unidirectional payment channel appeared in [17].
Bidirectional payment channels were developed in [18] and, of course as part
of the lightning network [8]. Subsequent work on the topic dealt with either
improving payment networks by utilising more expressive blockchains such as
Ethereum [16], hardware assumptions, see e.g., [19], or extending its functional-
ity beyond payments, to smart contracts, [15] or finally enhancing their privacy,
see e.g., [14,20,21]. Additional work looked into developing supporting proto-
cols for the payment networks such as rebalancing [22] or finding routes in a
decentralised fashion [23,24]. With respect to idealising the payment network
functionality in the UC setting, a number of previous papers [13,14,15,16] pre-
sented ideal functionalities abstracting the concept, but they did not prove that
the lightning network realises them. The fundamental advantage of our approach
however here is that, for the first time, we present a payment network function-
ality that interoperates with a global ledger functionality for which we know, in
light of the results of [10], that is realisable by the Bitcoin blockchain and hence
also reflects the actual parameters that can be enforced by the implementation
and the exact participation conditions needed for security. In contrast, previous
work [13,14,16] utilized “too idealised” ledger functionalities for their analysis
which offer instant finality; as we prove in Theorem 3, a representative vari-
ant of these functionalities (Fig. 11) is unrealisable even under strong network
assumptions (c.f. Section 11). It is worth noting here that, were such a ledger
realizable, layer-2 payment networks would not be as useful in practice because
one of their two main motivations is the high latency of real blockchains. On the
other hand, in [15] the ledger is not explicitly specified as a functionality, but
only informally described. Several smart contracts are formally defined instead
as UC ITMs, which are the entities with which protocols ultimately interact. The
execution model of these contracts and their interaction with the blockchain is
explained in an intuitive way, but a complete formalization of the ledger is miss-
ing. Lastly, the ledger used in [13] cannot be used directly by protocol parties,
only accessed via higher-level functionalities. This limitation is imposed because

5

otherwise any party could arbitrarily change the balances of other parties, given
the definition of the functionality. This ledger is therefore a useful abstraction
for higher-level protocols, but not amenable to direct usage, let alone concrete
realisation.

1.3 Organisation

In Section 2 we present preliminaries for the model we employ and the relevant
cryptographic primitives. More details on the preliminary primitives are given
afterwards, specifically in Sections 3, 4, and 5 we discuss pseudorandom func-
tions, digital signatures and identity based signatures respectively. In Section 6
we present an overview of the lightning network, accompanied by figures of the
relevant transactions. Our payment network functionality is given an overview
description in Section 7. Our abstraction of the core lightning protocol is pro-
vided in Section 8. We then give full details on the combined digital signature
primitive in Section 9. In Section 10 we provide an overview of the security
proof of the main simulation theorem. In Section 11 we formalise our claim
that a ledger functionality with instant finality is unrealisable. The transaction
structure that is assumed to be provided by the underlying distributed ledger is
discussed in Section 12. Subsequently, we refer the reader to Sections 13 and 14
for the formal definition of the paynet functionality FPayNet and the protocol
ΠLN respectively. Finally, the proof that the latter UC-realises the former can
be found in Section 15.

2 Preliminaries

In this section we give an overview of the tools and frameworks used in this
work.

2.1 Universal Composability framework

In simulation-based security, cryptographic tasks are defined via an ideal “func-
tionality” F , which can be thought of as an uncorruptible entity that gets the
inputs of all parties and returns the expected outputs while also interacting with
the adversary in a prescribed manner. In this way, the functionality expresses the
essence of a cryptographic task and its security features. A protocol Π realises
the functionality F if for any real world adversary we can define a “simulator” S,
acting as an ideal world adversary, such that any environment E cannot distin-
guish between the real world and the ideal world executions. Albeit a powerful
tool, simulation-based security only works when a single instance of the protocol
is run in isolation. However, real-world systems almost always run several pro-
grams concurrently, which furthermore may run different instances of the same
protocol. To facilitate this, the Universal Composability [25] framework allows
us to analyse a single instance of the protocol and then take advantage of a
generic composition theorem to infer the security of the protocol more broadly.

6

This is achieved by allowing arbitrary interactions between the environment and
the real-world adversary.

As mentioned, lightning network members have to periodically check the
blockchain to ensure the security of their funds. However, the execution model
of the UC framework allows E to impose extended periods of inactivity to any
party. We opted to avoid the complication of using the clock functionality to
force regular activation. Restricting the analysis only to environments that al-
ways cater for the needed activations would preclude the composability of our
model. We instead allow E to deny activation to players (therefore becoming
negligent) and provide security guarantees conditional on E permitting the nec-
essary monitoring of the blockchain.

2.2 Hybrid functionalities used

Both our main protocol ΠLN and the corresponding functionality FPayNet use
GLedger [10,11] as a hybrid. GLedger formalizes an ideal distributed append-only
data structure akin to a blockchain. Any participating party can read from
GLedger, which returns an ordered list of transactions. Furthermore parties can
submit new transactions which, if valid, will be added to the ledger and made
visible to all parties at the discretion of the adversary, but necessarily within
a predefined time window. This property is called liveness. Once a transaction
is added to the ledger, it becomes visible to all parties at the discretion of the
adversary, but within another predefined time window, and cannot be removed
or reordered. This is called persistence. This property arises from the specifica-
tion of GLedger, found below. The current work makes heavy use of these two
security properties, as the security of the lightning network relies crucially on
the security of the underlying ledger.

Furthermore, GLedger needs the Gclock functionality, which models the notion
of time. Every participating party can request to read the current time (which
is initialized to 0) and inform Gclock that her round is over. Gclock increments
the time by one once all parties have declared the end of their round.

As already mentioned, the protocol and functionality defined in the current
work do not make direct use of Gclock. Indeed, the only notion of time both in the
lightning protocol and in our work is provided by the height of the blockchain,
as reported respectively by the underlying Bitcoin node and GLedger. We there-
fore omit it in the statement of Theorem 2 for simplicity of notation; it should
normally appear as hybrid along with GLedger. Its exact definition can be found
below. We also note that GLedger and Gclock are global functionalities [26] and
therefore can be accessed directly by the environment, whereas FPayNet is not.

We next provide the complete description of the ledger functionality as well as
the clock and network functionalities that are drawn from the UC formalisation
of [10,11].

The key characteristics of the functionality are as follows. The variable state
maintains the current immutable state of the ledger. An honest, synchronised
party considers finalised a prefix of state (specified by a pointer position pti

for party Ui below). The functionality has a parameter windowSize such that

7

no finalised prefix of any player will be shorter than |state| − windowSize.
On any input originating from an honest party the functionality will run the
ExtendPolicy function that ensures that a suitable sequence of transactions will
be “blockified” and added to state. Honest parties may also find themselves in
a desynchronised state: this is when honest parties lose access to some of their
resources. The resources that are necessary for proper ledger maintenance and
that the functionality keeps track of are the global random oracle GRO and the
clock Gclock. If an honest party maintains registration with all the resources then
after Delay clock ticks it necessarily becomes synchronised.

The progress of the state variable is guaranteed via the ExtendPolicy function
that is executed when honest parties submit inputs to the functionality. While
we do not specify ExtendPolicy in our paper (we refer to the citations above for
the full specification) it is sufficient to note that ExtendPolicy guarantees the
following properties:

1. in a period of time equal to maxTimewindow, a number of blocks at least
windowSize are added to state.

2. in a period of time equal to minTimewindow, no more blocks may be added to
state if windowSize blocks have been already added.

3. each window of windowSize blocks has at most advBlckswindow adversarial
blocks included in it.

4. any transaction that (i) is submitted by an honest party earlier than Delay
2

rounds before the time that the block that is windowSize positions before
the head of the state was included, and (ii) is valid with respect to an honest
block that extends state, then it must be included in such block.

Given a synchronised honest party, we say that a transaction tx is finalised
when it becomes a part of state in its view.

Proposition 1. Consider a synchronised honest party that submits a transac-
tion tx to the ledger functionality by the time the block indexed by h is added
to state in its view. Then tx is guaranteed to be included in the block range
[h+1, h+(2+r)windowSize], where r = ⌈(maxTimewindow+ Delay

2)/minTimewindow⌉.

Proof. Consider τU
h to be the round that a party U becomes aware of the h-th

block in the state. It follows that τh ≤ τU
h where τh is the round block h enters

state. Note that by time τh + maxTimewindow another windowSize blocks are
added to state and thus τU

h ≤ τh + maxTimewindow.
Suppose U submits the transaction tx to the ledger at time τU

h . Observe that
as long as τh + maxTimewindow is Delay/2 before the time that block with index
h+ t−2windowSize enters state, then tx is guaranteed to enter the state in a
block with index up to h+t where since advBlckswindow < windowSize. It follows
we need τh + maxTimewindow < τh+t−2windowSize− Delay

2 . Let r = ⌈(maxTimewindow +
Delay

2)/minTimewindow⌉. Recall that in a period of minTimewindow rounds at most
windowSize blocks enter state. As a result r · windowSize blocks require at
least r · minTimewindow ≥ maxTimewindow + Delay

2 rounds. We deduce that if t ≥
(2 + r)windowSize the inequality follows.

8

General: The functionality is parameterized by four algorithms, Validate,
ExtendPolicy, Blockify, and predict-time, along with three parameters:
windowSize, Delay ∈ N, and SinitStake := {(U1, s1), . . . , (Un, sn)}. The functionality
manages variables state (the immutable state of the ledger), NxtBC (a list of
transaction identifiers to be added to the ledger), buffer (the set of pending
transactions), τL (the rules under which the state is extended), and τ⃗state (the
time sequence where all immutable blocks where added). The variables are
initialized as follows: state := τ⃗state := NxtBC := ε, buffer := ∅, τL = 0. For each
party Up ∈ P the functionality maintains a pointer pti (initially set to 1) and a
current-state view statep := ε (initially set to empty). The functionality also
keeps track of the timed honest-input sequence in a vector I⃗T

H (initially I⃗T
H := ε).

Party Management: The functionality maintains the set of registered parties P,
the (sub-)set of honest parties H ⊆ P, and the (sub-set) of de-synchronized honest
parties PDS ⊂ H (as discussed below). The sets P,H,PDS are all initially set to ∅.
When a (currently unregistered) honest party is registered at the ledger, if it is
registered with the clock and the global RO already, then it is added to the party
sets H and P and the current time of registration is also recorded; if the current
time is τL > 0, it is also added to PDS . Similarly, when a party is deregistered, it
is removed from both P (and therefore also from PDS or H). The ledger maintains
the invariant that it is registered (as a functionality) to the clock whenever H ̸= ∅.

Handling initial stakeholders: If during round τ = 0, the ledger did not
received a registration from each initial stakeholder, i.e., Up ∈ SinitStake, the
functionality halts.

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , τ)
set τL := τ and do the following if τ > 0 (otherwise, ignore input):

1. Updating synchronized/desynchronized party set:
(a) Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have

been registered (continuously) to the ledger, the clock, and the GRO since
time τ ′ < τL − Delay. Set PDS := PDS \ P̂.

(b) For any synchronized party Up ∈ H \ PDS , if Up is not registered to the
clock, then consider it desynchronized, i.e., set PDS ∪ {Up}.

2. If I was received from an honest party Up ∈ P:
(a) Set I⃗T

H := I⃗T
H ||(I, Up, τL);

(b) Compute N⃗ = (N⃗1, . . . , N⃗ℓ) := ExtendPolicy(I⃗T
H , state, NxtBC, buffer, τ⃗state)

and if N⃗ ̸= ε set state := state||Blockify(N⃗1)|| . . . ||Blockify(N⃗ℓ) and
τ⃗state := τ⃗state||τ ℓ

L, where τ ℓ
L = τL|| . . . , ||τL.

(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX
from buffer. Also, reset NxtBC := ε.

(d) If there exists Uj ∈ H \ PDS such that |state| − ptj > windowSize or
ptj < |statej |, then set ptk := |state| for all Uk ∈ H \ PDS .

Functionality Gledger

9

3. If the calling party Up is stalled or time-unaware (according to the defined
party classification), then no further actions are taken. Otherwise, depending
on the above input I and its sender’s ID, Gledger executes the corresponding
code from the following list:
• Submitting a transaction:

If I = (submit, sid, tx) and is received from a party Up ∈ P or from A (on
behalf of a corrupted party Up) do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Up)
(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

• Reading the state:
If I = (read, sid) is received from a party Up ∈ P then set
statep := state|min{ptp,|state|} and return (read, sid, statep) to the
requester. If the requester is A then send (state, buffer, I⃗T

H) to A.

• Maintaining the ledger state:
If I = (maintain-ledger, sid, minerID) is received by an honest party
Up ∈ P and (after updating I⃗T

H as above) predict-time(I⃗T
H) = τ̂ > τL then

send (clock-update, sidC) to Gclock. Else send I to A.

• The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txidℓ)) is sent from the adversary,
update NxtBC as follows:

(a) Set listOfTxid← ϵ

(b) For i = 1, . . . , ℓ do: if there exists
BTX := (x, txid, minerID, τL, Uj) ∈ buffer with ID txid = txidi then set
listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output
(next-block, ok) to A.

• The adversary setting state-slackness:
If I = (set-slack, (Ui1 , p̂ti1

), . . . , (Uiℓ , p̂tiℓ
)), with

{Upi1
, . . . , Upiℓ

} ⊆ H \ PDS is received from the adversary A do the
following:

(a) If for all j ∈ [ℓ] : |state| − p̂tij
≤ windowSize and p̂tij

≥ |stateij |, set
pti1

:= p̂ti1
for every j ∈ [ℓ] and return (set-slack, ok) to A.

(b) Otherwise set ptij
:= |state| for all j ∈ [ℓ].

• The adversary setting the state for desychronized parties:
If I = (desync-state, (Ui1 , state′

i1), . . . , (Uiℓ , state′
iℓ

)), with
{Ui1 , . . . , Uiℓ} ⊆ PDS is received from the adversary A, set
stateij := state′

ij
for each j ∈ [ℓ] and return (desync-state, ok) to A.

10

The functionality manages the set P of registered identities, i.e., parties
Up = (pid, sid). It also manages the set F of functionalities (together with their
session identifier). Initially, P := ∅ and F := ∅.
For each session sid the clock maintains a variable τsid. For each identity
Up := (pid, sid) ∈ P it manages variable dUp . For each pair (F, sid) ∈ F it manages
variable d(F,sid) (all integer variables are initially 0).

Synchronization:

– Upon receiving (clock-update, sidC) from some party Up ∈ P set dUp := 1;
execute Round-Update and forward (clock-update, sidC , Up) to A.

– Upon receiving (clock-update, sidC) from some functionality F in a session
sid such that (F, sid) ∈ F set d(F,sid) := 1, execute Round-Update and return
(clock-update, sidC ,F) to this instance of F.

– Upon receiving (clock-read, sidC) from any participant (including the
environment on behalf of a party, the adversary, or any ideal—shared or
local—functionality) return (clock-read, sid, τsid) to the requestor (where sid
is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and
dUp = 1 for all honest parties Up = (·, sid) ∈ P, then set τsid := τsid + 1 and reset
d(F,sid) := 0 and dUp := 0 for all parties Up = (·, sid) ∈ P.

Functionality Functionality Gclock

2.3 Transaction structure

GLedger does not define what is a valid transaction, but leaves it as a system
parameter. Importantly, no notion of coins is built in GLedger. We therefore spec-
ify a valid transaction, closely following concepts put forth in Bitcoin [2], but
avoiding specifying the entire Bitcoin script.

At a high level, every transaction consists of inputs and outputs. Each output
has an associated value in coins and a number of “spending methods”. A spending
method specifies the exact requirements for spending the output. Each input
must be connected to exactly one output and satisfy one of its spending methods.

Transactions in GLedger form a DAG. A new transaction is valid only if each
of its inputs correctly spends an output with no other connected input and the
sum of the values of its outputs does not exceed the sum of the values of the
outputs connected to its inputs. We refer the reader to Section 12 for a complete
overview.

2.4 Cryptographic Primitives

In the Lightning Network specification, a custom scheme for deriving keys is
used. Its syntax and security aims closely match those of previously studied
Identity Based Signature schemes [27,28], thus we use the latter to abstract
away the complexity of the construction and highlight the security requirements
it satisfies. We slightly modify previous IBS schemes by adding an algorithm that,

11

on input of the public parameters mpk and a label l, returns the verification key
pkl. Such an IBS scheme provides 5 algorithms:

– (mpk, msk)← Setup(1k): master keypair generation
– (pkl, skl)← KeyDer(mpk, msk, l): keypair derivation with label l

– pkl ← PubKeyDer(mpk, l): verification key derivation with label l

– σ ← SignIBS(m, skl): signature generation with signing key skl

– {0, 1} ← VerifyIBS(σ, m, pkl): signature verification

We refer the reader to [28] and to Section 5 for more details. Other crypto-
graphic primitives used are digital signatures (Section 4) and pseudorandom
functions (Section 3). Finally, a less common two-party cryptographic primitive
is employed that we formalise as combined digital signatures, see Section 9.

3 Pseudorandom Functions

A “pseudorandom function” [29] F is informally a function with two inputs: a
secret seed and a bitstring. Given that the seed is randomly selected, no PPT
algorithm can distinguish F from a randomly selected function.

In the current work a PRF is used in ΠLN to generate the randomness used
for KeyShareGen(), which returns the so-called “per commitment” keypairs
(sAlice,com,n, pAlice,com,n) (c.f. Fig. 29, line 5, Fig. 30, line 4, Fig. 34, line 5, Fig. 35,
line 7 and Fig. 44, line 19).

Definition 1. Let k ∈ N, s ∈ {0, 1}∗, λ : N → N and fs be a family of functions
from {0, 1}λ(|s|) to {0, 1}λ(|s|). Furthermore, let Funck be the uniform distribution
over the set of all {0, 1}k → {0, 1}k functions. We say that fs is a pseudorandom
function family if:

– ∀s ∈ {0, 1}∗,∀x ∈ {0, 1}λ(|s|),∃ PPT algorithm that computes fs(x),
– ∀k ∈ N, ∀ PPT A,

| Pr
s

$←{0,1}k

A’s coins

[Afs(·)(1k) = 1]− Pr
f

$←Funck

A’s coins

[Af(·)(1k) = 1]| = negl(k) ,

where A is given oracle access to fs(·) and f(·) in each of the probability
expressions above respectively. This requirement can be equivalently stated as
follows:

∀k ∈ N, E-prf(k) = negl (k) ,

where

E-prf(k) = sup
A∈PPT

{| Pr
s

$←{0,1}k

A’s coins

[Afs(·)(1k) = 1]− Pr
f

$←Funck

A’s coins

[Af(·)(1k) = 1]|} .

12

4 Digital Signatures

Digital signatures [29] enable a party to authenticate messages to other parties.
A signature on a message is created by the signing party using the secret “sign-
ing key”; other parties can later verify that the signature was indeed made on
the message using the public “verification key”. Transactions in Bitcoin [2] are
signed using digital signatures and are considered valid only if signatures verify
correctly, thus ensuring that only parties entitled to particular funds can spend
them. Bitcoin uses ECDSA signatures over the secp256k1 curve5.

To ensure compatibility, LN uses ECDSA over the same curve as its basic sig-
nature scheme. In this work, we abstract the particular construction away and
use instead the established primitive that a secure construction must realise.
Looking forward, in order to facilitate the definition of combined signatures
purely on top of classic digital signatures, we split the key generation algorithm
in two explicitly separate steps, one for the secret and one for the public key gen-
eration. Note that this does not affect the correctness or the security of digital
signatures in any way, as no new powers are given to the adversary. Further-
more, this splitting is fully compatible with the digital signature construction of
interest, ECDSA.

The five algorithms used by a Digital Signatures scheme are:

– sk ← SecKeyGen(1k)
– pk ← PubKeyGen(sk)
– (pk, sk)← KeyGen(1k) where

KeyGen(1k) :
sk ← SecKeyGen(1k)
pk ← PubKeyGen(sk)
return (pk, sk)

– σ ← SignDS(m, sk)
– {0, 1} ← VerifyDS(σ, m, pk)

We demand that the following holds for a scheme to have correctness:
∀k ∈ N, m ∈M,

Pr[(pk, sk)← KeyGen(1k),
VerifyDS(SignDS(m, sk), m, pk) = 1] = 1

Definition 2. A Digital Signatures scheme is strongly EUF-CMA-secure if

∀k ∈ N,∀A ∈ PPT, Pr
[
EUF-CMAA

(
1k

)
= 1

]
= negl (k) or equivalently

∀k ∈ N, E-ds(k) = negl (k) ,

where E-ds(k) = sup
A∈PPT

{Pr[EUF-CMAA
(
1k

)
= 1]} .

5 https://en.bitcoin.it/wiki/Secp256k1

13

https://en.bitcoin.it/wiki/Secp256k1

1: (pk, sk)← KeyGen(1k)
2: i← 0
3: (auxi, response)← A(init, pk)
4: while response can be parsed as m do
5: i← i + 1
6: store m as mi

7: σi ← SignDS(m, sk)
8: (auxi, response)← A(signature, auxi−1, σi)
9: end while

10: parse response as (m∗, σ∗)
11: if m∗ /∈ {m1, . . . , mi} ∧VerifyDS(σ∗, m∗, pk) = 1 then
12: return 1
13: else
14: return 0
15: end if

Game EUF-CMAA (
1k

)

Fig. 1

5 Identity Based Signatures primitive

As we mentioned previously, LN uses a custom construction to derive three
new keys on each channel update. Its syntax and security aims closely match
those of previously studied Identity Based Signature schemes [27,28], thus we
use the latter to abstract away the complexity of the construction and highlight
the security requirements it satisfies. Our version augments the scheme with
explicit verification keys, which are generated together with the signing keys.
Furthermore we introduce a new key derivation algorithm which, on input of
the public parameters mpk and a label l, returns the verification key pkl. We
furthermore prove that the custom construction used in LN realizes the primitive.

The five algorithms used by an Identity Based Signatures scheme (with our
modification) are:

– (mpk, msk)← Setup(1k): master keypair generation
– (pkl, skl)← KeyDer(mpk, msk, l): keypair derivation with label l
– pkl ← PubKeyDer(mpk, l): verification key derivation with label l
– σ ← SignIBS(m, skl): signature generation with signing key skl

– {0, 1} ← VerifyIBS(σ, m, pkl): signature verification

Observe that mpk is not part of the input to SignIBS and VerifyIBS. In our
case, this input is not needed. In fact, because of the underlying similarity of
these two algorithms with their counterparts from standard Digital Signatures,
such an input would rather complicate the exposition.

We demand that the following holds for a scheme to have correctness:

– ∀k ∈ N, l ∈ L,
Pr[(mpk, msk)← Setup(1k),

14

(pk1, sk1)← KeyDer (mpk, msk, l) ,
pk2 ← PubKeyDer (mpk, l) ,
pk1 = pk2] = 1

– ∀k ∈ N, m ∈M,
Pr[(mpk, msk)← Setup(1k),
(pk, sk)← KeyDer (mpk, msk, l) ,
VerifyIBS(SignIBS(m, sk), m, pk) = 1] = 1

Let IBSalgs = {Setup, KeyDer, PubKeyDer, SignIBS, VerifyIBS}.

1: (mpk, msk)← Setup(1k)
2: i, j ← 0
3: (aux0, response)← A(init, mpk)
4: while response can be parsed as (m, l) or l do
5: if response can be parsed as (m, l) then
6: i← i + 1
7: store (m, l) as (m, l)i

8: (pk, sk)← KeyDer(mpk, msk, l)
9: σ ← SignIBS(m, sk)

10: (auxi+j , response)← A(signature, auxi+j−1, σ)
11: else // response can be parsed as l
12: j ← j + 1
13: store l as lj

14: (pk, sk)← KeyDer(mpk, msk, l)
15: (auxi+j , response)← A(keypair, auxi+j−1, (pk, sk))
16: end if
17: end while
18: parse response as (m∗, l∗, σ∗)
19: if (m∗, l∗) /∈ {(m, l)1, . . . , (m, l)i} ∧ l∗ /∈
{l1, . . . , lj} ∧VerifyIBS(σ∗, m∗, PubKeyDer(mpk, l∗)) = 1 then

20: return 1
21: else
22: return 0
23: end if

Game IBS-EUF-CMAA (
1k, IBSalgs

)

Fig. 2

Definition 3. An Identity Based Signatures scheme IBSalgs is IBS-EUF-CMA-
secure if

∀k ∈ N,∀A ∈ PPT, Pr
[
IBS-EUF-CMAA

(
1k, IBSalgs

)
= 1

]
= negl (k) , or equivalently

∀k ∈ N, E-ibs(k) = negl (k) ,

where E-ibs(k) = sup
A∈PPT

{Pr[IBS-EUF-CMAA
(
1k, IBSalgs

)
= 1]} .

15

5.1 Construction
We here define the particular construction for Identity Based Signatures used in
LN and prove its security. Let LN-IBS be its 5 algorithms; the parameters are
hard-coded in the algorithms.

Parameters: hash function H, group generator G

Setup(1k):
return KeyGen(1k)

KeyDer(mpk, msk, l):
pk ← mpk +H (l ∥mpk) ·G
sk ← msk +H (l ∥mpk)
return (pk, sk)

PubKeyDer(mpk, l):
return mpk +H (l ∥mpk) ·G

SignIBS(m, skl):
return SignDS(m, skl)

VerifyIBS(σ, m, pkl):
return VerifyDS(σ, m, pkl)

Lemma 1. The construction above is IBS-EUF-CMA-secure in the Random Or-
acle model under the assumption that the underlying signature scheme is strongly
EUF-CMA-secure and the range of the Random Oracle coincides with that of the
underlying signature scheme signing keys.
Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
IBS-EUF-CMAB

(
1k, LN-IBS

)
= 1

]
= a > negl (k) .

We construct a PPT distinguisher A (Fig. 3) such that

Pr
[
EUF-CMAA

(
1k

)
= 1

]
> negl (k)

that breaks the assumption, thus proving Lemma 1.
Let Y be the range of the random oracle. The modified random oracle used in

Fig. 3 is indistinguishable from the standard random oracle by PPT algorithms
since the statistical distance of the standard random oracle from the modified
one is at most 1

2|Y | < negl (k) as they differ in at most one element.
Let E denote the event in which neither KeyDer(mpk, msk, l∗) nor Pub-

KeyDer(mpk, l∗) is invoked. In that case the value H (l ∥mpk) is decided after
B terminates (Fig. 3, line 30) and thus

Pr[vk ∈ KeyDer (mpk, msk, l∗)∨
vk = PubKeyDer (mpk, l∗) |E] < negl (k)⇒

Pr[(vk ∈ KeyDer (mpk, msk, l∗)∨
vk = PubKeyDer (mpk, l∗)) ∧ E] < negl (k)⇒

Pr [vk = PubKeyDer (mpk, l∗) ∧ E] < negl (k) .

(1)

16

1: k
$← U [1, T (B) + T (A)] // T (M) is the maximum running time of M

2: Random Oracle: for every first-seen query q from B set H (q) to a random
value

3: return H (q) to B
4: (mpk, msk)← Setup

(
1k

)
5: Random Oracle: Let q be the kth first-seen query from B or A:
6: if q = (l ∥mpk) for some l ∈ L then
7: set H (l ∥mpk) to (vk −mpk) ·G−1

8: else
9: set H (q) to a random value

10: end if
11: return H (q) to B or A
12: i← 0
13: j ← 0
14: (aux0, response)← B (init, mpk)
15: while response can be parsed as (m, l) or l do
16: if response can be parsed as (m, l) then
17: i← i + 1
18: store (m, l) as (m, l)i

19: (pk, sk)← KeyDer(mpk, msk, l)
20: σ ← SignIBS(m, sk)
21: (auxi+j , response)← B (signature, auxi+j−1, σ)
22: else // response can be parsed as l
23: j ← j + 1
24: store l as lj

25: (pk, sk)← KeyDer(mpk, msk, l)
26: (auxi+j , response)← B (keypair, auxi+j−1, (pk, sk))
27: end if
28: end while
29: parse response as (m∗, l∗, σ∗)
30: if vk = PubKeyDer(mpk, l∗) ∧ B wins the IBS-EUF-CMA game then // A

won the EUF-CMA game
31: return (m∗, σ∗)
32: else
33: return fail
34: end if

Algorithm A (vk)

Fig. 3

17

It is

(B wins)→ (vk = PubKeyDer (mpk, l∗))⇒
Pr [B wins] ≤ Pr [vk = PubKeyDer (mpk, l∗)]⇒

Pr [B wins ∧ E] ≤ Pr [vk = PubKeyDer (mpk, l∗) ∧ E] (1)⇒
Pr [B wins ∧ E] < negl (k) .

