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Abstract. In this paper we present a practical protocol for secure ridge
regression. We develop the necessary secure linear algebra tools, using
only basic arithmetic over prime �elds. In particular, we will show how to
solve linear systems of equations and compute matrix inverses e�ciently,
using appropriate secure random self-reductions of these problems. The
distinguishing feature of our approach is that the use of secure �xed-point
arithmetic is avoided entirely, while circumventing the need for rational
reconstruction at any stage as well.
We demonstrate the potential of our protocol in a standard setting
for information-theoretically secure multiparty computation, tolerating a
dishonest minority of passively corrupt parties. Using the MPyC frame-
work, which is based on threshold secret sharing over �nite �elds, we show
how to handle large datasets e�ciently, achieving practically the same
root-mean-square errors as Scikit-learn. Moreover, we do not assume that
any (part) of the datasets is held privately by any of the parties, which
makes our protocol much more versatile than existing solutions.

1 Introduction

Recent years have seen signi�cant advances in privacy-preserving data mining
and machine learning. Secure multiparty computation (MPC) is a promising type
of cryptographic protocol for enhancing the security and privacy properties of
existing data mining and machine learning algorithms. Handling large datasets,
however, still poses practical challenges due to the overhead incurred by MPC.

Secure regression is a problem that received much attention as the resulting
cryptographic protocols have the potential of handling relatively large datasets,
see, e.g., [DHC04,HFN11,NWI+13,GJJ+18,GSB+17]. When applied to linear
and ridge regression, the overhead for MPC is limited because of the highly linear
nature of the computation. The bulk of the computation consists of taking inner
products, which can be done securely at limited cost in many MPC frameworks.

In this paper we develop particularly e�cient m-party protocols for ridge
regression tolerating a dishonest minority of up to t passively corrupt parties,
0 ≤ t ≤ (m − 1)/2. We present a range of practical optimizations, which are
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combined into a very competitive solution for secure ridge regression. We present
experimental results to support our claims using the MPyC framework for secure
multiparty computation.

2 Approach

Ridge regression (or, Tikhonov regularization) is a classic problem in statistics.
Nowadays, the problem is broadly studied and applied in machine learning, and
many algorithms have been proposed covering various types and dimensions
of input data. The popular tool Scikit-learn, for instance, provides six di�erent
solvers for ridge regression, most of which also use di�erent approaches for sparse
and dense data [PVG+11].

The solver used in the present paper directly uses the closed-form solution for
ridge regression, cf. Eqs. (2) and (3). An alternative approach is to approximate
the solution using an iterative solver, viewing ridge regression as an optimization
problem minimizing (1). Well-known iterative solvers are stochastic gradient
descent and its many variations (e.g., mini-batch gradient descent).

However, there are two major impediments for adopting iterative solvers in
an MPC setting. Firstly, all arithmetic involves real-valued numbers, which needs
to be approximated using secure �xed-point arithmetic (as secure �oating-point
arithmetic is simply too expensive). The use of secure �xed-point numbers incurs
a substantial overhead and could lead to numerical stability issues. Secondly, one
needs to control the number of iterations. In an MPC setting, evaluation of a
stopping criterion may form a bottleneck in itself, and �xing the number of itera-
tions beforehand may demand a high number of iterations (to ensure convergence
for all inputs). The advantage of the iterative approach is that it generalizes im-
mediately to related machine learning algorithms such as logistic regression and
support vector machines. Adapting the computation of the gradient su�ces to
solve these problems as well.

As we show in this paper, there are major advantages to solving the ridge
regression problem directly. It allows us to avoid �xed-point arithmetic entirely.
Issues surrounding rounding errors are limited to the input phase, when real-
valued inputs are converted to integral values using appropriate scaling. From
that point on all computations are exact, using integer arithmetic only. The
main issue left is the growth of the numbers, but we will show that even for huge
datasets, our approach is practical and leads to very competitive results in an
MPC setting.

The closed-form solution is in fact a matrix equation, which can in turn be
solved directly or iteratively, as we will discuss in Section 6.

