
Scalable Private Set Union

from Symmetric-Key Techniques

Vladimir Kolesnikov∗ Mike Rosulek† Ni Trieu† Xiao Wang‡

September 4, 2019

Abstract

We present a new efficient protocol for computing private set union (PSU). Here two semi-
honest parties, each holding a dataset of known size (or of a known upper bound), wish to
compute the union of their sets without revealing anything else to either party. Our protocol is
in the OT hybrid model. Beyond OT extension, it is fully based on symmetric-key primitives.
We motivate the PSU primitive by its direct application to network security and other areas.

At the technical core of our PSU construction is the reverse private membership test (RPMT)
protocol. In RPMT, the sender with input x∗ interacts with a receiver holding a set X. As
a result, the receiver learns (only) the bit indicating whether x∗ ∈ X, while the sender learns
nothing about the set X. (Previous similar protocols provide output to the opposite party, hence
the term “reverse” private membership.) We believe our RPMT abstraction and constructions
may be a building block in other applications as well.

We demonstrate the practicality of our proposed protocol with an implementation. For
input sets of size 220 and using a single thread, our protocol requires 238 seconds to securely
compute the set union, regardless of the bit length of the items. Our protocol is amenable to
parallelization. Increasing the number of threads from 1 to 32, our protocol requires only 13.1
seconds, a factor of 18.25× improvement.

To the best of our knowledge, ours is the first protocol that reports on large-size experi-
ments, makes code available, and avoids extensive use of computationally expensive public-key
operations. (No PSU code is publicly available for prior work, and the only prior symmetric-
key-based work reports on small experiments and focuses on the simpler 3-party, 1-corruption
setting.) Our work improves reported PSU state of the art by factor up to 7, 600× for large
instances.

1 Introduction

Private set union (PSU) is a special case of secure two-party computation. PSU allows two parties
holding sets X and Y respectively, to compute the union X ∪ Y , without revealing anything else,
namely what are the items in the intersection of X and Y .

∗Georgia Institute of Technology, kolesnikov@gatech.edu
†Oregon State University, {rosulekm,trieun}@eecs.oregonstate.edu
‡MIT and Boston University, wangxiao@cs.northwestern.edu

1

1.1 Motivation

PSU (like the well-researched private set intersection, PSI) has numerous applications in practice,
and tailored efficient solutions are highly desirable. Consider the following use cases. (We note that
these use cases cover a wide range of PSU settings, such as multi-party or shared-output PSU. Our
work does not address all of the settings, of course, but provides a building block and a baseline
for the entire research direction.)

Cyber risk assessment and management via joint IP blacklists and joint vulnerability data.
As noted in [LV04, HLS+16], organizations aim to optimize their security updates to minimize
vulnerabilities in their infrastructure. Crucial role in the above is played by joint lists of blacklisted
IP addresses, characteristic network traces and other associated data, as well as joint lists of data
points reported by vulnerability scanners. At the same time, organizations are understandably
reluctant to reveal details pertaining to their current or past attacks or sensitive network data. As
convincingly argued in [HLS+16], the use of MPC in computing set unions of the above data sets
will mitigate the organizations’ concerns. [HLS+16] implements the computation of such set union
and related data aggregation as generic MPC in the VIFF framework. As noted by the authors,
the major performance bottleneck in their work is private computation of set union. Our tailored
PSU algorithms will be applicable to this computation as the main building block.

More generally, privacy-preserving data aggregation is a well-appreciated goal in the network
security and other communities. For example, SEPIA [BSMD10] is a library aimed to optimize
generic MPC to securely and in real-time compute event correlation and aggregation of network
traffic statistics. Our PSU protocol can potentially be helpful in that setting too.

Other applications and use cases. Imagine two Internet providers considering a merger, and
they would like to calculate how efficient the resulting joint network would be without revealing
the information of their existing networks [BS05]. Another application of combining set-intersection
and set-union is the following scenario discussed in [KS05]. A social services organization wants to
determine the list of cancer patients who are on welfare. Some patients may have cancer treatment
at multiple hospitals. By using a private set union protocol, the union of each hospital’s lists of
cancer patients can be computed (while removing duplicate patients without leaking the details of
the patients), then a secure set intersection operation between the resulting union and the welfare
rolls can be performed.

More generally, PSU is an essential building block for private DB supporting full join. Suppose
there are two tables owned by two principals, say DMV (Department of Motor Vehicles) and SSA
(Social Security Administration). With a PSU-based implementation, a query such as

SELECT ssn, dob

FROM dmv db FULL JOIN ssa db

ON dmv db.ssn = ssa db.ssn WHERE dob ≥ Jan 1, 1980

will allow the players to learn the two columns of the union, but not learn whether the other player
has the matching record.

Malicious model is of course the ultimate goal in this line of research. At the same time, we
believe semi-honest guarantee is sufficient in many scenarios. Further, our work may serve as a
stepping stone to the malicious-secure solution where it is required. We believe that our performance
improvement of four orders of magnitude is surprising for a reasonably researched problem, and
sets the baseline for the PSU performance.

2

1.2 Contribution

Over the last decade, there has been a significant amount of work on private set intersection [DKT10,
DT10, ADT11, HEK12, DCW13, PSZ14, PSZ18, KKRT16, CDJ16, KMP+17, RR17a, CLR17,
HV17, RA18, CCS18, FNO18, CO18, DRRT18, PSTY, PRTY19, IKN+19]. However, there has
been little work on PSU, with current PSU state-of-the-art not scalable for big data. Despite
similarities between the two functionalities, many effective PSI techniques do not directly apply to
PSU. We give a brief discussion about the unsuitability for PSU of several popular PSI techniques
in Section 5.4 as well as throughout the paper.

We design a truly scalable PSU protocol, building on newly developed building blocks. In detail,
our contribution can be summarized as follows:

1. We identify that existing fast private membership tests, used in leading PSI protocols are not
immediately applicable for computing PSU (cf. Section 2.1), and a richer PMT of [CO18]
carries 125× performance penalty (cf. Section 1.3). We propose a new building block reverse
private membership test (PMT) in Section 4. We present an efficient instantiation of this
building block, which serves as the basis of our symmetric-key based PSU protocol.

2. We apply the bucketing technique to further reduce the computation and communication
overhead. We identify and overcome several new challenges unique to bucketing in the context
of PSU (but not PSI). Details can be found in Section 5.

3. Integrating the above two components, we build a truly scalable system for PSU computation
that is three orders of magnitude faster than the current reported performance for large two-
party PSU instances. Specifically, we are ≈ 7,600× faster than [DC17], which is the current
best reported numbers for larger sets of 1 million elements. [BA12] consider an easier setting
with three parties and one corruption. Although our protocol works in a stronger model
than [BA12], we are still 30× faster in terms of running time on sets of 212 elements and
have 100 − 125× smaller communication (cf. Table 3). Our protocol evaluates PSU of two
million-element datasets in about a minute on WAN and 13 seconds on a LAN.

4. Our implementation is released on Github: https://github.com/osu-crypto/PSU. To our
knowledge, this is the first publicly available PSU implementation.

1.3 Related Work

We start by reviewing previous PSU protocols, with particular emphasis on the semi-honest model.
Kissner and Song [KS05]. To our knowledge, the first PSU protocol was proposed by

Kissner and Song [KS05]. The PSU of [KS05] is based on polynomial representations and additively
homomorphic encryption (AHE). The core idea of their protocol is that if the sets X (respectively,
Y) is represented as a polynomial f (respectively, g) whose roots are the set’s elements, then the
polynomial representation of the union X ∪ Y is f × g. An important property is that an item x
is in the set X if and only if f(x) = 0. Consequently, for each item e that appears in either set X
or Y , it holds that (f × g)(e) = f(e)× g(e) = 0. The players compute the polynomial f × g under
AHE, and figure out the set of elements based on a procedure called “element reduction”, which
can reduce the degree of the roots.

Frikken [Fri07]. Relying on the polynomial representation, Frikken [Fri07] proposed a faster
PSU protocol with linear communication complexity in the size of the dataset. At the high level,

3

https://github.com/osu-crypto/PSU

Protocol Comm. (bits) Comp. [#Ops symm/pub-key]

[KS05] O(κ3n2) O(n2) pub-key

[Fri07] O(κn) O(n log log(n)) pub-key

[BA12] O(κ`n log(n)) O(n` log(n)) symm

[DC17] O(κλn) O(λn) pub-key

Ours O(κn log(n)) O(n log(n)) symm

Table 1: Asymptotic communication (bits) and computation costs of two-party PSU protocols in the
semi-honest setting. Pub-key: public-key operations; symm: symmetric cryptographic operations.
n is the size of the parties’ input sets. ` is the bit-length item. λ is statistical security parameters.
In [BA12] and our protocol, κ = 128 is computational security parameter, while κ = 2048 is the
public key length in other protocols. We ignore the pub-key cost of κ base OTs.

it proceeds as follows. Suppose that E(f) is an encrypted polynomial representation for the set X,
a tuple of the form (xE(f(x)), E(f(x))) achieves the specific property that this tuple will be (0; 0)
if x ∈ X. In other words, x 6∈ X can be recovered from the decrypted tuple values. Therefore,
instead of computing the encrypted f × g in [KS05], Bob just computes the above tuples after
receiving the encrypted polynomial representation E(f) from Alice, and sends them back to Alice
in random order. Alice now decrypts the tuples and learns the value that is not in the intersection.
The work of Frikken [Fri07] requires O(nκ) communication, where n is the size of the parties’
input sets and κ is the length of public-key/ciphertext. Computational cost of generating each
tuple is O(n), thus this protocol requires O(n2) computation. Moreover, their protocol [Fri07]
is expensive due to the multi-point evaluation on the encrypted polynomial, which requires the
depth of the arithmetic circuit (leveled fully homomorphic encryption) to be logarithmic of the
input set size. The authors claimed that the computation of their protocol can be reduced to
O(n log log(n)) by using the bucketing technique with minor modifications to their protocol, but it
is not clear how to modify it. Indeed, using bucketing is quite tricky for PSU until our work. Based
on the polynomial representation, Hazay and Nissim [HN12] extended the Frikken’s protocol in the
presence of malicious adversaries.