But we know that Pr [B wins] = Pr [B wins ∧ E] + Pr [B wins ∧ ¬E] and
Pr [B wins] = a by the assumption, thus

Pr [B wins ∧ ¬E] > a− negl (k) . (2)

We now focus at the event ¬E. Let F the event in which the call of to Key-
Der(mpk, msk, l∗) or PubKeyDer(mpk, l∗) results in the kth invocation of the
Random Oracle. Since k is chosen uniformly at random and using Proposition 2,
it is Pr [F |¬E] = 1

T (B)+T (A) . Observe that Pr [F |E] = 0⇒ Pr [F] = Pr [F |¬E] =
1

T (B)+T (A) .
In the case where the event (F ∧ B wins ∧ ¬E) holds, it is

PubKeyDer (mpk, l∗) = mpk+H (l∗ ∥mpk)·G = mpk+(vk−mpk)·G−1·G = vk

Since F holds, the kth invocation of the Random Oracle queried H (l∗ ∥mpk).
Therefore it is PubKeyDer (mpk, l∗) = vk. This means that the verification is
successful, i.e. VerifyIBS (σ∗, m∗, vk) = 1. We conclude that, if (F ∧ B wins ∧ ¬E),
A wins the EUF-CMA game. A final observation is that the probability that the
events (B wins ∧ ¬E) and F are almost independent, thus

Pr [F ∧ B wins ∧ ¬E] = Pr [F] Pr [B wins ∧ ¬E]± negl (k) (2)=
a− negl (k)

T (A) + T (B) ± negl (k) > negl (k)

6 Lightning Network overview

6.1 Two-party channels

The aim of LN is to enable fast, cheap, off-chain transactions, without compro-
mising security. Specifically no trust between counterparties is needed. This is
achieved as follows: Two parties that plan to have recurring monetary exchanges
lock up some funds with one special on-chain transaction. We say that they
opened a new channel. They can then transact with the locked funds multiple
times solely by interacting privately, without informing the blockchain. If they
want to use their funds in the usual, on-chain way again, they have to close the
channel and unlock the funds with one more on-chain transaction. Therefore

18

the number of on-chain transactions implicated in a channel is constant in the
number of off-chain payments. Furthermore, each party can unilaterally close
the channel and retrieve the coins they are entitled to – according to the latest
channel state – and thus neither party has to trust the other.

In more detail, to open a channel Alice and Bob first exchange a number of
keys and desired timelocks relDelA, relDelB (explained below) and then build
locally some transactions; no transaction is published yet. The “funding trans-
action” F (Figure 4) contains a 2-of-2 multisig output with one “funding” public
key pkF,A, pkF,B for each counterparty. This multisig output needs signatures
for both designated public keys in order to be spent. F is funded with cF coins
that belong only to one of the two parties, the funder. W.l.o.g., we assume this
party is Alice.

Fig. 4: Funding TX (on-chain): Rules over output, coins below output. pk1 ∧ pk2
is a 2-of-2 multisig with keys pk1 and pk2.

Each party also builds a slightly different version of the “commitment trans-
action”, CA (Figure 5) for Aliceand CB (Figure 6) for Bob. Alice uses her “de-
layed payment” key pkdcom,A and Bob’s “revocation” key pkrev,B (received be-
fore), whereas Bob uses Alice’s “payment” key pkcom,A (received before). Both
CA and CB spend the funding output of F and allow Alice to retrieve her funds
if she acts honestly, as we will explain shortly. Alice sends Bob the signature of
CB made with her skF,A and vice-versa. Both parties verify that the received
signature is valid.

Fig. 5: Alice’s initial commitment TX (off-chain): Required data over input, spent
output below input.

19

Fig. 6: Bob’s initial commitment TX (off-chain): All coins belong to Alice, so she
can immediately spend them if Bob closes.

Fig. 7: All transactions of an open channel with an HTLC in flight. Alice owns
cA coins, Bob cB coins, and ch coins will be transferred to Bob if he discloses the
preimage of h until the ledger has heightcltv blocks, otherwise they will return
to Alice. “funding” is in the ledger, Alice keeps locally “commA” and “HTLCA”,
and Bob keeps “commB” and “HTLCB”.

Observe that Alice can now safely publish the funding transaction F without
fear of losing her coins: the only possible ways for it to be spent are either via CA

or CB , both of which transfer her funding coins back to a key she owns. She now
broadcasts the funding transaction F ; once both parties see that it is confirmed,
they generate and exchange new “commitment” keys (used for updating the
channel later) and the channel is open.

Every time they want to make a payment to each other, they exchange a
series of messages that have two effects. First, a new pair of commitment trans-
actions, along with their signatures by the funding keys, is created, one for each
counterparty. The outputs of the new commitment transactions use new keys
and reflect the new channel balance. Each of these transactions ensures that, if
broadcast, each party will be able to spend the appropriate share from the coins
contained in the funding output. Second, the two old commitment transactions

20

are revoked. This ensures that no party can close a channel using an old commit-
ment transaction, as such an old commitment transaction reflects a superseded
channel state, which may be more beneficial than the latest state for one of the
two parties.

Invalidating past commitments requires some care. The reason is that it is
impossible to actually make past commitments invalid without spending the
funding output on-chain; doing this for every update would however defeat the
purpose of LN. The following idea is leveraged instead: If Alice broadcasts an
old commitment and Bob sees it, he can punish Alice by taking all the money in
the channel. Therefore Alice is technically able to broadcast an old commitment,
but has no financial benefit in doing so. The same reasoning holds if Bob broad-
casts an old commitment. On the downside this imposes the requirement that
parties must observe the blockchain periodically — see below the explanation
of timelocks and how they facilitate a time window within which parties should
react.

The punishing mechanism operates as follows. Suppose Alice considers post-
ing one of her old local commitments which has an output that carries her old
share of the funds (c.f. Fig. 5). This output can be spent in two ways: either with
a signature by Alice’s “delayed payment” secret key skdcom,A which is a usual
ECDSA key, or with a signature by Bob’s “revocation” secret key skrev,B , which
is also an ECDSA key, but with an additional characteristic that we will explain
soon. Thus, if Alice broadcasts an old commitment, Bob will be able to obtain
her funds by spending her output using his “revocation” key. This privilege of
course opens the possibility for Bob to abuse it (in particular, when a channel
is closed — see below — Bob may steal Alice’s funds by using such a revocation
key) and hence this side effect should also be carefully mitigated. The mitiga-
tion has the following form. At the time of creation of a new commitment, both
parties will know Bob’s “revocation” public key pkrev,B , but no party knows its
corresponding secret – the key can only be computed by combining one secret
value skcom,n,A that Alice knows and one secret value skcom,n,B that Bob knows.
Alice therefore can prevent Bob from using his revocation key until she sends
him skcom,n,A. Therefore, Alice will send skcom,n,A to Bob only after the new
commitment transaction is built and signed. As a result, all old commitment
transactions are revoked, only the latest one is not. Thus Bob cannot abuse his
revocation key on a commitment before this transaction is revoked. We note that
the underlying cryptographic mechanism that enables such “revocation keys” is
not straightforward and, as part of our contributions, we formalise it as a new
two-party cryptographic primitive. We call it “combined signature” and we prove
in Section 9 that the construction hidden in the LN implementation realises it
in the random oracle model under the assumption that the underlying digital
signature scheme is secure.

The last element needed to make channel updates secure is the already men-
tioned “relative timelock”. If Alice broadcasts a commitment transaction, she is
not allowed to immediately spend her funds with her “delayed payment” key. In-
stead, she has to wait for the transaction to reach a pre-agreed block depth (the

21

relative timelock, negotiated during the opening of the channel and hardcoded
in the output script of the commitment transaction) in order to give some time
to Bob to see the transaction and, if it does not correspond to the latest version
of the channel, punish her with his “revocation” key. This avoids a scenario in
which Alice broadcasts an old commitment transaction and immediately spends
her output, which would prevent Bob from ever proving that this commitment
was old.

Lastly, if Alice wants to unilaterally close a channel, all she has to do is broad-
cast her latest local commitment (the only one not revoked) and any outstanding
HTLC transactions (explained below) and wait for the timelock to expire in order
to spend her funds. The LN specification further allows for cooperative chan-
nel closure, achieved by negotiating and broadcasting the “closing transaction”
which is not encumbered with a timelock, providing immediate availability of
funds.

As we mentioned previously, timelocks provide specific time windows within
which both parties have to check the blockchain in order to punish a misbehaving
counterparty who broadcasts an old commitment transaction. This means that
parties have to be regularly online to safeguard against theft. Furthermore, LN
makes it possible to trustlessly outsource this to so-called watchtowers, but this
mechanism is not analyzed in the current work.

6.2 Multi-hop payments

Having funds locked down for exclusive use with a particular counterparty would
be a serious limitation. LN goes beyond that by allowing multi-hop payments.
In a situation where Alice has a channel with Bob and he has another channel
with Charlie, it is possible for Alice to pay Charlie off-chain by leveraging Bob’s
help. Remarkably, this can be achieved without any one party trusting any of
the other two. One can think of Alice giving some “marked” money to Bob, who
in turn either delivers it to Charlie or returns it to Alice – it is impossible for
Bob to keep the money. It is also impossible for Alice and Charlie to make Bob
pay for this transaction out of his pocket.

We will now give a brief overview of how this counterintuitive dynamic is
made possible. Alice initiates the payment by asking Charlie to create a new
hash for a payment of x coins. Charlie chooses a random secret, hashes it and
sends the hash to Alice. Alice promises Bob to pay him x in their channel if
he shows her the preimage of this particular hash within a specific time frame.
Bob makes the same promise to Charlie: if Charlie tells Bob the preimage of the
same hash within a specific time frame (shorter than the one Bob has agreed
with Alice), Bob will pay him x in their common channel. Charlie then sends
him the preimage (which is the secret he generated initially) and Bob agrees to
update the channel to a new version where x is moved from him to Charlie.
Similarly, Bob sends the preimage to Alice and once again Alice updates their
channel to give Bob x coins. Therefore x coins were transmitted from Alice to
Charlie and Bob did not gain or lose anything, he just increased his balance

22

in the channel with Alice and reduced his balance by an equal amount in the
channel with Charlie.

This type of promise where a preimage is exchanged for money is called
Hashed Time Locked Contract (HTLC). It is enforceable on-chain in case the
payer does not cooperatively update upon disclosure of the preimage, thus no
trust is needed. It is realised as an additional output of the commitment trans-
actions, which contains the specified hash and transfers its funds either to the
party that should provide the preimage or to the other party after a timeout. A
corresponding “HTLC transaction” that can spend this output is built by each
party. In the previous example with Alice, Bob and Charlie, two HTLC trans-
actions were signed and fulfilled in total for the payment to go through. Two
updates happened in each channel: one to sign the HTLC and one to fulfill it.
The time frames were chosen so that every intermediary has had the time to
learn the preimage and give it to the previous party on the path. Figure 7 shows
all transactions implicated in a channel that has an HTLC in flight.

In LN zero-hop payments (i.e. direct payments within a single channel) are
also carried out using HTLCs.

LN gives the possibility for intermediaries to charge a fee for their service,
but such fees are not incorporated in the current analysis for the benefit of
avoiding the added complexity and making it easier for the functionality to keep
track of the correct balances. We note in passing that the “wormhole” attack
described in [30] is captured by our model, as an adversary that controls two
non-neighbouring nodes on a payment path can skip the intermediate nodes.
Nevertheless, such an attack is inconsequential in our analysis given the lack of
fees. Furthermore, LN leverages the Sphinx onion packet scheme [31] to increase
the privacy of payments, but we do not formaly analyze the privacy of LN in
this work – we just use it in our protocol description to syntactically match the
message format used by LN.

7 Overview of FPayNet

One of our contributions is the specification of FPayNet, a local functionality
that describes the functional and security guarantees given by an ideal payment
network. Its definition can be found in Section 13. The central aim of FPayNet is
opening payment channels, keeping track of their state, updating them according
to requested payments and closing them, as requested by honest players, all in
a secure manner. In particular, the four main messages it can receive from Alice
are (openChannel), (pay), (closeChannel) and (forceCloseChannel).

When FPayNet receives (openChannel, Alice, Bob, x, tid) from Alice, it in-
forms simulator S of the intention of environment E to create a channel between
Alice and Bob where Alice owns x coins. When it receives (pay, Bob, x,

−−→
path,

receipt) from Alice, it informs S that E asked to perform a multi-hop payment
of x coins from Alice to Bob along the −−→path. In the same vein, when FPayNet re-
ceives (closeChannel, receipt, pchid) or (forceCloseChannel, receipt,

23

pchid) from Alice (for a cooperative or unilateral close respectively), it leaks to
S the fact that E wants to close the relevant channel.

In order to provide security guarantees, there are various moments when
FPayNet verifies whether certain expected events have actually taken place and
halts if these checks fail. Note that the protocol ΠLN (which realises FPayNet,
c.f. Theorem 2) never halts, therefore all possible halts of FPayNet correspond to
specific security guarantees that ΠLN satisfies. A number of messages prompt
FPayNet to read from GLedger and perform these checks. In the actual imple-
mentations of LN these checks are done periodically by a polling daemon. Such
checks are done by FPayNet in the following cases:

– On receiving (poll) by Alice, FPayNet asks GLedger for Alice’s latest state
ΣAlice and verifies that no bad events have happened. In particular, FPayNet
halts if any of Alice’s channels has been closed maliciously with a transaction
at height h and, even though Alice has polled within [h, h+delay(Alice)−1],
she did not manage to punish the counterparty. If FPayNet does not halt, it
leaks to S the polling details (including the identity of the poller and the
state of the ledger in their view).

– FPayNet expects S to send a (resolvePays, charged) message that gives
details on the outcome of one or more multi-hop payments that include the
identity of the party that is charged. Moreover, for each resolved payment,
the message includes two expiry values that are expressed in absolute block
height: OutgoingCltvExpiry on the one hand, which is the highest block in
which the charged party could claim money from the previous hop (closer to
the payer) and IncomingCltvExpiry on the other, which is the lowest block
in which the charged party could claim money from the next hop (closer
to the payee). FPayNet checks that for each payment the charged party was
one of the following: (a) the one that initiated the payment, (b) a malicious
party or (c) an honest party that is negligent. The latter case happens when
the honest party either:
1. did not poll in time to catch a malicious closure (similarly to the check

performed when a poll message is handled, as described above) or
2. did not poll twice while the block height in the view of the player was in

[OutgoingCltvExpiry, IncomingCltvExpiry−(2 + r) windowSize] with
a distance of at least (2 + r) windowSize between the two polls or

3. did not enforce the retrieval of the funds that were lost as a result of this
payment when the chain in her view had height IncomingCltvExpiry−
(2 + r) windowSize with a fulfillOnChain message, as discussed be-
low.

Note that (2 + r) windowSize is the maximum number of blocks an hon-
est party needs to wait from the moment a valid transaction is submitted
until it is added to the ledger state. FPayNet also ensures that the two ex-
piries (OutgoingCltvExpiry and IncomingCltvExpiry) have a distance of
at least relayDelay(Alice) + (2 + r) windowSize, otherwise it halts. In case
the charged party was honest, not the payer and non-negligent, FPayNet halts.
It also halts if a particular payment resulted in a channel update for which
S did not inform FPayNet.

24

– FPayNet executes the function checkClosed(ΣAlice) every time it receives
Alice’s ledger state ΣAlice from GLedger. In this case, it checks that every
channel that E has asked to be closed or S designated as closed indeed has a
closing transaction that corresponds to its latest state in ΣAlice. Enough time
is given for that transaction to settle in ΣAlice, but if that time passes and
the channel is still open or it is closed to a wrong version and no opportunity
for punishment was given, FPayNet halts.

A number of messages that support the protocol progress are also handled:

– Every player has to send (register, delay, relayDelay) before participat-
ing in the network. This informs FPayNet how often the player has to poll.
“delay” corresponds to the maximum time between polls so that malicious
closures will be caught. “relayDelay” is useful when the player is an inter-
mediary of a multi-hop payment. It roughly represents the size of the time
window the player has to learn a preimage from the next and reveal it to the
previous node. Subsequently FPayNet asks S to create and send a public key
that will hold the player’s funds. This public key is subsequently sent back
to the player.

– To complete her registration, Alice has to send the (toppedUp) message.
It lets FPayNet know that the desired amount of initial funds have been
transferred to Alice’s public key. FPayNet reads Alice’s state on GLedger to
retrieve this number and subsequently allows Alice to participate in the
payment network after it updates her onChainBalance.

– When FPayNet receives (checkForNew, Alice, Bob, tid) from Alice, it asks
GLedger for Alice’s latest state ΣAlice and looks for a funding transaction F
in it. If one is found, S is asked to complete the opening procedure.

– (pushFulfill, pchid), (pushAdd, pchid) and (commit, pchid) all nudge S
to carry on with the protocol that updates the state of a specific channel.
FPayNet simply forwards these messages to S.

– (fulfillOnChain) prompts S to close channels in which the counterparty is
not willing to pay, even though they have promised to do so upon disclosure
of a particular preimage. This message is simply forwarded to S, but FPayNet
takes a note that such a message was received and the current blockheight
in the view of the calling party.

Last but not least, E sends (getNews) to obtain the latest changes regard-
ing newly opened or closed channels, along with updates to the state of existing
ones. Here we make an interesting observation: The most complex part of LN is
arguably the negotiations that happen when a multi-hop payment takes place,
due to the many channel updates needed; indeed, two complete channel updates
for each hop are needed for a successful payment to go through. The fact that
a proposal for an update can happen asynchronously with the commitment to
this update, along with the fact that a single commitment may commit to many
indiviual update proposals only adds to the complexity. It is therefore only nat-
ural to want FPayNet to be unaware of these details. In order to disentangle the
abstraction of FPayNet from such minutiae, we allow the adversary full control

25

of the updates that are reported back to E via FPayNet. Nevertheless, FPayNet
enforces that any reporting deviations induced by the adversary will be caught
when a channel closes. This is quite intuitive: Consider a user of the payment
network that does not understand its inner workings but can read GLedger and
count her funds there. FPayNet provides no guarantees regarding any specific
interim reporting but the user is assured that in case she chooses to close the
relevant channel, her state in GLedger will be consistent with all the payments
that went through.

8 Lightning Protocol ΠLN Overview

In order to prove that software adhering to the LN specification fulfills the
security guarantees given by FPayNet, a concrete protocol that implements LN
in the UC model is needed. To that end we define the formal protocol ΠLN, an
overview of which is given here.

For the rest of this section, we will assume that Alice, Bob and Charlie are
interactive Turing machine instances (ITIs) [25] that honestly execute ΠLN. Sim-
ilarly to the ideal world, the main functions of ΠLN are triggered when it receives
(openChannel), (pay), (closeChannel) and (forceCloseChannel) from
E . These three messages along with (getNews) informally correspond to ac-
tions that a “human user” would instruct the system to perform. (register)
and (toppedUp) are sent by E for player intialization. The rest of the messages
sent from E prompt ΠLN to perform actions that a software implementation
would spontaneously perform periodically. All messages sent between Alice, Bob
and Charlie correspond to messages specified by LN. For clarity of exposition,
we avoid mentioning the exact name and contents of every message. We refer
the reader to the formal definition of ΠLN in Section 14 for further details.

8.1 Registration

Before Alice can use the network, E first has to send her a (register, delay,
relayDelay) message. She generates her persistent key and sends it back to E .
The latter may choose to add some funds to this key and then send (toppedUp)
to Alice, who checks her state in GLedger and records her on-chain balance.

8.2 Channel opening

When she receives (openChannel, Alice, Bob, x, tid) from E , Alice initiates
the message sequence needed to open a channel with Bob, funded by her with x
coins. After following the steps described in Section 6, the funding transaction
has been submitted to GLedger. However the channel is not open yet.

At a later point E may send (checkForNew, Alice, Bob, tid) to Alice. She
then checks if her state in GLedger contains the funding transaction with the
temporary ID tid and in that case she exchanges new commitment keys with
Bob, as per Section 6. The channel is now open. Both parties keep a note to give
E a receipt of the new channel the next time they receive (getNews).

26

8.3 Channel closing

When sent by E , the messages closeChannel and forceCloseChannel
prompt Alice to close the channel cooperatively or unilaterally respectively, as
explained in Section 6. In both cases she takes a note to notify E that the channel
is closed when she receives (getNews).

8.4 Performing payments

We will now follow the exact steps needed for a multi-hop payment, filling in
many details that we omitted from Section 6. When she receives (pay, Charlie,
x, −−→path) from E , Alice attempts to pay Charlie x coins, using the provided −−→path.
Let us assume that the path is Alice – Bob – Charlie. Alice asks Charlie for an
“invoice” with the HTLC hash, to which Charlie reacts by choosing a random
preimage and sending back to Alice its hash. Alice then prepares a Sphinx [31]
onion packet with the relevant information for each party on the −−→path and sends
it to Bob. Bob “peels” his layer of the onion and, after performing sanity checks
and extracting the hash, he takes a note of this pending HTLC. He does not
yet forward the onion to Charlie, because Alice is not yet committed to paying
Bob. The latter happens if Alice subsequently receives (commit, pchidAB) from
E , where pchidAB is the ID of the Alice – Bob channel. She then sends Bob all
the signatures needed to make the new commitment transaction spendable, who
replies with the secret commitment key of the old commitment transaction (thus
revoking it), along with the public commitment key of the future commitment
transaction (to allow Alice to prepare the next update, when that happens). LN
demands that before Bob forwards the onion to Charlie, he must commit as well
to the HTLC to Alice. This happens if he receives the relevant commit message
from E . Now that both parties have the HTLC in their commitment transaction
and all past commitment transactions are revoked, they consider this HTLC
“irrevocably committed”.

Bob may then receive (pushAdd, pchidAB) from E . Bob sends the onion
to Charlie, who in turn peels it, recognizes that the payment is for him and
that indeed he knows the preimage (since he generated it himself) and waits for
the HTLC between him and Bob to be irrevocably committed. After both Bob
and Charlie receive (commit), Charlie awaits for a (pushFulfill, pchidBC)
message from E . If it arrives, Charlie sends the preimage to Bob, who sends it
back to Alice. Once more every party has to receive a (commit) message for
each of the channels it participates in in order to remove the HTLC and update
the definitive balance of each player to the appropriate value after the payment
is complete. After this last update, each party keeps a note to inform E about
the new balance when it receives (getNews). Alice and Charlie also keep a note
to inform E that the payment it had asked for succeeded.

Observe that while locked up in an HTLC, funds do not belong to either
player; they are rather in a temporary, transitive state. If one party learns the
preimage, the funds become theirs, whereas if it does not learn the preimage after
some time, the other party is entitled to the funds. Also observe that within the

27

UC framework the necessary messages commit, pushFulfill and pushAdd
may never arrive, but in a correct software implementation the corresponding
actions happen automatically, without waiting for a prompt by the user.

8.5 Polling

Lastly, E may send (poll) to Alice. She then reads her state in GLedger and
checks for closed channels. If she finds maliciously closed channels (closed using
old commitments), she punishes the counterparty and takes all the funds in the
channel. If she finds in an honestly closed channel a preimage of an HTLC that
she has previously signed and for which she is an intermediary, she records it
and prepares to send it when she receives (pushFulfill). Finally, if she finds an
honestly closed channel with an HTLC output for which she knows the preimage,
she spends it immediately. For every closed channel she finds, she keeps a note
to report it to E the next time she receives (getNews).

Remark 1 (Differences between LN and ΠLN). In LN, a custom construction for
generating a new secret during each channel update is used. It reduces the space
needed to maintain a channel from O(n) to O(log n) in the number of updates.
As far as we know, its security has not been formally analysed. In the current
paper we use instead a PRF [29].

As mentioned earlier, LN uses a custom construction that takes advantage
of elliptic curve homomorphic properties in order to derive any number of key-
pairs by combining a single “basepoint” with different “labels”. We instead use
Identity Based Signatures [27,28] (IBS) to abstract the properties provided by
the construction. We also prove in Section 5 that it actually implements an IBS.

Additionally, we have chosen to simplify the protocol in a number of ways in
order to keep the analysis tractable. In particular LN defines several additional
messages that signal various types of errors in transmission. It also specifies ex-
actly how message retransmission should happen upon reconnection, specifically
for the case of connection failure while updating a channel. This allows for a more
robust system by excluding many cases of accidental channel closures. What is
more, an LN user can change their “delay” and “relayDelay” parameters even
after registration, which is not the case in ΠLN.

Lastly, in order to incentivize users to act as intermediaries or check for
channel closures on behalf of others, LN permits receiving fees for these two
roles. Furthermore, in order to reduce transaction size and ensure that bitcoin
nodes relay the transactions, it specifies exact rules for pruning outputs of too
low value (known as “dust outputs”). In the current analysis we do not consider
these features.

Figure 8 lists an exhaustive list of the exact data a channel participant needs
to store.

28

– Alice’s secret keys:
• sAlice: key for on-chain funds (DS)a

• sAlice,F : funding (DS)
• sbAlice,pay: payment basepoint (IBS)b

• sbAlice,dpay: delayed payment basepoint (IBS)
• sbAlice,htlc: htlc basepoint (IBS)
• sbAlice,rev: revocation basepoint (CSc – master)

– Bob’s public keys: public counterparts to 5 keys above
– seed: for deriving Alice’s per commitment keys sAlice,com,i with PRF
– Bob’s per commitment points:
• ∀i ∈ [1, . . . , n], sBob,com,i: one secret per revokeAndAck received (CS –

share)
• pBob,com,n+1 and pBob,com,n+2: current and next points (CS – share)

– Alice’s coins
– Bob’s coins
– for every HTLC that is included in the latest irrevocably committed (local or

remote) commitment:
• direction (Alice → Bob or Bob → Alice)
• hash
• preimage (if known)
• coins
• Is it included in latest localComn? (boolean)
• HTLC number

– signatures:
• signature resulting from SignDS(localComn+1, sBob,F) (DS)
• for every HTLC included in localComn+1, if HTLC is outgoing, a

signature for HTLC-timeout, else a signature for HTLC-success with
sBob,htlc,n+1 (IBS)

a basic Digital Signature
b Identity Based Signature
c Combined Signature

Fig. 8: Data Alice holds in an Alice – Bob channel with n updates

9 The Combined Signature primitive

As previously mentioned, we define a new primitive for combining keys and gen-
erating signatures, which is leveraged in the revocation and punishment mecha-
nism of channel updates. Furthermore, we prove that the construction designed
by the creators of LN realizes this primitive. We provide here the concrete syntax
and correctness definitions, along with the intuition behind it, the exact security
definitions, a concrete construction and proof of its security.

29

Previous work on the subject of multi-party signatures [12,32,33,34,35,36]
focuses on use-cases where some parties desire to generate a signature without
revealing their private information; the latter is created using an interactive
protocol. The resulting signatures can be verified by a single verification key,
which is also included in the output of the key generation protocol. As we will
see however, the primitive defined here has different aims and limitations and,
to our knowledge, has not been formalized yet.

A combined signature is a two-party primitive, say between Alice and Bob,
with Bob being the signer and Alice the holder of a share of the secret key.
This share is essential for issuing signatures, which in turn are verifiable with
the “combined” verification key. The verification key is generated using public
information drawn from Alice and Bob and is feasible without any party knowing
the corresponding signing key. Bob will be able to construct the signing key only
if Alice shares her secret information with him.

More specifically, the seven algorithms used by a Combined Signatures scheme
are:

– (mpk, msk)←MasterKeyGen
(
1k

)
– (pk, sk)← KeyShareGen

(
1k

)
– cpkl ← CombinePubKey (mpk, pk)
– (cpkl, cskl)← CombineKey (mpk, msk, pk, sk)
– {0, 1} ← TestKey (pk, sk)
– σ ← SignCS (m, csk)
– {0, 1} ← VerifyCS (σ, m, cpk)

We demand that these three properties hold for a scheme to have correctness:

– ∀k ∈ N,
Pr[(pk, sk)← KeyShareGen

(
1k

)
,

TestKey(pk, sk) = 1] = 1
I.e. KeyShareGen() must always generate a valid keypair.

– ∀k ∈ N,
Pr[(mpk, msk)←MasterKeyGen

(
1k

)
,

(pk, sk)← KeyShareGen
(
1k

)
,

(cpk1, csk1)← CombineKey (mpk, msk, pk, sk) ,
cpk2 ← CombinePubKey (mpk, pk) ,
cpk1 = cpk2] = 1
I.e. for suitable input, CombinePubKey() and CombineKey() produce the
same public key.