2.1 Roadmap

We present mathematical preliminaries in Section 3, and the basics on linear
regression and ridge regression in Section 4. Next we introduce basic notation
for MPC based on Shamir secret sharing in Section 5. In Section 6 we discuss
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the relevant choices for solving linear systems of equations in an MPC setting,
showing how we avoid the use of rational reconstruction. Section 7 contains the
basic protocols for secure linear algebra, which we use in our protocol for secure
ridge regression in Section 8. Finally, we discuss the performance in Section 9
and conclude in Section 10.

3 Preliminaries

We use common notation for matrices and vectors. For d ≥ 1, the group of d×d
invertible matrices over a �eld F is denoted by GLd(F). The groups of d×d lower
resp. upper triangular invertible matrices are denoted by Ld(F),Ud(F) ⊆ GLd(F),
and we use L1

d(F) to denote the group of lower triangular matrices with an all-
ones diagonal.

A matrix A ∈ GLd(F) is said to have an LU-decomposition if A = LU for
some L ∈ L1

d(F) and U ∈ Ud(F). We use LUd(F) to denote the set of all matrices
in GLd(F) that have an LU-decomposition. Note that the LU-decomposition for
each A ∈ LUd(F) is unique. Similarly, a matrix A ∈ GLd(F) is said to have
a Cholesky decomposition if A = LLT for some L ∈ Ld(F). The Cholesky
decomposition is also unique, and exists over F = R if and only if A is symmetric
and positive de�nite.

For A ∈ GLd(F), we use adjA = det(A)A−1 to denote the adjugate of A. For
our approach, a key property is that if A is integral then so are detA and adjA.
That is, if A is a matrix over Z, then detA ∈ Z and adjA is also a matrix over
Z. Furthermore, Hadamard's inequality states that |detA| ≤

∏d
i=1 ‖ai‖2,

where ai are the rows (or columns) of A. For α = ‖A‖max, Hadamard's inequality
implies |detA| ≤ dd/2αd. If A is symmetric and positive de�nite, detA is positive

and Hadamard's inequality becomes detA ≤
∏d
i=1 ai,i and we get detA ≤ αd.

Finally, Hadamard's inequality yields ‖ adjA‖max ≤ (d−1)(d−1)/2αd−1 as bound
for the adjugate.

Gaussian elimination and variations thereof are used to compute detA,
adjA, and A−1. For example, A−1 is computed by transforming the augmented
matrix (A | I) into (I | A−1) by means of Gauss-Jordan elimination. Similarly,
if A has an LU-decomposition, applying Gaussian elimination to A amounts to
multiplying A from the left by the lower triangular matrix L−1, resulting in
U = L−1A. Hence, the upper triangular matrix U is obtained without applying
any pivoting steps. Putting detA = detU =

∏d
i=1 ui,i yields the determinant.

We will perform Gaussian elimination over �nite �elds of large prime order
p, and we will do so for essentially uniformly random matrices only. As a con-
sequence, there will be no need for pivoting and all computations will be exact.
Inspired by Bareiss [Bar68], we will combine division-free Gaussian elimination
with back substitution such that detA is obtained at almost no extra cost. See
Section 7.3 for further details.
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4 Ridge Regression

Ridge regression is a well-known technique in statistics and machine learning
[FHT01], which can be seen as a re�nement of the ordinary least squares method
used in linear regression. Ridge regression provides the user with a handle, the
regularization parameter λ > 0, that can be used to reduce the variance of
the prediction at the cost of introducing some bias. If λ is set properly, ridge
regression can outperform the ordinary least squares method in terms of the root
mean-square error, de�ned below. In high-dimensional problems, ridge regression
can help to reduce the problem of over�tting.

Given an overdetermined linear system Xw = y, the least squares solution
w minimizes ‖Xw − y‖2. Typically, X is an n × d matrix over R with n � d.
Each row of X represents an input record with d features, and the corresponding
entry of y represents the known output value. The least squares solution w =
(XTX)−1XTy, is used as the optimal weight vector for predicting the output
values for new input records x by evaluating xTw.