Blanton and Aguiar [BA12]. In 2012, Blanton and Aguiar [BA12] proposed a faster PSU
protocol based on oblivious sorting and generic MPC protocols. The core idea of their protocol
consists of combining the input sets into a new set, then sorting the resulting set, and comparing
adjacent items of the sorted set in order to eliminate duplicates. They focus on constructing the
circuit for PSU (and several other set operations) and relegate its evaluation to generic protocols.
Their paper provides experimental results on small input set in a three-party and honest majority
setting for 32−bit sized elements. Their largest experiment, n ≤ 211, runs in 25 seconds; our n ≤ 212

experiment on larger element sizes runs in 1.42 seconds. Importantly, they run the experiments in
the three-party setting, where evaluation is much faster as wire secrets can be 1-bit long.

We sketch approximate communication cost of their two-party garbled-circuit-based protocol
based on state-of-the-art OT extension and half gates [ZRE15]. Oblivious sorting of 222 elements per
player involves sorting a 223 array. Considering 32-bit elements, such 2PC will require approximately
23 · (223) · (32 + 32) · 256 = 3, 161, 095, 929, 856 bits = 395 GB. Here 256 is the half-gates garbled
table size and 32 is the element size. Subsequent duplicate elimination will cost approximately the
same as oblivious sort, so total communication cost is ≈ 790GB. Considering larger element size,
say, 128 bits, results in the corresponding 4× cost increase, bringing total to ≈ 3.1TB. Transferring

4

3TB over a 400Mbps WAN will take 3·8·106
400 = 60000 seconds = 16.67 hours. For comparison, our

protocol for this size runs in 250 seconds, a 240× improvement.
[BA12] should perhaps be seen as an improvement over current public key-based protocols. As

discussed above, our tailored solution outperforms [BA12] by a large factor even in the setting that
is the most unfavorable for us. Because there is no reported data on the performance of [BA12]
on larger set sizes and no existing generic MPC/2PC system supports large circuits generated
by [BA12], we use calculated numbers in our comparison to [BA12] in Table 3.

Davidson and Cid [DC17]. Recently, Davidson and Cid [DC17] proposed an efficient protocol
based on an encrypted Bloom filter and additively homomorphic encryption (AHE). In the [DC17]
protocol, the receiver represents its input set Y using Bloom Filter (BF) with k hash functions, and
inverts this filter by flipping the bit value of each entry. It then encrypts the inverted Bloom filter
by using an IND-CPA secure AHE scheme, and sends it to the sender. For each item x of its input
set X, the sender uses the k hash functions to retrieve k encrypted BF entries corresponding to x.
He then uses AHE homomorphism to sum up under encryption the k retrieved ciphertexts. Let c be
the obtained (AHE-encrypted) sum. The sender sends (AHE-encrypted) pairs {cx, c} to receiver.
Receiver decrypts them and is able to obtain x iff c 6= 0. Indeed, if x ∈ Y , all k entries of x are not
set in the inverted BF, resulting in c = 0. Therefore, the receiver only obtains X \ Y , from which
it computes X ∪ Y . [DC17] requires O(κλn) communication and O(λn) modular exponentiations,
where λ is the statistical security parameters, and κ is the length of public-key/ciphertext, which
is in the range 1024-2048 due to their use of public-key primitives. In concrete terms, encrypted
BF for the set size n = 220 requires 8.05 GB and 16.1 GB when using a κ = 1024 bit and κ = 2048
bit key length, respectively.

Other related work. We note that recent work [CO18] proposed private membership test
with shared output, which can be used to instantiate our reverse private membership test. Our
RPMT is much faster. For specific parameters used in our work (bucket size 61, bit length
128), [CO18] requires 80KB communication per test while our RPMT construction only needs
0.64KB, a 125× improvement in terms of communication. In addition, our construction requires
140× fewer symmetric-key operations than [CO18]. Because we work with small bucket sizes, our
polynomial-based RPMT is fast computationally as well.

Outsourcing PSU was considered in the work of Canetti et al. [CPPT14]. In this problem,
users outsource their encrypted data and computation to an untrusted cloud server, while keeping
their data private. The main purpose is to minimize the computational overhead of the users by
utilizing the powerful resources of the cloud server.

Table 1 provides a brief comparison to the prior highest-performing PSU protocols in the semi-
honest setting. We emphasize that public-key operations are the workhorse of all prior work, while
we do only κ = 128 such operations to initiate OT extension. This is the main reason for 7,600×
performance improvement over prior work we observe. We report in detail the performance results
and comparisons in Section 6.

2 Overview of Our Results & Techniques

We start with a special case. Suppose that the sender has only one item y in its set Y and the
receiver holding the set X will receive the resulting union {y} ∪X. The protocol must satisfy the
following:

5

Parameters: Set sizes m and n; two parties: sender S and receiver R

Functionality:

• Wait for an input X = {x1, x2, . . . , xn} ⊆ {0, 1}∗ from sender S, and an input Y =
{y1, y2, . . . , ym} ⊆ {0, 1}∗ from receiver R

• Give output X ∪ Y to the receiver R.

Figure 1: Private Set Union Functionality Fm,npsu .

Parameters: A set size n; two parties: sender S and receiver R

Functionality:

• Wait for an input x∗ ∈ {0, 1}∗ from sender S, and an input X = {x1, x2, . . . , xn} ⊆
{0, 1}∗ from receiver R

• Give the receiver R output 1 if x∗ ∈ X and 0 otherwise.

Figure 2: Reverse Private Membership Test Functionality Fnrpmt.

(1) if y 6∈ X, the receiver is allowed to learn y as it is implied by the output. The sender learns
nothing.

(2) if y ∈ X, the receiver knows that y ∈ X (implied by the output), but not allowed to learn
which is the sender’s item y. Sender learns nothing.

Receiver learns which of the cases (1) or (2) occurs. Based on the case, the sender’s item y can
be conditionally sent to the receiver using a “one-sided” OT, a version of OT that requires transfer
of a single encrypted secret, rather than the usual transfer of two encrypted secrets, exactly one of
which the receiver can decrypt.

2.1 Reverse Private Membership Test (RPMT)

We formalize the above basic functionality as the RPMT functionality (cf. Figure 2) and design a
corresponding tailored efficient protocol, which we believe to be of independent interest. RPMT is
related to the traditional Private Membership Test (PMT) [PSZ14], which is a two-party protocol
in which the party with input y learns whether or not its item is in the input set X of other party
(who learns nothing). In a RPMT, the output is given to the opposite party, i.e. the party holding
the set X will learn whether y ∈ X (and nothing else). We formally describe the ideal RPMT
functionality in Figure 2.

We emphasize that, unlike PSI, use of PMT is not very natural for PSU. This is because the
PMT output receiver holds an element, and gets the answer in plaintext whether the element
belongs to a set held by the sender. This is implied by the PSI output, and hence can be used
there. However, this is extra information in the PSU functionality. We don’t know of a natural
way to efficiently use PMT with PSU.

This seemingly simple functionality adjustment (PMT→RPMT) doesn’t seem to be fixable
by a small tweak of PMT. This is because the underlying primitive used to implement fast

6

PMT [KKRT16] is a variant of OT extension, and the role of OT receiver naturally belongs to
the player with a single-element input y; it is not clear how to amend the protocol to allow (only)
the other player to receive the output.

The basic idea for our RPMT is to have the receiver represent a dataset X as a polynomial
P̃ (x) whose roots are its elements, and send the (plaintext) coefficients of the polynomial P (x) =
P̃ (x) + s to the other party, where s is a secret value chosen at random by the receiver. The sender
evaluates the received polynomial on y and obtains P (y) = s′. It is easy to see that s′ = s if y ∈ X,
i.e. y is a root of P̃ (x). At this point, the receiver could compare s′ and s in the clear and learn
the output of RPMT. However, if y 6∈ X, the value P (y) may leak partial information about y. To
prevent this, instead of the receiver sending s to the sender, the parties perform a private equality
test (PEQT) to determine whether two strings s and s′ are equal. The PEQT guarantees that the
sender learns nothing about whether y ∈ X while the polynomial presentation allows receiver to
determine whether y ∈ X but not the value of y (beyond what is implied by y ∈? X).

We note that full PEQT is actually not required, and a weaker and slightly efficient subprotocol
is sufficient. For uninterrupted flow, we return to this observation in Sect. 2.2.

This brief overview of RPMT ignores an important security issue. In particular, suppose y ∈ X,
so the sender can evaluate P (y) = s. Then he/she can compute P (·)− s: a polynomial whose roots
are all of the elements of X! To address this issue, the parties invoke oblivious PRF (OPRF) on
their inputs, and use the OPRF’s outputs for the polynomial interpolation/evaluation. Recall that
OPRF is a 2-party protocol in which the OPRF sender learns a PRF key k and the OPRF receiver
learns Fk(z), where F is a pseudorandom function (PRF) and z is the receiver’s input. In RPMT,
the RPMT sender acts as the OPRF receiver to receive Fk(y) and the RPMT receiver acts as the
OPRF sender to obtain the PRF key k. Now, the receiver interpolates a polynomial P over points1

{(x, s ⊕ Fk(x))} ∀x ∈ X, and sends the coefficients of this polynomial to the other party, who
evaluates it on y, and outputs P (y) ⊕ Fk(y). Thanks to OPRF, the important properties needed
for RPMT still hold: (i) Fk(y) = Fk(x) if x = y. Therefore, the sender obtains the secret value s
chosen by the receiver; (ii) even if y ∈ X, other elements of X can no longer be inferred from P (·)
and P (y). This is intended to make finding roots of P (·) − P (y) useless to the sender. Moreover,
to learn X, the sender has to know its OPRF value Fk(x), which is not possible because of the
OPRF guarantees. A detailed overview of the RPMT protocol is presented in Section 4.