– ∀k ∈ N, m ∈M,
Pr[(mpk, msk)←MasterKeyGen

(
1k

)
,

(pk, sk)← KeyShareGen
(
1k

)
,

(cpk, csk)← CombineKey (mpk, msk, pk, sk) ,
VerifyCS(SignCS(m, csk), m, cpk) = 1] = 1
I.e. for suitable input, honestly generated signatures always verify correctly.

Beyond correctness, combined signatures have two security properties ex-
pressed as follows. Share-EUF security expresses security from the point of view

30

of Alice, and establishes that Bob cannot issue a valid combined signature if he
does not possess Alice’s corresponding secret share. Formally:

1: (aux, mpk, n)← A (init)
2: for i← 1 to n do
3: (pki, ski)← KeyShareGen

(
1k

)
4: end for
5: (cpk∗, pk∗, m∗, σ∗)← A (keys, aux, pk1, . . . , pkn)
6: if pk∗ ∈ {pk1, . . . , pkn}∧ cpk∗ = CombinePubKey (mpk, pk∗)∧

VerifyCS (σ∗, m∗, cpk∗) = 1 then
7: return 1
8: else
9: return 0

10: end if

Game share-EUFA (
1k

)

Definition 4. A Combined Signatures scheme is share-EUF-secure if

∀A ∈ PPT, Pr
[
share-EUFA

(
1k

)
= 1

]
= negl (k) or equivalently

E-share(k) = negl (k) ,

where E-share(k) = sup
A∈PPT

{Pr[share-EUFA
(
1k

)
= 1]}

On the other hand, master-EUF-CMA security is modeled very similarly to
standard EUF-CMA security, with the difference that Bob (the signer) combines
malicious shares into his public key and issues signatures with respect to such
combined keys. The security property ensures that these signatures provide no
advantage to the adversary in terms of producing a forged message for a com-
bined key of its choice. Formally:

1: (mpk, msk)←MasterKeyGen
(
1k

)
2: i← 0
3: (auxi, response)← A (init, mpk)
4: while response can be parsed as (pk, sk, m) do
5: i← i + 1
6: store pk, sk, m as pki, ski, mi

7: (cpki, cski)← CombineKey (mpk, msk, pki, ski)
8: σi ← SignCS (mi, cski)
9: (auxi, response)← A (signature, auxi−1, σi)

10: end while
11: parse response as (cpk∗, pk∗, m∗, σ∗)
12: if m∗ /∈ {m1, . . . , mi}∧ cpk∗ = CombinePubKey (mpk, pk∗)∧

VerifyCS (σ∗, m∗, cpk∗) = 1 then
13: return 1

Game master-EUF-CMAA (
1k

)

31

14: else
15: return 0
16: end if

Definition 5. A Combined Signatures scheme is master-EUF-CMA-secure if

∀A ∈ PPT, Pr
[
master-EUF-CMAA

(
1k

)
= 1

]
= negl (k) or equivalently

E-master(k) = negl (k) ,

where E-master(k) = sup
A∈PPT

{Pr[master-EUF− CMAA
(
1k

)
= 1]}

Definition 6. A Combined Signatures scheme is combine-EUF-secure if it is
both share-EUF-secure and master-EUF-CMA-secure.

In conclusion, a collection of algoritms is said to be a secure Combined Signa-
tures scheme if it conforms to the syntax of the seven aforementioned algorithms,
it satisfies the three correctness properties and provides existential unforgeability
against key-only attacks with respect to key shares and existential unforgeability
against chosen message attacks with respect to master keys.

We here define the particular construction for Combined Signatures used in
LN and prove its security.

Parameters: hash function H, group generator G

MasterKeyGen(1k):
return KeyGen(1k)

KeyShareGen(1k):
return KeyGen(1k)

CombinePubKey(mpk, pk):
return mpk · H (mpk ∥ pk) + pk · H (pk ∥mpk)

CombineKey(mpk, msk, pk, sk):
return (CombinePubKey(mpk, pk), msk·H (mpk ∥ pk)+sk·H (pk ∥mpk))

TestKey(pk, sk):
if pk = textscPubKeyGen(sk) then

return 1
else

return 0
end if

SignCS(m, csk):
return SignDS(m, csk)

VerifyCS(σ, m, cpk):
return VerifyDS(σ, m, cpk)

One can check by inspection that the syntax above matches the one re-
quired by the Combined Signatures scheme definition. Furthermore, assuming

32

that SignDS() and VerifyDS() are provided by a correct Digital Signature
construction, it is straightforward to confirm that the construction here satisfies
the Combined Signatures correctness properties.

We now move on to proving that the construction is also secure.

Lemma 2. The construction defined above is share-EUF-secure in the Random
Oracle model under the assumption that the underlying signature scheme is
strongly EUF-CMA-secure and the range of the Random Oracle coincides with
that of the underlying signature scheme signing keys.

Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
share-EUFB

(
1k

)
= 1

]
= a = non− negl (k) .

We construct a PPT distinguisher A (Fig. 9) such that

Pr
[
EUF-CMAA

(
1k

)
= 1

]
= non− negl (k)

that breaks the assumption, thus proving Lemma 2.
Let Y be the range of the random oracle. The modified random oracle used in

Fig. 9 is indistinguishable from the standard random oracle by PPT algorithms
since the statistical distance of the standard random oracle from the modified
one is at most 1

2|Y | = negl (k) as they differ in at most one element.
Let E denote the event in which B does not invoke CombinePubKey to pro-

duce cpk∗. In that case the values H (pk∗ ∥mpk) and H (mpk ∥ pk∗) are decided
after B terminates (Fig. 9, line 24) and thus

Pr [cpk∗ = CombinePubKey (mpk, pk∗) |E] = 1
|Y |

= negl (k)⇒

Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] = negl (k) .

(3)

It is

(B wins)→ (cpk∗ = CombinePubKey (mpk, pk∗))⇒
Pr [B wins] ≤ Pr [cpk∗ = CombinePubKey (mpk, pk∗)]⇒

Pr [B wins ∧ E] ≤ Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] (3)⇒
Pr [B wins ∧ E] = negl (k) .

But we know that Pr [B wins] = Pr [B wins ∧ E] + Pr [B wins ∧ ¬E] and
Pr [B wins] = a by the assumption, thus

Pr [B wins ∧ ¬E] > a− negl (k) . (4)

We now focus at the event ¬E. Let F the event in which the call of B to
CombinePubKey to produce cpk∗ results in the j-th invocation of the Ran-
dom Oracle. Since j is chosen uniformly at random and using Proposition 2,
Pr [F |¬E] = 1

T (B) . Observe that Pr [F |E] = 0⇒ Pr [F] = Pr [F |¬E] = 1
T (B) .

33

1: j
$← U [1, T (B)] // T (M) is the maximum running time of M

2: Random Oracle: for every first-seen query q from B set H (q) to a random
value

3: return H (q) to B
4: (aux, mpk, n)← A (init)
5: for i← 1 to n do
6: (pki, ski)← KeyShareGen

(
1k

)
7: end for
8: Random Oracle: Let q be the j-th first-seen query from B:
9: if q = (mpk ∥x) then

10: if H (x ∥mpk) unset then
11: set H (x ∥mpk) to a random value
12: end if
13: set H (mpk ∥x) to (vk − x · H (x ∥mpk)) ·mpk−1

14: else if q = (x ∥mpk) then
15: if H (mpk ∥x) unset then
16: set H (mpk ∥x) to a random value
17: end if
18: set H (x ∥mpk) to (vk −mpk · H (mpk ∥x)) · x−1

19: else
20: set H (q) to a random value
21: end if
22: return H (q) to B
23: (cpk∗, pk∗, m∗, σ∗)← B (keys, aux, pk1, . . . , pkn)
24: if vk = cpk∗ ∧B wins the share-EUF game then // A won the EUF-CMA game
25: return (m∗, σ∗)
26: else
27: return fail
28: end if

Algorithm A (vk)

Fig. 9

34

In the case where the event (F ∧ B wins ∧ ¬E) holds, it is

cpk∗ = CombinePubKey (mpk, pk∗) =
mpk · H (mpk ∥ pk∗) + pk∗ · H (pk∗ ∥mpk)

Since F holds, the j-th invocation of the Random Oracle queried either the value
H (mpk ∥ pk∗) orH (pk∗ ∥mpk). In either case (Fig. 9, lines 9-18), it is cpk∗ = vk.
This means that VerifyCS (σ∗, m∗, vk) = 1. We conclude that under the event
(F ∧ B wins ∧ ¬E), A wins the EUF-CMA game. A final observation is that the
probability that the events (B wins ∧ ¬E) and F are almost independent, thus

Pr [F ∧ B wins ∧ ¬E] = Pr [F] Pr [B wins ∧ ¬E]± negl (k) (4)=
a− negl (k)

T (B) ± negl (k) = non− negl (k)

Lemma 3. The construction above is master-EUF-CMA-secure in the Random
Oracle model under the assumption that the underlying signature scheme is
strongly EUF-CMA-secure and the range of the Random Oracle coincides with
that of the underlying signature scheme signing keys.

Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
master-EUF-CMAB

(
1k

)
= 1

]
= a = non− negl (k) .

We construct a PPT distinguisher A (Fig. 10) such that

Pr
[
EUF-CMAA

(
1k

)
= 1

]
= non− negl (k)

that breaks the assumption, thus proving Lemma 3.
The modified random oracle used in Fig. 10 is indistinguishable from the

standard random oracle for the same reasons as in the proof of Lemma 2.
Let E denote the event in which CombinePubKey is not invoked to produce

cpk∗. In that case the values H (pk∗ ∥mpk) and H (mpk ∥ pk∗) are decided after
B terminates (Fig. 10, line 30) and thus

Pr [cpk∗ = CombinePubKey (mpk, pk∗) |E] = negl (k)⇒
Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] = negl (k) .

(5)

We can reason like in the proof of Lemma 2 to deduce that

Pr [B wins ∧ ¬E] > a− negl (k) . (6)

We now focus at the event ¬E. Let F the event in which the call of to
CombinePubKey that produces cpk∗ results in the j-th invocation of the Ran-
dom Oracle. Since j is chosen uniformly at random and using Proposition 2,

35

1: j
$← U [1, T (B) + T (A)] // T (M) is the maximum running time of M

2: Random Oracle: for every first-seen query q from B set H (q) to a random
value

3: return H (q) to B
4: (mpk, msk)←MasterKeyGen

(
1k

)
5: Random Oracle: Let q be the j-th first-seen query from B or A:
6: if q = (mpk ∥x) then
7: if H (x ∥mpk) unset then
8: set H (x ∥mpk) to a random value
9: end if

10: set H (mpk ∥x) to (vk − x · H (x ∥mpk)) ·mpk−1

11: else if q = (x ∥mpk) then
12: if H (mpk ∥x) unset then
13: set H (mpk ∥x) to a random value
14: end if
15: set H (x ∥mpk) to (vk −mpk · H (mpk ∥x)) · x−1

16: else
17: set H (q) to a random value
18: end if
19: return H (q) to B or A
20: i← 0
21: (auxi, response)← B (init, mpk)
22: while response can be parsed as (pk, sk, m) do
23: i← i + 1
24: store pk, sk, m as pki, ski, mi

25: (cpki, cski)← CombineKey (mpk, msk, pki, ski)
26: σi ← SignCS (mi, cski)
27: (auxi, response)← B (signature, auxi−1, σi)
28: end while
29: parse response as (cpk∗, pk∗, m∗, σ∗)
30: if vk = cpk∗ ∧ B wins the master-EUF-CMA game then // A won the

EUF-CMA game
31: return (m∗, σ∗)
32: else
33: return fail
34: end if

Algorithm A (vk)

Fig. 10

36

Pr [F |¬E] = 1
T (B)+T (A) . Observe that Pr [F |E] = 0 ⇒ Pr [F] = Pr [F |¬E] =

1
T (B)+T (A) .

Once more we can reason in the same fashion as in the proof of Lemma 2 to
deduce that

Pr [F ∧ B wins ∧ ¬E] = Pr [F] Pr [B wins ∧ ¬E]± negl (k) (6)=
a− negl (k)

T (B) + T (A) ± negl (k) = non− negl (k)

The two results can then be combined to obtain the desired security property:

Theorem 1. The construction above is combine-EUF-secure in the Random Or-
acle model under the assumption that the underlying signature scheme is strongly
EUF-CMA-secure.

Proof. The construction is combine-EUF-secure as a consequence of Lemma 2,
Lemma 3 and the definition of combine-EUF-security.

10 Security proof overview

Theorem 2 (Lightning Payment Network Security). The protocol ΠLN
UC-realises the local functionality FPayNet given a global functionality GLedger
and assuming the security of the underlying digital signature, identity-based sig-
nature, combined digital signature and PRF. Specifically,

∀k ∈ N,∃ PPT S : ∀ PPT E , |Pr[ExecGLedger
ΠLN,Ad,E = 1]− Pr[ExecFPayNet,GLedger

S,E = 1]| ≤
2nmE-ds(k) + 6npE-ids(k) + 2nmpE-share(k) + 2nmE-master(k) + 2E-prf(k) ,

where n is the maximum number of registered users, m is the maximum number
of channels that a user is involved in, p is the maximum number of times that
a channel is updated and the “E-” terms correspond to the insecurity bounds of
the primitives.

Proof Sketch. The proof is done in 5 steps of successive game replacement. In
Lemma 4, we define a simulator SLN that internally simulates a full execution
of ΠLN for each player, and a “dummy” functionality that acts as a simple
relay between E and SLN. We argue that this version of the ideal world trivially
produces the exact same messages for E as the real world.

In each subsequent step, we incrementally move responsibilities from the
simulator to the functionality, while ensuring the change is transparent to both
E and A. Each step defines a different functionality that handles some additional
messages from E exactly like FPayNet, until the last step (Lemma 8) where we
use FPayNet itself. Correspondingly, the simulator of each step is adapted so that
the new ideal execution is computationally indistinguishable from the previous

37

one. For each step we exhaustively trace the differences from the previous step
in order to prove that, given the same messages from E and A, the resulting
responses remain unchanged.

In the second step, Lemma 5 lets F handle registration messages, along with
the corruption messages from S. In the third step, Lemma 6, the functionality ad-
ditionally handles messages related to channel opening. It behaves like FPayNet,
but does not execute checkClosed(). In the fourth step, Lemma 7 has the func-
tionality handle all messages sent during channel updates. Lastly, Lemma 8 has
the entire FPayNet as its functionality, by incorporating the message for closing
a channel, executing checkClosed() normally and handing the message that re-
turns to E the receipts for newly opened, updated and closed channels. The last
two steps introduce a probability of failure in case the various types of signatures
used in ΠLN are forged. We analyze these cases separately and argue that, if such
forgeries do not happen, the emulation is perfect. Therefore we can calculate the
concrete security bounds shown in the theorem.
As a concrete example of the proof approach, the second step entails the fol-
lowing parts: First FPayNet,Reg is defined, which is a functionality that behaves
exactly like FPayNet when receiving the messages register, registerDone,
toppedUp and corrupted, but simply forwards all other messages along with
the sender to S. Then SLN−Reg is defined, which simulates all protocol instances,
but in response to register messages from FPayNet,Reg, it provides the public
key of the key it just generated (as FPayNet,Reg expects). It also keeps track of
corruptions and informs FPayNet,Reg thereof. Lastly, we argue that the function-
ality and simulator that were used in the first step can be replaced by their newly
defined counterparts without introducing any discernible difference to the tran-
script that any E sees. This is achieved by exhaustive enumeration of all possible
messages and comparison of the behaviour of the ideal and the real world for
each, to conclude that the change is transparent to E . The formal proof can be
found in Section 15.

11 Instant finality ledgers are unrealisable

Previous attempts at formalising payment channels in UC [13,14,15,16] assume a
variant of a ledger functionality with instant finality. In particular, in [13,16,14]
the specified ledger functionality settles every submitted transaction immediately
and makes it visible to all players. To date, such a ledger has not been realized by
any protocol. Furthermore, any realistic model of the network should consider the
fact that messages reach their destination with a delay and possibly in a different
order from the one they were sent. Therefore it is plausible to believe that such
a ledger functionality is not realizable on top of realistic network models, even
when corruptions are not allowed. We here prove formally this intuition.

In [15] the ledger is not explicitly specified as a functionality, but it is only
informally described. Several smart contracts are formally defined instead as
UC ITMs, which are the entities with which protocols ultimately interact. The
execution model of these contracts and their interaction with the blockchain

38

is explained in an intuitive way, but a complete formalization of the ledger is
missing.

We here define a representative variant of this approach FPerfectL where all
submitted transactions are instantly added to the ledger and immediately avail-
able to be read by all players. Subsequently we argue that, albeit an attractive
abstraction, such a functionality is unrealisable, even under strong network as-
sumptions, i.e. a multicast synchronous network F1

N-MC (c.f. Figure 12). Such
a network ensures that messages sent by honest parties will be instantly de-
livered to all other parties; no delays can be introduced by the adversary. The
formal definition of F1

N-MC can be found in Figure 12. The adversary however
may choose to send its own messages only to specific parties. This allows the
adversary to spread conflicting information or withhold data from some parties.
This adversarial ability precludes the possibility of such a ledger to be realised.

1: State: List of txs L

2: Upon receiving (Submit, m) from P or A, append m to L and send (Submit,
P or A, m) to A

3: Upon receiving (Read) from P , send (Read, L) to P

Functionality FPerfectL

Fig. 11: FPerfectLfunctionality

Theorem 3 (Perfect Ledger is Unrealisable). No ITM ΠPerfectL with hy-
brids F1

N-MC and Ḡclock can realise FPerfectL. Put otherwise, for any ITM ΠPerfectL
with hybrids F1

N-MC and Ḡclock, there exist ITMs EPL, APL such that for any
ITM S

ExecF
1
N-MC,Ḡclock

ΠPerfectL,APL,EPL
̸≈ ExecFPerfectL,Ḡclock

S,EPL

Proof Sketch. We take advantage of APL’s ability to selectively send messages
to specific players. In particular, EPL starts an execution with two players and
generates a random message m. In half of the executions (randomly selected),
the adversary simulates a “broken” ΠPerfectL execution where the effects of sub-
mitting m are only shared with one of the two players, say Alice by APL (in the
real world). The environment then sends (read) to the other player, say Bob. If
Bob returns a ledger containing m, then EPL concludes that it is the ideal world,
otherwise it sends (read) to Alice. If she returns a ledger with m, then EPL
concludes it is in the real world, otherwise it concludes it is in the ideal world.

The above is not sufficient since a protocol may choose to return an empty
ledger; to counter this, in the other half of the executions, EPL sends (submit,
m) to Alice and then (read) to Bob. If, and only if, Bob knows m, then EPL

39

The functionality is parameterised with a set of possible senders and receivers P.
Any newly registered (resp. deregistered) party is added to (resp. deleted from) P.

– Honest sender multicast. Upon receiving (multicast, sid, m) from some
Up ∈ P, where P = {U1, . . . , Un} denotes the current party set, choose n new
unique message-IDs mid1, . . . , midn, initialize 2n new variables
Dmid1 := DMAX

mid1 . . . := Dmidn := DMAX
midn

:= 1, set
M⃗ := M⃗ ||(m, mid1, Dmid1 , U1)|| . . . ||(m, midn, Dmidn , Un), and send
(multicast, sid, m, Up, (U1, mid1), . . . , (Un, midn)) to the adversary.

– Adversarial sender (partial) multicast. Upon receiving
(multicast, sid, (mi1 , Ui1), . . . , (miℓ , Uiℓ) from the adversary with
{Ui1 , . . . , Uiℓ} ⊆ P, choose ℓ new unique message-IDs midi1 , . . . , midiℓ ,
initialize ℓ new variables Dmidi1

:= DMAX
midi1

:= . . . := Dmidiℓ
:= DMAX

midiℓ
:= 1, set

M⃗ := M⃗ ||(mi1 , midi1 , Dmidi1
, Ui1)|| . . . ||(miℓ , midiℓ , Dmidiℓ

, Uiℓ), and send
(multicast, sid, (mi1 , Ui1 , midi1), . . . , (miℓ , Uiℓ , midiℓ) to the adversary.

– Honest party fetching. Upon receiving (fetch, sid) from Up ∈ P (or from A
on behalf of Up if Up is corrupted):
1. For all tuples (m, mid, Dmid, Up) ∈ M⃗ , set Dmid := Dmid − 1.
2. Let M⃗

Up

0 denote the subvector M⃗ including all tuples of the form
(m, mid, Dmid, Up) with Dmid = 0 (in the same order as they appear in M⃗).
Delete all entries in M⃗

Up

0 from M⃗ , and send M⃗
Up

0 to Up.
– Adding adversarial delays. Upon receiving

(delays, sid, (Tmidi1
, midi1), . . . , (Tmidiℓ

, midiℓ)) from the adversary do the
following for each pair (Tmidij

, midij):
If DMAX

midij
+ Tmidij

≤ ∆ and mid is a message-ID registered in the current M⃗ ,
set Dmidij

:= Dmidij
+ Tmidij

and set DMAX
midij

:= DMAX
midij

+ Tmidij
; otherwise,

ignore this pair.
– Adversarially reordering messages. Upon receiving (swap, sid, mid, mid′)

from the adversary, if mid and mid′ are message-IDs registered in the current
M⃗ , then swap the triples (m, mid, Dmid, ·) and (m, mid′, Dmid′ , ·) in M⃗ . Return
(swap, sid) to the adversary.

Functionality F∆
N-MC

Fig. 12: F∆
N-MC functionality

40

concludes this is the ideal world. This forces the ΠPerfectL protocol to achieve
instant finality and will establish that a distinguishing advantage exists no mat-
ter how ΠPerfectL is implemented.

Proof of Theorem 3. We first define the offending environment and adversary
and subsequently show how they can distinguish the ideal from the real world.

Upon receiving (leak, m, Alice) from EPL, simulate ΠPerfectL reacting to (submit,
m). If it attempts to send a message (multicast, m′) to F1

N-MC, send (multicast,
(m′, Alice)) to F1

N-MC.

Adversary APL

Fig. 14: APLadversary

Since we quantify over all possible S and ΠPerfectL, we have to refer to the
probabilities of them taking specific actions of interest:

pΠPerfectL
submits = Pr[Upon receiving (submit, m) from E ,

ΠPerfectL sends (multicast, f(m)) to F1
N-MC for some function f]

pΠPerfectL
fetches = Pr[Upon receiving (read) from E ,

ΠPerfectL sends (fetch) to F1
N-MC for data m′

and sends back to E a (read, L) such that
if there is a unique element m in L, it is f(m) = m′]

We first analyze the event in which the initial coin flip of E results in 0,
Coin0. In the ideal world, the submitted message m always ends up in the ledger
right away and therefore when E has Bob read, it always sees m in the answer,
therefore (Fig. 13, line 11)

Pr[ExecFPerfectL,Ḡclock
S,EPL

= 1|Coin0] = 1 .

In the real world, in order for the submitted message m to be in Bob’s
response to read, he must have fetched from F1

N-MC and considered this data
as a new ledger entry, and Alice must have sent some function of m to F1

N-MC
when she received (submit, m), except if he could guess m, which can happen
with negligible probability, therefore

Pr[ExecF
1
N-MC,Ḡclock

ΠPerfectL,APL,EPL
= 1|Coin0] < pΠPerfectL

submits pΠPerfectL
fetches + negl(k) .

We now move on to the event in which the initial coin flip results in 1, Coin1.
In the ideal world, if S submits the received m to the ledger then E ’s read

41

Spawn two players, Alice and Bob. Flip a coin. If it returns 0, execute
writeWithPlayer, otherwise execute writeWithAdversary.
1: procedure writeWithPlayer
2: First activation:
3: choose random number m

$← {0, 1}k

4: assign at random names Alice, Bob to two players
5: send (submit, m) to Alice
6: Second activation:
7: send (read) to Bob
8: if Bob does not give subroutine output then
9: return 0 // real world

10: else if Bob’s subroutine output L contains m then
11: return 1 // players communicated
12: else if L does not contain m then
13: return 0 // players did not communicate
14: end if
15: end procedure

16: procedure writeWithAdversary
17: First activation:
18: choose random number m

$← {0, 1}k

19: assign at random names Alice, Bob to two players
20: send (leak, m, Alice) to A // in real world A will multicast to Alice
21: Second activation:
22: send (read) to Bob
23: Third activation:
24: if Bob does not give subroutine output then
25: return 0 // real world
26: else if Bob’s subroutine output LBob contains m then
27: return 1 // ideal world
28: end if
29: send (read) to Alice
30: if Alice does not give subroutine output then
31: return 0 // real world
32: else if Alice’s subroutine output LAlice contains m then
33: return 0 // real world
34: else if LAlice does not contain m then
35: return 1 // ideal world or real Alice misbehaving
36: end if
37: end procedure

Environment EPL

Fig. 13: EPLenvironment

42

request to Bob will be answered with an output that contains m and E will
output 1 (Fig. 13, line 27). If on the other hand S does not submit it, then
neither Bob’s nor Alice’s answer will contain m, so E ’s output will also be 1
(Fig. 13, line 35).

Pr[ExecFPerfectL,Ḡclock
S,EPL

= 1|Coin1] = 1 .

Lastly, in the real world, Bob’s buffer in F1
N-MC does not contain any infor-

mation, so he may return a ledger containing m only with negligible probability.
In case he returns a ledger without m, Alice will respond to E ’s read query with
a ledger containing m exactly in the case that the event that defines pΠPerfectL

fetches is
true, therefore

Pr[ExecF
1
N-MC,Ḡclock

ΠPerfectL,APL,EPL
= 1|Coin1] < (1− pΠPerfectL

fetches) + negl(k) .

Note that ΠPerfectL cannot leverage knowledge of its own pid in order to have
Alice behave differently from Bob in a manner that tricks EPL into believing
that it interacts with the ideal world (i.e. make Alice also not return a ledger
that contains m) because the roles of Alice and Bob are assigned and the coin
is flipped secretly at random by EPL.

In aggregate,

Pr[ExecF
1
N-MC,Ḡclock

ΠPerfectL,APL,EPL
= 1] =

1
2(Pr[ExecF

1
N-MC,Ḡclock

ΠPerfectL,APL,EPL
= 1|Coin0] + Pr[ExecF

1
N-MC,Ḡclock

ΠPerfectL,APL,EPL
= 1|Coin1]) <

1
2(pΠPerfectL

submits pΠPerfectL
fetches + 1− pΠPerfectL

fetches) + negl(k) =

1
2 + pΠPerfectL

fetches
pΠPerfectL

submits − 1
2 + negl(k) ,

and

Pr[ExecFPerfectL,Ḡclock
S,EPL

= 1] =
1
2(Pr[ExecFPerfectL,Ḡclock

S,EPL
= 1|Coin0] + Pr[ExecFPerfectL,Ḡclock

S,EPL
= 1|Coin1]) = 1 .

For these two probabilities to be equal (which is necessary and sufficient for
indistinguishability to hold), it would have to be pΠPerfectL

fetches (pΠPerfectL
submits − 1) = 1.

One can verify that there is no assignment to the two probabilities that satisfies
this equation and maintains both values within [0, 1]. Therefore, the real and
the ideal world are distinguishable.

12 Transaction Structure

A well-formed transaction consists of a list of inputs and a list of outputs. For
the transaction to be valid, each input must be connected to a single valid,
previously unconnected (unspent) output of another transaction in GLedger.

43

A well-formed output consists of a value in coins and a list of “spending
methods”. A well-formed input consists of a reference to a previously unconnected
output and a reference to a single of the latter’s spending methods, along with
the data needed to satisfy that method. A well-formed spending method contains
any combination of the following:

– Public keys in disjunctive normal form. An input that spends using this
spending method must contain signatures valid by the public keys of one of
the conjunctions. If no public keys are specified in the output, no signatures
are needed in the input.

– Absolute locktime da, in block height or time. An input that spends this
output can only be in block of height at least da if da is a block height,
or enter the ledger on or after time da otherwise. Zero means no absolute
locktime.

– Relative locktime dr, in block height or time. The distance of an input that
spends this output must be at least dr, counted in block height or time. Zero
means no relative locktime.

– Hashlock value. The output can be spent by an input that contains a preim-
age that hashes to the hashlock value. If no hashlock value is specified in the
output, no preimage is needed in the spending input.

Lastly, the sum of coins of the outputs referenced by the inputs of the trans-
action (to-be-spent outputs) should be greater than or equal to the sum of coins
of the outputs of the transaction.