Ridge regression �nds a vector w minimizing

‖Xw − y‖22 + λ‖w‖22, (1)

where we note the presence of the regularization parameter in the second term.
The solution w minimizing (1) is now given by:

w =
(
XTX + λI

)−1
XTy. (2)

To compute w, one solves the linear system Aw = b with A = XTX + λI
and b = XTy. Note that the regularization parameter λ not only suppresses
large entries in w, but also ensures that A is positive de�nite, hence invertible:
zT
(
XTX + λI

)
z = ‖Xz‖22 + λ‖z‖22 > 0 for any nonzero z, since λ > 0.

In the context of machine learning, the input records X along with the known
output values y are called the training set, and the least-squares solution w is
called the model. The performance of the model is evaluated in terms of the root-
mean-square error (RMSE) of the model's predictions. The model complexity
(training error) is de�ned as the RMSE for the training set, which is equal to
‖Xw − y‖2/

√
n. The generalizability (test error) of the model is de�ned as the

RMSE for a test set (X ′,y′), which is equal to ‖X ′w − y′‖2/
√
n′. Overall, the

goal is to ensure that both RMSEs are small and approximately equal to each
other.

The performance of a machine learning algorithm critically depends on the
quality of the input data. Extensive data preprocessing may be required in prac-
tice to enhance the quality of the input data. In our experiments we will use
standard datasets from the UCI repository, for which most of the data prepro-
cessing has already been done. The only two tasks that remain before applying
ridge regression to these datasets are (i) feature scaling and (ii) encoding of
categorical features.

For feature scaling, we apply min-max scaling to each of the columns of X
and to vector y as well. Concretely, all features are scaled to the range [−1, 1].
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We prefer this form of data normalization because it requires little processing
and does not leak too much information about X and y.

To encode categorical features (including Boolean features), we basically use
a form of �one-hot encoding� with respect to the range [−1, 1]. For Boolean
features, we encode the values True and False by 1 and −1, respectively. A
categorical feature with s possible values is encoded by s Boolean features, where
the value for exactly one of the Boolean features will be set to 1 and the remaining
s− 1 Boolean features are set to −1.

5 MPC Setting

We consider an MPC setting with m parties tolerating a dishonest minority of
up to t passively corrupt parties, 0 ≤ t ≤ (m − 1)/2. The basic protocols for
secure addition and multiplication over a �nite �eld rely on Shamir secret sharing
[BGW88,GRR98]. For our practical experiments we use the MPyC framework
[Sch18], which succeeds the VIFF framework [Gei10].

Let p > m be a prime. We use [[a]]p or [[a]] to denote a secret-shared value a ∈
Zp, where a is interpreted as a signed integer in the range {−bp/2c, . . . , bp/2c}.
We assume that secure �eld arithmetic (+,−, ∗, / modulo p) is supported e�-
ciently as well as secure generation of random numbers (e.g., [[r]] with r ∈R Zp).

We highlight three auxiliary protocols which are of particular relevance for
our approach.

For secure dot products [[x]]·[[y]] with x,y ∈ Zdp, we recall that the complexity
is the same as for a single secure multiplication, except for local computations.
This extends to secure matrix products [[A]][[B]] with A,B ∈ Zd×dp , for which the
complexity is equivalent to d2 secure multiplications in parallel.

Next, to generate [[r]] and [[1/r]] for a random r ∈R Z∗p, one proceeds as follows:
generate [[r]], [[u]] with r, u ∈R Zp, open [[r]][[u]] to obtain ru, and output [[r]] and
[[1/r]] = [[u]]/(ru). For large p, ru 6= 0 will hold with overwhelming probability;
if ru = 0 simply try again with fresh r and u.

Finally, we will also use secure conversion between secret-shared values in
di�erent prime �elds. In particular, for primes p and q satisfying p > q > 2κ+`,
where κ is a security parameter, we use a secure protocol for converting [[a]]q into
[[a]]p, −2`−1 ≤ a < 2`−1. Roughly, such a protocol proceeds by generating [[r]]q
and [[r]]p for a random r ∈ [0, 2`+κ). Then the value of a+ r is opened, which is
statistically indistinguishable from random for κ su�ciently large, and one sets
[[a]]p = a+ r − [[r]]p.