We note that RPMT and OPRF are fast cryptographic tools. Recently, Kolesnikov et al. [KKRT16]
proposed an efficient protocol which performs many OPRF or PEQT with amortized cost of 5 µs.
Therefore, the main computation cost of our RPMT is the multiplication/evaluation of the polyno-
mial, which requires time O(n log2(n)) using FFT or O(n2) using a more straight-forward algorithm.
This is expensive for large set size n = |X|. We avoid the need to work with high-degree poly-
nomials by hashing/bucketing (see below). The communication overhead is small and is equal to
O(n).

We can summarize the above gadget for the simple case of PSU (union of a set X and a single
element y) as follows: using RPMT on X and y, the receiver learns a bit b ∈ {0, 1} indicating
whether y ∈ X. Next, the parties perform one-sided OT to allow receiver obliviously obtain y if
b = 0 (i.e. y 6∈ X), nothing otherwise.

1Of course, x ∈ {0, 1}∗ needs to be “hashed down” to an element of the field we are working with. This can be
done,e.g., by applying a collision resistant hash function. For simplicity, here we mention, but don’t formalize this
step.

7

{A,B} ∩ {C,D} = {} {A,B,C} ∩ {C,D} = {C}

B A

⊥⊥
DC

⊥ ⊥
B A

C⊥
DC

⊥ ⊥

A 0RPMT

B 0. . .

⊥ 1. . .

⊥ 1. . .

{A,⊥} AOT

{B,⊥} B. . .

{⊥,⊥} ⊥. . .

{⊥,⊥} ⊥. . .

A 0RPMT

B 0. . .

C 1. . .

⊥ 1. . .

{A,⊥} AOT

{B,⊥} B. . .

{C,⊥} ⊥. . .

{⊥,⊥} ⊥. . .

Figure 3: Illustration of the main idea behind our protocol: using RPMT and oblivious transfer to
perform PSU on a sample bin. The left-hand side illustrates that the sender’s bin contains 2 real
items {A,B} and the receiver’s bin contains 2 real items {C,D}, these sets are disjointed. The
right-hand side shows that the sender’s bin contains 3 real items {A,B,C} and the receiver’s bin
contains 2 real items {C,D}, these sets have a common item C. An item ⊥ denotes the global item
known by both parties.

2.2 An Efficiency Optimization

Going back to the discussion of our RPMT protocol in the previous section, while it uses a PEQT
protocol to compare the output of the polynomial, this is in fact overkill for our application to
PSU.

Indeed, suppose the sender instead just sends the output of the polynomial s′ in the clear to
the receiver. Consider the two cases. First, if y ∈ X, we have s′ = s, so no information about y
would be leaked, as desired. In the other case that y 6∈ X, we want (in the overall PSU protocol)
the receiver to learn y anyway! So even if s′ leaks information about y, this is fine. Hence, for the
purpose of PSU, our protocol can conclude by a plaintext comparison, where the sender sends s′

to the receiver.
As it turns out, this optimization, while elegant, is not substantial in terms of overall perfor-

mance, providing 3− 5% improvement in running time and ∼10% improvement in communication.
This can be seen by sketching relative costs of our subprotocols, and is also supported by our
experiments (See Table 5 in the Appendix for more details). Because of this, we chose to present
the paper in terms of the more general and conceptually simpler RPMT primitive.

However, we did formalize and prove secure the improved protocol. It is presented, together

8

with a proof of security and experimental results in Appendix A. We feel that this presentation
structure allows to focus our main presentation on the simpler primitives, while at the same time
devote sufficient attention to an interesting optimization.

2.3 General Case from RPMT

We now discuss how to extend the above approach to the general case of PSU with |Y | > 1. The
idea is natural: for each item y ∈ Y simply execute the above gadget on y and X. As a result, the
receiver obliviously obtains all items in Z ← Y \ X which directly allows him to learn the union
X ∪ Y = X ∪ Z. However, this approach requires n instances of RPMT and n instances of OT
(here, we assume that |X| = |Y | = n). This results in communication and computation complexity
of O(n2) and O(n2 log(n)), respectively. Therefore, this PSU construction is only efficient when n
is small. Our next trick is to use a hashing technique to overcome this limitation.

At the high level, the idea is that the parties use a hashing scheme to assign their items into
bins, and then perform the quadratic-cost PSU on each bin efficiently. By applying a balls-into-bins
analysis and minimizing the overall cost, our hashing scheme has O(n/ log n) bins, where each bin
contains O(log n) items. We review the hashing scheme in detail in Section 5.2. This optimization
reduces costs to O(n log n) in communication and O(n log n log log n) in computation. However,
bucketing introduces a challenge specific to the PSU – the receiver learns additional information on
the intersection items, namely, the bucket where the match occurred/did not occur. Consider an
example where the receiver’s first bin X1 contains three items and the sender’s first bin contains
y1. In our protocol, parties perform RPMT on X1 and y1. Suppose y1 ∈ X, which means, because
of bucketing, that y1 ∈ X1. From RPMT output, the receiver learns that y1 ∈ X1, which cannot
be inferred from just the PSU output.

To address this issue, both parties add dummy items ⊥ into each of their bins to fill them to
their maximal size prior to executing RPMT on the bins. Then even if the output of RPMT on
(X1 ∪ ⊥) and y1 gives the receiver a bit b = 1 (i.e. indicating that y1 ∈ X1), the receiver will
not learn any information on y1 since y1 may be the dummy item ⊥. We note that this high-level
description of the use of dummy items hides some technical nuance, which is explained in detail in
Section 5.

Figure 3 illustrates the main idea behind our protocol. It is easy to see from the Figure 3 that
the receiver’s view in both important cases (two bins are disjoint or two bins have a common item)
are exactly same. As noted above, each bin must be padded with ⊥ to the maximum number of
items expected in a bin. In Figure 3, the maximum bin size is 4. Section 5 formally describes the
full construction of our PSU.

2.4 Efficiency

Our PSU protocol requires only O(κ) public-key operations to perform base OT (which can run in
the offline phase). In the online phase, our protocol consists of O(n) OPRF instances, O(n) PEQT
instances, and O(n) OT instances. These building blocks are based on symmetric-key operations,
and can use the same base OTs. In terms of communication, our protocol requires O(κn log(n)),
where κ is the computational security parameter.

Our protocol is 3-4 orders of magnitude faster than previous state-of-the art. We present
detailed performance analysis and comparisons in Section 6.

9

Parameters: A PRF F , and two parties: sender and receiver

Functionality:

• Wait for input x from the receiver.

• Sample a random PRF seed k and give it to the sender. Give Fk(x) to the receiver.

Figure 4: OPRF Ideal Functionality.

Parameters: Two parties: sender and receiver

Functionality:

• Wait for input x0 ∈ {0, 1}∗ from the sender, and input x1 ∈ {0, 1}∗ from the receiver.

• Give the receiver R output 1 if x0 = x1 and 0 otherwise.

Figure 5: The Private Equality Test Ideal Functionality Fpeqt

2.5 Using Padding to Hide Input Set Sizes

If desired, it is easy to add padding to our protocol so as to hide the actual sizes of players input
sets. This is done simply by setting the protocol parameters (number of bins, maximal bin size)
based on the known upper bound of set size. It is easy to verify that this (higher parameter values)
do not cause correctness or security violations. Intuitively, players will process more bins with
higher maximal bin sizes, but fewer actual items. However, the number of actual items per bin is
hidden by our protocol.

3 Preliminaries

3.1 Oblivious Transfer

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive and is a foundation for almost
all efficient secure computation protocols. In OT, a sender with two input strings (x0, x1) interacts
with a receiver who has an input choice bit b. The result is that the receiver learns xb without
learning anything about x1−b, while the sender learns nothing about b.

The very first OT protocol was proposed by Rabin [Rab81]. While several OT protocols
were proposed, they all essentially relied on public key operations (necessarily so, due to lower
bound [IR89]). The OT extension protocols [Bea96, IKNP03] went around the lower bound by
considering a batched OT evaluation. OT extension protocol works by evaluating a small number
(namely, computational security parameter κ) of expensive OTs that are used as a base for per-
forming many OTs using only cheap symmetric-key operations. In 2013, Kolesnikov and Kumare-
san [KK13] proposed an optimization and generalization of the IKNP OT extension, which achieved
O(log κ) factor performance improvement in communication and computation. In the same year,
Asharov et al. [ALSZ13] proposed several IKNP optimizations (some overlapping with [KK13]) and
provided optimized implementation of OT extension. In this work, we are interested in an specific
variant of OT (one-sided OT), in which the sender has only one message to send, and which is
received by the receiver based on its choice bit. The sender remains oblivious as to whether or not

10

the receiver received the message. With this OT variant, one can reduce the bandwidth require-
ment by sending only one secret instead of two. As a result, we can perform many OT instances
with amortized cost of 50 nanoseconds and 129 bits transmitted.

3.2 Oblivious PRF & Private Equality

Oblivious PRF: An oblivious PRF (OPRF) [FIPR05] is a 2-party protocol in which the sender
learns (or chooses) a random PRF key k and the receiver learns Fk(x1), . . . , Fk(xt), where F is
a PRF and (x1, . . . , xt) ⊆ {0, 1}∗ are inputs chosen by the receiver. Here, we consider a slightly
weaker variant of OPRF due to [KKRT16] where the PRF keys are related. We describe the ideal
functionality for an OPRF in Figure 4.