We say that an unspent output is currently exclusively spendable by a player
Alice with a public key pk and a hash list hl if for each spending method one of
the following two holds:

– It still has a locktime that has not expired and thus is currently unspendable,
or

– The only specified public key is pk and if there is a hashlock, its hash is
contained in hl.

If an output is exclusively spendable, we say that its coins are exclusively spend-
able.

44

13 Payment Network Functionality

Interface:

– from E :
• (register, delay, relayDelay)
• (toppedUp)
• (openChannel, Alice, Bob, x, tid)
• (checkForNew, Alice, Bob, tid)
• (pay, Bob, x,

−−→
path, expayid)

• (closeChannel, receipt, pchid)
• (forceCloseChannel, receipt, pchid)
• (poll)
• (pushFulfill, pchid)
• (pushAdd, pchid)
• (commit, pchid)
• (fulfillOnChain)
• (getNews)

– to E :
• (register, Alice, delay(Alice), relayDelay(Alice), pubKey)
• (registered)
• (news, newChannels, closedChannels, updatesToReport,

paymentsToReport)
– from S:
• (registerDone, Alice, pubKey)
• (corrupted, Alice)
• (channelAnnounced, Alice, pAlice,F , pBob,F , fchid, pchid, tid)
• (newUpdate, receipt, Alice)
• (newPayments, payments, Alice)
• (closedChannel, channel, Alice)
• (resolvePays, charged)
• (adversaryOpenChannel, x, bobDelay, tid, intid, from Alice, to Bob)
• (adversarySendInvoice, x, expayid, payid, invid, from Alice, to Bob)

– to S:
• (register, Alice, delay, relayDelay)
• (openChannel, Alice, Bob, x, fchid, tid)
• (channelOpened, Alice, fchid)
• (pay, Alice, Bob, x,

−−→
path, expayid, payid, state, Σ)

• (continue)
• (closeChannel, fchid, Alice)
• (forceCloseChannel, fchid, Alice)
• (poll, ΣAlice, Alice)
• (pushFulfill, pchid, Alice)

Functionality FPayNet – preamble

45

• (pushAdd, pchid, Alice)
• (commit, pchid, Alice)
• (fulfillOnChain, t, Alice)
• (adversaryOpenChannel, fchid, intid)
• (adversarySendInvoice, invid)

Fig. 15

All players need to register in order to use channels. The registration of Alice
works as follows: Alice inputs her desired delay and relayDelay that will be used
for all her future channels. The first denotes how often she has to check the
blockchain for revoked commitments and the second defines the minimum time
distance between incoming and outgoing CLTV expiries. FPayNet then informs
S, who sends back a long-lived public key for Alice. This key represents Alice’s
account, from where FPayNet can get coins to open new channels on her behalf
and to place coins of closed channels. The key is sent to Alice who moves some
initial funds to it and notifies FPayNet. She is now registered. The exact logic is
found in Fig. 16, which also contains the actions of FPayNet related to corruptions.

Additionally, the procedure checkClosed() is called after reading from GLedger,
with the received state Σ as input. This call happens every time FPayNet reads
from GLedger. The formal definition of checkClosed() can be found in Fig. 25,
along with a discussion of its purpose.

46

1: Initialisation:
2: channels, pendingPay, pendingOpen← ∅
3: pendingDiffs, corrupted, Σ ← ∅

4: Upon receiving (register, delay, relayDelay) from Alice:
5: delay (Alice)← delay // Must check chain at least once every delay(Alice)

blocks
6: relayDelay (Alice)← relayDelay
7: updatesToReport (Alice) , newChannels (Alice)← ∅
8: polls (Alice)← ∅
9: focs (Alice)← ∅

10: register Alice to GLedger, send (read) to GLedger as Alice, store reply to
ΣAlice, add ΣAlice to Σ and add largest block number to polls(Alice)

11: checkClosed(ΣAlice)
12: send (register, Alice, delay, relayDelay) to S

13: Upon receiving (registerDone, Alice, pubKey) from S:
14: pubKey (Alice)← pubKey
15: send (register, Alice, delay(Alice), relayDelay(Alice), pubKey) to Alice

16: Upon receiving (toppedUp) from Alice:
17: send (read) to GLedger as Alice and store reply to ΣAlice
18: checkClosed(ΣAlice)
19: assign the sum of all output values that are exclusively spendable by Alice

to onChainBalance
20: send (registered) to Alice

21: Upon receiving any message (M) except for (register) or (toppedUp) from
Alice:

22: if if haven’t received (register) and (toppedUp) from Alice (in this
order) then

23: send (invalid, M) to Alice and ignore message
24: end if

25: Upon receiving (corrupted, Alice) from S:
26: add Alice to corrupted
27: for the rest of the execution, upon receiving any message for Alice, bypass

normal execution and simply forward it to S

Functionality FPayNet – registration and corruption

Fig. 16

The process of Alice opening a channel with Bob is as follows: First Alice asks
FPayNet to open and FPayNet informs S. S provides the necessary keys and IDs

47

for the new channel to FPayNet. Alice asks FPayNet to check if GLedger contains
the funding transaction from Alice’s point of view. If it does, FPayNet activates
S, who in turn returns control to FPayNet. Now FPayNet checks that the funding
transaction is in the GLedger also from Bob’s point of view and in case it does, it
notifies S. S then confirms that to FPayNet that the channel is open and FPayNet
finally stores the channel as open. This last exchange is needed to match the
real-world interaction.

1: Upon receiving (openChannel, Alice, Bob, x, tid) from Alice:
2: ensure tid hasn’t been used by Alice for opening another channel before
3: choose unique channel ID fchid
4: pendingOpen (fchid)← (Alice, Bob, x, tid)
5: send (openChannel, Alice, Bob, x, fchid, tid) to S

6: Upon receiving (adversaryOpenChannel, x, bobDelay, tid, intid, from
Alice, to Bob) from S:

7: ensure Alice is corrupted and Bob is not
8: ensure tid, intid haven’t been associated with Alice when opening another

channel before
9: choose unique channel ID fchid

10: pendingOpen (fchid)← (Alice, Bob, x, tid)
11: send (adversaryOpenChannel, fchid, intid) to S

Functionality FPayNet – initiate open

Fig. 17

48

1: Upon receiving (channelAnnounced, Alice, pAlice,F , pBob,F , fchid, pchid, tid)
from S:

2: ensure that there is a pendingOpen(fchid) entry with temporary id tid
3: add pAlice,F , pBob,F , pchid and mark “Alice announced” to

pendingOpen(fchid)

4: Upon receiving (checkForNew, Alice, Bob, tid) from Alice:
5: ensure there is a matching channel in pendingOpen(fchid), marked with

“Alice announced”
6: (funder, fundee, x, pAlice,F , pBob,F)← pendingOpen (fchid)
7: send (read) to GLedger as Alice and store reply to ΣAlice
8: checkClosed(ΣAlice)
9: ensure that there is a TX F ∈ ΣAlice with a (x, (pfunder,F ∧ pfundee,F))

output
10: mark channel with “waiting for fundingLocked”
11: send (fundingLocked, Alice, ΣAlice, fchid) to S

12: Upon receiving (fundingLocked, fchid) from S:
13: ensure a channel is in pendingOpen(fchid), marked with “waiting for

fundingLocked” and replace mark with “waiting for channelOpened”
14: send (read) to GLedger as Bob and store reply to ΣBob
15: checkClosed(ΣBob)
16: ensure that there is a TX F ∈ ΣBob with a (x, (pfunder,F ∧ pfundee,F)) output
17: add receipt(channel) to newChannels(Bob)
18: send (fundingLocked, Bob, ΣBob, fchid) to S

19: Upon receiving (channelOpened, fchid) from S:
20: ensure a channel is in pendingOpen(fchid), marked with “waiting for

channelOpened” and remove mark
21: offChainBalance (funder)← offChainBalance (funder) + x
22: onChainBalance (funder)← onChainBalance (funder)− x
23: channel← (funder, fundee, x, 0, 0, fchid, pchid)
24: add channel to channels
25: add receipt(channel) to newChannels(Alice)
26: clear pendingOpen(fchid) entry

Functionality FPayNet – negotiate open

Fig. 18

When instructed to perform a payment, FPayNet simply takes note of the
message and forwards it to S. It also remembers to inform the payer that the
payment has been completed when S says so. Observe here that FPayNet trusts S
to correctly carry out channel updates. While counterintuitive, it allows FPayNet
to ignore the details of channel updates, signatures, key and transaction han-

49

dling. Nevertheless, as we will see FPayNet keeps track of requested and ostensibly
carried out updates and ensures that upon channel closure the balances are as
expected, therefore ensuring funds security.

1: Upon receiving
(
pay, Bob, x,

−−→
path, expayid

)
from Alice:

2: choose unique payment ID payid
3: add

(
Alice, Bob, x,

−−→
path, expayid, payid

)
to pendingPay

4: send (pay, Alice, Bob, x, −−→path, expayid, payid, state, Σ) to S

5: Upon receiving (adversarySendInvoice, x, expayid, payid, invid, from Alice,
to Bob) from S:

6: ensure Alice is corrupted and Bob is not
7: ensure payid, invid haven’t been associated with Alice when starting

another payment before
8: add (Alice, Bob, x, ⊥, expayid, payid) to pendingPay
9: send (adversarySendInvoice, invid) to S

10: Upon receiving (newUpdate, receipt, Alice) from S:
11: append receipt to updatesToReport(Alice) // trust S here, check on

resolvePays
12: send (continue) to S

13: Upon receiving (newPayments, payments, Alice) from S:
14: add payments to pendingDiffs
15: strip payid from each member of payments and add them to

paymentsToReport(Alice)
16: send (continue) to S

Functionality FPayNet – pay

Fig. 19

The message resolvePays, sent by S, is supposed to contain a list of resolved
payments, along with who was charged for each payment after all. For each
entry there are four “happy paths” that do not lead to FPayNet halting (FPayNet
halts when it cannot uphold its security guarantees anymore): if the payment
failed and no balance is changed, if the charged player is the one who initiated
the payment, if the charged player is corrupted or if she has not checked the
blockchain at the right times, i.e. was negligent (as discussed in Section 7 and
formally defined in Figures 20 and 21). In case the payment was completed
in a legal manner, the balance of all channels involved is updated accordingly
(Fig. 23). Conversely, FPayNet halts if the charged player was not on the payment
path (Fig. 20, l. 14), if a signature forgery has taken place (Fig. 22, l. 4), if the

50

charged player has not been negligent (Fig. 22, ll. 7 and 15), or if any one of the
individual channel updates needed to carry out the whole payment has not been
previously reported with an update message by S (Fig. 23, l. 10).

1: Upon receiving (resolvePays, charged) from S: // after first sending pay,
pushFulfill, pushAdd, commit

2: for all Alice keys ∈ charged do
3: for all

(
Dave, payid, ?−−→path

)
∈ charged (Alice) do

4: retrieve
(
Alice, Bob, x,

−−→
path, expayid, payid

)
and remove it from

pendingPay
5: if there is a −−→path in neither or both the pendingPay and charged

entries then
6: halt
7: end if
8: if Dave = ⊥ then // Payment failed
9: if there is an (expayid, payid, _) entry in pendingDiffs(Alice)

or pendingDiffs(Bob) AND Alice or Bob respectively is honest then
10: halt
11: end if
12: continue with next iteration of inner loop
13: else if Dave /∈ −−→path then
14: halt // Only players on path may be charged
15: else if Dave ∈ corrupted then
16: run code of Fig. 23
17: increase offChainBalance(Bob) by x
18: else // Dave honest
19: run code of Fig. 22
20: end if
21: end for
22: end for

Functionality FPayNet – resolve payments

Fig. 20: r, windowSize as in Proposition 1

51

IncomingCltvExpiry− OutgoingCltvExpiry <
relayDelay(Alice) + (2 + r) windowSize ∨
(polls(Dave) contains two elements in
[OutgoingCltvExpiry, IncomingCltvExpiry− (2 + r) windowSize] that have a
difference of at least (2 + r) windowSize ∧
focs(Dave) contains IncomingCltvExpiry− (2 + r) windowSize ∧
the element in polls(Dave) was added before the element in focs(Dave))

Absolute delay failure condition

Fig. 21

1: send (read) to GLedger as Dave and store reply to ΣDave
2: checkClosed(ΣDave)
3: if ΣDave contains a tx that is not a localComn or a remoteComn and spends a

funding tx for an open channel that contains Dave then
4: halt // DS forgery
5: else if ΣDave contains in block htx an old remoteComm that does not contain

the HTLC and a tx that spends the delayed output of remoteComm then
6: if polls(Dave) contains an element in [htx, htx + delay (Dave)− 1] then
7: halt // Dave polled, but successful malicious closure
8: else
9: negligent(Dave)← true

10: end if
11: else if Dave ̸= Alice then
12: calculate IncomingCltvExpiry, OutgoingCltvExpiry of Dave (as in

Fig. 39, l. 9)
13: if ΣDave does not contain an old remoteComm then
14: if failure condition of Fig. 21 is true then
15: halt // Dave polled and fulfilled, but charged
16: else
17: negligent(Dave)← true
18: end if
19: end if
20: end if
21: run code of Fig. 23
22: decrease offChainBalance(Dave) by x
23: increase offChainBalance(Bob) by x

Honest payer

Fig. 22

52

1: for all open channels ∈ −−→path that are not in any closedChannels, starting
from the one where Dave pays do

2: in the first iteration, payer is Dave. In subsequent iterations, payer is the
unique player that has received but has not given. The other channel party is
payee

3: if payer has x or more in channel then
4: update channel to the next version and transfer x from payer to payee
5: else
6: revert all updates done in this loop
7: end if
8: end for
9: for all updated channels in the previous loop do

10: ensure that an element reporting the new balance exists either in the
updatesToReport or the updatesHistory of each honest party and that
element has not been checked by the current line in the past, otherwise halt

11: end for
12: if

Dave = Alice∧Alice /∈ corrupted∧ (expayid, payid,−x) /∈ pendingDiffs(Alice)
then // payer not informed

13: halt
14: end if
15: remove (expayid, payid, −x) from pendingDiffs(Alice)
16: if Bob /∈ corrupted ∧ (expayid, payid, x) /∈ pendingDiffs(Bob) then // payee

not informed
17: halt
18: end if
19: remove (expayid, payid, x) from pendingDiffs(Bob)

Loop over payment hops for update and check

Fig. 23

Similarly to payment instructions, when FPayNet receives a message instruct-
ing it to close a channel (Fig. 24), it takes a note of the pending closure, it stops
serving any more requests for this channel and it forwards the request to S. In
turn S notifies FPayNet of a closed channel with the corresponding message, upon
which FPayNet takes a note to inform the corresponding player. Depending on
whether the message instructed for a unilateral or a cooperative close, FPayNet
will either put or not a time limit respectively to the service of the request. In
particular, in case of cooperative close, the time limit is infinity (l. 4). As we will
see, in case a unilateral close request was made and the time limit for servic-
ing it is reached, FPayNet halts (Fig. 25, l. 27). Once more FPayNet trusts S, but
later checks that the chain contains the correct transactions with checkClosed()
(Fig. 25).

53

1: Upon receiving (closeChannel, receipt, pchid) from Alice
2: ensure that there is a channel ∈ channels : receipt (channel) = receipt

with ID pchid
3: retrieve fchid from channel
4: add (fchid, receipt(channel), ∞) to pendingClose(Alice)
5: do not serve any other (pay, closeChannel) message from Alice for this

channel
6: send (closeChannel, receipt, pchid, Alice) to S

7: Upon receiving (forceCloseChannel, receipt, pchid) from Alice
8: retrieve fchid from channel
9: add (fchid, receipt(channel), ⊥) to pendingClose(Alice)

10: do not serve any other (pay, closeChannel, forceCloseChannel)
message from Alice for this channel

11: send (forceCloseChannel, receipt, pchid, Alice) to S

12: Upon receiving (closedChannel, channel, Alice) from S:
13: remove any (fchid of channel, receipt(channel), ∞) from

pendingClose(Alice)
14: add (fchid of channel, receipt(channel), ⊥) to closedChannels(Alice) //

trust S here, check on checkClosed()
15: send (continue) to S

Functionality FPayNet – close

Fig. 24

After every read FPayNet sends to GLedger and its response is received,
checkClosed() (Fig. 25) is called. FPayNet checks the input state Σ for trans-
actions that close channels and, in case no security violation has taken place, it
updates the on- and off-chain balances of the player accordingly (ll. 6-15). The
possible security violations are: signature forgery (l. 17), malicious closure even
though the player was not negligent (l. 20), no closing transaction in Σ even
though the player asked for channel closure a substantial amount of time before
(l. 27) and incorrect on- or off-chain balance after the closing of all of the player’s
channels (l. 31).

54

1: function checkClosed(ΣAlice) // Called after every (read), ensures requested
closes eventually happen

2: if there is any closing/commitment transaction in ΣAlice with no
corresponding entry in pendingClose(Alice) ∪ closedChannels(Alice) then

3: add (fchid, receipt,⊥) to closedChannels(Alice), where fchid is the ID
of the corresponding channel, receipt comes from the latest channel state

4: end if
5: for all entries

(fchid, receipt, h) ∈ pendingClose(Alice) ∪ closedChannels(Alice) do
6: if there is a closing/commitment transaction in ΣAlice for open channel

with ID fchid with a balance that corresponds to receipt then
7: let x, y Alice’s and channel counterparty Bob’s balances respectively
8: reduce offChainBalance(Alice) by x
9: increase onChainBalance(Alice) by x

10: reduce offChainBalance(Bob) by y
11: increase onChainBalance(Bob) by y
12: remove channel from channels and entry from pendingClose(Alice)
13: if there is an (fchid, _, _) entry in pendingClose(Bob) then
14: remove it from pendingClose(Bob)
15: end if
16: else if there is a tx in ΣAlice that is not a closing/commitment tx and

spends the funding tx of the channel with ID fchid then
17: halt // DS forgery
18: else if there is a commitment transaction in block of height h in ΣAlice

for open channel with ID fchid with a balance that does not correspond to the
receipt and the delayed output has been spent by the counterparty then

19: if polls(Alice) contains an entry in [h, h + delay(Alice)− 1] then
20: halt
21: else
22: negligent(Alice)← true
23: end if
24: else if there is no such closing/commitment transaction ∧ h = ⊥ then
25: assign largest ΣAlice block no. to entry’s h
26: else if there is no such closing/commitment transaction ∧ h ̸= ⊥ ∧

(largest block number of ΣAlice) ≥ h + (2 + r) windowSize then
27: halt
28: end if
29: end for
30: if Alice has no open channels in

ΣAlice ∧ negligent(Alice) = false ∧ (offChainBalance(Alice) ̸= 0 ∨
onChainBalance(Alice) is not equal to the total funds exclusively spendable by
Alice in ΣAlice) then

31: halt
32: end if
33: end function

Functionality FPayNet – checkClosed()

Fig. 25

55

poll is a request that every player has to make to FPayNet periodically (once
every delay blocks, as set on registration) in order to remain non-negligent. In
a software implementation, such a request would be automatically sent at safe
time intervals. When receiving poll (Fig. 26), FPayNet checks the ledger for
maliciously closed channels and halts in case of a forgery (l. 6) or in case of
a successful malicious closing of a channel whilst the offended player was non-
negligent (l. 11). If on the other hand a channel has been closed maliciously but
the offended player did not poll in time, she is marked as negligent (l. 13).

1: Upon receiving (poll) from Alice:
2: send (read) to GLedger as Alice and store reply to ΣAlice
3: add largest block number in ΣAlice to polls(Alice)
4: checkClosed(ΣAlice)
5: if ∃channel ∈ ΣAlice that contains Alice and is closed by a tx that is not a

commitment transaction then
6: halt // DS forgery
7: end if
8: for all channels ∈ ΣAlice that contain Alice and are maliciously closed by a

remote commitment tx (one with an older channel version than the
irrevocably committed one) in block with height htx do

9: if the delayed output (of the counterparty) has been spent then
10: if polls(Alice) has an element in [htx, htx + delay (Alice)− 1] then
11: halt // Alice wasn’t negligent but couldn’t punish
12: else
13: negligent(Alice)← true
14: end if
15: end if
16: end for
17: send (poll, ΣAlice, Alice) to S

Functionality FPayNet – poll

Fig. 26

The last part of FPayNet (Fig. 27) contains some additional “daemon” mes-
sages that help various processes carry on. pushFulfill, pushAdd and commit
are simply forwarded to S. They exist because the “token of execution” in the
protocol does not follow the strict order required by UC, and thus some addi-
tional messages are needed for the protocol to carry on. In other words, they
are needed due to the incompatibility of the serial execution of UC and the
asynchronous nature of LN.

FulfillOnChain has to be sent by a multi-hop payment intermediary that
has not been paid by the previous player off-chain in order to close the chan-

56

nel. The request is noted and forwarded to S. getNews requests from FPayNet
information on newly opened, closed and updated channels.

1: Upon receiving (pushFulfill, pchid) from Alice:
2: send (pushFulfill, pchid, Alice, state, Σ) to S

3: Upon receiving (pushAdd, pchid) from Alice:
4: send (pushAdd, pchid, Alice, state, Σ) to S

5: Upon receiving (commit, pchid) from Alice:
6: send (commit, pchid, Alice, state, Σ) to S

7: Upon receiving (fulfillOnChain) from Alice:
8: send (read) to GLedger as Alice, store reply to ΣAlice and assign largest

block number to t
9: add t to focs(Alice)

10: checkClosed(ΣAlice)
11: send (fulfillOnChain, t, Alice) to S

12: Upon receiving (getNews) from Alice:
13: copy members of updatesToReport(Alice) to updatesHistory(Alice)
14: clear newChannels(Alice), closedChannels(Alice),

updatesToReport(Alice), paymentsToReport(Alice) and send them to Alice
with message name news, stripping fchid and h from closedChannels(Alice)

Functionality FPayNet – daemon messages

Fig. 27

14 Lightning Protocol

Simiarly to Fig. 16 of FPayNet, the registration of a new player consists of the
generation a new keypair, the topping up of the public key with some initial
funds and the non-serving of any other messages until registration is complete.
The main difference is that here the keypair is generated locally.

57

1: Initialisation:
2: channels, pendingOpen, pendingPay, pendingClose, paymentsToReport← ∅
3: newChannels, closedChannels, updatesToReport, gotPaid← ∅
4: unclaimedOfferedHTLCs, unclaimedReceivedHTLCs, pendingGetPaid← ∅

5: Upon receiving (register, delay, relayDelay) from E :
6: delay← delay // Must check chain at least once every delay blocks
7: relayDelay← relayDelay
8: send (read) to GLedger and assign reply to ΣAlice
9: (pkAlice, skAlice)← KeyGen ()

10: send (register, Alice, delay, relayDelay, pkAlice) to E

11: Upon receiving (toppedUp) from E :
12: send (read) to GLedger and assign reply to ΣAlice
13: assign the sum of all output values that are exclusively spendable by Alice

to onChainBalance
14: send (registered) to E

15: Upon receiving any message (M) except for (register) or (toppedUp):
16: if we haven’t received (register) and (toppedUp) from E (in this order)

then
17: send (invalid, M) to E and ignore message
18: end if

19: function GetKeys
20: (pF , sF)← KeyGen () // For F output
21: (ppay, spay)← Setup () // For com output to remote
22: (pdpay, sdpay)← Setup () // For com output to self
23: (phtlc, shtlc)← Setup () // For htlc output to self
24: seed $← U(k) // For per com point
25: (prev, srev)←MasterKeyGen () // For revocation in com
26: return ((pF , sF) , (ppay, spay) , (pdpay, sdpay) ,

27: (phtlc, shtlc) , seed, (prev, srev))
28: end function

Protocol ΠLN (self is Alice always) – support

Fig. 28

When a player receives openChannel from E , she generates a number of
base keypairs (funding, payment, delayed payment, HTLC), along with a seed
for the per-update key shares, a master keypair and a share keypair used for
revocation. She then sends the public keys along with the desired delay and
initial funds to the counterparty as specified by E in a message labeled also
openChannel.

58

1: Upon receiving (openChannel, Alice, Bob, x, tid) from E :
2: ensure tid hasn’t been used for opening another channel before
3: // Keys marked with “b” are called basepoint keys. Their use reduces the

number of public keys that have to be exchanged on each update from three to
one.

4: ((phF , shF) , (phbpay, shbpay) , (phbdpay, shbdpay) ,
(phbhtlc, shbhtlc) , seed, (phbrev, shbrev))← GetKeys ()

5: prand1 ← PRF (seed, 1)
6: (phcom,1, shcom,1)← KeyShareGen

(
1k; prand1

)
7: associate keys with tid
8: add (Alice, Bob, x, tid, (phF , shF), (phbpay, shbpay), (phbdpay, shbdpay)

(phbhtlc, shbhtlc), (phbcom,1, shbcom,1), (phbrev, shbrev), tid) to pendingOpen
9: send (openChannel,

x, delay + (2 + r) windowSize, phF , phbpay, phbdpay, phbhtlc, phcom,1, phbrev, tid)
to Bob

Protocol ΠLN – openChannel from E

Fig. 29

When he receives openChannel by a funding party, the same steps are
followed by the counterparty. The only difference is that he labels his reply with
acceptChannel instead.

1: Upon receiving (openChannel, x, remoteDelay, ptF , ptbpay, ptbdpay, ptbhtlc,
ptcom,1, ptbrev, tid) from Bob:

2: ensure tid has not been used yet with Bob
3: ((phF , shF), (phbpay, shbpay), (phbdpay, shbdpay), (phbhtlc, shbhtlc), seed

(phbrev, shbrev)) ← GetKeys()
4: prand1 ← PRF (seed, 1)
5: (phcom,1, shcom,1)← KeyShareGen

(
1k; prand1

)
6: associate keys with tid and store in pendingOpen
7: send (acceptChannel,

delay + (2 + r) windowSize, phF , phbpay, phbdpay, phbhtlc, phcom,1, phbrev, tid)
to Bob

Protocol ΠLN – openChannel from Bob

Fig. 30

When she receives acceptChannel by the counterparty, the funding party
creates the funding transaction and the first commitment transaction, signs the
funding transaction and sends this signature to the counterparty with a message
labelled fundingCreated.

59

1: Upon receiving (acceptChannel, remoteDelay, ptF , ptbpay, ptbdpay, ptbhtlc,
ptcom,1, ptbrev, tid) from Bob:

2: ensure there is a temporary ID tid with Bob in pendingOpen on which
acceptChannel hasn’t been received

3: associate received keys with tid
4: send (read) to GLedger and assign reply to ΣAlice
5: assign to prevout a transaction output found in ΣAlice that is currently

exclusively spendable by Alice and has value y ≥ x
6: F ← TX {input spends prevout with a SignDS(TX, skAlice), output 0

pays y − x to pkAlice, output 1 pays x to tid.phF ∧ ptF }
7: pchid ← H (F)
8: add pchid to pendingOpen entry with id tid
9: ptrev,1 ← CombinePubKey (ptbrev, phcom,1)

10: (phdpay,1, shdpay,1)← KeyDer (phbdpay, shbdpay, phcom,1)
11: (phpay,1, shpay,1)← KeyDer (phbpay, shbpay, phcom,1)
12: (phhtlc,1, shhtlc,1)← KeyDer (phbhtlc, shbhtlc, phcom,1)
13: remoteCom← remoteCom1 ← TX {input: output 1 of F , outputs:

(x, phpay,1), (0, phrev,1 ∨ (ptdpay,1, delay + (2 + r) windowSize relative))}
14: localCom← TX {input: output 1 of F , outputs:

(x, ptrev,1 ∨ (phdpay,1, remoteDelay relative)), (0, ptpay,1)}
15: add remoteCom and localCom to channel entry in pendingOpen
16: sig← SignDS (remoteCom1, shF)
17: lastRemoteSigned← 0
18: send (fundingCreated, tid, pchid, sig) to Bob

Protocol ΠLN – acceptChannel

Fig. 31

When he receives fundingCreated by the funding party, the counterparty
creates the funding transaction and then checks the validity of the received
signature. If it is valid, he then creates the first commitment transaction as well,
signs the funding transaction and sends this signature to the funding party with
a message labelled fundingSigned.