6 Solving Systems of Linear Equations

As outlined in Section 4, we divide ridge regression into two main stages. In the
�rst stage we compute A = XTX+λI and b = XTy, and in the second stage we
solve Aw = b to �nd w. For secure ridge regression, the most interesting and
challenging part will be the second stage, and in this section we motivate our
approach for solving Aw = b.
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In numerical analysis one distinguishes two major types of solution methods
for systems of linear equations. Direct methods, such as Gaussian elimination,
run in a �nite number of steps and compute an exact solution in the absence
of rounding errors. Iterative methods, such as conjugate gradient, yield approx-
imate solutions within a limited amount of time, even for very large matrices.
In contrast to some other recent work (e.g., [GSB+17]), we will choose a direct
method to solve Aw = b in our protocols for secure ridge regression. Below we
explain our reasons for doing so.

An important observation is that we can actually use exact computation for
secure ridge regression. Instead of relying on �xed-point arithmetic�or even
worse �oating-point arithmetic�in an MPC setting, we will only use exact in-
teger arithmetic in our protocols. This way we take advantage of the fact that
secure integer arithmetic is e�cient even for large values when using Shamir
secret sharing. Moreover, we can borrow techniques from the related setting of
secure linear algebra over �nite �elds [CD01].

We will make sure that the input data (contained in X and y) are scaled to
integer values, basically by multiplying each input value with 2α and rounding
to the nearest integer for a �xed value of α. The value of α must be su�ciently
large to ensure that the �nal results will be accurate. We will refer to α as the
accuracy parameter.

Since A is invertible, solving Aw = b is equivalent to computing w = A−1b.
Therefore, even if A contains integer values only, the solution w will in general
contain rational values. As A−1 = (detA)−1 adjA, however, it su�ces to com-
pute w′ = (adjA)b and z = detA, from which w can be recovered as w = w′/z.
Here, both w′ and z are integral. We compute w′ and z by �rst reducing the
augmented matrix (A | b) to echelon form using Gaussian elimination and then
applying back substitution to recover w.

To perform secureGaussian elimination on (A | b) there are several options. A
�rst idea is to use Gaussian elimination (row reduction) directly, which amounts
to repeatedly selecting a pivot and updating the matrix accordingly. However,
oblivious row reduction, hiding the position of the pivot and so on, is compu-
tationally very costly: searching for a nonzero element in the pivot column is
already nontrivial in a secure setting, and obliviously swapping entire rows to
move the pivot to the diagonal is even much more costly.

A common technique in numerical analysis to avoid pivot selection is the use
of preconditioning. Roughly, the idea is to solve the equivalent system RAw = Rb
for a random matrix R, instead of the original system Aw = b. Matrix R is
assumed to invertible, which is true with overwhelming probability in many
settings. When solving linear systems over R, such an approach is numerically
unstable and leads to poor results. When solving linear systems over a �nite �eld,
however, numerical instability is of no concern. We will follow this approach.

The upshot of computing (adjA)b and detA separately is that we will also
avoid the use of rational reconstruction. In the next section we will show why
this lets us essentially halve the size of the prime modulus for the �nite �eld
arithmetic compared to other papers. For instance, [GJJ+18] relies on rational
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Protocol 1 Det([[A]]) A ∈ GLd(Zp)
1: Generate [[R]], [[detR−1]] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA← [[R]][[A]].
3: Compute [[detA]] = det(RA)[[detR−1]].
4: Return [[detA]].

reconstruction and uses a modulus which should be large enough to �hold� the
product of (adjA)b and detA.

7 Secure Linear Algebra

We present protocols for computing determinants, matrix inverses, and solutions
to linear systems. Given an invertible matrix A ∈ Zd×d, we compute the results
over Zp assuming p is su�ciently large. E.g., for −p/2 < detA < p/2, detA ∈ Z∗p
and A is properly embedded in Zd×dp . Assuming further bounds on the entries
of A and b, we will show how to compute A−1 and A−1b over Zp as well.