OPRF and BaRK-OPRF instantiation. While many OPRF protocols exist, we focus on
the protocol (BaRK-OPRF) of Kolesnikov et al. [KKRT16]. This protocol has the advantage of
being based on oblivious-transfer (OT) extension. As a result, it uses only inexpensive symmetric-
key cryptographic operations (apart from a constant number of initial public-key operations for
base OTs). The protocol efficiently generates a large number of OPRF instances, which makes it a
particularly good fit for our eventual PSI application that uses many OPRF instances. Concretely,
the amortized cost of each OPRF instance costs roughly 500 bits in communication and a few
symmetric-key operations.

Technically speaking, the protocol of [KKRT16] achieves a slightly weaker variant of OPRF
than what we have defined in Figure 4. In particular, (1) PRF instances are generated with related
keys, and (2) the protocol reveals slightly more than just the PRF output Fk(q). We stress that the
resulting PRF of [KKRT16] remains a secure PRF even under these restrictions. More formally, let
leak(k, q) denote the extra information that the protocol leaks to the receiver. [KKRT16] gives a
security definition for PRF that captures the fact that outputs of F , under related keys k1, . . . , kn,
are pseudorandom even given leak(ki, qi). This guarantee is sufficient for our purpose.

For the ease of presentation and reasoning, we work with the cleaner security definitions that
capture the main spirit of BaRK-OPRF. We emphasize that, although cumbersome, it is possible
to incorporate all of the [KKRT16] relaxations into the definitions. We stress that our eventual
application of PSU is secure in the standard sense when built from BaRK-OPRF, and we make
corresponding remarks in the proof of security outlining how security holds for BaRK-OPRF.

Private Equality Test (PEQT). Fagin, Naor, and Winkler [FNW] introduced one of the
first PEQT protocols. PEQT is a 2-party protocol in which a receiver who has an input string
x0 interacts with a sender holding an input string x1. The result is that the receiver learns a bit
indicating whether x0 = x1 and nothing else, whereas the sender learns nothing. We formally define
the PEQT functionality in Figure 5. [FNW] protocol was based on public-key cryptography. A
long list of follow-up works [NP, BST01, Lip03, PSZ14, PSSZ15, KKRT16, PSZ18] improved the
efficiency of PEQT. Some of them were introduced in the context of PSI. PEQT can be immediately
obtained from BaRK-OPRF by computing and comparing BaRK-OPRF output in the clear, cf.
[KKRT16] (i.e., one party learns Fk(x1); the other party learns k and sends Fk(x0)). We will use
the latter most efficient instantiation.

11

4 Reverse Private Membership Test (RPMT)

Parameters:

• Two parties: sender S and receiver R

• Set X is of size n of elements.

• The bit-length of field elements σ = λ+ log(n).

• Ideal OPRF, Fpeqt primitives specified in Figure 4, and Figure 5, respectively. Let
Fk(x) : {0, 1}∗ 7→ {0, 1}σ be the underlying OPRF function.

• A collision-resistant hash function h(x) : {0, 1}∗ 7→ {0, 1}σ.

Input of S: x∗ ∈ {0, 1}∗

Input of R: X = {x1, x2, . . . , xn} ⊆ {0, 1}∗

Protocol:

1. S acts as OPRF receiver, sends x∗ to OPRF. S receives q∗ = Fk(x
∗) and receiver R

receives k.

2. R chooses s ← F(2σ) at random. R interpolates a F(2σ)-polynomial P (x) over points
{(h(xi), s ⊕ qi)}, where qi = Fk(xi),∀i ∈ [n]. Here s ⊕ qi is computed as operation on
σ-bit strings.

3. R sends the coefficients of P to S.

4. S computes s∗ = P (h(x∗))⊕ q∗.

5. S and R invoke the Fpeqt-functionality:

• R acts as receiver with input s.

• S acts as sender with input s∗.

• R receives output from Fpeqt.

Figure 6: Reverse Private Membership Test Protocol Fnrpmt.

We describe our efficient construction of Reverse Private Membership Test (RPMT), which is a
semi-honest secure protocol for the functionality specified in Figure 2. Throughout the paper we
use the notations κ, λ for the computational and statistical security parameters, respectively. Our
RPMT protocol is described in Figure 6. The formal protocol follows the intuition presented in the
first part of Section 2. Polynomial arithmetic is done in field F(2σ) for some appropriate σ. We
discuss using smaller field size in Section 5.3.

RPMT protocol is presented in Figure 2. We next argue it computes Fnrpmt correctly. After-
wards, we state and prove the security properties of the protocol.

12

Correctness. The main observation of OPRF is that the RPMT sender (acting as OPRF’s
receiver) obtains the output q∗ which is equal to qi, if x∗ = xi. In this case, it is not hard to see
that s∗ = P (h(x∗)) ⊕ q∗ = P (h(xi)) ⊕ q∗ = s. From the Fpeqt-functionality, the receiver outputs
1. In case x∗ /∈ X, the OPRF functionality gives the sender q∗ which is not in {qi | i ∈ [n]}, thus
s∗ 6= s and the receiver gets 0 from the Fpeqt-functionality.

We remark that our RPMT protocol is correct except in case of a collision P (h(x∗)) = P (h(xi))
for x∗ 6= xi, which occurs with probability is 2−σ. By setting σ = λ+ log(n), a union bound shows
probability of collision is negligible 2−λ.

Security. We now state and prove security properties of RPMT.

Theorem 1. The construction of Figure 6 securely implements functionality Fnrpmt in the semi-
honest model, given the OPRF and Private Equality Test primitives defined in Figure 4, and Fig-
ure 5, respectively.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and
argue the indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(x∗) simulates the view of corrupt S, which consists of S’s randomness,
input, output and received messages. SimS proceeds as follows. It first chooses q′ ∈R {0, 1}σ, calls
OPRF simulator SimSOPRF

(x∗, q′), and appends its output to the view. We note that BaRK-OPRF is
behaving the same as OPRF with respect to the security guarantee needed for simulating this step,
namely that q∗ obtained in Step 1 is pseudorandom. This is the only direct use of BaRK-OPRF in
this protocol, and hence the rest of the argument made w.r.t. OPRF applies to our instantiation
as well.

SimS simulates Step 3 as follows. It generates random s′ ∈ {0, 1}σ, and n random points
(x′i, q

′
i) ∈R ({0, 1}?, {0, 1}σ). SimS then interpolates polynomial P over points {h(x′i), s

′ ⊕ q′i} and
appends its coefficients to the generated view.

Finally, to simulate Step 5, SimS runs simulator SimPEQT on input (s′ = P (h(x∗)) ⊕ q′) and
appends the output of SimPEQT to its output of the view.

We now argue that the output of SimS is indistinguishable from the real execution. For this, we
formally show the simulation by proceeding the sequence of hybrid transcripts T0, T1, T2, T3, where
T0 is real view of S, and T3 is the output of SimS .

Hybrid 1. Let T1 be the same as T0, except that the OPRF execution is replaced as follows.
By the OPRF/BaRK-OPRF pseudorandomness guarantee and the indistinguishability of
the output of SimSOPRF

, we replace F (k, x∗) and F (k, xi), ∀i ∈ [n], with q′ and q′i,∀i ∈ [n],
respectively. We note that if x∗ = xi, then q′ = q′i. It is easy to see that T0 and T1 are
indistinguishable.

Hybrid 2. Let T2 be the same as T1, except that the polynomial is a uniform polynomial of
degree n− 1 (sampled by interpolating over random points). Consider two following cases:

• x∗ 6∈ X: Since all values q′i are uniformly random from the S’s point of view, so are the
s⊕ q′i.
• x∗ = xi (consequently, q′ = q′i): Since other values q′j∈[n],∀j 6= i, are uniformly random

from S’s point of view, we replace these s⊕ q′j with random. Then s is used only in the
expression s⊕ q′i. Since s is uniform, s⊕ q′i is also uniformly random from the S’s view
even though the adversary knows q′ = q′i.

13

In summary, the polynomial from the real execution can be replaced with polynomial P
sampled over random points. T1 and T2 are indistinguishable.

Hybrid 3. Let T3 be the same as T2, except the PEQT execution is replaced with running the
simulator SimRPEQT

(s′). Because SimRPEQT
is guaranteed to produce output indistinguishable

from real, T3 and T2 are indistinguishable.

Corrupt Receiver. SimR(x1, ..., xn, out) simulates the view of corrupt R, which consists of
R’s randomness, input, output and received messages. SimR proceeds as follows. It chooses a
random k′ ∈r {0, 1}κ, calls OPRF simulator SimSOPRF

(⊥, k′), and appends its output to the view.
Finally, to simulate Step 5, SimS runs simulator SimPEQT on input (k′, out) and appends the output
of SimPEQT to its output of the view.

The view generated by SimR in indistinguishable from a real view because of the indistinguisha-
bility of the transcripts of the underlying simulators.

Communication Cost. Ignoring the fixed cost of base OTs for OT extension, the PMT
communication cost (prior to further optimizations discussed in Section 5.3) includes:

• OPRF in Step 1: ρ bits, where ρ is the width of the pseudorandom code defined in Table 2
by referencing parameters from [KKRT16].

• Sending the coefficients of P in Step 3: (n+ 1)σ bits

• Fpeqt in Step 5: ρ+ λ bits

Therefore, the overall communication cost of our PMT protocol is

Φ(n) = 2ρ+ λ+ (n+ 1)σ (1)

5 Private Set Union

We now present our main result, an application of our RPMT to PSU. The construction closely
follows the high-level overview presented in the second part of Section 2. Recall, the RPMT
functionality allows the receiver to learn one-bit output indicating whether the sender’s item is in
its (receiver’s) set, while keeping this item secret (i.e. the receiver will not know which sender’s
item is among its set). The performance of our RPMT protocol is linear in the size of the receiver’s
set, resulting in a quadratic costs for PSU.