60

1: Upon receiving (fundingCreated, tid, pchid, BobSig1) from Bob:
2: ensure there is a temporary ID tid with Bob in pendingOpen on which we

have sent up to acceptChannel
3: phrev,1 ← CombinePubKey (phbrevptcom,1)
4: ptdpay,1 ← PubKeyDer (ptbdpay, ptcom,1)
5: ptpay,1 ← PubKeyDer (ptbpay, ptcom,1)
6: pthtlc,1 ← PubKeyDer (ptbhtlc, ptcom,1)
7: localCom← localCom1 ← TX {input: output 1 of F , outputs: (x, ptpay,1),

(0, ptrev,1 ∨ (phdpay,1, remoteDelay relative)}
8: ensure VerifyDS (BobSig1, localCom1, ptF) = True
9: remoteCom← remoteCom1 ← TX {input: output 1 of F , outputs:

(x, phrev,1 ∨ (ptdpay,1, delay + (2 + r) windowSize relative)), (0, phpay,1)}
10: add BobSig1, remoteCom1 and localCom1 to channel entry in pendingOpen
11: sig← SignDS (remoteCom1, shF)
12: mark channel as “broadcast, no fundingLocked”
13: lastRemoteSigned, lastLocalSigned← 0
14: send (fundingSigned, pchid, sig) to Bob

Protocol ΠLN – fundingCreated

Fig. 32

When the funding party receives fundingSigned, she verifies the validity
of the received signature. If it is valid, it broadcasts the funding transaction.

1: Upon receiving (fundingSigned, pchid, BobSig1) from Bob:
2: ensure there is a channel ID pchid with Bob in pendingOpen on which we

have sent up to fundingCreated
3: ensure VerifyDS (BobSig1, localCom, ptF) = True
4: localCom1 ← localCom
5: lastLocalSigned← 0
6: add BobSig1 to channel entry in pendingOpen
7: sig← SignDS (F, skAlice)
8: mark pchid in pendingOpen as “broadcast, no fundingLocked”
9: send (submit, (sig, F)) to GLedger

Protocol ΠLN – fundingSigned

Fig. 33

When either party (say Alice) receives checkForNew from E , she checks if
the funding transaction is in the ledger. If it is, it generates the keyshare for the
next update and sends it to Bob in a message labelled fundingLocked. When
Alice receives a similar message from Bob, she considers the channel open.

61

1: Upon receiving (checkForNew, Alice, Bob, tid) from E : // lnd polling
daemon

2: ensure there is a matching channel in pendingOpen with id pchid, with a
“broadcast” and a “no fundingLocked” mark, funded with x coins

3: send (read) to GLedger and assign reply to ΣAlice
4: ensure ∃ unspent TX in ΣAlice with ID pchid and a (x, phF ∧ ptF) output
5: prand2 ← PRF (seed, 2)
6: (phcom,2, shcom,2)← KeyShareGen

(
1k; prand2

)
7: add TX to channel data
8: replace “broadcast” mark in channel with “fundingLocked sent”
9: send (fundingLocked, pchid, phcom,2) to Bob

Protocol ΠLN – checkForNew

Fig. 34

1: Upon receiving (fundingLocked, pchid, ptcom,2) from Bob:
2: ensure there is a channel with ID pchid with Bob in pendingOpen with a

“no fundingLocked” mark
3: if channel is not marked with “fundingLocked sent” then // i.e.

marked with “broadcast”
4: send (read) to GLedger and assign reply to ΣAlice
5: ensure ∃ unspent TX in ΣAlice with ID pchid and a (x, phF ∧ ptF)

output
6: add TX to channel data
7: prand2 ← PRF (seed, 2)
8: (phcom,2, shcom,2)← KeyShareGen

(
1k; prand2

)
9: generate 2nd remote delayed payment, htlc, payment keys

10: end if
11: replace “no fundingLocked” mark in channel with “fundingLocked

received”
12: move channel data from pendingOpen to channels
13: add receipt of channel to newChannels, where

receipt← (Alice : x, Bob : 0, pchid)
14: if channel is not marked with “fundingLocked sent” then
15: replace “broadcast” mark in channel with “fundingLocked sent”
16: send (fundingLocked, pchid, phcom,2) to Bob
17: end if

Protocol ΠLN – fundingLocked

Fig. 35

When a player receives poll, she checks the ledger for closed channels and
acts upon them. In particular, she retrieves funds from failed HTLC payments

62

and punishes counterparties that closed their channel maliciously. She also takes
note of honestly closed channels. When she receives getNews, she sends back a
list of all unreported channels that opened or closed, along with payments that
were carried out successfully.

1: Upon receiving (poll) from E :
2: send (read) to GLedger and assign reply to ΣAlice
3: toSubmit← ∅
4: for all τ ∈ unclaimedOfferedHTLCs do
5: if input of τ has been spent then // by remote HTLC-success
6: remove τ from unclaimedOfferedHTLCs
7: if we are intermediary then
8: retrieve preimage R, pchid ′ of previous channel on the path of

the HTLC, and HTLCNo′ of the corresponding HTLC′ in pchid ′

9: add (HTLCNo′, R) to pendingFulfillspchid′

10: end if
11: else if input of τ has not been spent and timelock is over then
12: remove τ from unclaimedOfferedHTLCs
13: add τ to toSubmit
14: end if
15: end for
16: run loop of Fig. 37
17: for all honestly closed remoteComn that were processed above, with

channel id pchid do
18: for all received HTLC outputs i of remoteComn do
19: if there is an entry in pendingFulfillspchid with the same HTLCNo

and R then
20: TX← {input: i HTLC output of remoteComn with (phhtlc,n, R)

as method, output: pkAlice}
21: sig← SignIBS (T X, shhtlc,n)
22: add (sig, TX) to toSubmit
23: remove entry from pendingFulfillspchid
24: end if
25: end for
26: end for
27: send (submit, toSubmit) to GLedger

28: Upon receiving (getNews) from E :
29: clear newChannels, closedChannels, updatesToReport, paymentsToReport

and send them to E with message name news

Protocol ΠLN – poll

Fig. 36

63

1: for all remoteComn ∈ ΣAlice that spend F of a channel ∈ channels do
2: if we do not have shrev,n then // Honest closure
3: for all unspent offered HTLC outputs i of remoteComn do
4: TX← {input: i HTLC output of remoteComn with phhtlc,n as

method, output: pkAlice}
5: sig← SignIBS (T X, shhtlc,n)
6: if timelock has not expired then
7: add (sig, TX) to unclaimedOfferedHTLCs
8: else if timelock has expired then
9: add (sig, TX) to toSubmit

10: end if
11: end for
12: for all spent offered HTLC output i of remoteComn do
13: if we are intermediary then
14: retrieve preimage R, pchid ′ of previous channel on the path of

the HTLC, and HTLCNo′ of the corresponding HTLC′ in pchid ′

15: add (HTLCNo′, R) to pendingFulfillspchid′

16: else// we are the payer
17: retrieve (expayid, x) from entry in pendingPay with h, HTLCNo of

HTLCi and remove the entry
18: add (expayid, −x) to paymentsToReport
19: end if
20: end for
21: else // malicious closure
22: rev← TX {inputs: all remoteComn outputs, choosing phrev,n method,

output: pkAlice}
23: sig← SignCS (rev, shrev,n)
24: add (sig, rev) to toSubmit
25: end if
26: add receipt(channel) to closedChannels
27: remove channel from channels
28: end for

Loop over closed channels for poll

Fig. 37

When a player (say Alice) receives pay along with a payee (say Bob), a
payment amount and a path, she informs Bob of the upcoming payment with a
sendInvoice message. He then generates a secret preimage and sends back its
hash and his desired minimum slack between the present and the moment he has
to disclose the preimage (known as “relay delay”) in a message labelled invoice.
Subsequently Alice prepares a Sphinx onion packet [31] with one message for each
path member, taking into account each hop’s desired relay delay. Afterwards she
creates an HTLC that transfers the payment amount and adds it to her channel
with the first path member. She then sends the onion, the payment amount and
the hash to the first hop in a message labelled updateAddHtlc.

64

1: Upon receiving (pay, Bob, x, −−→path, expayid) from E :
2: ensure that −−→path consists of syntactically valid (pchid, CltvExpiryDelta)

pair // Payment completes only if
∀ honest i ∈ −−→path, CltvExpiryDeltai ≥ 3k + RelayDelayi

3: ensure that the first pchid ∈ −−→path corresponds to an open
channel ∈ channels in which we own at least x in the irrevocably committed
state.

4: choose unique payment ID payid // unique for Alice and Bob
5: add (Bob, x, −−→path, expayid, payid, “waiting for invoice”) to pendingPay
6: send (sendInvoice, x, expayid, payid) to Bob

7: Upon receiving (sendInvoice, x, expayid, payid) from Bob:
8: ensure there is no (Bob, _, expayid, payid, _) entry in pendingGetPaid
9: choose random, unique preimage R

10: add (Bob, R, expayid, payid, x) to pendingGetPaid
11: send (invoice, H(R), relayDelay + (2 + r) windowSize, payid) to Bob

Protocol ΠLN – pay

Fig. 38

65

1: Upon receiving (invoice, h, minFinalCltvExpiry, payid) from Bob:
2: ensure there is a (Bob, x, −−→path, _, payid, “waiting for invoice”) entry in

pendingPay
3: ensure h is valid (in the range of H)
4: remove mark from, add h and HTLCNo to entry in pendingPay
5: retrieve CltvExpiryDeltas from −−→path
6: send (read) to GLedger and assign largest block number to t

7: l← |
(−−→
path

)
|

8: CltvExpiryl ← t + minFinalCltvExpiry
9:
∀i ∈ {1, . . . , l− 1}, CltvExpiryl−i ← CltvExpiryl−i+1 + CltvExpiryDeltal−i+1

10: ensure CltvExpiry1 ≥ CltvExpiry2 + relayDelay + (2 + r) windowSize
11: m← the concatenation of l (x, CltvExpiry)
12: (µ0, δ0)← SphinxCreate

(
m, public keys of −−→path parties

)
13: let remoteComn the latest signed remote commitment tx with first −−→path

member
14: reduce simple payment output in remoteCom by x
15: add an additional (x, phrev,n+1 ∨ (phhtlc,n+1 ∧ pthtlc,n+1, on preimage of

h) ∨ phhtlc,n+1, CltvExpiry1 absolute) output (all with n + 1 keys) to
remoteCom, marked with HTLCNo

16: reduce delayed payment output in localCom by x
17: add an additional (x, ptrev,n+1 ∨ (pthtlc,n+1, on preimage of h) ∨

(phhtlc,n+1 ∧ pthtlc,n+1, CltvExpiry1 absolute)) output (all with n + 1 keys) to
localCom, marked with HTLCNo

18: increment HTLCNopchid by one and associate x, h, pchid with it
19: mark HTLCNo as “sender”
20: send (updateAddHtlc, first pchid of
−−→
path, HTLCNopchid , x, h, CltvExpiry1, (µ0, δ0)) to pchid channel counterparty

Protocol ΠLN – invoice

Fig. 39

When a player receives updateAddHtlc, she peels the outermost onion
layer and extracts the CLTV expiry, the next channel ID (or ⊥ if she is the
payee) and the payment amount. She checks that the CLTV expiry is within her
desired relay delay and adds to the incoming channel an HTLC that pays her
the payment amount. If she is the payee, she prepares to disclose the preimage.
Otherwise, she creates an HTLC that transfers the payment amount from her
to the next party of the path, prepares the next onion and takes a note to send
it to the next party.

66

1: Upon receiving (updateAddHtlc, pchid, HTLCNo, x, h, IncomingCltvExpiry,
M) from Bob:

2: run code of Fig. 41 – updateAddHtlc checks
3: increment HTLCNopchid by one
4: let remoteComn the latest signed remote commitment tx
5: reduce delayed payment output in remoteCom by x
6: add an (x, phrev,n+1 ∨ (phhtlc,n+1 ∧ pthtlc,n+1, IncomingCltvExpiry

absolute) ∨ phhtlc,n+1, on preimage of h) htlc output (all with n + 1 keys) to
remoteCom, marked with HTLCNo

7: reduce simple payment output in localCom by x
8: add an (x, ptrev,n+1 ∨ (pthtlc,n+1, IncomingCltvExpiry absolute) ∨

(pthtlc,n+1 ∧ phhtlc,n+1, on preimage of h)) htlc output (all with n + 1 keys) to
localCom, marked with HTLCNo

9: if δ = receiver then
10: retrieve R : H (R) = h from pendingGetPaid and move entry to

gotPaid
11: add (HTLCNo, R) to pendingFulfillspchid
12: else if δ ̸= receiver then // Send HTLC to next hop
13: retrieve pchid ′ data
14: let remoteCom′

n the latest signed remote commitment tx
15: reduce simple payment output in remoteCom′ by x
16: add an additional

(
x, ph′

rev,n+1 ∨
(
ph′

htlc,n+1 ∧ pt′
htlc,n+1, on preimage

of h) ∨ ph′
htlc,n+1, OutgoingCltvExpiry absolute

)
output (all with n + 1 keys)

to remoteCom′, marked with HTLCNo′

17: reduce delayed payment output in localCom′ by x
18: add an additional (x, pt′

rev,n+1 ∨ (pt′
htlc,n+1, on preimage of h) ∨

(pt′
htlc,n+1 ∧ ph′

htlc,n+1, OutgoingCltvExpiry absolute)) output (all with n + 1
keys) to localCom′, marked with HTLCNo′

19: increment HTLCNo′ by 1
20: M ′ ← SphinxPrepare (M, δ, skAlice)
21: add (HTLCNo′, x, h, OutgoingCltvExpiry, M ′) to pendingAddspchid′

22: end if

Protocol ΠLN – updateAddHtlc

Fig. 40

67

1: ensure pchid corresponds to an open channel in channels where Bob has at
least x

2: ensure HTLCNo = HTLCNopchid + 1
3: (pchid ′, x′, OutgoingCltvExpiry, δ)← SphinxPeel (skAlice, M)
4: send (read) to GLedger and assign largest block number to t
5: if δ = receiver then
6: ensure pchid ′ = ⊥, x = x′, IncomingCltvExpiry ≥ OutgoingCltvExpiry =

minFinalCltvExpiry
7: mark HTLCNo as “receiver”
8: else // We are an intermediary
9: ensure x = x′, IncomingCltvExpiry ≥

max{OutgoingCltvExpiry, t}+ relayDelay + 2 (2 + r) windowSize
10: ensure pchid′ corresponds to an open channel in channels where we have

at least x
11: mark HTLCNo as “intermediary”
12: end if

Protocol ΠLN – updateAddHtlc checks

Fig. 41

When a player receives a preimage for a particular HTLC in an update-
FulfillHtlc message, she verifies the validity of the preimage, she removes
the HTLC and incorporates the new balance to the commitment transactions
and, if she is an intermediary, she sends the preimage to the previous party on the
path if the channel is still open, or publishes the preimage on-chain otherwise.

68

1: Upon receiving (updateFulfillHtlc, pchid, HTLCNo, R) from Bob:
2: if HTLCNo > lastRemoteSigned ∨ HTLCNo > lastLocalSigned ∨H (R) ̸= h,

where h is the hash in the HTLC with number HTLCNo then
3: close channel (as in Fig. 48)
4: return
5: end if
6: ensure HTLCNo is an offered HTLC (localCom has h tied to a public key

that we own)
7: add value of HTLC to delayed payment of remoteCom
8: remove HTLC output with number HTLCNo from remoteCom
9: add value of HTLC to simple payment of localCom

10: remove HTLC output with number HTLCNo from localCom
11: if we have a channel phcid ′ that has a received HTLC with hash h with

number HTLCNo′ then // We are an intermediary
12: send (read) to GLedger and assign reply to ΣAlice
13: if latest remoteCom′

n ∈ ΣAlice then // counterparty has gone on-chain
14: TX← {input: (remoteCom′ HTLC output with number HTLCNo′, R),

output: pkAlice}
15: sig← SignIBS (TX, shhtlc,n)
16: send (submit, (sig, TX)) to GLedger // shouldn’t be already spent by

remote HTLCTimeout
17: else // counterparty still off-chain
18: // Not having the HTLC irrevocably committed is impossible

(Fig. 46, l. 22)
19: send (updateFulfillHtlc, pchid ′, HTLCNo′, R) to counterparty
20: end if
21: else// We are the payer
22: retrieve (expayid, x) from entry in pendingPay with h, HTLCNo and

remove the entry // entry is unique because of HTLCNo
23: add (expayid, −x) to updateDiffs(channel) of channel with ID pchid
24: end if

Protocol ΠLN – updateFulfillHtlc

Fig. 42

When a player receives commit from E accompanied by a channel ID, she
generates and signs a new commitment tx and all new HTLC txs that corre-
spond to unsigned added HTLCs. She then sends the signatures to the channel
counterparty in a message labelled commitmentSigned.

69

1: Upon receiving (commit, pchid) from E :
2: ensure that there is a channel ∈ channels with ID pchid
3: retrieve latest remote commitment tx remoteComn in channel
4: ensure remoteCom ̸= remoteComn // there are uncommitted updates
5: ensure channel is not marked as “waiting for revokeAndAck”
6: send (read) to GLedger and assign largest block number to t
7: undo adding all outgoing HTLCs in remoteCom for which we are

intermediary and IncomingCltvExpiry < t + relayDelay + (2 + r) windowSize
8: remoteComn+1 ← remoteCom
9: ComSig← SignDS (remoteComn+1, shF)

10: HTLCSigs← ∅
11: for i from lastRemoteSigned + 1 to HTLCNo do
12: remoteHTLCn+1,i ← TX {input: HTLC output i of remoteComn+1,

output: (chtlc,i, phrev,n+1 ∨ (ptdpay,n+1, delay + (2 + r) windowSize relative))}
13: add SignIBS (remoteHTLCn+1,i, shhtlc,n+1) to HTLCSigs
14: end for
15: lastRemoteSigned← HTLCNo
16: mark channel as “waiting for revokeAndAck”
17: send (commitmentSigned, pchid, ComSig, HTLCSigs) to pchid

counterparty

Protocol ΠLN – commit

Fig. 43

When a player receives commitmentSigned with some signatures for a
particular channel, she verifies that the signatures correspond to the expected
HTLCs (i.e. the added but unsigned ones) and that the signatures for the new
commitment tx and said HTLCs are valid. She then generates the keyshare pair
and sends its public part to the counterparty along with the secret part of the
old keyshare in a message labelled revokeAndAck.

70

1: Upon receiving (commitmentSigned, pchid, comSign+1, HTLCSigsn+1) from
Bob:

2: ensure that there is a channel ∈ channels with ID pchid with Bob
3: retrieve latest local commitment tx localComn in channel
4: ensure localCom ̸= localComn and localCom ̸= pendingLocalCom // there

are uncommitted updates
5: if VerifyDS

(
comSign+1, localCom, ptF

)
= false ∨ |HTLCSigsn+1| ̸=

HTLCNo− lastLocalSigned then
6: close channel (as in Fig. 48)
7: return
8: end if
9: for i from lastLocalSigned + 1 to HTLCNo do

10: localHTLCn+1,i ← TX {input: HTLC output i of localCom, output:
(chtlc,i, phrev,n+1 ∨ (ptdpay,n+1, remoteDelay relative))}

11: if VerifyIBS(HTLCSigsn+1,i, localHTLCn+1,i, pthtlc,n+1) = false then
12: close channel (as in Fig. 48)
13: return
14: end if
15: end for
16: lastLocalSigned← HTLCNo
17: pendingLocalCom← localCom
18: mark pendingLocalCom as “irrevocably committed”
19: prandn+2 ← PRF (seed, n + 2)
20: (phcom,n+2, shcom,n+2)← KeyShareGen

(
1k; prandn+2

)
21: send (revokeAndAck, pchid, prandn, phcom,n+2) to Bob

Protocol ΠLN – commitmentSigned

Fig. 44

When a player receives revokeAndAck from a counterparty for a partic-
ular channel, she checks that the secret keyshare received corresponds to the
public keyshare that had been received in the last revokeAndAck (or in the
fundingLocked if this is the first revokeAndAck received for this channel)
and then generates all the necessary new keys for the next update. There are
now no more outstanding updates. Furthermore, if a closing of the channel is
pending, execution continues with the closing sequence.

71

1: Upon receiving (revokeAndAck, pchid, stcom,n, ptcom,n+2) from Bob:
2: ensure there is a channel ∈ channels with Bob with ID pchid marked as

“waiting for revokeAndAck”
3: if TestKey (ptcom,n, stcom,n) ̸= 1 then // wrong stcom,n - closing
4: close channel (as in Fig. 48)
5: return
6: end if
7: mark remoteComn+1 as “irrevocably committed”
8: localComn+1 ← pendingLocalCom
9: unmark channel

10: append receipt(channel) to updatesToReport
11: for all (_, _, payid, ref) ∈ updateDiffs(channel) do
12: remove from gotPaid the entry referenced by ref
13: strip ref and payid from updateDiffs(channel) entry
14: end for
15: if updateDiffs(channel) ̸= ∅ then
16: add updateDiffs(channel) members to paymentsToReport
17: end if
18: updateDiffs(channel)← ∅
19: shrev,n ← CombineKey (phbrev, shbrev, ptcomn, stcom,n)
20: phrev,n+2 ← CombinePubKey (phbrev, ptcom,n+2)
21: ptrev,n+2 ← CombinePubKey (ptbrev, phcom,n+2)
22: (phdpay,n+2, shdpay,n+2)← KeyDer (phbdpay, shbdpay, phcom,n+2)
23: ptdpay,n+2 ← PubKeyDer (ptbdpay, ptcom,n+2)
24: (phpay,n+2, shpay,n+2)← KeyDer (phbpay, shbpay, phcom,n+2)
25: ptpay,n+2 ← PubKeyDer (ptbpay, ptcom,n+2)
26: (phhtlc,n+2, shhtlc,n+2)← KeyDer (phbhtlc, shbhtlc, phcom,n+2)
27: pthtlc,n+2 ← PubKeyDer (ptbhtlc, ptcom,n+2)
28: if no outstanding HTLCs remain for this channel and the sequence for

closeChannel or shutdown (Fig. 49) has been initiated then
29: continue execution at Fig. 49, l. 7 or l. 16 respectively
30: end if

Protocol ΠLN – revokeAndAck

Fig. 45

The following code defines a player’s actions when she receives from E one
of the three messages needed to “nudge” her to carry on with some particular
part of the protocol. pushFulfill makes the player read a preimage of a hash
from GLedger and use it to fulfill the relevant HTLC that pays her, pushAdd
has the player send an updateAddHtlc message that is ready but has not yet
been sent and fulfillOnChain requests that the player publish all HTLC txs
that are about to expire on-chain. A player that does not receive such messages
in time may end up losing funds albeit being honest; such a player is dubbed
“negligent”.

72

1: Upon receiving (pushFulfill, pchid) from E :
2: ensure that there is a channel ∈ channels with ID pchid
3: choose a member (HTLCNo, R) of pendingFulfillspchid that is both in an

“irrevocably committed” remoteComn and localComn

4: send (read) to GLedger and assign reply to ΣAlice
5: remove (HTLCNo, R) from pendingFulfillspchid
6: if remoteComn /∈ ΣAlice then // counterparty cooperative
7: if ∃(_, R, expayid, payid, x) ∈ gotPaid then // receiver
8: add (expayid, x, payid, reference to gotPaid entry) to

updateDiffs(channel)
9: end if

10: send (updateFulfillHtlc, pchid, HTLCNo, R) to pchid counterparty
11: else // counterparty gone on-chain
12: if ∃(_, R, expayid, payid, x) ∈ gotPaid then
13: remove entry from gotPaid
14: add (expayid, x) to paymentsToReport
15: end if
16: TX← {input: (remoteComn HTLC output with number HTLCNo, R),

output: pkAlice}
17: sig← SignIBS (TX, shhtlc,n)
18: send (submit, (sig, TX)) to GLedger // shouldn’t be already spent by

remote HTLCTimeout
19: end if

20: Upon receiving (pushAdd, pchid) from E :
21: ensure that there is a channel ∈ channels with ID pchid
22: choose a member (HTLCNo, x, h, CltvExpiry, M) of pendingAddspchid that is

both in an “irrevocably committed” remoteComn and localComn

23: remove chosen entry from pendingAddspchid
24: send (updateAddHtlc, pchid, HTLCNo, x, h, CltvExpiry, M) to pchid

counterparty

Protocol ΠLN – push

Fig. 46

73

1: Upon receiving (fulfillOnChain) from E :
2: send (read) to GLedger and assign largest block number to t
3: toSubmit← ∅
4: for all channels do
5: if there exist HTLCs with hashes h1, . . . , hk in latest localComn for

which we have sent both updateFulfillHtlc and commitmentSigned to a
transaction without those HTLCs to counterparty, but have not received the
corresponding revokeAndAcks AND some of the HTLCs expire within
[t, t + (2 + r) windowSize] then

6: add localComn of the channel and all corresponding valid
HTLC-successes and HTLC-timeouts (for both localComn and remoteComn

a),
along with their signatures to toSubmit

7: for all such HTLCs for which we are the payee (i.e., we have
received a (sendInvoice, x, expayid, payid) message in response to which we
generated and sent hi) do

8: add (expayid, x) to paymentsToReport
9: end for

10: end if
11: end for
12: send (submit, toSubmit) to GLedger

a Ensures funds retrieval if counterparty has gone on-chain

Protocol ΠLN – fulfillOnChain

Fig. 47

When a player receives forceCloseChannel for a particular channel, she
signs and publishes the latest commitment and HTLC txs for this particular
channel, in effect unilateraly closing the channel.

74

1: Upon receiving (forceCloseChannel, receipt, pchid) from E :
2: ensure receipt corresponds to an open channel ∈ channels with ID pchid
3: if the sequence for closeChannel has been initiated and is pending on

clearing all outstanding HTLCs then
4: forget this “hook”
5: end if
6: assign latest channel sequence number to n
7: HTLCs← ∅
8: for every HTLC output ∈ localComn with number i do
9: if there is a (_, R, expayid, payid, x) entry in gotPaid for R the

preimage of HTLCi then
10: remove entry from gotPaid
11: add (expayid, x) to paymentsToReport
12: end if
13: sig← SignIBS (localHTLCn,i, shhtlc,n)
14: add

(
sig, HTLCSigsn,i, localHTLCn,i

)
to HTLCs

15: end for
16: sig← SignDS (localComn, shF)
17: add receipt(channel) to closedChannels
18: remove channel from channels
19: send (submit, (sig, remoteSign, localComn) , HTLCs) to GLedger

Protocol ΠLN – close unilaterally

Fig. 48

When a player receives closeChannel for a particular channel, she initiates
the cooperative channel close sequence with the counterparty. The sequence
includes completing all outstanding updates and creating, signing and publishing
the “closing” transaction that spends the funding transaction and distributes the
funds to the counterparties without timelocks.

75

1: Upon receiving (closeChannel, receipt, pchid) from E :
2: ensure receipt corresponds to an open channel ∈ channels with ID pchid
3: stop serving any (pay, closeChannel) message from E and any

(UpdateAddHtlc, sendInvoice) message from counterparty for this
channel.

4: mark channel as “coop closing”
5: if there are outstanding HTLC outputs in the latest localComn then
6: continue from here when there are none left
7: end if
8: send (shutdown, pkAlice, pchid) to Bob

9: Upon receiving (shutdown, pkBob, pchid) from Bob:
10: ensure there is an open channel ∈ channels with Bob with ID pchid
11: if channel is not marked “coop closing” then
12: stop serving any (pay, closeChannel) message from E and any

(UpdateAddHtlc, sendInvoice) message from counterparty for this channel.
13: mark channel as “coop closing”
14: if there are outstanding HTLC outputs in the latest localComn then
15: continue from here when there are none left
16: end if
17: send (shutdown, pkAlice, pchid) to Bob
18: else
19: Cl← TX {input spends channel funding TX output, outputs pay x, y

to pkAlice, pkBob respectively, alphabetically ordered by some fixed encoding of
the keys, where x is Alice’s and y is Bob’s balance in the latest channel state

20: sig← SignDS(Cl, skAlice)
21: send (closingSigned, sig, pchid) to Bob
22: end if

23: Upon receiving (closingSigned, bobSig, pchid) from Bob:
24: ensure there is an open channel ∈ channels with Bobwith ID pchid
25: ensure channel is marked as “coop closing”
26: add receipt(channel) to closedChannels
27: remove channel from channels
28: Cl← TX {input spends channel funding TX output, outputs pay x, y to

pkAlice, pkBob respectively, alphabetically ordered by some fixed encoding of the
keys, where x is Alice’s and y is Bob’s balance in the latest channel state

29: ensure VerifyDS(bobSig, Cl, pkBob) = True
30: aliceSig← SignDS(Cl, skAlice)
31: sort aliceSig, bobSig according to the ordering of the respective keys to

produce sig1, sig2
32: send (submit, ((sig1, sig2), Cl)) to GLedger

Protocol ΠLN – close cooperatively

Fig. 49

76

15 Security Proof

1: Upon receiving any message M from Alice:
2: if M is a valid FPayNet message from a player then
3: send (M, Alice) to S
4: end if

5: Upon receiving any message (M, Alice) from S:
6: if M is a valid FPayNet message from S then
7: send M to Alice
8: end if

Functionality FPayNet,dummy

Fig. 50

Expects the same messages as the protocol, but messages that the protocol expects
to receive from E , the simulator expects to receive from FPayNet,dummy with the
name of the player appended. The simulator internally executes one copy of the
protocol per player. Upon receiving any message, the simulator runs the relevant
code of the protocol copy tied to the appended player name. Mimicking the
real-world case, if a protocol copy sends a message to another player, that message
is passed to A as if sent by the player and if A allows the message to reach the
receiver, then the simulator reacts by acting upon the message with the protocol
copy corresponding to the recipient player. A message sent by a protocol copy to E
will be routed by S to FPayNet,dummy instead. To distinguish which player it comes
from, S also appends the player name to the message. Corruption messages in the
backdoor tapes of simulated parties are also forwarded to FPayNet,dummy.