7.1 Secure Determinant

Cramer and Damgård presented a protocol for secure computation of detA over
any �nite �eld [CD01], which is reminiscent of Bar-Ilan and Beaver's protocol for
secure multiplicative inverses [BIB89]. The idea is to securely generate a random
invertible matrix [[R]] together with its determinant [[detR]], open the random-
ized matrix RA, and �nally compute [[detA]]. We follow the same approach in
Protocol 1, except that we improve upon the way random matrix R is generated
in several ways.

Ideally, R is generated as a random matrix in GLd(Zp). To securely com-
pute detR as well, matrix R is limited to the slightly smaller range LUd(Zp)
of matrices that have an LU-decomposition. The following lemma shows that
uniformly random matrices in LUd(Zp) are statistically indistinguishable from
uniformly random matrices inGLd(Zp). Therefore, opening RA reveals negligible
information on A only.

Lemma 1. ∆(R;G) ≤ d/p, for R ∈R LUd(Zp) and G ∈R GLd(Zp).

Proof. Since LUd(Zp) ⊆ GLd(Zp) and R and G are both uniform we have

∆(R;G) = 1
2

∑
x∈GLd(Zp)

|Pr[R = x]− Pr[G = x]| = 1− |LUd(Zp)|
|GLd(Zp)|

.

Since |LUd(Zp)| = pd
2−d(p− 1)d and |GLd(Zp)| ≤ pd

2

, we have

∆(R;G) ≤ 1−
(
p− 1

p

)d
= 1−

(
1− 1

p

)d
≤ d

p
,

using Bernoulli's inequality in the last step.
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Protocol 2 RndMatDet(d)

1: Generate [[L]] with L ∈R L1
d(Zp).

2: Generate [[U ]], [[detU−1]] with U ∈R Ud(Zp).
3: Compute [[R]] = [[L]][[U ]].
4: Set [[detR−1]] = [[detU−1]].
5: Return [[R]], [[detR−1]].

To sample a matrix R securely from LUd(Zp), we use Protocol 2. The protocol
also outputs the determinant of R, or rather its inverse. Random matrices in
L1
d(Zp) and Ud(Zp) can be generated easily, provided we can securely generate

random elements of Zp. To ensure that U is invertible, we generate ui,i ∈R Zp
for i = 1, . . . , d, and then apply secure inversion to detU =

∏d
i=1 ui,i. With

negligible probability detU = 0, in which case secure inversion will fail and we
have to try again. With overwhelming probability, however, detU 6= 0 and secure
inversion will succeed. In total, Protocol 2 roughly uses d2 random elements from
Zp.

Our protocol for generating random matrices improves upon Cramer and
Damgård's protocol Π0 [CD01, p. 126] in several respects. The main di�erence
is that protocol Π0 depends on a redundant type of LU-decomposition in which
the diagonals of both L and U consist of elements in Z∗p. By �xing the diago-
nal of L to all ones, the LU-decomposition used in our protocol is unique. As
an immediate consequence, our proof for statistical indistinguishability is much
simpler (cf. Lemma 1). Moreover, the complexity of the protocol is reduced as
we do not need to generate the diagonal of L at random, and we do not need to
compute detL either. Finally, as a further optimization, we only use one secure
inversion throughout the entire protocol (to perform the secure zero-test and
inversion for detU all at the same time).

Apart from generating a random matrix R and its inverse determinant, Pro-
tocol 1 mainly performs a secure matrix multiplication. The computation of
det(RA) is done locally, so we might use any algorithm for computing determi-
nants to implement this step. However, Lemma 1 helps us save some work for the
local computation as well. The lemma basically implies that RA is statistically
close to a uniformly random matrix in LUd(Zp), and therefore we can perform
Gaussian elimination to compute det(RA) without any pivoting, as shown below.