Next, in Section 5.1, we show how to use a hashing/bucketing technique to overcome this
limitation. At the high level, the idea is that each party maps their items into bins using a public
hash function. Each bin contains a small number of items which allows the two parties to evaluate
RPMT on the elements of each bin separately.

Let m denote the maximum sender’s bin size when mapping n items to β bins with no (expected)
overflow. Within each bin, the protocol requires (m+1) invocations of RPMT. Section 5.2 analyses
hashing parameters to minimize the overall cost of our PSU.

14

Parameters:

• Set sizes n1 and n2, and two parties: sender S and receiver R

• A bit-length `. Let n = max(n1, n2).

• Number of bins β = β(n), and max bin size m, suitable for our hashing scheme (Table 2)

• Ideal Frpmt primitive defined in Figure 2, and ideal OT primitive.

• A special dummy item ⊥ ∈ {0, 1}∗

Input of S: X = {x1, x2, . . . , xn1} ⊆ {0, 1}`

Input of R: Y = {y1, y2, . . . , yn2} ⊆ {0, 1}`

Protocol:

1. Randomly pick a hash function H from all hash functions with domain {0, 1}` and range
[β].

2. S and R hash elements of their sets X and Y into β bins under hash function H. Let
BS [i] and BR[i] denote the set of items in the sender’s and receiver’s i-th bin, respectively.

3. S pads each bin BS [i] with (several copies, as needed) the special item ⊥ up to the
maximum bin size m+ 1, and randomly permutes all items in this bin.

4. R pads each bin BR[i] with one special item ⊥ and (several, as needed) different dummy
items to the maximum bin size m+ 1.

5. R initializes set Z = {}.

6. For each bin i ∈ [β], for each item xj ∈ BS [i]:

(a) S and R invoke the Frpmt-functionality:

• S acts as sender with input xj

• R acts as receiver with input set BR[i]

• R obtains bit bj .

(b) S and R invoke the OT-functionality:

• S acts as sender with pair-input {xj ,⊥}
• R acts as receiver with bit input bj

• R obtains the OT output zj and sets Z = Z ∪ zi.

7. R outputs Y ∪ Z.

Figure 7: Private Set Union Protocol Fn1,n2
psu .

15

5.1 PSU Construction

As described above, in our PSU protocol we place players’ elements into β buckets of maximum
size m+ 1 each.

We describe the main construction of PSU in Figure 7. Correctness of our PSU protocol follows
from the fact that the RPMT functionality gives the receiver the zero-bit output if its set does
not contain the sender’s item. In Step 6b, the receiver obliviously receives that item from OT
functionality.

We now state and prove security of our PSU construction.

Theorem 2. The construction of Figure 7 securely implements the Private Set Union functionality
Fn1,n2
psu of Figure 1 in the semi-honest model, given the OT and Reverse Private Equality Test

primitives defined in Figure 2.

Proof. We exhibit simulators SimS and SimR for simulating corrupt S and R respectively, and
argue the indistinguishability of the produced transcript from the real execution.

Corrupt Sender. When employing the abstraction of the RPMT and OT functionalities,
simulating corrupt S is elementary. SimS(X) simulates the view of corrupt S, which consists of
S’s randomness, input, output and received messages. The simulator simulates an execution of the
protocol in which S receives nothing from the PTM and OT ideal functionality in Step 4. Thus, it
is straightforward to see that the simulation is perfect.

Corrupt Receiver. SimR(Y,Z) simulates the view of corrupt R, which consists of R’s ran-
domness, input, output and received messages. We will view SimR’s input Z as the set Z = Y \X,
i.e. the set of elements that X “brings to the union.” SimR proceeds as follows.

SimR simulates protocol of Figure 7 bucket-by-bucket. Consider the i-th bucket. Let Xi (re-
spectively Yi, Zi) be the set of elements of X (respectively, Y,Z) that are mapped to the i-th bucket.
SimR pads Yi to m+1 elements as is done in Step 4. Now, SimR has all the information to simulate
Step 6. SimR constructs the sequence simulating when R discovers new elements in the union.
This is an m-element sequence S, where SimR puts |Zi| elements zi at randomly chosen slots, and
fills the remaining m− |Zi| elements of the sequence with ⊥.

SimR then goes through the elements of S. Consider the j-the such element Sj . SimR sets
outj = 0 if Sj = ⊥, and otherwise sets outj = 1. SimR invokes the simulator of Frpmt with input
(Yi, outj), and appends the output of the simulator to its own output. This simulates Step 6a.

SimR proceeds by simulating Step 6b, as follows. SimR invokes the simulator of OT with input
(outj , Sj). This corresponds to R providing input outj and receiving output Sj from OT. SimR
appends the output of the simulator to its own output.

SimR proceeds simulating each of β bins and terminates. This completes the description of the
simulator.

We now argue that the output of SimR is indistinguishable from the real execution. This is
easy to see. SimR’s reconstruction of how/when the elements of Z = Y \X are discovered by R is
distributed identically to the real execution. The remainder of the simulation refers to simulators
of implementations of ideal functionalities.

5.2 Hashing Parameters

A natural first attempt is to hash n items into n bins, where each bin will contain O(1) items
on average. If we could have O(1) items per bin in PSU, this would result in O(n) total RPMT

16

2 3 4 5 6 7 8 9 10
135

140

145

150

155

160

165

ε
C

om
m

u
n
ic

a
ti

on
(M

B
)

Figure 8: Communication cost (MB) of our PSU protocol for n = 216 given the number of bins
β = 10−2εn

instances, a low cost. However, we must hide the actual number of items in each bin, and hence
all bins must be padded to an upper bound m. Gonnet [Gon81] showed m = ln(n)

ln ln(n)(1 + o(1)). The

coefficient of little-o is not specified in [Gon81]; Pinkas et al. [PSZ18] empirically determined the
concrete m given the number of bins β. In our case, n bins is not an optimal strategy. For example,
hashing n = 220 elements into n bins, bin size m = 20 is required to ensure that overflow occurs
with probability ≤ 2−40. As a result, for n = 220 our PSU protocol performs 21n RPMT instances
in total, which requires 228 OPRF ciphertexts sent and received. We can do better.

In the following, we analyze the effect of the number of bins β and maximum bin size m+1 on the
communication overhead of our protocol, and choose the best parameters to minimize our cost. We
recall that the overall communication cost of our PSU protocol is equal to βmΦ(m+1)+βm(κ+σ),
where Φ(m + 1) is the RPMT communication cost specified in Equation (1). To guarantee that
mapping n items to β bins with no overflow, we compute the probability that there exists a bin
with more than m items:

Pr(∃bin with ≥ m items) ≤ β
n∑

m+1

(
n

i

)(1

β

)i(
1− 1

β

)n−i
(2)

Bounding (2) to be negligible in the statistical security parameter λ = 240, we obtain the
required bin size m without overflow for a given n and β. To minimize the overall communication
cost, we choose β = O(n/ log n). According to standard balls-and-bins argument, the maximum
bin size is O(log(n)). To determine the coefficients in the big “O”, we first fix the number of bins
with an initialization value β = εn = 0.01n, evaluate Equation (2) to obtain the necessary m, and
calculate the required communication cost given β and m. In order to find “sweet spot” for our
communication cost, we increase the scale ε by 0.001 after each time. We observe that our protocol
yields the lowest communication when ε is in a range [0.4, 0.6]. Figure 8 shows the result for n = 216:
we choose β = εn = 0.058n and require m = 60 to achieve 2−40 hashing failure probability. We
also report the set of our hashing parameters in Table 2.

17

parameters set size n
& comm. 28 210 212 214 216 218 220 222

ρ 424 432 432 440 440 448 448 448

β/n 0.043 0.055 0.05 0.053 0.058 0.052 0.06 0.051

m 63 58 63 62 60 65 61 68

Comm. cost (MB) 0.39 1.81 7.84 33.43 141.78 602.20 2544.7 10748

Table 2: Hashing parameters for different set sizes n, and our PSU’s communication cost (MB). ρ
is OT extension matrix width in OPRF (≈ number of bits required per OPRF call) as reported
in Table 1 [KKRT16], β is the number of bins, m + 1 is max bin size PSU with n elements per
party. Total PSU communication reported in MB and excludes the fixed cost of base OTs for OT
extension.

5.3 Discussion and Optimization

In our RPMT protocol described in Figure 6, the receiver computes a polynomial of degree (n− 1)
with the field of F(2σ), where σ = λ+log(n). With hash-to-bin technique used in PSU, we are able
to reduce the degree from (n− 1) to O(log(n)), which avoids an expensive computation at the cost
of manipulating polynomials with high degree. However, we increase the field size by 10%− 12%.

Recall that our PSU protocol requires β(m + 1) RPMT instances in total. For each RPMT
protocol, its correctness is violated when a collision event occurs: P (h(xi)) = P (h(yj)) for xi 6= yj .
To yield collision probability 2λ over all bins, which is suited for most applications, the size of qi
values is σ = λ+ log(β(m+ 1)2). For example, for n = 220, we use the polynomial field size F(268).

Polynomials with Dummy Points In Step 4, Figure 7, receiver pads each bin with one special
item ⊥ and additional different dummies to the maximum bin size m + 1. This padding serves
the purpose of hiding the number of items that were mapped to a specific bin, which would leak
some information about the input set. In RPMT protocol (Step 2, Figure 6), the receiver generates
the polynomial over points {h(yi), s⊕ qi} where some of qi are the OPRF of the dummy items di.
Therefore, we simply replace these qi = Fk(di) by random values.