Simulator SLN

Fig. 51

Lemma 4. ExecGLedger
ΠLN,Ad,E = ExecFPayNet,dummy,GLedger

SLN,E

Proof. Consider a message that E sends. In the real world, the protocol ITIs
produce an output. In the ideal world, the message is given to SLN through
FPayNet,dummy. The former simulates the protocol ITIs of the real world (along
with their coin flips) and so produces an output from the exact same distri-
bution, which is given to E through FPayNet,dummy. Thus the two outputs are
indistinguishable.

77

1: For messages register, registerDone, toppedUp and corrupted, act like
FPayNet, but skip lines that call checkClosed().

2: Upon receiving any other message M from Alice:
3: if M is a valid FPayNet message from a player then
4: send (M, Alice) to S
5: end if

6: Upon receiving any other message (M, Alice) from S:
7: if M is a valid FPayNet message from S then
8: send M to Alice
9: end if

Functionality FPayNet,Reg

Fig. 52

Like SLN, but it does not accept (toppedUp) from FPayNet,Reg. Additional
differences:
1: Upon receiving (register, Alice, delay, relayDelay) from FPayNet,Reg:
2: delay of Alice ITI ← delay
3: relayDelay of Alice ITI ← relayDelay
4: (pkAlice, skAlice) of Alice ITI ← KeyGen()
5: send (registerDone, Alice, pkAlice) to FPayNet,Reg

6: Upon receiving (corrupt) on the backdoor tape of Alice’s simulated ITI:
7: add Alice to corrupted
8: for the rest of the execution, upon receiving any message for Alice, bypass

normal execution and simply forward it to Alice
9: send (corrupted, Alice) to FPayNet,Reg

Simulator SLN−Reg

Fig. 53

78

Lemma 5. ExecFPayNet,dummy,GLedger
SLN,E = ExecFPayNet,Reg,GLedger

SLN−Reg,E

Proof. When E sends (register, delay, relayDelay) to Alice, it receives as a
response (register, Alice, delay, relayDelay, pkAlice) where pkAlice is a public
key generated by KeyGen() both in the real (c.f. Fig. 28, line 9) and in the ideal
world (c.f. Fig. 53, line 4).

Furthermore, one (read) is sent to GLedger from Alice in both cases (Fig. 28,
line 8 and Fig. 16, line 10).

Additionally, SLN−Reg ensures that the state of Alice ITI is exactly the same
as what would have been in the case of SLN, as lines 6-9 of Fig. 28 change the
state of Alice ITI in the same way as lines 2-4 of Fig. 53.

Lastly, the fact that the state of the Alice ITIs are changed in the same
way in both worlds, along with the same argument as in the proof of Lemma 4
ensures that the rest of the messages are responded in an indistinguishable way
in both worlds.

1: For messages register, registerDone, toppedUp, openChannel,
adversaryOpenChannel, channelAnnounced and checkForNew, act
like FPayNet, but skip lines that call checkClosed().

2: Upon receiving any other message M from Alice:
3: if M is a valid FPayNet message from a player then
4: send (M, Alice) to S
5: end if

6: Upon receiving any other message (M, Alice) from S:
7: if M is a valid FPayNet message from S then
8: send M to Alice
9: end if

Functionality FPayNet,Open

Fig. 54

Lemma 6. ExecFPayNet,Reg,GLedger
SLN−Reg,E = ExecFPayNet,Open,GLedger

SLN−Reg−Open,E

Proof. When E sends (openChannel, Alice, Bob, x, fchid, tid) to Alice, the in-
teraction of Figures 29-33 will be executed in both the real and the ideal world.
In more detail, in the ideal world the execution of the honest parties will be simu-
lated by the respective ITIs run by SLN−Reg−Open, so their state will be identical
to that of the parties in the real execution. Furthermore, since SLN−Reg−Open
executes faithfully the protocol code, it generates the same messages as would
be generated by the parties themselves in the real-world setting.

79

Like SLN−Reg. Differences:
1: Upon receiving (openChannel, Alice, Bob, x, fchid, tid) from FPayNet,Open:
2: if both Alice and Bob are honest then
3: Simulate the interaction between Alice and Bob in their respective ITI,

as defined in Figures 29-33. All messages should be handed to and received
from A, as in the real world execution.

4: After sending (fundingSigned) as Bob to Alice, send
(channelAnnounced, Bob, pAlice,F , pBob,F , fchid, pchid, tid) to FPayNet,Open.

5: After submitting F to GLedger as Alice, send (channelAnnounced,
Alice, pAlice,F , pBob,F , fchid, pchid) to FPayNet,Open.

6: else if Alice is honest, Bob is corrupted then
7: Simulate Alice’s part of the interaction between Alice and Bob in

Alice’s ITI, as defined in Figures 29, 31, and 33.All messages should be handed
to and received from A, as in the real world execution.

8: After submitting F to GLedger as Alice, send (channelAnnounced,
Alice, pAlice,F , pBob,F , fchid, pchid) to FPayNet,Open.

9: else if Alice is corrupted, Bob is honest then
10: send (openChannel, Alice, Bob, x, fchid, tid) to simulated (corrupted)

Alice
11: Simulate Bob’s part of the interaction between Alice and Bob in Bob’s

ITI, as defined in Figures 30 and 32. All messages should be handed to and
received from A, as in the real world execution.

12: After sending (fundingSigned) as Bob to Alice, send
(channelAnnounced, Bob, pAlice,F , pBob,F , fchid, pchid) to FPayNet,Open.

13: else if both Alice and Bob are corrupted then
14: forward message to A // A may open the channel or not
15: end if

16: Upon receiving (openChannel, x, remoteDelay, ptF , ptbpay, ptbdpay, ptbhtlc,
ptcom,1, ptbrev, tid, from Alice, to Bob) from A:

17: ensure Alice is corrupted and that Bob is not
18: choose unique number and assign it to intid
19: store received message along with intid
20: send (adversaryOpenChannel, x, remoteDelay, tid, intid, from Alice, to

Bob) to FPayNet,Open

21: Upon receiving (adversaryOpenChannel, fchid, intid) from FPayNet,Open:
22: retrieve message associated with intid
23: Continue simulation with Alice receiving the message from Bob
Continued in Fig. 56

Simulator SLN−Reg−Open – open

Fig. 55

80

Continuing from Fig. 55
1: Upon receiving (fundingLocked, Alice, ΣAlice, fchid) from FPayNet,Open:
2: execute lines 5-9 of Fig. 34 with Alice’s ITI, using ΣAlice from message
3: if Bob is honest then
4: expect the delivery of Alice’s (fundingLocked) message from A
5: send (fundingLocked, fchid) to FPayNet,Open
6: upon receiving (fundingLocked, Bob, ΣBob, fchid) from FPayNet,Open:
7: simulate Fig. 35 with message from Alice in Bob’s ITI, using ΣBob from
FPayNet,Open’s message

8: end if

9: Upon receiving the (fundingLocked) message with the simulated Alice ITI:
10: simulate Fig. 35 receiving the message with Alice’s ITI
11: send (channelOpened, fchid) to FPayNet,Open

Simulator SLN−Reg−Open – funding locked

Fig. 56

We observe that the input validity check executed by FPayNet,Open (Fig. 17,
line 2) filters only messages that would be ignored by the real protocol as well
and would not change its state either (Fig. 29, line 2).

We also observe that, upon receiving the message openChannel or chan-
nelAnnounced, FPayNet,Open does not send any messages to parties other than
SLN−Reg−Open, so we don’t have to simulate those.

When E sends (checkForNew, Alice, Bob, tid) to Alice in the real world,
line 2 of Fig. 34 will allow execution to continue if there exists an entry with
temporary id tid in pendingOpen marked as “broadcast”. Such an entry can
be added either in Fig. 29, line 8 or in Fig. 30, line 6. The former event can
happen only in case Alice received a valid openChannel message from Bob with
temporary id tid, which in turn can be triggered only by a valid openChannel
message with the same temporary id from E to Bob, whereas the latter only
in case Alice received a valid openChannel message from E with the same
temporary id. Furthermore, in the first case the “broadcast” mark can be added
only before Alice sends (fundingSigned, pchid, sig) to Bob (Fig. 32, line 12)
(which needs a valid Alice-Bob interaction up to that point), and in the second
case the “broadcast” mark can be added only before Alice sends (submit, (sig,
F)) to GLedger (Fig. 33, line 8) (which also needs a valid Alice-Bob interaction
up to that point).

In the ideal world, when the simulated A attempts to open a new channel
by instructing corrupted Alice to send (openChannel, x, bobDelay, _, _, _,
_, _, _, tid) to honest Bob, S sends (adversaryOpenChannel, x, bobDelay,
tid, intid, from Alice, to Bob) to FPayNet,Open (Fig. 55, lines 16-20). In this case,
FPayNet,Open stores the intention and prompts S to continue the channel negotia-
tion (Fig. 17, lines 6-11), who in turn simulates the receipt of openChannel by

81

Bob (Fig. 55, lines 21-23). In the real world, such a message by the adversarially
controlled Alice would result in the honest player Bob starting the same opening
negotiation as the one that was just described in the ideal world, therefore the
two behaviours are indistinguishable.

When E sends a message (checkForNew, Alice, Bob, tid) to Alice in the
ideal world, line 5 of Fig. 18 will allow execution to continue if there exists an en-
try with temporary ID tid and one member Alice, marked as “Alice announced”
in pendingOpen(fchid) for some fchid. This can only happen if line 3 of Fig. 18 is
executed, where pendingOpen(fchid) contains tid as the temporary ID. This line
in turn can only be executed if FPayNet,Open received (channelAnnounced,
Alice, pAlice,F , pBob,F , fchid, pchid, tid) from SLN−Reg−Open such that the entry
pendingOpen(fchid) exists and has temporary ID tid, as mandated by line 2 of
Fig. 18. Such a message is sent by SLN−Reg−Open of Fig. 55 either in lines 5/8,
or in lines 4/12. One of the first pair of lines is executed only if SLN−Reg−Open
receives (openChannel, Alice, Bob, x, fchid, tid) from FPayNet,Open and the
simulated A allows a valid Alice-Bob interaction up to the point where Alice
sends (submit) to GLedger, whereas one of the second pair of lines is executed
only if SLN−Reg−Open receives (openChannel, Bob, Alice, x, fchid, tid) from
FPayNet,Open and the simulated A allows a valid Alice-Bob interaction up to the
point where Alice sends (fundingSigned) to Bob.

The last two points lead us to deduce that line 5 of Fig. 18 in the ideal
and line 2 of Fig. 34 in the real world will allow execution to continue in the
exact same cases with respect to the messages that E and A send. Given that
execution continues, Alice subsequently sends (read) to GLedger and performs
identical checks in both the ideal (Fig. 18, lines 8-9) and the real world (Fig. 34,
lines 3-4).

Moving on, in the real world lines 5-9 of Fig. 34 are executed by Alice and,
given that A allows it, the code of Fig. 35 is executed by Bob. Likewise, in
the ideal world, the functionality executes lines 10-11 of Fig. 34 and as a result
it (always) sends (fundingLocked, Alice, ΣAlice, fchid) to SLN−Reg−Open. In
turn SLN−Reg−Open simulates lines 5-9 of Fig. 34 with Alice’s ITI and, if A allows
it, SLN−Reg−Open simulates the code of Fig. 35 with Bob’s ITI. Once more we
conclude that both worlds appear to behave identically to both E and A under
the same inputs from them.

82

1: For messages register, registerDone, toppedUp, openChannel,
channelAnnounced, checkForNew, poll, pay, adversarySendInvoice,
pushAdd, pushFulfill, fulfillOnChain and commit, act like FPayNet, but
skip lines that call checkClosed().

2: Upon receiving any other message M from Alice:
3: if M is a valid FPayNet message from a player then
4: send (M, Alice) to S
5: end if

6: Upon receiving any other message (M, Alice) from S:
7: if M is a valid FPayNet message from S then
8: send M to Alice
9: end if

Functionality FPayNet,Pay

Fig. 57

1: Upon receiving any message with a concatenated (state, Σ) part from
FPayNet,Pay: // pay, pushFulfill, pushAdd, commit

2: handle first part of the message normally
3: if at the end of the simulation above, control is still held by
SLN−Reg−Open−Pay then

4: for all ΣAlice ∈ Σ do
5: for all (−−→path, _, payid) ∈ payids : Alice ∈ −−→path do
6: if condition in Fig. 62 is met then // no or bad communication

with Bob’s previous player
7: execute effect in Fig. 62
8: else if condition in Fig. 63 is met then // Alice did not fulfill in

time
9: execute effect in Fig. 63

10: else if condition in Fig. 64 is met then // honest payment
completed

11: execute effect in Fig. 64
12: end if
13: end for
14: end for
15: clear charged and send (resolvePays, charged) to FPayNet,Pay
16: end if

Simulator SLN−Reg−Open−Pay – resolve payments

Fig. 61

83

Like SLN−Reg−Open. Differences:
1: Upon simulating line 1 of Fig. 39:
2: if ∃(⊥,⊥, payid) ∈ payids where payid is the one in the invoice message

then
3: replace second ⊥ with the h found in the invoice message
4: end if

5: Upon simulating line 1 of Fig. 40 with honest Alice:
6: if ∃payid : (−−→path, h, payid) ∈ payids where h is the one in the

updateAddHtlc message then
7: append Alice to −−→path
8: end if

9: Upon receiving (fulfillOnChain, t, Alice) from FPayNet,Pay:
10: execute lines 3-12 of Fig. 47 as Alice, using t from message
11: if during the simulation above, line 8 is simulated in Alice’s ITI then
12: send (newPayments, payment, Alice) to FPayNet,Pay, where payment

consists of the tuple just added to the simulated paymentsToReport, appended
with the payid mentioned in line 7

13: upon receiving (continue) from FPayNet,Pay, carry on with the
simulation

14: end if

15: Upon receiving
(
pay, Alice, Bob, x,

−−→
path, expayid, payid

)
from FPayNet,Pay:

16: add (−−→path, ⊤, payid) to payids
17: strip payid and Alice, simulate receiving the message with Alice ITI and

further execute the parts of ΠLN that correspond to honest parties
(Fig. 38-Fig. 42)

18: if any “ensure” in ΠLN fails until Bob processes updateAddHtlc then //
payment failed

19: add (⊥, payid) to charged(Alice)
20: remove (−−→path, _, payid) from payids
21: end if

22: Upon receiving (poll, ΣAlice, Alice) from FPayNet,Pay:
23: simulate Fig. 36, lines 3-27 receiving (poll), using ΣAlice from the

message, with Alice’s ITI
24: if during the simulation above, line 18 of Fig. 37 is simulated in Alice’s ITI

then
25: send (newPayments, payment, Alice) to FPayNet,Pay, where payment

consists of the tuple just added to the simulated paymentsToReport, appended
with the payid stored the entry of pendingPay referred to in line 17 (Fig. 37,
line 18)

26: upon receiving (continue) from FPayNet,Pay, carry on with the
simulation

27: end if

Simulator SLN−Reg−Open−Pay – pay

Fig. 58
84

1: Upon receiving (sendInvoice, x, expayid, payid, from Alice, to Bob) from A:
2: ensure Alice is corrupted and that Bob is not
3: ensure no other payment with the same payid exists
4: choose unique number adn assign it to invid
5: store received message along with invid
6: add (⊥, ⊥, payid) to payids
7: send (adversarySendInvoice, x, expayid, payid, intid, from Alice, to

Bob) to FPayNet,Pay

8: Upon receiving (adversarySendInvoice, invid) from FPayNet,Open:
9: retrieve message associated with invid

10: Continue simulation with Alice receiving the message from Bob

Simulator SLN−Reg−Open−Pay – adversarial payment

Fig. 59

Condition:
1: Alice sent updateFulfillHtlc to a corrupted player and either (got the

fulfillment of the HTLC irrevocably committed OR fulfilled the HTLC
on-chain (i.e. HTLC-success is in ΣAlice)), AND the next honest player Bob
down the line successfully timed out the HTLC on-chain (i.e. HTLC-timeout is
in ΣBob)

Effect:
2: add (corrupted, payid) to charged(payer) where corrupted is set to one of

the corrupted parties between Alice and Bob
3: if there is an h ̸= ⊤ member in payids entry then // adversarially

initiated payment, functionality doesn’t know path
4: append −−→path to charged(Alice) entry
5: end if
6: remove (−−→path, _, payid) from payids

Simulator SLN−Reg−Open−Pay – corrupted charged

Fig. 62

85

1: Upon receiving (pushFulfill, pchid, Alice) from FPayNet,Pay:
2: simulate Fig. 46, lines 1-19 on input (pushFulfill, pchid) with Alice’s ITI

and handle subsequent messages by simulating respective ITIs of honest
players or sending to A the messages for corrupted players

3: if during the simulation above, line 14 of Fig. 46 is simulated in Alice’s ITI
then

4: send (newPayments, payment, Alice) to FPayNet,Pay, where payment
consists of the tuple just added to the simulated paymentsToReport, appended
with the payid of line 12 (Fig. 46, line 14)

5: upon receiving (continue) from FPayNet,Pay, carry on with the
simulation

6: end if

7: Upon receiving (pushAdd, pchid, Alice) from FPayNet,Pay:
8: simulate Fig. 46, lines 20-24 on input (pushAdd, pchid) with Alice’s ITI

and handle subsequent messages by simulating respective ITIs of honest
players or sending to A the messages for corrupted players

9: Upon receiving (commit, pchid, Alice) from FPayNet,Pay:
10: simulate Fig. 43 on input (commit, pchid) with Alice’s ITI and handle

subsequent messages by simulating respective ITIs of honest players or sending
to A the messages for corrupted players

11: if during the simulation above, line 10 of Fig. 45 is simulated in Alice’s ITI
then

12: send (newUpdate, receipt, Alice) to FPayNet,Pay, where receipt is
the field just added to the simulated updatesToReport (Fig. 45, line 10)

13: upon receiving (continue) from FPayNet,Pay, carry on with the
simulation

14: end if
15: if during the simulation above, line 16 of Fig. 45 is simulated in Alice’s ITI

then
16: send (newPayments, payments, Alice) to FPayNet,Pay, where payments

consists of the fields just added to the simulated paymentsToReport, each field
appended with the respective payid of line 11 (Fig. 45, line 16)

17: upon receiving (continue) from FPayNet,Pay, carry on with the
simulation

18: end if

Simulator SLN−Reg−Open−Pay – push

Fig. 60

86

Condition:
1: ΣAlice contains an old remoteComm of the channel before Alice (closer to

payer) on the −−→path that does not contain the relevant HTLC anymore and a tx
that spends the delayed output of remoteComm ∨ ((ΣAlice contains the most
recent remoteComn or localComn of the channel before Alice and the
HTLC-timeout of the relevant HTLC ∨ Alice’s latest irrevocably committed
remoteComn for the channel before Alice does not contain the HTLC) ∧ΣAlice
contains the most recent remoteComl or localComl and the HTLC-success that
pays the counterparty for HTLC of the channel after Alice)

Effect:
2: add (Alice, payid) to charged(payer)
3: if there is an h ̸= ⊤ member in payids entry then // adversarially

initiated payment, functionality doesn’t know path
4: append −−→path to charged(Alice) entry
5: end if
6: remove (−−→path, _, payid) from payids

Simulator SLN−Reg−Open−Pay – no timely fulfill

Fig. 63

Condition:
1: Alice is the payer in −−→path AND ((she has received updateFulfillHtlc

AND has subsequently sent commit and revokeAndAck) OR (player after
Alice has irrevocably fulfilled the HTLC on-chain (i.e. his HTLC-success is in
ΣAlice) AND Alice has received poll to observe it))

Effect:
2: add (Alice, payid) to charged(Alice)
3: if there is an h ̸= ⊤ member in payids entry then // adversarially

initiated payment, functionality doesn’t know path
4: append −−→path to charged(Alice) entry
5: end if
6: remove (−−→path, _, payid) from payids

Simulator SLN−Reg−Open−Pay – honest payment

Fig. 64

87

Lemma 7.

∀k ∈ N, PPT E ,

|Pr[ExecFPayNet,Open,GLedger
SLN−Reg−Open,E = 1]− Pr[ExecFPayNet,Pay,GLedger

SLN−Reg−Open−Pay,E = 1]| ≤

nm · E-ds(k) + 3np · E-ibs(k)+
nmp · E-share(k) + E-prf(k) + nm · E-master(k) .

Proof. Before focusing on individual messages sent by E or A, we will first prove
that four particular forgery events happen with negligible probability. Let P be
the event in which at some point during the execution a transaction that has
the following two characteristics appears in ΣAlice, for some honest player Alice:
it spends a funding transaction of a channel that contains Alice (and thus has
a pAlice,F public key) and it was never signed by Alice. Suppose that n is the
number of players, m is the maximum number of channels that a player can
open and p is the maximum number of opens and updates a player can perform
in all channels, and ∃ PPT EP : Pr[P] = a. We show in Proposition 3 that
∀E , Pr[P] ≤ nm · E-ds(k).

Let Q be the event in which at some point during the execution a transac-
tion that has the following two characteristics appears in ΣAlice, for some hon-
est player Alice: it spends a simple output, delayed output or htlc output tied
with a public key that was created by Alice (pAlice,pay,n, pAlice,dpay,n, pAlice,htlc,n

respectively) and it was never signed by Alice. Suppose that p is the maxi-
mum total number of opens and updates that a player can perform across
all channels and that ∃ PPT EQ : Pr[Q] = b. We show in Proposition 4 that
∀E , Pr[Q] ≤ 3np · E-ibs(k).

Let R be the event in which at some point during the execution a transaction
that has the following characteristic appears in ΣAlice, for some honest player
Alice: it spends the revocation output of a local (for Alice) commitment trans-
action for a channel that contains Alice and Bob (and thus has a pBob,rev,n key).
Observe that, since Alice is honest and according to both the real and the ideal
execution, if Alice submits her local commitment transaction localComn to the
ledger, under no circumstances does she subsequently go on to send sAlice,com,n

to any party. (This secret information could be used by Bob to efficiently com-
pute sBob,rev,n with CombineKey(pbBob,rev, sbBob,rev, pAlice,com,n, sAlice,com,n).)
Suppose that p is the maximum total number of opens and updates that a
player can perform across all channels, m is the maximum number of channels
a player can open and ∃ PPT ER : Pr[R] = c. We show in Proposition 5 that
∀E , Pr[R] ≤ nmp · E-share(k) + E-prf(k).

Lastly, let S be the event in which at some point during the execution a trans-
action that has the following two characteristics appears in ΣAlice, for some hon-
est player Alice: (a) it spends the revocation output of a remote (for Alice) com-
mitment transaction for a channel that contains Alice (and thus has a pAlice,rev,n

key) and (b) it was never signed by Alice. Observe that, since Alice is honest, she
has never sent sAlice,rev,n to any party. Suppose that m is the maximum total

88

number of opens and updates that a player can perform and that ∃ PPT ES :
Pr[S] = d. We show in Proposition 6 that ∀E , Pr[S] ≤ nm · E-master(k).

In the ideal world, when the simulated A attempts to send a payment by
instructing corrupted Alice to send (sendInvoice, x, expayid, payid) to the
honest payee Bob, S sends (adversarySendInvoice, x, expayid, payid, intid,
from Alice, to Bob) to FPayNet,Pay (Fig. 59, lines 1-7). In this case, FPayNet,Pay
stores the intention and prompts S to continue the payment (Fig. 19, lines 5-9),
who in turn simulates the receipt of sendInvoice by Bob (Fig. 59, lines 8-10).
In the real world, such a message by the adversarially controlled Alice would
result in the honest Bob sending the same invoice, therefore the two behaviours
are indistinguishable.

In the ideal world, when the simulated A attempts to add an HTLC by
instructing corrupted Alice to send (updateAddHtlc, pchid, HTLCNo, x, h,
IncomingCltvExpiry, M) to honest Bob, S simply simulates the receiving of
the message by Bob and subsequently carries out the rest of the simulation. In
the real world, such a message by the adversarially controlled Alice would result
in Bob and the rest of the ITIs following the same steps as in the simulated case,
therefore the two behaviours are indistinguishable.

We can now move on to treating the individual messages sent by E during
the execution. When E sends

(
pay, Bob, x,

−−→
path, expayid

)
to Alice in the ideal

world, SLN−Reg−Open is always notified (Fig. 19, line 4) and simulates the rel-
evant execution of the real world (Fig. 58, line 17). No messages to GLedger or
E that differ from the real world are generated in the process. At the end of
this simulation, no further messages are sent (and the control returns to E).
Therefore, when E sends pay, no opportunity for distinguishability arises.

When E sends any message among (pushAdd, pchid), (pushFulfill, pchid),
(commit, pchid) to Alice in the ideal world, it is forwarded to SLN−Reg−Open
(Fig. 27, lines 2, 4, 6 respectively), who in turn simulates Alice’s real-world
execution with her simulated ITI and the handling of any subsequent messages
sent by Alice’s ITI (Fig. 60, lines 2, 8, 10). Neither FPayNet,Pay nor SLN−Reg−Open
alter their state as a result of these messages, apart from the state of Alice’s
simulated ITI and the state of other simulated ITIs that receive and handle
messages that were sent as a result of Alice’s ITI simulation. The states of these
ITIs are modified in the exact same way as they would in the real world. We
deduce that these three messages do not introduce any opportunity for E to
distinguish the real and the ideal world.

When E sends (fulfillOnChain) to Alice in the real world, lines 1-12 of
Fig. 47 are executed by Alice. In the ideal world on the other hand, FPayNet,Pay
sends (read) to GLedger (Fig. 27, line 8) as Alice and subsequently instructs
SLN−Reg−Open to simulate the receiving of (fulfillOnChain) with Alice’s ITI
(Fig. 58, lines 9-10). Observe that during this simulation a second (read) mes-
sage to GLedger (that would not match any message in the real world) is avoided
because SLN−Reg−Open skips line 2 of Fig. 47, using as t the one received from
FPayNet,Pay in the message (fulfillOnChain, t, Alice). Since FPayNet,Pay sends
(read) to GLedger as Alice and given that after GLedger replies, control is given

89

directly to SLN−Reg−Open, the t used during the simulation of Alice’s ITI is
identical to the one that Alice would obtain in the real-world execution. The
rest of the simulation is thus identical with the real-world execution, therefore
fulfillOnChain does not introduce any opportunity for distinghuishability.

When E sends (poll) to Alice, the first action is sending (read) as Alice to
GLedger both in the ideal (Fig. 26, line 4) and the real (Fig. 36, line 2) worlds. Sub-
sequently, in the real world lines 3-27 of Fig. 36 are executed by Alice, whereas
in the ideal world, given that the checks of lines 10 and 5 do not lead to a bad
event (and thus given that the functionality does not halt in lines 11 or 6), a
(poll) message is sent to SLN−Reg−Open. We will prove later that FPayNet,Pay
does not halt here. Upon receiving (poll), SLN−Reg−Open simulates receiving
(poll) with Alice’s ITI (Fig. 58, line 23), but does not read from GLedger and
uses instead the ΣAlice provided along with the message. A reasoning identical
to that found in the previous paragraph shows that this ΣAlice is exactly the
same as that which Alice’s ITI would obtain had it executed line 2 of Fig. 36
and thus the simulation of Alice’s ITI is identical to what would happen in the
same case in the real world, up to and including line 27 of Fig. 36.