7.2 Secure Matrix Inversion

We next present Protocol 3 for secure matrix inversion, which is of independent
interest. Since A−1 will in general have rational entries for a matrix A ∈ Zd×d,
as discussed above, we will use the pair (adjA,detA) as representation of A−1.
This way we avoid any rational arithmetic, and, moreover, we can use a similar
embedding for A in Zd×dp as for the determinant, using the bound for ‖ adjA‖max

from Section 3 to choose p su�ciently large.
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Protocol 3 AdjDet([[A]]) A ∈ GLd(Zp)
1: Generate [[R]], [[detR−1]] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA← [[R]][[A]].
3: Reduce (RA | [[R]]) to obtain [[A−1]] by Gauss-Jordan elimination over Zp.
4: Compute [[detA]] = det(RA)[[detR−1]].
5: Compute [[adjA]] = [[detA]][[A−1]].
6: Return [[adjA]], [[detA]].

Protocol 4 LinSol([[A]], [[b]]) A ∈ GLd(Zp), b ∈ Zdp
1: Generate [[R]], [[detR−1]] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA← [[R]][[A]].
3: Solve (RA | [[R]][[b]]) to obtain [[A−1b]] by Gaussian elimination over Zp.
4: Compute [[detA]] = det(RA)[[detR]]−1.
5: Compute [[(adjA)b]] = [[detA]][[A−1b]].
6: Return [[(adjA)b]], [[detA]].

If we stick to the common approach of computing A−1 = (detA)−1 adjA over
Zp, such that adjA and detA can be recovered using rational reconstruction over
Zp, the required size for p would be roughly twice as large.

7.3 Secure Linear Solver

Finally, we present Protocol 4 for securely solving a linear system, in which we
avoid performing a full matrix inversion. In step 3 we apply Gaussian elimination
to the augmented matrix (RA | [[R]][[b]]). As explained in Section 6, this can be
done without pivoting. Matrix RA is �rst transformed into upper-triangular
form, and then we apply back substitution to compute [[A−1b]]. For Gaussian
elimination on (RA | [[R]][[b]]), we use the division-free variant (see, e.g., [Bar68]).
Combined with back substitution, we achieve that det(RA) is obtained at almost
no additional cost. In total we need 2

3d
3 + O(d2) multiplications, 1

3d
3 + O(d2)

modular reductions, and exactly n inversions modulo p for step 3.

8 Secure Ridge Regression

In this section we present our protocol for ridge regression, see Protocol 5. All
entries of X and y are assumed to be in [−2α, 2α]∩Z for an appropriate value of
the accuracy parameter α (i.e., normalized to [−1, 1] as explained in Section 4,
scaled by a factor of 2α, and rounded to the nearest integer). The regularization
parameter λ is scaled accordingly. We note that parameter α is between 5 and
10 in our experiments, cf. Table 2.

The two main stages of ridge regression are performed over two di�erent
prime �elds. In the �rst stage,XTX+λI andXTy are computed over a relatively
small �eld Zq, while w = A−1b is computed over a substantially larger �eld Zp
in the second stage. See Table 2 for some typical sizes of p and q. Since n is
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Protocol 5 Ridge([[X]]q, [[y]]q, λ) X ∈ Zn×dq ,y ∈ Znq , λ ∈ N
1: Compute [[A]]q = [[XT]]q[[X]]q + λI. . A = XTX + λI
2: Compute [[b]]q = [[XT]]q[[y]]q. . b = XTy
3: Convert [[(A | b)]]q to [[(A | b)]]p.
4: Compute ([[(adjA)b]]p, [[detA]]p) = LinSol([[(A | b)]]p).
5: Set [[(detA)w]]p = [[(adjA)b]]p. . w = A−1b
6: Return [[(detA)w]]p, [[detA]]p.

typically very large as well, cf. Table 1, secure computation of XTX over Zp
would put excessive demands on time and space utilization.

The conversion in step 3 of the protocol is done as described at the end of
Section 5. The sizes for primes p and q are determined in the following lemma.

Lemma 2. Let β = ‖(X | y)‖max. Correctness of Protocol 5 follows if

q

2
> nβ2 + λ+ 2κ and

p

2
> d(d− 1)

d−1
2 (nβ2 + λ)d.

Proof. For prime q we need that q/2 > ‖(A | b)‖max. Each entry of (A | b) is a
dot product of two length-n vectors with entries bounded in absolute value by
β, plus λ for the diagonal of A. Therefore, ‖(A | b)‖max ≤ nβ2 + λ. To allow for
secure conversion from Zq to Zp, we require q/2 > nβ2 + λ+ 2κ.