Another optimization, inspired by [KMP+17], is that the receiver computes P (x) by first inter-
polating the polynomial over the non-dummy items only. That is, receiver interpolates P0 over m′ ≤
(m+ 1) points {h(yi), s⊕Fk(yi)}, and also computes P1(x) =

∏m′

i=1(x− h(yi)) over m′ roots h(yi),
where yi are real items. Then receiver chooses a random polynomial Pr(x) of degree (m−m′ + 1);
and computes P (x) = P0(x) + P1(x)Pr(x). It is easy to see that P (h(xi)) = s⊕ Fk(xi), ∀xi ∈ X.
Using hashing parameters from Table 2, the expected value of m′ is only 18 for n = 218, while
the worst-case m = 65. This optimization reduces the cost of expensive polynomial generation (by
approximately 200% in our implementation).

Relaxing RPMT Finally, as discussed in Section 2, the use of full-fledged RPMT for PSU is
slightly overkill. It would suffice to use an RPMT protocol which leaked some information about
the sender’s item (in the case that x∗ 6∈ X), since the PSU protocol will release that value anyway.
In Appendix A we describe a simple change to the RPMT protocol that remains secure in the
context of our PSU protocol. Basically, instead of using PEQT to compare polynomial outputs,
the sender just sends it polynomial output in the clear. This is safe in the context of PSU since the

18

PSU simulator will have access to the sender’s RPMT input x∗ whenever the polynomial output
leaks information about x∗.

5.4 Discussion: Difficulties in Applying Other PSI Techniques

In addition to the optimizations mentioned above, we also explored other commonly used techniques
developed in the context of PSI [FNP04, PSSZ15, PSZ18, KKRT16, KMP+17, CLR17, HV17].
Interestingly, we found that many standard techniques for PSI do not directly work for our PSU
paradigm, despite the apparent similarity of the two problems. In the following, we will discuss
PSU-specific obstacles in applying these techniques. The reader may safely skip this section on the
first reading as we discuss here only techniques that we did not use in our protocol.

Cuckoo hashing This hashing scheme was introduced by Pagh and Rodler [PR04]. It is the
standard hashing scheme in current PSI protocols. At the high level, the receiver uses two (op-
tionally, more) public hash functions h1, h2 to store its item in one of the bins {h1(x), h2(x)}. The
hashing process uses eviction and the choice of which of the bins is used depends on the entire
set. Using the same hash functions and simple hashing, the sender maps its item y into both bins
{h1(y), h2(y)} (i.e., item y appears twice in the hash table). Then the parties evaluate PSI bin-by-
bin. This is efficient since the receiver has only one item per bin. This hashing scheme avoids a
quadratic-cost PSI within a bin.

Unfortunately, this hashing scheme (and the corresponding performance improvement) does not
immediately fit in the PSU case. The reason is that the receiver may learn the Cuckoo hash positions
of the sender’s items, which may reveal information about sender’s entire input. Concretely, suppose
that in our protocol the sender uses Cuckoo hashing to map its item x into bin h1(x). If x 6∈ Y ,
the receiver will learn which bin x is mapped to. As noted above, the bin storing x depends on
the whole input set of the sender and this leaks some information about the party input set that
cannot be simulated.

Phasing Permutation-based hashing (phasing) was introduced by Arbitman et al. [ANS10] to
reduce the bit length of the items that are mapped to bins (in our PSU, this would help reduce
the polynomial field size). Phasing was used in [PSSZ15, HV17, RR17b, CLR17] to improve PSI
performance when input items has short bit length. The idea is to view each item x as two parts:
first log(β) bits used to define the bin to which the item is mapped, and the last bits used as a
representation to store the item in the bin.

Concretely, the item x can be presented as x = xL|xR, where xL has log(β) bit-length. The
item x is mapped into bin xL⊕f(xR), where f is a random function that maps arbitrary strings to
a range of [0, β]. That bin will store xR as a representative of x. Clearly, xR has log(β) bits shorter
than the original item x. This permutation-based hashing technique achieves significant savings,
especially when the original item x has small length (e.g. 32 bits or 64 bits). For instance, assume
that the item x has 32-bit length, the set size is n = 220. Then bin elements are only 17 bits long,
instead of 32 bits. As a result, we might hope to use the polynomial field size of only F(217) in
RPMT, yielding a significant improvement.

Unfortunately, this general phasing technique does not yield any performance benefit in our
PSU paradigm. The underlying reason is that the items in each bin are first given as input to
an OPRF for that bin, however the state-of-the-art OPRF protocol that we use ([KKRT16]) is

19

Protocol
Bit key Cryptographic Set size n
length strength 28 210 212 214 216 218

Time

[DC17]
1024 Legacy 11.78 44.73 175.7 702.4 2836.5 11341.2
2048 112 78.02 312.44 1233.59 4952.94 19881.51 79272.48

[BA12] 128 128 2.41 11.88 24.88 − − −

Ours
128 128 0.57 0.66 0.83 1.15 2.65 10.42

Speedup 4× 18× 30× 4306× 7502× 7607×

Comm.

[DC17]
1024 Legacy 2.83 11.32 45.28 181.12 724.49 2897.97
2048 112 4.06 16.25 65.01 260.04 1040.18 4160.74

[BA12] 128 128 75.5 369.1 1744.83 8053.06 36507.22 163208.76

Ours
128 128 0.45 2.05 8.48 34.98 144.65 652.09

Speedup 9.02× 7.92× 7.66× 7.43× 7.19× 6.38×

Table 3: Comparison of total runtime (in seconds) and communication (in MB) between our proto-
col, [DC17] and [BA12]. Both parties have n 128-bit elements as input, except [BA12] running time
is based on 32-bit elements. [DC17] implementation is in Go, using 8 threads. Our implementation
is in C++, 8 threads. [DC17] and us use fast emulated LAN (10Gbps, 0.02ms RTT). Cryptographic
strength refers to the computational security of the protocol, according to NIST recommendations.
[BA12] runtime is taken from their 3-party experiments, and [BA12] communication is calculated
by us for 2PC and 128-bit elements. Best results are marked in bold.

Setting T
Set size n

28 210 212 214 216 218 220 222

LAN

1 0.66 0.86 1.42 3.54 12.41 61.34 238.88 1039.64
4 0.59 0.69 0.98 1.46 4.03 17.94 69.07 301.76
16 0.55 0.66 0.78 0.97 1.82 6.29 21.9 90.99
32 0.53 0.63 0.69 0.84 1.56 4.1 13.09 54.63

WAN

1 1.38 1.73 2.61 6.96 23.29 102.5 406.15 1679.85
4 1.33 1.56 1.99 3.29 8.58 31.05 118.79 463.51
16 1.25 1.39 1.76 2.55 5.61 18.67 70.55 280.15
32 1.22 1.33 1.57 2.4 5.02 17.08 62.96 250.97

Speedup 1.13-1.24 × 1.3-1.36× 1.66-2.06× 2.9-4.22× 4.64-7.98× 6-14.9× 6.5-18.2× 6.7-19.1×

Table 4: Scaling of our protocol with set size and number of threads. Total running time is in
seconds. n elements per party, 128-bit length element, and threads T ∈ {1, 4, 16, 32} threads.
LAN setting with 10Gbps network bandwidth, 0.02ms RTT. WAN setting with 400Mbps network
bandwidth, 40ms RTT.

insensitive to the item length. It is only the OPRF output length that determines the field size
for polynomial interpolation. Since the OPRF outputs are random, their length must be chosen to
avoid collisions with probability 1− 2−λ.

6 Implementation

Our protocol requires the receiver to generate a polynomial of degree m, and the sender to evaluate
it on one point, where m+1 is the maximum bin size. Since the degree m = O(log(n)) of the polyno-
mial is relatively small, we use the straightforward Lagrange interpolation and evaluation algorithm
which requires O(m2) field operations. As parties use the bit-string output of the OPRF as input

20

to the polynomial operations, it is natural to interpolate and evaluate the polynomial over GF (2σ).
Our polynomial implementation uses the NTL library [Sho] with GMP library and GF2X [GBZT] li-
brary installed for speeding up the running time. Inspired by Huang et al. [HEKM11], we applied
pipelining optimization when the receiver sending all polynomials to the sender. In more detail, we
find that by sending polynomial coefficients for 28 bins in a batch to the sender, we can minimize
the overall wall-clock time of the execution.

As detailed in Section 2, our PSU protocol builds on a specific OPRF variant [KKRT16] and
OT extension. We do κ = 128 Naor-Pinkas OTs [NP01]. We use the source code (OPRF and OT)
from [KKRT16, Rin]. Our complete implementation will freely available on GitHub.

We implement our protocol in C++, and run our protocol on a single Intel Xeon with 2.30GHz
and 256GB RAM. We emulate the network by using Linux tc command. In the following, we
compare our protocol to the state-of-the-art PSU protocol [DC17] which provides empirical experi-
ments for a larger set, and the work of [BA12] which reports experimental numbers for PSU of small
sets n ≤ 212). Additionally, we demonstrate the scalability and parallelizability of our protocol by
evaluating it on sets of up to 222 128-bit items each.

All comparisons are total running time. We note that our protocols are very amenable to
pre-computation (by precomputing and pre-sending OT extension and OPRF matrices).

6.1 Comparison with Prior Work

Since implementation of [DC17] and [BA12] are not publicly available, we use their reported exper-
imental numbers. We perform a comparison on the range of set sizes n = {28, 210, 212, 214, 216, 218}
to match the parameters used in [DC17, Table 3&4] and [BA12, Table 3]. [DC17] ran experiments
on Intel Xeon 3.30GHz 256GB RAM and 10Gbps LAN; we use a similar (1.32× slower) machine
as reported above and same LAN. [BA12] reports running on 2.4GHz AMD Opteron.