The event E in which FPayNet,Pay executes line 6 of Fig. 26 and halts can only
happen if there is a non-commitment transaction that contains a valid signature
by the pAlice,F key that is needed to spend the funding transaction of an open
channel. According to ΠLN , Alice signs with her sAlice,F key only commitment
transactions. Therefore E ⊂ P ⇒ Pr[E|¬P] = 0.

Let E′ the “bad” event in which FPayNet,Pay executes line 11 of Fig. 26 and
halts. We will now prove that, during ExecFPayNet,Pay,GLedger

SLN−Reg−Open−Pay,E , it is Pr[E|¬P ∧
¬Q ∧ ¬R ∧ ¬S] = 0. The condition of Fig. 26, line 10 is triggered if the
delayed output (that of the malicious party) of tx1 has been spent by the
transaction tx2 in ΣAlice (event E′1) and polls(Alice) contains an element in
[h1, h1 + delay (Alice)− 1], where h1 is the block height where tx1 is (event
E′2). Observe that E′ = E′1 ∧ E′2. We note that the elements in polls(Alice)
correspond to the block heights of ΣAlice at the moments when Alice polls
(Fig. 26, line 3). Consider the following two events: E′1,1 : tx2 spends the de-
layed output with a signature valid by the delayed payment public key after the
locktime expires. E′1,2 : tx2 spends the delayed output with a signature valid by
the revocation public key pAlice,rev. Note that E′1 = E′1,1 ∨ E′1,2 and E′1,1, E′1,2
are mutually exclusive (since the same output cannot be spent twice). Observe
that E′1,2 ⊂ S, thus Pr

[
E′1,2|¬S

]
= 0. We now concetrate on the event E′1,1. Due

to the fact that tx2 spends an output locked with a relative timelock of length
delay (Alice) + (2 + r) windowSize, the commitment transaction tx1 can reside
in a block of maximum height h1 ≤ h2 − delay (Alice) − (2 + r) windowSize,
where h2 is the block height where tx2 is. If Alice polls on a moment when
|ΣAlice| ≥ h1, ΣAlice necessarily contains tx1. Furthermore, if Alice polls on a
moment when |ΣAlice| ≤ h1 + delay (Alice)− 1 ≤ h2 − (2 + r) windowSize− 1,
she sees tx1 and directly submits the punishment transaction tx3 (which she
has, given that a maliciously closed channel is defined as one where the non-
closing party has the punishment transaction) (Fig. 37, lines 22-24). Given

90

that tx3 is broadcast when |ΣAlice| ≤ h2 − (2 + r) windowSize, it is guaran-
teed to be on-chain in a block h3 ≤ h2 (according to Proposition 1). Since
tx3 spends the same funds as tx2, the two cannot be part of the chain simul-
taneously. Since E′1,1 ⇒ ΣAlice contains tx2 and E′2 ⇒ ΣAlice contains tx3,
E′1,1 and E′2 are mutually exclusive. Therefore, assuming ¬P ∧ ¬Q ∧ ¬R ∧
¬S, it is Pr [E′] = Pr

[(
E′1,1 ∨ E′1,2

)
∧ E′2

]
= Pr

[(
E′1,1 ∧ E′2

)
∨

(
E′1,2 ∧ E′2

)]
≤

Pr
[
E′1,1 ∧ E′2

]
+ Pr

[
E′1,2 ∧ E′2

]
= Pr

[
E′1,2 ∧ E′2

]
≤ Pr

[
E′1,2

]
= 0. We conclude

that, given ¬P∧¬Q∧¬R∧¬S poll introduces no opportunity for distinghuisha-
bility.

We now treat the effects of the (state, Σ) message that FPayNet,Pay sends
to SLN−Reg−Open, appended to pay, pushFulfill, pushAdd and commit mes-
sages. We first observe that the (state) message is handled after handling the
first message (which is of one of the four aforementioned types) (Fig. 61, line 2).
It may be the case that at the end of the handling of line 2, SLN−Reg−Open does
not have control of the execution. That can happen if a simulated ITI sends a
message to a corrupted player and that player does not respond (e.g. in Fig. 38,
line 6, when the first message is

(
pay, Bob, x,

−−→
path, _

)
and Bob is corrupted),

or if the handling of the message results in sending (submit) to GLedger (e.g. in
Fig. 46, line 18 when the first message is (pushFulfill, pchid) and counterparty
has gone on-chain). In that case, the (state) message is simply ignored (Fig. 61,
line 3) and does not influence execution in any way.

In the case when (state, Σ) is handled, SLN−Reg−Open attempts to specify
who was charged for each pending payment, based on the information that the
potentially paying party sees in its view of the GLedger state (Fig. 61, lines 4-
14). The resolution is then sent to FPayNet,Pay with the message (resolvePays,
charged). FPayNet,Pay handles this message in Fig. 20 and 23, where, if it does
not halt (Fig. 22, lines 4, 7 and 15 and Fig. 23, lines 10, 13 and 17), it updates
the state of each affected channel (Fig. 23, line 4) and does not send any mes-
sage, thus control returns to E . We will prove that, under ¬P ∧ ¬Q ∧ ¬R ∧ ¬S,
FPayNet,Pay does not halt and thus conclude that the handling of a (state)
message does not introduce opportunity for distinguishability.
FPayNet,Pay halts in line 4 of Fig. 22 if the honest player Dave was charged

for a payment over a channel that was closed without using a commitment
transaction. Like E, this event is a subset of P , thus cannot happen given ¬P .
FPayNet,Pay halts in line 7 of Fig. 22 if the player Dave charged is an honest

member of the payment path, has polled in time to catch a malicious closure
(event A) but a malicious closure succeeded (event B). FPayNet,Pay halts in line 15
of Fig. 22 if Dave is not the payer, no malicious closure succeeded (¬B) and
Dave has polled in time twice to learn the preimage of the HTLC early enough
(event C) and has attempted to fulfill on chain at the right moment (event D).
FPayNet,Pay also halts if the two expiries do not have the expected distance (event
F) – i.e. halts in the event (A∧B)∨(¬B∧(F ∨(C∧D))). SLN−Reg−Open decides
that Dave is charged if his previous counterparty did a malicious closure to a
channel version without the HTLC and spent their (delayed) output (B), or if
his next counterparty fulfilled (event G) and his previous counterparty timed

91

out the HTLC (event H) (Fig. 61, line 8), – i.e. Dave is charged in the event
B ∨ (G ∧H).

We will now show that Pr[A∧B|¬P ∧¬Q∧¬R∧¬S] = 0∧Pr[(C∧D)∧ (G∧
H)|¬P ∧¬Q∧¬R∧¬S] = 0∧Pr[F ∧(G∧H)|¬P ∧¬Q∧¬R∧¬S] = 0, from which
we can deduce that Pr[(A∧B)∨((F ∨(C∧D))∧(G∧H))|¬P ∧¬Q∧¬R∧¬S] = 0
and thus Pr[((A∧B)∨(¬B∧(F∨(C∧D))))∧(B∨(G∧H))|¬P∧¬Q∧¬R∧¬S] = 0.
This last step holds because (A ∧ B) ∨ ((F ∨ (C ∧D)) ∧ (G ∧H)) = (A ∧ B) ∨
((F ∨ (C ∧D)∧G∧H) and ((A∧B)∨ (¬B ∧ (F ∨ (C ∧D))))∧ (B ∨ (G∧H)) =
(A∧B)∨ (¬B ∧ (F ∨ (C ∧D))∧G∧H) and the latter is a subset of the former.

The analysis of the event A ∧B is identical to the one we did previously for
the events E′1, E′2, with A corresponding to E′2 and B to E′1. We thus deduce
that Pr[A ∧B|¬P ∧ ¬Q ∧ ¬R ∧ ¬S] = 0.

Event F is true only if IncomingCltvExpiry − OutgoingCltvExpiry <
relayDelay(Alice) + (2 + r) windowSize. This cannot happen however for any
honest Alice, since S will simulate line 9 of Fig. 41 with Alice’s ITI before having
her agree to participate as an intermediary in the multi-hop payment. Therefore
Pr[F ∧ (G ∧H)|¬P ∧ ¬Q ∧ ¬R ∧ ¬S] = 0.

The only way for event C to be true is if E sends (poll) to Dave during the
prescribed time period (Fig. 26, line 3) – note that the addition to polls(Dave)
during registration (Fig. 16, line 10) cannot be within the desired range due to
the fact that OutgoingCltvExpiry is not smaller than the chain height when
the corresponding (invoice) was received (Fig. 39, line 9), registration happens
necessarily before handling (invoice) (Fig. 16, line 24) and the element added
to polls(Dave) at registration is the chain height at that time (Fig. 16, line 10).
When Dave receives (poll), FPayNet,Pay always sends (getClosedFunds) to
SLN−Reg−Open (Fig. 26, line 17) (since, as we saw earlier, FPayNet,Pay never halts).

Event H happens only when the previous counterparty successfully appends
HTLC-timeout to ΣDave, which is a valid transaction only starting from the
block of height IncomingCltvExpiry + 1 and on, or if the previous counter-
party learns the preimage of the HTLC and forges a signature valid by Dave’s
public HTLC key, or if the previous counterparty forges a signature valid by
Dave’s public revocation key; the two latter scenarios can never happen. Thus,
given that G happens until a moment when |ΣDave| ≤ IncomingCltvExpiry −
(2 + r) windowSize, Dave has the time to successfully fulfill the HTLC. Given C,
Dave has polled at two moments h1, h2 ∈ [OutgoingCltvExpiry, IncomingCltvExpiry
- (2 + r)windowSize], such that h2 ≥ h1 +(2 + r) windowSize. If ΣDave contains
the preimage at moment h1 or h2, then Dave may try to update the previous
channel off-chain if he receives a (pushFulfill) for that channel (Fig. 46, lines 1-
18), and if the off-chain update is never attempted (because (pushFulfill) and
(commit) are not received) or fails (because the previous counterparty does not
send (revokeAndAck)), then the (fulfillOnChain) that he receives accord-
ing to D will make him submit HTLC-success (Fig. 47, lines 1-12) and have
it on-chain by block of height IncomingCltvExpiry (Proposition 1). Further-
more, in the case that the HTLC-success is not found at the (poll) of h1, Dave
immediately submits HTLC-timeout (Fig. 37, line 9), which either ends up in

92

ΣDave by block height h1 + (2 + r) windowSize (Proposition 1) or is rejected
because the counterparty managed to append HTLC-success before it. In the
first case, Dave is not charged for the payment. In the second case, the second
(poll) (at block height h2) necessarily reveals the HTLC-success to Dave and
subsequently the (fulfillOnChain) causes Dave to fulfill the HTLC with the
previous counterparty, as argued above. Therefore in no case Dave is charged
for the payment, i.e. Pr[(C ∧D) ∧ (G ∧H)|¬P ∧ ¬Q ∧ ¬R ∧ ¬S] = 0.

We will now show that the halt of line 10 in Fig. 20 does not occur with
non-negligible probability. If the check of line 8 succeeds, this means that line 19
of Fig. 58 was executed by S, therefore the payment referred to by payid failed,
therefore neither Alice nor Bob saw the relevant HTLC being fulfilled; call this
event T . If now the check of line 9 succeeds, this means that FPayNet has received
the relevant entry from S in a newPayments message (Fig. 13, line 14). This in
turn happens in one of the following cases: line 12 of Fig. 58, line 25 of Fig. 58,
line 4 of Fig. 60, and line 16 of Fig. 60. Line 12 of Fig. 58 can only be executed if
the simulated Alice or Bob has successfully fulfilled on chain the relevant HTLC
(Fig. 47, line 7), which however is incompatible with T . Line 25 of Fig. 58 is
executed if the simulated Alice has executed line 18 of Fig. 37, which means
that the relevant (offered) HTLC has been spent (i.e. fulfilled) (line 12, Fig. 37),
which is incompatible with T . Line 4 of Fig. 60 is executed if the simulated
Bob executes line 14 of Fig. 46, which happens only if a relevant entry exists in
gotPaid (line 12, Fig. 46), which in turn can only be added in line 10 of Fig. 40.
In order to reach that point of the execution however, all updateAddHtlc
checks must have passed, which is incompatible with T . The last possible case in
which the entry is added to pendingDiffs is line 16 of Fig. 60. This is executed
if line 16 of Fig. 45 is executed either in the simulated Alice or in the simulated
Bob. The field updateDiffs can be populated only in line 8 of Fig. 46 for Alice
or line 23 of Fig. 42 for Bob. The former case can only happen if there was a
corresponding entry in gotPaid, which, as we saw before, is incompatible with T .
Likewise, the latter can only happen if Alice receives an updateFulfillHtlc
message for the HTLC corresponding to the payment, which can only happen if
no updateAddHtlc fails, which is contrary to T . Therefore the halt of Fig. 20,
line 10 cannot happen.

Moving on, we have to prove that the halt of line 10 in Fig. 23 does not occur
with non-negligible probability. Indeed, S only reports the payment as resolved
in resolvePays if a party has been irrevocably charged for it (Fig. 61, lines 6, 8,
or 10). In all three cases, all channels that follow the charged party on the −−→path
have either been closed or irrevocably updated to a newer version that includes
the new balance. Since FPayNet may only halt for a channel that has not been
declared or confirmed as closed (Fig. 23, lines 1 and 9), all channels that can cause
a halt are channels that have the update of this payment irrevocably committed.
This only happens when both sides send a revokeAndAck that updates the
channel from a version that contains the relevant HTLC to a version that doesn’t;
and when an honest party receives such a revokeAndAck message, it logs the
new receipt in updatesToReport (Fig. 45, line 10) which causes S to report the

93

update to FPayNet (Fig. 60, line 12). We therefore conclude that FPayNet never
halts on line 10 of Fig. 23.

It remains to be proven that FPayNet does not halt with non-negligible prob-
ability in lines 13 and 17 of Fig. 23. For the halt of line 13 to occur, the player
charged must be the payer (as intended by the original pay messsage) and honest,
but its pendingDiffs must not contain a corresponding entry for that payment.
This however cannot happen for the following reason. As execution is in the loop
of Fig. 20, line 3, it is (Dave, payid) ∈ charged(Alice). As the code of Fig. 23 is
being run, either line 16 of Fig. 20 or 21 of Fig. 22 has been executed, so line 12
has not been executed in the same iteration of the loop, therefore Dave ̸= ⊥.
Additionally, since FPayNet received a resolvePays message, S has executed
Fig. 61 and added (Dave, payid) to charged(Alice) in exactly one of lines 7, 9,
or 11. Furthermore, since Alice /∈ corrupted (Fig. 23, line 12), the condition
of Fig. 62 does not hold and since Alice is the payer (Dave = Alice), there is
no channel “before” her, therefore the condition of Fig. 63 does not hold either.
Therefore the only way for charged(Alice) to contain (Alice, payid) is if the
condition of Fig 64 is true. The condition holds either when Alice has received
updateFulfillHtlc on the fulfilment of the payment, followed by a revoke-
AndAck, or if her counterparty has fulfilled on-chain and she has checked the
blockchain since. In the first case, the tuple (expayid, payid, _) would have been
added to pendingDiffs(Alice) as S would have simulated line 23 of Fig. 42
on receiving updateFulfillHtlc, thus adding the tuple to updateDiffs, and
line 16 of Fig. 45, thus prompting S to send the tuple to FPayNet (Fig. 60, line 16),
which would subsequently add it to pendingDiffs (Fig. 19, line 14). Therefore
in this case the halt is impossible. In the alternative case, since Alice must have
polled after her counterparty’s HTLC-success was settled on-chain (Fig. 64,
line 1) and therefore the loop of line 1 in Fig. 37 must have been executed by
S while simulating Alice, as well as the loop of line 12 of the same figure and
eventually line 18 in that figure, which would have prompted in turn S to send
the relevant newPayments message to FPayNet (Fig. 58, line 25). In that case
however the tuple (expayid, payid, _) would be in pendingDiffs(Alice) and
the check of line 12, Fig. 23 would fail, therefore preventing the functionality
from halting.

We will now prove that the halt of line 17 in Fig. 23 does not occur. This
halt would take place if the payee Bob is honest but was not previously informed
of the payment, i.e. the tuple (expayid, payid, _) is not in pendingDiffs(Bob).
Similarly to the argument for line 13, S added (Dave, payid) to charged(Bob) in
exactly one of lines 7, 9, or 11 of Fig. 61. In the first case, there was a player on the
path that fulfilled the payment. This can only happen if first Bob has fulfilled the
payment and irrevocably committed to a channel version that resolves the HTLC
to his favour, therefore Bob has either sent a relevant updateFulfillHtlc and
revokeAndAck or has fulfilled on-chain. As we saw previously, both these
scenarios would lead to pendingDiffs(Bob) containing the (expayid, payid,
_) tuple. In the second and third cases (line 1, Fig. 63 and line 1, Fig. 64)
once again the conditions describe situations which are possible only if Bob has

94

already successfully fulfilled, which means that he has necessarily caused S to
send the payment to FPayNet, which has added it to pendingDiffs(Bob). We
conclude that the halt of line 17, Fig. 23 cannot occur.

To conclude, given that ¬P ∧ ¬Q ∧ ¬R ∧ ¬S, it is ExecFPayNet,Open,GLedger
SLN−Reg−Open,E =

ExecFPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E . If we allow for forgeries again, i.e. if we allow the event

P ∨Q∨R∨S, we observe that Pr[P ∨Q∨R∨S] ≤ nm ·E-ds(k)+3np ·E-ibs(k)+
nmp ·E-share(k)+E-prf(k)+nm ·E-master(k), where n is the number of players,
m is the maximum channels a player can open and p is the maximum number
of updates a player can perform. We thus deduce that

∀k ∈ N, PPT E ,

|Pr[ExecFPayNet,Open,GLedger
SLN−Reg−Open,E = 1]− Pr[ExecFPayNet,Pay,GLedger

SLN−Reg−Open−Pay,E = 1]| ≤

nm · E-ds(k) + 3np · E-ibs(k)+
nmp · E-share(k) + E-prf(k) + nm · E-master(k) .

Like SLN−Reg−Open−Pay. Differences:
1: Upon receiving (forceCloseChannel, receipt, pchid, Alice) from FPayNet:
2: simulate Fig. 48 receiving (forceCloseChannel, receipt, pchid) with

Alice’s ITI
3: if during the simulation above, line 11 of Fig. 48 is simulated in Alice’s ITI

then
4: send (newPayments, payment, Alice) to FPayNet,Pay, where payment

consists of the tuple just added to the simulated paymentsToReport, appended
with the payid of line 9 (Fig. 48, line 11)

5: upon receiving (continue) from FPayNet,Pay, carry on with the
simulation

6: end if

7: Upon receiving (closeChannel, receipt, pchid, Alice) from FPayNet:
8: simulate the interaction between Alice and Bob in Fig. 49, starting with

Alice receiving (closeChannel, receipt, pchid) with Alice’s ITI. If Bob is
honest, simulate his part as well; if not, let A handle his part.

9: every time closedChannels of Alice is updated with data from a channel
(Fig. 48, line 17, Fig 49, line 26 and Fig. 37, line 26), send (closedChannel,
channel, Alice) to FPayNet and expect (continue) from FPayNet to resume
simulation

Simulator S

Fig. 65

95

Lemma 8.

∀k ∈ N, PPT E ,

|Pr[ExecFPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = 1]− Pr[ExecFPayNet,GLedger

S,E = 1]| ≤

nm · E-ds(k) + 3np · E-ibs(k)+
nmp · E-share(k) + E-prf(k) + nm · E-master(k) .

Proof. Like in the previous proof, we here also assume that ¬P ∧¬Q∧¬R∧¬S
holds.

When E sends (forceCloseChannel, receipt, pchid) to Alice, in the ideal
world, if it is not the first such message to Alice for this channel, the message is
ignored (Fig. 24, line 10). Similarly in the real world, if there has been another
such message, Alice ignores it (Fig. 48, lines 18 and 2).

In the case that it is indeed the first forceCloseChannel message for
this channel, in the ideal world FPayNet takes note that this close is pending
(Fig. 24, lines 8-9) and stops serving more requests for this channel (line 10),
before asking S to carry out channel closing (Fig. 24, line 11). S then simulates
the response to the original message from E with Alice’s ITI (Fig. 65). Observe
that, since FPayNet has ensured that this is the first request for closing this
particular channel, the simulated check of line 2 in Fig. 48 always passes and
the rest of Fig. 48 is executed. In the real world, the check also passes (since we
are in the case where this is the first closing message) and Fig. 48 is executed by
the real Alice in its entirety. Therefore, when E sends forceCloseChannel,
no opportunity for distinguishability arises.

In the ideal world, when the simulated A attempts to cooperatively close a
channel by instructing corrupted Alice to send a shutdown message to honest
Bob, S simply simulates the receiving of the message by Bob and subsequently
carries out the rest of the simulation. In the real world, such a message by
the adversarially controlled Alice would result in Bob and the rest of the ITIs
following the same steps as in the simulated case, therefore the two behaviours
are indistinguishable. Note that FPayNet handles gracefully the fact that it is not
notified of the closing negotiation until it sees the closing transaction on-chain,
due to the check and addition of line 2 and 3 respectively in Fig. 25.

When E sends (closeChannel, receipt, pchid) to Alice, in both the ideal
and the real world the request will be further processed only if the identical
checks of Fig. 24, line 2 and Fig. 49, line 2 respectively pass. Further, in the ideal
world, if Alice has already received a closing message for this channel (either
closeChannel or forceCloseChannel), the message is ignored (Fig. 24,
lines 5 and 10). Likewise in the real world, if Alice has received another such
message, she ignores it (Fig. 49, line 3 and Fig. 48, line 18).

In the case that this is the first closing message for this channel, in the ideal
world FPayNet takes note that this close is pending (Fig. 24, lines 3-4) and stops
rerving more closeChannel requests for this channel (Fig. 24, line 5), be-
fore asking S to carry out the cooperative channel closing negotiation (Fig. 24,
line 6). S then simulates the negotiation, respecting the fact that the counter-

96

party may be corrupted (Fig. 65, line 8 and Fig. 49). Observe that all checks
of Fig. 49 (lines 2, 7, 16, 24, 25 and 29) will either succeed or fail in both the
real and the ideal world in the same manner, since the same code is run in
both cases (simulated in the ideal, directly in the real) and the inputs and state
are, as we have seen, indistinguishable up to that point. Furthermore, for the
same reason, if Bob is corrupted in the ideal world at the moment when Alice
sends him shutdown, he would also be corrupted in the real world at the cor-
responding moment. Therefore, when E sends closeChannel, no opportunity
for distinguishability arises.

When E sends (getNews) to Alice, in the ideal world FPayNet sends (news,
newChannels(Alice), closedChannels(Alice), updatesToReport(Alice), paymentsToReport(Alice))
to E and empties these fields (Fig. 27, lines 12-14). In the real world, Alice sends
(news, newChannels, closedChannels, updatesToReport, paymentsToReport)
to E and empties these fields as well (Fig. 36, lines 28-29). newChannels(Alice) in
the ideal world is populated in two cases: First, when FPayNet receives (channelOpened)
after Alice has previously received (checkForNew) (Fig. 18, line 25). This hap-
pens when the simulated Alice ITI handles a fundingLocked message from Bob
(Fig. 56, line 11). In the real world Alice would have modified her new-Channels
while handling Bob’s fundingLocked (Fig. 35, line 13), thus as far as this case
is concerned, newChannels has the same contents in the real world as does
newChannels(Alice) in the ideal. The other case when newChannels(Alice) is
populated is when FPayNet receives (fundingLocked) after Bob has previ-
ously received (checkForNew) (Fig. 18, line 17). This (fundingLocked)
can only be sent by S if Alice is honest and right before the receiving of
(fundingLocked) is simulated with her ITI (Fig. 56, lines 2-7). In the real
world, Alice’s newChannels would be populated upon handling the same (fundingLocked).
Therefore the newChannels part of the message is identical in the real and the
ideal world at every moment when E can send (getNews).

Moving on to closedChannels(Alice), we observe that FPayNet adds channel
information when it receives (closedChannel, channel, Alice) from S (Fig. 24,
line 14), which in turn happens exactly when the simulated Alice ITI adds the
channel to her closedChannels (Fig. 65, line 9). Therefore the real and ideal
closedChannels are always synchronized.

Regarding updatesToReport, in the real world it is populated exclusively in
line 10 of Fig. 45. In the ideal world on the other hand, it is updated in line 11 of
Fig. 19, which is triggered only by a (newUpdate) message by S. This message
is sent only when line 10 of Fig. 45 is simulated by S (Fig. 60, line 12). In the
real world, this happens only after receiving a valid (revokeAndAck) mes-
sage from the channel counterparty and after first having sent a corresponding
(commitmentSigned) message (Fig. 45, line 2 and Fig. 44, lines 5 and 16),
which happens only after receiving (commit) from E . In the ideal world a sim-
ulation of the same events can only happen in the exact same case, i.e. when
E sends an identical (commit) to the same player. Indeed, FPayNet simply for-
wards this message to S (Fig. 27, line 6), who in turn simply simulates the
response to the message with the simulated ITI that corresponds to the player

97

that would receive the message in the real world (Fig. 60, line 10). We conclude
that the updatesToReport sent to E in either the real or the ideal world are
always identical.

As far as paymentsToReport is concerned, in the real world it is populated in
one of following cases: line 8 of Fig. 47, line 18 of Fig. 37, line 14 of Fig. 46, and
line 16 of Fig. 45, line 11 of Fig. 48. All of these cases can occur in the simulation
of the ideal world in the same way, which would result in S informing FPayNet
(lines 11-12 of Fig. 58, lines 24-25 of Fig. 58, lines 3-4 of Fig. 60, lines 15-16 of
Fig. 60, and lines 3-4 of Fig. 65 respectively) of the exact same payments. In turn,
FPayNet would store the new payments (Fig. 19, line 14) and report them back to
E upon receiving getNews. We therefore conclude that the paymentsToReport
that are sent to E are exactly the same in the ideal and the real world.

Because S now sends an additional newPayments message (line 4, Fig. 65)
which prompts FPayNet to populate paymentsToReport (line 14, Fig. 19), we
have to revisit the halt of line 10 in Fig. 20 to ensure that it still cannot occur
with non-negligible probability. Indeed, the halt happens if either a payment
has been reported as successful and is found in the pendingDiffs of one of the
two endpoints, but the payment is now found by FPayNet to have failed. This
particular payment is considered as failed by FPayNet only if S has included it
in charged (line 3, Fig. 20) and the first element is ⊥ (line 8, Fig. 20), which
can happen only in case line 19 of Fig. 58 was previously executed by S. As
we saw in detail in the proof of Lemma 7 when focussing on the fact that the
same halt could never occur however, in the case of line 19 of Fig. 58 none of the
events that trigger S to send a report of the success of this particular payment
to FPayNet via a newPayments message could have occurred, therefore the halt
in question can still never happen.

Lastly, in the ideal world, whenever (read) is sent to GLedger and a reply
is received, the function checkClosed (Fig. 25) is called with the reply of the
GLedger as argument. This function does not generate new messages, but may
cause the FPayNet to halt. We will now prove that this never happens.
FPayNet halts in line 17 of Fig. 25 in case a channel is closed without using

a commitment transaction. Similarly to event E in the proof of Lemma 7, this
event is a subset of P and thus is impossible to happen given that we assume
¬P .
FPayNet halts in line 20 of Fig. 25 in case a malicious closure by the coun-

terparty was successful, in spite of the fact that Alice polled in time to apply
the punishment. A (poll) message to Alice within the prescribed time frame
(line 19) would cause FPayNet to alert S (Fig. 26, line 17), who in turn would
submit the punishment transaction in time to prevent the counterparty from
spending the delayed payment (Fig. 37, lines 22-24). Therefore the only way
for a malicious counterparty to spend the delayed output before Alice has the
time to punish is by spending the punishment output themself. This however
can never happen, since this event would be a subset of either R, if remoteComn

(i.e. the counterparty closed the channel) is in ΣAlice, or Q, if localComn is in
ΣAlice (i.e. Alice closed the channel).