For prime p we need that p/2 > detA and p/2 > ‖(adjA)b‖∞. We use the
bounds for detA and adjA obtained from Hadamard's inequality in Section 3
as follows. For the determinant of A, we have the bound detA ≤ (nβ2 + λ)d

since A is symmetric positive de�nite. For the adjugate of A, we have the bound

‖(adjA)‖max ≤ (d−1) d−1
2 (nβ2+λ)d−1. So, together with the bound ‖b‖∞ ≤ nβ2,

we take p/2 > d(d− 1)
d−1
2 (nβ2 + λ)d as overall bound.

9 Performance Evaluation

We have performed several experiments using the UCI datasets [DG19] shown
in Table 1. Each dataset is randomly split into a 70% training set and a 30%
test set (except for dataset Year prediction MSD, for which the �rst 463715
rows form the training set and the remaining 51630 rows are used for testing).
The RMSEs reported for training and testing are obtained using the Cholesky
solver provided for ridge regression in Scikit-learn [PVG+11], setting λ = 1. Note
that the Gas Sensor Array datasets have two targets, for which the RMSEs are
reported separately. To handle multiple targets, we have generalized Protocol 5
in the obvious way, replacing vector y by a matrix Y with one column per target.

We have run our protocol for secure ridge regression in a 3-party setting using
the values for accuracy parameter α shown in Table 2. For each (normalized)
dataset we have tried increasingly larger values for α until the errors became
insigni�cant (below 0.1% relative to the RMSEs of Table 1). We have refrained
from tuning the regularization parameter λ, and simply set λ = 22α (which
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id dataset n d target(s) train RMSE test RMSE

1 Student Performance 395 30 G3 0.38 0.46

2 Wine Quality red 1,599 11 quality 0.16 0.16

3 Wine Quality white 4,898 11 quality 0.19 0.19

4 Year Prediction MSD 515,345 90 year 0.21 0.21

5 Gas Sensor Array methane 4,178,504 16 ethylene methane 0.29 0.34 0.29 0.34

6 Gas Sensor Array CO 4,208,261 16 ethylene CO 0.34 0.34 0.34 0.34

7 HIGGS 11,000,000 7 class 0.97 0.97

Table 1. UCI datasets. RMSEs for ridge regression with Scikit-learn.

This work [NWI+13] [GJJ+18] [GSB+17]

id α |q| |p| (A, b) A−1b total HP HP VP VP 32-bit VP 64-bit

1 6 54 1316 0.13 1.48 1.61 - 39.76 328.06 5 (-0.0%) 35 (-0.0%)

2 7 58 314 0.02 0.08 0.10 39 - - - -

3 8 61 357 0.04 0.12 0.16 45 4.09 - 0 (4.2%) 4 (-0.0%)

4 6 64 3105 237 18.3 255 - - - 230 (0.0%) 808 (0.0%)

5 8 71 675 62.8 0.05 62.9 - - - - -

6 9 73 709 63.0 0.05 63.1 - - - 42 (5.2%) 69 (0.0%)

7 5 66 277 34.9 0.12 35.0 - - - - -

Table 2. Results of this work compared to the literature. All times are in seconds.
HP/VP stand for horizontal/vertical partitioning. 32-bit and 64-bit refer to bit lengths
used for secure �xed-point arithmetic. Accuracy α yields relative errors below 0.1%.
The relative errors reported by [GSB+17] are also given.

corresponds to λ = 1 after scaling). The bit lengths |p| and |q| are determined
from the bounds in Lemma 2, using β = 2α and κ = 30. The total running time
for Protocol 5 comprises two parts: (A, b)-time represents the time for computing
[[A]] and [[b]] (steps 1�2), while A−1b-time covers the time for Protocol 4. The
time for the conversion in step 3 is negligible.