Runtime Comparison In the [DC17] protocol, a Bloom filter (BF) of 44n elements is used to
yield the false-positive probability 2−30. Each element requires expensive encryption, decryption
and further manipulation under an additively-homomorphic encryption (AHE).

We report detailed comparisons in Table 3, and here we highlight some numbers. Our protocol
runs in 0.94 seconds for n = 210, while [BA12] requires 11.88 seconds, a factor of 18× improvement;
and [DC17] requires 312.44 seconds with 2048-bit key length (which corresponds to the security
level considered in our protocol), a factor of 332× improvement. As the set size n increases, [DC17]
runs correspondingly slower. When increasing the set size to n = 218, [DC17]’s overall running
time is 79, 272.48 seconds while ours is only 10.42 seconds.

This is a 7607× improvement in running time compared to [DC17] (2048-bit key length). A
higher improvement factor as we move to higher set size likely indicates that non-protocol-essential
system overheads take a higher fraction of resources in smaller set size executions in our protocol.
In Section 6.2, we demonstrate the scalability and parallelizability of our protocol.

Bandwidth Comparison The receiver in [DC17] sends a large encrypted BF. For n = 220,
BF size is 8.05 GB and 16.1 GB when encrypted with 1024-bit and 2048-bit key, respectively.
[BA12] relies on generic 2PC/MPC to run their protocol. We sketch approximate communication
cost of their protocol in the two-party setting based on state-of-the-art OT extension and half
gates (cf. discussion in Section 1.3). Oblivious sorting of n elements per party involves sorting an

21

array of size 2n. Considering `-bit elements, this will require approximately 2n · log(2n) · 2` · 256
bit. Here 256 is the half-gates garbled table size. The communication complexity of the duplicate
elimination [BA12] costs approximately the same as oblivious sort. For the bandwidth comparison,
we only report the [BA12]’s communication cost of oblivious sorting and duplicate elimination,
which is in favor of their protocol.

We compare bandwidth for the set sizes explored in [DC17], and summarize their and our results
in Table 3. The communication cost of our protocol is significantly less than that of the prior work.
Concretely, for n = 218, our protocol requires 652.09 MB of communication, a 6.38 × improvement.
For very small set size n = 28, our protocol requires only 0.45 MB while [DC17] needs 4.06 MB
and [BA12] requires at least 75.5 MB.

Correctness error probability In [DC17] protocol, Bloom filter introduces a false positive
error in the output. Recall, the false positive rate (FPR) is the probability that a single element is
mistakenly marked as being in the set. The [DC17]’s implementation chooses FPR of 2−30. Thus,
computing the set union of 2−18 items each, the probability that the entire output includes a false
positive is 2−12. We use simple hashing with probability of existence of an overflowed bin of 2−40.
Thus, in our protocol, the correctness error probability 2−40 is per whole set, not per single item.

6.2 Scalability and Parallelizability

We demonstrate the scalability and parallelizability of our protocol by evaluating it on set sizes
n = {28, 210, 212, 214, 216, 218, 220, 222}. We run each party in parallel with T ∈ {1, 4, 16, 32} threads.
We report the performance of our protocol in Table 4, showing running time in both LAN/WAN
settings: a LAN setting with 10 Gbps network bandwidth and 0.02 ms round-trip latency; a WAN
setting with 400 Mbps network bandwidth and a simulated 40 ms round-trip latency.

Our protocol indeed scales well. Small-size problems are sub-second; medium-size problems
(n = 214) are 3.54 seconds and larger sizes (n = 220) is under 4 minutes, all single-threaded.
Increasing the number of threads runs the n = 220 instance in 13.09 seconds, a four orders of
magnitude improvement over prior work. Benchmarking our implementation in the WAN setting,
our protocol also scales well due to the fact that the communication cost is reasonable (for n = 218,
our protocol needs 652.09 MB of communication).

Our protocol is very amenable to parallelization. Specifically, our algorithm can be parallelized
at the level of bins. For example, when increasing T from 1 to 32, our protocol shows a factor of
19× improvement as the running time reduces from 1039.64 seconds to 54.63 seconds for an input
of n = 222 elements.

Of particular interest is the last row, which presents the ratio between the runtime of the single
thread and 32 threads. Our protocol yields a better speedup when the set size is larger. For smallest
set size of n = 28, the protocol achieves a moderate speed up of about 1.13. When considering the
larger database size n = 222, the speed up of 3.4− 3.6 is obtained at 4 threads and 6.7− 19.1 at 32
threads.

References

[ADT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters: Size-
hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and

22

Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 156–173. Springer,
Heidelberg, March 2011.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 535–548. ACM
Press, November 2013.

[ANS10] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard Cuckoo hashing: Constant
worst-case operations with a succinct representation. In 51st FOCS, pages 787–796.
IEEE Computer Society Press, October 2010.

[BA12] Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset operations.
In Heung Youl Youm and Yoojae Won, editors, ASIACCS 12, pages 40–41. ACM Press,
May 2012.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In 28th ACM STOC, pages 479–488. ACM Press, May 1996.

[BS05] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-
honest model. In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS,
pages 236–252. Springer, Heidelberg, December 2005.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos. Sepia:
Privacy-preserving aggregation of multi-domain network events and statistics. In Pro-
ceedings of the 19th USENIX Conference on Security, USENIX Security’10, pages 15–
15, Berkeley, CA, USA, 2010. USENIX Association.

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. A fair and efficient solution
to the socialist millionaires’ problem. Discrete Applied Mathematics, 111:2001, 2001.

[CCS18] Andrea Cerulli, Emiliano De Cristofaro, and Claudio Soriente. Nothing refreshes like a
RePSI: Reactive private set intersection. In ACNS 18, LNCS, pages 280–300. Springer,
Heidelberg, 2018.

[CDJ16] Chongwon Cho, Dana Dachman-Soled, and Stanislaw Jarecki. Efficient concurrent
covert computation of string equality and set intersection. In Kazue Sako, editor,
CT-RSA 2016, volume 9610 of LNCS, pages 164–179. Springer, Heidelberg, Febru-
ary / March 2016.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomor-
phic encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 17, pages 1243–1255. ACM Press, October / November 2017.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection with secure
two-party computation. In SCN 18, LNCS, pages 464–482. Springer, Heidelberg, 2018.

[CPPT14] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos. Verifi-
able set operations over outsourced databases. In Hugo Krawczyk, editor, PKC 2014,
volume 8383 of LNCS, pages 113–130. Springer, Heidelberg, March 2014.

23

[DC17] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations.
In Josef Pieprzyk and Suriadi Suriadi, editors, ACISP 17, Part II, volume 10343 of
LNCS, pages 261–278. Springer, Heidelberg, July 2017.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 13, pages 789–800. ACM Press, November 2013.

[DKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private
set intersection protocols secure in malicious model. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 213–231. Springer, Heidelberg, December
2010.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling private
contact discovery. Proceedings on Privacy Enhancing Technologies, 2018.

[DT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols
with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages
143–159. Springer, Heidelberg, January 2010.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378
of LNCS, pages 303–324. Springer, Heidelberg, February 2005.

[FNO18] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set intersection with
linear communication from general assumptions. Cryptology ePrint Archive, Report
2018/238, 2018. https://eprint.iacr.org/2018/238.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

[FNW] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking
it. Commun. ACM.

[Fri07] Keith B. Frikken. Privacy-preserving set union. In Jonathan Katz and Moti Yung,
editors, ACNS 07, volume 4521 of LNCS, pages 237–252. Springer, Heidelberg, June
2007.

[GBZT] Pierrick Gaudry, Richard Brent, Paul Zimmermann, and Emmanuel Thomé. https:

//gforge.inria.fr/projects/gf2x/.

[Gon81] Gaston H. Gonnet. Expected length of the longest probe sequence in hash code search-
ing. J. ACM, 28(2):289–304, April 1981.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security 2011, 2011.

24

https://eprint.iacr.org/2018/238
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/

[HLS+16] K. Hogan, N. Luther, N. Schear, E. Shen, D. Stott, S. Yakoubov, and A. Yerukhimovich.
Secure multiparty computation for cooperative cyber risk assessment. In 2016 IEEE
Cybersecurity Development (SecDev), pages 75–76, Nov 2016.

[HN12] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious
adversaries. Journal of Cryptology, 25(3):383–433, July 2012.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-party
private set-intersection. In Serge Fehr, editor, PKC 2017, Part I, volume 10174 of
LNCS, pages 175–203. Springer, Heidelberg, March 2017.

[IKN+19] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shob-
hit Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying secure comput-
ing commercially: Private intersection-sum protocols and their business applications.
Cryptology ePrint Archive, Report 2019/723, 2019.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring
short secrets. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 54–70. Springer, Heidelberg, August 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 16, pages 818–829. ACM Press, October 2016.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Practi-
cal multi-party private set intersection from symmetric-key techniques. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17,
pages 1257–1272. ACM Press, October / November 2017.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, Heidel-
berg, August 2005.

[Lip03] Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test.
In Chi-Sung Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 416–433.
Springer, Heidelberg, November / December 2003.

[LV04] Arjen K. Lenstra and Tim Voss. Information security risk assessment, aggregation,
and mitigation. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors,
ACISP 04, volume 3108 of LNCS, pages 391–401. Springer, Heidelberg, July 2004.

25

[NP] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Pro-
ceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC
’99.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju,
editor, 12th SODA, pages 448–457. ACM-SIAM, January 2001.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight
private set intersection from sparse ot extension. In CRYPTO 2019, 2019.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: private
set intersection using permutation-based hashing. In Proceedings of the 24th USENIX
Conference on Security Symposium, pages 515–530. USENIX Association, 2015.