98

FPayNet halts in line 27 of Fig. 25 in case E has asked for the channel
to close, but too much time has passed since. This event cannot happen for
two reasons. First, regarding elements in pendingClose(Alice), because FPayNet
forwards a (forceCloseChannel) message to S (Fig. 24, line 11) for every
element that it adds to pendingClose (Fig 24, line 9) and this causes S to
submit the commitment transaction to GLedger (Fig. 48, line 19). This transac-
tion is necessarily valid, because there is no other transaction that spends the
funding transaction of the channel, according to the first check of line 26 of
Fig. 25. FPayNet halts in this case only if it is sure that the chain has grown by
(2 + r) windowSize blocks, and thus if the closing transaction had been submit-
ted when (forceCloseChannel) was received, it should have been necessarily
included (Proposition 1). Second, elements added to pendingClose(Alice) as a
reaction to a (closeChannel) message are built with an infinite waiting time
(Fig. 24, line 4). Third, every element added to closedChannels (Fig. 48, line 17
and Fig. 37, line 26) corresponds to a submission of a closing transaction for the
same channel (Fig. 48, line 19), or to a channel for which the closing transaction
is already in the ledger state (Fig. 37, line 1). In both cases, the transaction has
been submitted at least (2 + r) windowSize blocks earlier, thus again by Propo-
sition 1 it is impossible for the transaction not to be in the ledger state. Therefore
FPayNet cannot halt in line 27 of Fig. 25. We deduce that, given ¬P ∧¬Q∧¬R,
the execution of checkClosed by FPayNet does not contribute any increase to
the probability of distinguishability. Put otherwise, given ¬P ∧ ¬Q ∧ ¬R, it is
ExecFPayNet,Pay,GLedger

SLN−Reg−Open−Pay,E = ExecFPayNet,GLedger
S,E .

FPayNet halts in line 31 of Fig. 25 in case all Alice’s channels are closed
on-chain and either Alice’s off-chain balance is not equal to zero, or if her on-
chain balance is not the expected one, as reported by S. This event can never
happen for the following reasons. Firstly, as we have seen, S reports all up-
dates with a (newUpdate) message (Fig. 60, line 12) and a (resolvePays)
message; upon receiving the latter and given that it doesn’t halt, FPayNet up-
dates offChainBalance(Alice) if she is the payer or payee of one of the re-
solved payments (Fig. 22, lines 17, 22 and 23). Secondly, upon closure of each
channel, FPayNet would have halted if the closing balance were not the ex-
pected one (Fig. 25, line 19), an event that cannot happen as we have al-
ready proven. Lastly, upon each channel opening and closing, FPayNet updates
offChainBalance(Alice) and onChainBalance(Alice) to reflect the event (Fig. 18,
lines 21 and 22 and Fig. 25, lines 9 or 11 respectively). Therefore, it is impossible
for FPayNet to halt here.

Similarly to the previous proof, if we allow for forgeries again, i.e. if we allow
the event P ∨Q ∨ R ∨ S, we observe that Pr[P ∨Q ∨ R ∨ S] ≤ nm · E-ds(k) +
3np · E-ibs(k) + nmp · E-share(k) + E-prf(k) + nm · E-master(k), where n is the
number of players, m is the maximum channels a player can open and p is the

99

maximum number of updates a player can perform. We thus deduce that

∀k ∈ N, PPT E ,

|Pr[ExecFPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = 1]− Pr[ExecFPayNet,GLedger

S,E = 1]| ≤

nm · E-ds(k) + 3np · E-ibs(k)+
nmp · E-share(k) + E-prf(k) + nm · E-master(k) .

Proof of Theorem 2. The theorem is a direct result of Lemmas 4-8.

15.1 Forgery algorithms

Proposition 2. Let k ∈ N, p a polynomial an arbitrary distribution T and the
uniform distribution U over a set A of size p(k). It is

Pr[T = U] = 1
p(k)

Proof.

Pr[T = U] =
∑
a∈A

Pr[T = a ∧ U = a] =
∑
a∈A

1
p(k) Pr[U = a] =

= 1
p(k)

∑
a∈A

Pr[U = a] = 1
p(k)

Proposition 3. ∀E , Pr[P] ≤ nm · E-ds(k)

Proof. Let Pr[P] = a for an unmodified execution. Ads simulates faithfully
ExecGLedger

ΠLN,Ad,E , since it does the following two changes. The first is to replace
one pF public key with the public key pk given by the challenger. Both keys
are generated by KeyGen(), thus their distribution is identical. The second is
to replace signatures done by sF with signatures done by the challenger with
sk. Both signatures are generated with SignDS() and thus their distribution is
identical. We deduce that, within the simulated execution, Pr[P] = a.

At the beginning of an execution, Alice and i are chosen uniformly at random,
therefore given P , by Proposition 2 we have that

Pr[Ads chooses correct keypair] = 1
nm

.

Since the selection happens independently from the forgery, we deduce that

Pr[Ads wins EUF-CMA] = a

nm

100

Ads(init, pk):

– Choose uniformly at random Alice from the set of players P of an execution
ExecGLedger

ΠLN,Ad,E
– Choose uniformly at random i from {1, . . . , m}
– Simulate internally ExecGLedger

ΠLN,Ad,E with EP

– When Alice opens her i-th channel, replace pF of KeyGen() in Fig. 28, line 20
with pk

– Whenever SignDS(M, sF) is called, ask challenger for the signature σ with
(unknown) sk on M and use that instead

– If event P takes place and the forged signature is valid by pk, retrieve forged
signature σ∗ and the corresponding transaction m∗ and output (m∗, σ∗)

– If the simulated execution completes and Alice has opened less than i channels,
or if no forgery happened, or if a forgery for another player/channel happened,
return fail

Algorithm EUF-CMA forgery

Fig. 66: wins EUF-CMA game

Since the Digital Signatures scheme used during the execution is assumed to
be EUF-CMA-secure, it is

Pr[Ads wins EUF-CMA] ≤ E-ds(k)⇒ ∀E , a ≤ nm · E-ds(k) .

Proposition 4. Let Q, n, p be as defined in the proof of Lemma 7. It is

∀E , Pr[Q] ≤ 3np · E-ibs(k) .

Proof. Let Pr[Q] = b for an unmodified execution. Aibs simulates faithfully
ExecGLedger

ΠLN,Ad,E , since it does the following two changes. The first is to replace
one phj,n public key with pk ← PubKeyDer(mpk, phcom,n), where mpk is
given by the challenger. Both mpk and the normally used phbj are gener-
ated by KeyDer(), thus their distribution is identical. The second is to re-
place signatures done by shj,n with signatures done by the challenger with
sk ← KeyDer(mpk, msk, phj,n). Both signatures are generated with SignIBS()
and thus their distribution is identical. We deduce that, within the simulated
execution, Pr[Q] = b.

At the beginning of an execution, Alice, i and j are chosen uniformly at
random, therefore given Q, by Proposition 2 we have that

Pr[Aibs chooses correct keypair] = 1
3np

.

Since the selection happens independently from the forgery, we deduce that

Pr[Aibs wins IBS-EUF-CMA] = b

3np

101

Aibs(init, mpk):

– Choose uniformly at random Alice from the set of players P of an execution
ExecGLedger

ΠLN,Ad,E
– Choose uniformly at random i from {1, . . . , p}
– Choose uniformly at random j from {pay, dpay, htlc}
– Simulate internally ExecGLedger

ΠLN,Ad,E with EQ

– When Alice performs her i-th opening or update, replace the phj,n output of
KeyDer(phbj , shbj , phcom,n) with pk ← PubKeyDer(mpk, phcom,n)

– Whenever SignIBS(M, shj,n) is called, ask challenger for the signature σ with
(unknown) sk ← KeyDer(mpk, msk, phcom,n) on M and use that instead

– If event Q takes place and the forged signature is valid by pk, retrieve forged
signature σ∗ and the corresponding transaction m∗ and output
(m∗, phcom,n, σ∗)

– If the simulated execution completes and Alice has updated or opened a
channel less than i times, or if no forgery happened, or if a forgery for another
player/opening/update happened, return fail

Algorithm IBS-EUF-CMA forgery

Fig. 67: wins IBS-EUF-CMA game

Since the Identity Based Signatures scheme used during the execution is
assumed to be IBS-EUF-CMA-secure, it is

Pr[Aibs wins IBS-EUF-CMA] ≤ E-ibs(k)⇒
∀E , b ≤ 3np · E-ibs(k) .

Proposition 5. ∀E , Pr[R] ≤ nmp · E-share(k) + E-prf(k)

Proof. First we observe that the halting of the simulation on an additional up-
date does not interfere with the probability of the desired forgery taking place
because such a forgery can only occur if Alice has broadcast localCom, which
prevents her from further updating the channel. Therefore such halts happen
only after an event that extinguishes the hope for a successful forgery.

Let Pr[R] = c for the unmodified execution. While doing the simulation of
ExecGLedger

ΠLN,Ad,E , Ashare does the following change to the execution. It replaces
a single phcom,j public key with the public key pk which is given by the chal-
lenger. pk is generated by KeyShareGen() with fresh randomness, whereas in
an unmodified execution phcom,j is generated by KeyShareGen(), using as its
randomness prand ← prf(seed, j). Given though that prand is not used any-
where else and the fact that the computational distance of an output of a prf
from true randomness is at most E-prf(k), we deduce that the computational
distance of an unmodified and the modified executions are at most E-prf(k),
therefore for the modified execution it is Pr[R] ∈ [c− E-prf(k), c + E-prf(k)].

102

Ashare(init):

– Choose uniformly at random Alice from the set of players P of an execution
ExecGLedger

ΠLN,Ad,E
– Choose uniformly at random i from {1, . . . , m}
– Choose uniformly at random j from {1, . . . , p}
– Simulate internally ExecGLedger

ΠLN,Ad,E with ER

– When Alice opens a channel for the i-th time, save (phbrev, shbrev) (generated
from MasterKeyGen() in Fig. 28, line 25) as (mpk, msk) and send (mpk, 1)
to challenger, to receive key pk

– The j-th time Alice calls KeyShareGen() to produce a per commitment pair
(phcom,j , shcom,j) for the chosen channel (either during opening or during an
update), replace its output with the next unused pk

– If Alice attempts to update the chosen channel once more and has to send
shcom,j to the counterparty, stop simulation and return fail

– If event R takes place and the forged signature is valid by pk, retrieve forged
signature σ∗ and the corresponding transaction m∗ and output (m∗, σ∗)

– If the simulated execution completes and Alice has opened less than i channels,
or if no forgery happened, or if a forgery for another player/channel happened,
return fail

Algorithm share-EUF forgery

Fig. 68: wins share-EUF game

At the beginning of an execution, Alice, i and j are chosen uniformly at
random, therefore given R, by Proposition 2 we have that

Pr[Ashare chooses correct keypair] = 1
nmp

.

Since the selection happens independently from the forgery, we deduce that

Pr[Ashare wins share-EUF] ∈
[

c− E-prf(k)
nmp

,
c + E-prf(k)

nmp

]
.

Since the Combined Signatures scheme used is assumed to be share-EUF-
secure, it is

Pr[Ashare wins share-EUF] ≤ E-share(k)⇒
∀E , c ≤ nmp · E-share(k) + E-prf(k) .

Proposition 6. Let S, n, m be as defined in the proof of Lemma 7. It is

∀E , Pr[S] ≤ nm · E-master(k) .

103

Amaster(init, mpk):

– Choose uniformly at random Alice from the set of players P of an execution
ExecGLedger

ΠLN,Ad,E
– Choose uniformly at random i from {1, . . . , m}
– Simulate internally ExecGLedger

ΠLN,Ad,E with ES

– When Alice opens a channel for the i-th time, replace phbrev (generated from
MasterKeyGen() in Fig. 28, line 25) with mpk

– Ignore calls to CombineKey() that need the missing msk and assume that the
resulting combined secret key is known (to satisfy line 21 of Fig. 37 if needed).

– Whenever SignCS(M, shrev,n) is called within this channel, ask challenger for
the signature σ with signing key
csk ← CombineKey(mpk, msk, ptcom,n, stcom,n) on M by sending them
(ptcom,n, stcom,n, M) and use that instead

– If event S takes place and the forged signature is valid by
cpk ← CombinePubKey(mpk, ptcom,n) for some ptcom,n of the channel, retrieve
forged signature σ∗ and the corresponding transaction m∗ and output (m∗, σ∗)

– If the simulated execution completes and Alice has opened less than i channels,
or if no forgery happened, or if a forgery for another player/channel happened,
return fail

Algorithm master-EUF-CMA forgery

Fig. 69: wins master-EUF-CMA game

Proof. Let Pr[S] = d hold for the unmodified execution. When it is simulating
ExecGLedger

ΠLN,Ad,E , Amaster does the following two changes to the execution. Firstly,
it replaces a single phbrev public master key with mpk which is given by the chal-
lenger. Both mpk and phbrev are generated by MasterKeyGen() with fresh
randomness, thus their distribution is identical. Secondly, it replaces signatures
done by the secret key shrev,n ← CombineKey(phbrev, shbrev, ptcomn, stcom,n)
with signatures created by the challenger with the secret key resulting from ex-
ecuting CombineKey(mpk, msk, ptcomn, stcom,n), thus the distribution of the
two signatures is identical. We deduce that for the modified execution it is
Pr[S] = d.

At the beginning of an execution, Aliceand i are chosen uniformly at random,
therefore given S, by Proposition 2 we have that

Pr[Amaster chooses correct keypair] = 1
nm

.

Since the selection happens independently from the forgery, we deduce that

Pr[Amaster wins master-EUF-CMA] ≥ d

nm

104

Since the Combined Signatures scheme used during the execution is assumed
to be master-EUF-CMA-secure, it is

Pr[Amaster wins master-EUF-CMA] ≤ E-master(k)⇒
∀E , d ≤ nm · E-master(k) .

16 Future Work and Conclusion

In order to remain tractable, the current analysis omits some parts of the light-
ning specification. In particular, the specification defines how intermediaries of
multi-hop payments can charge a fee for their service. Furthermore, the per-
update secret generation is not done with a PRF according to the specifica-
tion: an optimisation that reduces the storage overhead for the counterparty
is used instead. The security of this optimisation however has not been yet for-
mally inspected. Additionally, the specification provisions for a number of failure
messages that help in keeping counterparties informed of issues with requested
payments and in alleviating the problem of unneeded precautionary channel clo-
sures. Transactions that are added on-chain offer a fee to the blockchain miners
(unrelated to the fee of the off-chain multi-hop payments). When closing a chan-
nel cooperatively, this fee is contributed by both counterparties, therefore the
closing sequence of the specification includes an iterative negotiation of said fee
where the two parties repeatedly propose a value based on their settings until
they converge to a compromise or fail to agree. Lastly, most Bitcoin nodes do not
relay transactions that include outputs with tiny amounts of coins, a.k.a “dust”
outputs, to avoid bloating the blockchain. The lightning specification provides
extensive instructions as to how to prune such outputs.

All aforementioned parts of the protocol were not analysed so that the se-
curity of the core parts of the lightning protocol could be discussed without
distractions. In order for the analysis to cover the entirety of the current version
of the lightning specification however, the aforementioned features should be in-
corporated and their security should be proven. This expansion of the analysis
is left as future work.

In a different direction, big parts of our main security proof consist of an
exhaustive enumeration of the possible messages that E and A can send to the
protocol, the simulator or the functionality and tracking how such messages
would change the flow of the execution of the ideal and the real world. It is then
argued that in all cases the messages that would be sent to E and A are indis-
tinguishable. These parts of the proof are good candidates for rewriting in the
environment of an automated proof assistant [37] to instill additional certainty
that all possible execution paths are indeed checked and do not contain subtle
sources of distinguishability. Combining our results with the recent mechaniza-
tion of UC via Easycrypt [38] would be a natural and interesting direction for
future work.

105

The lightning specification is not static, but it is continuously undergoing
a number of improvements. The most noteworthy upcoming change is the in-
troduction of Pointlocked TimeLocked Contracts (PTLCs). This mechanism re-
places HTLCs and promises to combat the “wormhole” attack [30], while in-
creasing privacy. Our work can be modified to cover the case of PTLCs with
relative ease. It also provides a suitable framework for future work that aims to
shed light on the exact privacy benefit that PTLCs offer as opposed to HTLCs.

The present analysis constitutes the first comprehensive treatment in the
Universal Composability framework of a deployed layer-2 protocol on top of
a functional ledger. It can be extended and adapted to analyse other similar
protocols that achieve different security goals or use another ledger as base layer.

Conclusion. The present work constitutes a fortunate result, since it con-
clusively proves that software that adhere to the lightning specification cannot
lose funds accidentally to a malicious protocol player. Indeed, such a result rein-
forces trust to the lightning network and acts as a guarantee to the almost 900
bitcoins currently in circulation in the layer-2 protocol.

By leveraging the guarantees provided by the Universal Composability frame-
work, we further assert that the lightning protocol is freely composable with
other protocols. As such it can run side by side with arbitrary protocols, or
be used as a subroutine to higher-level protocols without needing to prove its
security anew.

By separating particular subroutines of the protocol as distinct cryptographic
primitives and analysing them individually, we have contributed to its cryptor-
gaphic agility. Lastly, by keeping it as protocol-agnostic as possible, our payment
network functionality can be adapted to express the functional and security re-
quirements of other layer-2 protocols with relative ease.

References
1. Croman K., Decker C., Eyal I., Gencer A. E., Juels A., Kosba A., Miller A., Saxena

P., Shi E., Sirer E. G., et al.: On scaling decentralized blockchains. In International
Conference on Financial Cryptography and Data Security: pp. 106–125: Springer
(2016)

2. Nakamoto S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
3. Garay J., Kiayias A., Leonardos N.: The Bitcoin Backbone Protocol: Analysis

and Applications. Cryptology ePrint Archive, Report 2014/765: https://eprint.
iacr.org/2014/765 (2014)

4. Pass R., Seeman L., Shelat A.: Analysis of the Blockchain Protocol in Asyn-
chronous Networks. IACR Cryptology ePrint Archive: vol. 2016, p. 454: URL
http://eprint.iacr.org/2016/454 (2016)

5. Garay J. A., Kiayias A., Leonardos N.: The Bitcoin Backbone Protocol with
Chains of Variable Difficulty. In J. Katz, H. Shacham (editors), Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I: vol.
10401 of Lecture Notes in Computer Science: pp. 291–323: Springer: ISBN 978-
3-319-63687-0: doi:10.1007/978-3-319-63688-7_10: URL https://doi.org/10.
1007/978-3-319-63688-7_10 (2017)

106

https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2014/765
http://eprint.iacr.org/2016/454
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10

6. Pass R., Shi E.: Hybrid Consensus: Efficient Consensus in the Permissionless
Model. In A.W. Richa (editor), 31st International Symposium on Distributed
Computing, DISC 2017, October 16-20, 2017, Vienna, Austria: vol. 91 of LIPIcs:
pp. 39:1–39:16: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik: ISBN 978-3-
95977-053-8: doi:10.4230/LIPIcs.DISC.2017.39: URL https://doi.org/10.4230/
LIPIcs.DISC.2017.39 (2017)

7. Micali S.: ALGORAND: The Efficient and Democratic Ledger. CoRR: vol.
abs/1607.01341: URL http://arxiv.org/abs/1607.01341 (2016)

8. Poon J., Dryja T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments. https://lightning.network/lightning-network-paper.pdf (2016)

9. Pass R., Shi E.: Thunderella: Blockchains with Optimistic Instant Confirmation.
In J.B. Nielsen, V. Rijmen (editors), Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II: vol. 10821 of Lecture Notes in Computer Science: pp. 3–33: Springer:
ISBN 978-3-319-78374-1: doi:10.1007/978-3-319-78375-8_1: URL https://doi.
org/10.1007/978-3-319-78375-8_1 (2018)

10. Badertscher C., Maurer U., Tschudi D., Zikas V.: Bitcoin as a transaction ledger: A
composable treatment. In Annual International Cryptology Conference: pp. 324–
356: Springer (2017)

11. Badertscher C., Gaži P., Kiayias A., Russell A., Zikas V.: Ouroboros genesis: Com-
posable proof-of-stake blockchains with dynamic availability. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security: pp.
913–930: ACM (2018)

12. Nicolosi A., Krohn M. N., Dodis Y., Mazières D.: Proactive Two-Party Signatures
for User Authentication. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2003, San Diego, California, USA: The Internet So-
ciety: ISBN 1-891562-16-9: URL http://www.isoc.org/isoc/conferences/ndss/
03/proceedings/papers/15.pdf (2003)

13. Dziembowski S., Faust S., Hostáková K.: General State Channel Networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018: pp. 949–966:
doi:10.1145/3243734.3243856: URL https://doi.org/10.1145/3243734.3243856
(2018)

14. Malavolta G., Moreno-Sanchez P., Kate A., Maffei M., Ravi S.: Concurrency
and Privacy with Payment-Channel Networks. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security: CCS ’17: pp.
455–471: ACM, New York, NY, USA: ISBN 978-1-4503-4946-8: doi:10.1145/
3133956.3134096: URL http://doi.acm.org/10.1145/3133956.3134096 (2017)

15. Miller A., Bentov I., Kumaresan R., Cordi C., McCorry P.: Sprites and State
Channels: Payment Networks that Go Faster than Lightning. ArXiv preprint
arXiv:1702.05812 (2017)

16. Dziembowski S., Eckey L., Faust S., Malinowski D.: Perun: Virtual Payment Hubs
over Cryptocurrencies. In 2019 2019 IEEE Symposium on Security and Privacy
(SP): pp. 344–361: IEEE Computer Society, Los Alamitos, CA, USA: ISSN 2375–
1207: doi:10.1109/SP.2019.00020: URL https://doi.ieeecomputersociety.org/
10.1109/SP.2019.00020 (2019)

17. Spilman J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html (2013)

107

https://doi.org/10.4230/LIPIcs.DISC.2017.39
https://doi.org/10.4230/LIPIcs.DISC.2017.39
http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1007/978-3-319-78375-8_1
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/15.pdf
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/15.pdf
https://doi.org/10.1145/3243734.3243856
http://doi.acm.org/10.1145/3133956.3134096
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00020
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00020
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html

18. Decker C., Wattenhofer R.: A Fast and Scalable Payment Network with Bit-
coin Duplex Micropayment Channels. In A. Pelc, A.A. Schwarzmann (editors),
Stabilization, Safety, and Security of Distributed Systems - 17th International
Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceed-
ings: vol. 9212 of Lecture Notes in Computer Science: pp. 3–18: Springer: ISBN
978-3-319-21740-6: doi:10.1007/978-3-319-21741-3_1: URL https://doi.org/
10.1007/978-3-319-21741-3_1 (2015)

19. Lind J., Naor O., Eyal I., Kelbert F., Pietzuch P. R., Sirer E. G.: Teechain: Re-
ducing Storage Costs on the Blockchain With Offline Payment Channels. In Pro-
ceedings of the 11th ACM International Systems and Storage Conference, SYSTOR
2018, HAIFA, Israel, June 04-07, 2018: p. 125: ACM: doi:10.1145/3211890.3211904:
URL https://doi.org/10.1145/3211890.3211904 (2018)

20. Green M., Miers I.: Bolt: Anonymous Payment Channels for Decentralized Cur-
rencies. In Thuraisingham et al. [39]: pp. 473–489: doi:10.1145/3133956.3134093:
URL https://doi.org/10.1145/3133956.3134093 (2017)

21. Heilman E., Alshenibr L., Baldimtsi F., Scafuro A., Goldberg S.: TumbleBit: An
Untrusted Bitcoin-Compatible Anonymous Payment Hub. In 24th Annual Network
and Distributed System Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017: The Internet Society: URL https://www.
ndss-symposium.org/ndss2017/ (2017)

22. Khalil R., Gervais A.: Revive: Rebalancing Off-Blockchain Payment Networks. In
Thuraisingham et al. [39]: pp. 439–453: doi:10.1145/3133956.3134033: URL https:
//doi.org/10.1145/3133956.3134033 (2017)

23. Prihodko P., Zhigulin S., Sahno M., Ostrovskiy A.: Flare: An Approach to Routing
in Lightning Network: White Paper. https://bitfury.com/content/downloads/
whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_
2016.pdf (2016)

24. Sivaraman V., Venkatakrishnan S. B., Alizadeh M., Fanti G. C., Viswanath P.:
Routing Cryptocurrency with the Spider Network. CoRR: vol. abs/1809.05088:
URL http://arxiv.org/abs/1809.05088 (2018)

25. Canetti R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA: pp. 136–145: doi:10.1109/
SFCS.2001.959888: URL https://eprint.iacr.org/2000/067.pdf (2001)

26. Canetti R., Dodis Y., Pass R., Walfish S.: Universally Composable Security with
Global Setup. In Theory of Cryptography, 4th Theory of Cryptography Confer-
ence, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceed-
ings: pp. 61–85: doi:10.1007/978-3-540-70936-7_4: URL https://doi.org/10.
1007/978-3-540-70936-7_4 (2007)

27. Shamir A.: Identity-Based Cryptosystems and Signature Schemes. In Advances in
Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August
19-22, 1984, Proceedings: pp. 47–53: doi:10.1007/3-540-39568-7_5: URL https:
//doi.org/10.1007/3-540-39568-7_5 (1984)

28. Paterson K. G., Schuldt J. C. N.: Efficient Identity-Based Signatures Secure in the
Standard Model. In Information Security and Privacy, 11th Australasian Confer-
ence, ACISP 2006, Melbourne, Australia, July 3-5, 2006, Proceedings: pp. 207–222:
doi:10.1007/11780656_18: URL https://doi.org/10.1007/11780656_18 (2006)

29. Katz J., Lindell Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press: ISBN 9781466570269 (2014)

108

https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1145/3211890.3211904
https://doi.org/10.1145/3133956.3134093
https://www.ndss-symposium.org/ndss2017/
https://www.ndss-symposium.org/ndss2017/
https://doi.org/10.1145/3133956.3134033
https://doi.org/10.1145/3133956.3134033
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://arxiv.org/abs/1809.05088
https://eprint.iacr.org/2000/067.pdf
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11780656_18

30. Malavolta G., Moreno-Sanchez P., Schneidewind C., Kate A., Maffei M.: Anony-
mous Multi-Hop Locks for Blockchain Scalability and Interoperability. In 26th
Annual Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019 (2019)

31. Danezis G., Goldberg I.: Sphinx: A compact and provably secure mix format. In
Security and Privacy, 2009 30th IEEE Symposium on: pp. 269–282: IEEE (2009)

32. Bellare M., Sandhu R. S.: The Security of Practical Two-Party RSA Signature
Schemes. IACR Cryptology ePrint Archive: vol. 2001, p. 60: URL http://eprint.
iacr.org/2001/060 (2001)

33. Boyd C.: Digital Multisignatures. Cryptography and Coding: pp. 241–246: URL
https://ci.nii.ac.jp/naid/10013157942/en/ (1986)

34. Ganesan R.: Yaksha: augmenting Kerberos with public key cryptography. In
1995 Symposium on Network and Distributed System Security, (S)NDSS ’95, San
Diego, California, USA, February 16-17, 1995: pp. 132–143: doi:10.1109/NDSS.
1995.390639: URL https://doi.org/10.1109/NDSS.1995.390639 (1995)

35. MacKenzie P. D., Reiter M. K.: Two-Party Generation of DSA Signatures. In
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceed-
ings: pp. 137–154: doi:10.1007/3-540-44647-8_8: URL https://doi.org/10.
1007/3-540-44647-8_8 (2001)

36. Ganesan R., Yacobi Y.: A secure joint signature and key exchange system. Bellcore
TM: vol. 24531 (1994)

37. McCarthy J.: Computer Programs for Checking Mathematical Proofs. Proceed-
ings of the Fifth Symposium in Pure Mathematics of the American Mathematical
Society: pp. 219–227: american Mathematical Society (1961)

38. Canetti R., Stoughton A., Varia M.: EasyUC: Using EasyCrypt to Mechanize
Proofs of Universally Composable Security. In 32nd IEEE Computer Security Foun-
dations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019: pp. 167–
183: IEEE: ISBN 978-1-7281-1407-1: doi:10.1109/CSF.2019.00019: URL https:
//doi.org/10.1109/CSF.2019.00019 (2019)

39. Thuraisingham B. M., Evans D., Malkin T., Xu D. (editors): Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017: ACM: ISBN 978-1-4503-
4946-8: doi:10.1145/3133956: URL https://doi.org/10.1145/3133956 (2017)

109

http://eprint.iacr.org/2001/060
http://eprint.iacr.org/2001/060
https://ci.nii.ac.jp/naid/10013157942/en/
https://doi.org/10.1109/NDSS.1995.390639
https://doi.org/10.1007/3-540-44647-8_8
https://doi.org/10.1007/3-540-44647-8_8
https://doi.org/10.1109/CSF.2019.00019
https://doi.org/10.1109/CSF.2019.00019
https://doi.org/10.1145/3133956

	A Composable Security Treatment of the Lightning Network