Our implementation is written in Python using the MPyC package [Sch18,
ridgeregression.py]. The experiments were done using three PCs, connected via
a Netgear GS208-100PES Ethernet switch. Each PC was running on Windows
8.1 Enterprise (64-bit) with an Intel Core i7-4770 CPU at 3.40GHz and 16GB
of RAM. Table 2 compares our results to three other solutions for secure ridge
regression from the literature. The times reported are purely indicative, and give
a basic idea of the performance of the various solutions.

We note that the previous works shown in Table 2 exploit the locality of the
input data, assuming that the data is either partitioned horizontally or verti-
cally. For example, Nikolaenko et al. [NWI+13] assume the dataset is partitioned
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n d This work [GSB+17]

50,000 20 1s 2s

50,000 100 24s 32s

500,000 20 11s 18s

500,000 100 3m29s 6m1s

1,000,000 100 6m57s 12m42s

1,000,000 200 28m30s 49m56s

Table 3. Comparison of (A, b)-times for synthetic data.

horizontally, allowing them to compute A and b using additive homomorphic
encryption only. In our work, we do not make any speci�c assumptions on the
distribution of the input data; any data provider simply sends secret shares of its
data to the respective parties performing the secure computation (using log2 q
bits per share). Thus, in our experiments, each party holds shares of the entire
dataset.

Also, these previous works [NWI+13,GSB+17,GJJ+18] rely on a so-called
2-server approach requiring two non-colluding parties (e.g., a �crypto service
provider� and an �evaluator�). For our solution, the number of colluding parties
tolerated is scalable, assuming an honest majority.

The competitiveness of our solution is also con�rmed by Table 3, showing our
results for a range of synthetic datasets compared to the most favorable results
reported by Gascón et al. [GSB+17] (for their 3-party setting).

10 Concluding Remarks

Assuming that matrix X is of full column rank, Protocol 5 can also be used
for secure linear regression by setting λ = 0. If matrix X is distributed among
several data providers, however, ensuring that X is of full rank need not be
trivial. For instance, in a vertical data partitioning it may not that easy to
detect a redundant feature (used by multiple data providers). Setting λ > 0
removes the need to remove such redundant columns.

Our results also extend to the underdetermined case n < d. In this case, the
closed form solution given by Eq. (2) can be rewritten as

w = XT
(
XXT + λI

)−1
y, (3)

using that (XTX + λI)XT = XTXXT + λXT = XT(XXT + λI).
Modifying our protocol for ridge regression accordingly results in Protocol 6.

In step 4 of the protocol the secret-shared matrix X converted to the large
prime �eld Zp is used to compute the output vector w. Since typically d� n, a
relatively small number of conversions n per entry of the length-d output vector
w are performed. Setting λ = 0 for this protocol yields a solution for secure
linear regression in the case that X is of full row rank.
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Protocol 6 Ridge([[X]]q, [[y]]q, λ) X ∈ Zn×dq ,y ∈ Znq , λ ∈ N
1: Compute [[A]]q = [[X]]q[[X

T]]q + λI. . A = XXT + λI
2: Convert [[(A | X | y)]]q to [[(A | X | y)]]p.
3: Compute ([[(adjA)y]]p, [[detA]]p) = LinSol([[(A | y)]]p).
4: Compute [[(detA)w]]p = [[XT]]p[[(adjA)y]]p. . w = XTA−1y
5: Return [[(detA)w]]p, [[detA]]p.

The approach presented in this paper is generalized in follow-up work by
Bouman and de Vreede [BV19], in which they show how to compute the Moore-
Penrose pseudoinverse securely. Pseudoinverses are much harder to compute se-
curely as one needs to hide all information about the rank of the input matrix.

Details about the handling of the input and output for our secure ridge
protocols are beyond the scope of this paper. For instance, one needs to decide
how much information the parties are willing to leak when normalizing their joint
datasets. Also, the parties may jointly need to determine a suitable value for
the regularization parameter λ (hyperparameter tuning). Similarly, the output
[[(detA)w]]p, [[detA]]p of our secure ridge protocols can be handled in lots of ways.
These two values may simply be revealed, accepting leakage of the exact value of
the determinant. Alternatively, these values may be converted to shares over Zp′ ,
where p′ is of double length compared to p, followed by rational reconstruction
modulo p′ to recover w in the clear.
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