[PSTY] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based psi with linear communication. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on ot extension. In Proceedings of the 23rd USENIX conference on Security
Symposium, pages 797–812. USENIX Association, 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection
based on ot extension. ACM Trans. Priv. Secur., 21(2), January 2018.

[RA18] Amanda C. D. Resende and Diego F. Aranha. Faster unbalanced private set intersection.
In FC 2018, LNCS. Springer, Heidelberg, 2018.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Aiken Computation
Laboratory, Harvard U., 1981.

[Rin] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Library.
https://github.com/osu-crypto/libOTe.

[RR17a] Peter Rindal and Mike Rosulek. Improved private set intersection against mali-
cious adversaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 235–259. Springer, Heidelberg,
April / May 2017.

[RR17b] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual ex-
ecution. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 17, pages 1229–1242. ACM Press, October / November 2017.

[Sho] Victor Shoup. http://www.shoup.net/ntl/.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer,
Heidelberg, April 2015.

26

https://github.com/osu-crypto/libOTe
http://www.shoup.net/ntl/

Our Set size n
Protocol 28 210 212 214 216 218 220 222

Time
with PEQT 0.66 0.86 1.42 3.54 12.41 61.34 238.88 1039.64

without PEQT 0.65 0.86 1.41 3.51 11.02 49.12 229.22 1015.23

Comm.
with PEQT 0.45 2.05 8.48 34.98 144.65 652.09 2693.30 11,077.83

without PEQT 0.41 1.86 7.72 31.80 131.16 600.62 2470.10 10,233.27

Table 5: Comparison of total runtime (in seconds) and communication (in MB) between the RPMT
version and the optimized version of our protocol. n elements per party, 128-bit length element,
and single thread in LAN setting with 10Gbps network bandwidth, 0.02ms RTT.

A RPMT Optimization

In the RPMT protocol, the receiver computes a polynomial P with special output s. The sender
computes s∗ = P (h(x∗))⊕q∗, where q∗ is its OPRF output. Then the parties use PEQT to securely
compare s to s∗.

In the context of PSU, it is not necessary to use PEQT for this step. Instead, the sender can
simply send s∗ to the receiver. The logic is as follows: If x∗ ∈ X, the sender should learn only this
fact (and nothing about x∗). This is still the case after the optimization because the sender will
compute the same polynomial output s∗ for any such x∗ ∈ X. If x∗ ∈ X, it means that the receiver
will eventually learn x∗ as part of the PSU output (and the sender can infer that x∗ was contributed
by the receiver). The PSU simulator will therefore have the value x∗, and it can perfectly simulate
the polynomial output s∗ = P (h(x∗))⊕ q∗.

We now formalize the details of this modification. Rather than define a weaker/leaky version
of RPMT, we instead introduce a protocol for 1-vs-n PSU. Such a functionality is quite similar to
RPMT, which can be thought of as revealing only the cardinality of |{x∗}∪X|, which is equivalent
to revealing the cardinality of |{x∗} \X| (either 0 or 1).

The details of the 1-vs-n PSU protocol are given in Figure 9. Now, using 1-vs-n PSU as a
building block instead of RPMT, our full-fledged PSU protocol can be written as in Figure 10.

The security proof of the full-fledged PSU protocol is essentially the same as in the pre-
optimization protocol. The security of the 1-vs-n protocol is given below:

Theorem 3. The construction of Figure 9 securely implements functionality F1,n
psu in the semi-

honest model, given the OPRF primitive defined in Figure 4.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and
argue the indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(x∗) simulates the view of corrupt S, which consists of S’s randomness,
input, output and received messages. SimS proceeds as follows. It first chooses q′ ∈R {0, 1}σ, calls
OPRF simulator SimSOPRF

(x∗, q′), and appends its output to the view.
SimS simulates Step 3 as follows. It generates random s′ ∈ {0, 1}σ, and n random points

(x′i, q
′
i) ∈R ({0, 1}?, {0, 1}σ). SimS then interpolates the polynomial P over these points {h(x′i), s

′⊕
q′i} and appends its coefficients to the generated view.

We argue that the output of SimS is indistinguishable from the real execution. For this, we
formally show the simulation by proceeding the sequence of hybrid transcripts T0, T1, T2, where T0
is real view of S, and T2 is the output of SimS .

27

Hybrid 1. Let T1 be the same as T0, except that the OPRF execution is replaced as follows.
By the OPRF/BaRK-OPRF pseudorandomness guarantee and the indistinguishability of
the output of SimSOPRF

, we replace F (k, x∗) and F (k, xi), ∀i ∈ [n], with q′ and q′i,∀i ∈ [n],
respectively. We note that if x∗ = xi, then q′ = q′i. It is easy to see that T0 and T1 are
indistinguishable.

Hybrid 2. Let T2 be the same as T1, except that the polynomial is an uniform polynomial of
degree n− 1. Consider two following cases:

• x∗ 6∈ X: Since all values q′i are uniformly random from the S’s point of view, so are the
s⊕ q′i.
• x∗ = xi (consequently, q′ = q′i): Since other values q′j∈[n],∀j 6= i, are uniformly random

from S’s point of view, we replace these s⊕ q′j with random. Then s is used only in the
expression s⊕ q′i. Since s is uniform, s⊕ q′i is also uniformly random from the S’s view
even though the adversary knows q′ = q′i.

In summary, the polynomial from the real execution can be replaced with a polynomial P
over random points. T1 and T2 are indistinguishable.

Corrupt Receiver. SimR(x1, ..., xn, out) simulates R’s view, which includes R’s randomness,
input, output and received messages. SimR proceeds as follows.

First, if out = {x1, . . . , xn, x∗} for some x∗, then the simulator knows S’s input x∗ and can
trivially simulate all of S’s actions honestly. This case of simulation is clearly perfect.

Otherwise, SimR chooses a random k′ ∈r {0, 1}κ, calls OPRF simulator SimSOPRF
(⊥, k′), and

appends its output to the view. It simulates a message s∗ = s from S in Step 4. Finally, to simulate
Step 5, SimS runs simulator SimOT on input (1,⊥) and appends the output of SimOT to its output
of the view.

The view generated by SimR in indistinguishable from a real view because of the indistinguisha-
bility of the transcripts of the underlying simulators.

28

Parameters:

• Two parties: sender S and receiver R

• Set X is of size n of elements.

• The field size σ = λ+ log(n).

• Ideal OPRF primitive specified in Figure 4. Let Fk(x) : {0, 1}∗ 7→ {0, 1}σ be the under-
lying OPRF function.

• A collision-resistant hash function h(x) : {0, 1}∗ 7→ {0, 1}σ

Input of S: x∗ ∈ {0, 1}∗
Input of R: X = {x1, x2, . . . , xn} ⊆ {0, 1}∗
Protocol:

1. S acts as OPRF receiver, sends x∗ to OPRF. S receives q∗ = Fk(x
∗) and receiver R

receives k.

2. R randomly picks s ← F(2σ). R interpolates a F(2σ)-polynomial P (x) over points
{(h(xi), s ⊕ qi)}, where qi = Fk(xi),∀i ∈ [n]. Here s ⊕ qi is computed as operation on
σ-bit strings.

3. R sends the coefficients of P to S.

4. S computes s∗ = P (h(x∗))⊕ q∗ and sends it to R.

5. S and R invoke the oblivious transfer functionality:

• R acts as receiver with input 1 if s∗ = s and input 0 otherwise.

• S acts as sender with input (x∗,⊥).

6. If s∗ = s, then R gives output X. Otherwise, it learned x∗ as output from the oblivious
transfer, and outputs X ∪ {x∗}.

Figure 9: 1-vs-n PSU Protocol.

29

Parameters:

• Set sizes n1 and n2, and two parties: sender S and receiver R

• A bit-length `. Let n = max(n1, n2).

• Number of bins β = β(n), hash function H : {0, 1}` → [β], and max bin size m, suitable
for our hashing scheme (Table 2)

• A special dummy item ⊥ ∈ {0, 1}∗

Input of S: X = {x1, x2, . . . , xn1} ⊆ {0, 1}`
Input of R: Y = {y1, y2, . . . , yn2} ⊆ {0, 1}`
Protocol:

1. S and R hash elements of their sets X and Y into β bins under hash function H. Let
BS [i] and BR[i] denote the set of items in the sender’s and receiver’s i-th bin, respectively.

2. S pads each bin BS [i] with (several copies, as needed) the special item ⊥ up to the
maximum bin size m+ 1, and randomly permutes all items in this bin.

3. R pads each bin BR[i] with one special item ⊥ and (several, as needed) different dummy
items to the maximum bin size m+ 1.

4. R initializes set Z = {}.

5. For each bin i ∈ [β], for each item xj ∈ BS [i]:

(a) S and R invoke the F1,m+1
psu -functionality:

• S acts as sender with input xj

• R acts as receiver with input set BR[i]

• R obtains output Zi,j and sets Z = Z ∪ Zi,j .

6. R outputs Z.

Figure 10: Private Set Union Protocol Fn1,n2
psu .

30

	Introduction
	Motivation
	Contribution
	Related Work

	Overview of Our Results & Techniques
	Reverse Private Membership Test (RPMT)
	An Efficiency Optimization
	General Case from RPMT
	Efficiency
	Using Padding to Hide Input Set Sizes

	Preliminaries
	Oblivious Transfer
	Oblivious PRF & Private Equality

	Reverse Private Membership Test (RPMT)
	Private Set Union
	PSU Construction
	Hashing Parameters
	Discussion and Optimization
	Discussion: Difficulties in Applying Other PSI Techniques

	Implementation
	Comparison with Prior Work
	Scalability and Parallelizability

	RPMT Optimization

