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ABSTRACT
In this paper, we analyze the implementation level fault vulnerabil-

ities of deterministic lattice-based signature schemes. In particular,

we extend the practicality of skip-addition fault attacks through

exploitation of determinism in certain variants of Dilithium (De-

terministic variant) and qTESLA signature scheme (originally sub-

mitted deterministic version), which are two leading candidates

for the NIST standardization of post-quantum cryptography. We

show that single targeted faults injected in the signing procedure

allow to recover an important portion of the secret key. Though

faults injected in the signing procedure do not recover all the secret

key elements, we propose a novel forgery algorithm that allows

the attacker to sign any given message with only the extracted por-

tion of the secret key. We perform experimental validation of our

attack using Electromagnetic fault injection on reference implemen-

tations taken from the pqm4 library, a benchmarking and testing

framework for post quantum cryptographic implementations for

the ARM Cortex-M4 microcontroller. We also show that our at-

tacks break two well known countermeasures known to protect

against skip-addition fault attacks. We further propose an efficient

mitigation strategy against our attack that exponentially increases

the attacker’s complexity at almost zero increase in computational

complexity.

CCS CONCEPTS
• Security and privacy → Digital signatures; Hardware at-
tacks and countermeasures; Side-channel analysis and coun-
termeasures; Embedded systems security.

KEYWORDS
Deterministic Lattice Signatures, pqm4, Fault Attack, Lattice-based

Cryptography

1 INTRODUCTION
Recently, NIST has called for proposals for standardization of post-

quantum cryptographic schemes for public-key encryption, digital

signatures, and key establishment protocols [22]. This initiative

is partly driven by the onset of the era of practical and scalable
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quantum computers [4], which has motivated the community to

develop cryptographic schemes that are immune to cryptanalytic

efforts using quantum algorithms. Amongst the initial candidates

from different types of post-quantum cryptography, lattice-based

cryptography has emerged as the largest category with 28 of 80

submissions. NIST [24] state that “schemes that can be made resis-

tant to side-channel attacks at minimal cost are more desirable than

those whose performance is severely hampered by any attempt to

resist side-channel attacks”. Thus, it has become essential to the

standardization process to analyze the implementation security of

these proposals against active and passive side-channel attacks.

Over the years, significant research has been done with respect

to development of lattice-based cryptographic algorithms and in

particular, initial proposals for lattice-based signature schemes such

as GLP [16], BLISS [12] and the Bai-Galbraith (BG) [3] signature

schemes attracted a lot of attention from the cryptographic com-

munity, owing to its security and efficiency guarantees. One of the

noticeable characteristics of the aforementioned schemes is the use

of ephemeral nonces during signature generation, similar to ellip-

tic curve signature schemes such as DSA and ECDSA. While the

initial lattice-based signature schemes [12, 16] utilized randomly

generated nonces, some variants of the current lattice-based sig-

nature schemes such as Dilithium [19] and qTESLA [7] which are

candidates in the NIST standardization process used deterministic

procedures for nonce generation, thus making the signature scheme

in itself completely deterministic. Determinism ensures that the

signing procedure always outputs a unique signature for a given

message. The same transition from non-deterministic to determin-

istic signature schemes was also previously witnessed in the case of

elliptic curve signatures with the onset of deterministic ECDSA [27]

and EdDSA [6] signature schemes. But, the determinism property

came under heavy scrutiny and subsequently became a target and

an enabler for a number of fault and side channel attacks [2, 5].

This naturally leads to critical questions about the introduction

of similar implementation-level vulnerabilities due to determinism

in lattice-based signature schemes. As the first and only work in ex-

ploiting determinism through implementation attacks, Bruinderink

and Pessl [11] proposed the first differential style fault attacks on

the Dilithium and qTESLA signature schemes. Another pertinent

question to be answered is whether the introduced determinism
can be exploited to increase the practicality or strengthen existing



theoretical implementation attacks against lattice-based signature

schemes.

As a first step towards answering this question, we extend the

applicability and practicality of skip-addition fault attacks to deter-

ministic variants of lattice-based signature schemes, Dilithium and

qTESLA
1
. Theoretical skip-addition fault attack was first reported

by Bindel et al. [8] over three non-deterministic lattice-based signa-

ture schemes GLP, BLISS and Ring-TESLA, but the attack requires

a very high number of precisely targeted faults (≈ 1000 for typi-

cal parameters) to be injected within a single run of the signing

procedure. Their attack in practice will also be plagued by more

pressing practical concerns, such as attacker’s synchronization or

fault detectability, which have been overlooked. These aspects thus

make their attack highly impractical in practice. On the contrary,

our proposed attack works with a single-fault injection model, that

is only one fault injected in any given run of the algorithm. This

single fault model is relaxed both for the equipment and underly-

ing analysis for key recovery. Our attack also works against two

well known implementation level countermeasures used to protect

against skip-addition fault attacks. Thus, the efficacy of our attack

has been further enhanced to practical limits through exploitation

of determinism in lattice-based signature schemes.

1.1 Contribution
The contribution of this work is as follows:

• We extend the applicability and practicality of skip-addition
fault attacks to deterministic lattice-based signature schemes.

We show that the deterministic nature of Dilithium and

qTESLA signature schemes can be exploited to extract the

primary component of the secret key with only single tar-

geted faults injected in the signing procedure.

• We further propose an alternate signature forgery algorithm

for Dilithium through which one can generate valid signa-

tures with only the extracted primary component of the

secret key from the fault attack. Our forgery algorithm in-

volves lesser computations compared to the original signing

procedure albeit accompanied with a certain non-negligible

failure probability.

• The fault vulnerabilities are validated using electromagnetic

fault injection on the ARM Cortex-M4 microcontroller [17].

We performed practical fault attacks on the reference im-

plementations taken from the pqm4 library, a testing and

benchmarking framework for post quantum cryptographic

schemes for the ARM Cortex-M4 microcontroller.

• Given that our attack requires to inject precisely targeted

faults, we propose a systematic approach towards identifying

our target operations to fault through a two-order pattern

matching technique over the Electromagnetic Emanation

traces collected through the EM side channel.

1
In light of recent attacks against deterministic signature schemes [2, 11], Dilithium

recently updated its specifications as part of the second round of the standardization

process to allow for a probablistic variant based on the designer’s choice, while qTESLA

was modified into a probabilistic scheme [23]. While our attack still works against

the deterministic variant of Dilithium, it is rendered ineffective on the probabilistic

qTESLA signature scheme. We henceforth refer to the original first round submissions

of Dilithium [19] and qTESLA [7] for the remainder of this paper and discuss the

implications of the aforementioned updates on our attack in Sec.7.

• Wealso demonstrate practical attacks against twowell known

implementation level countermeasures proposed to protect

against skip-addition fault attacks [8, 9], again made possible

owing to the deterministic nature of Dilithium.

• Finally, we propose a zero-cost mitigation technique against

our skip-addition fault attack which exponentially increases

the attacker’s complexity through simple re-ordering of op-

erations within the signing procedure.

2 PRELIMINARIES

Notation: Let q ∈ N be a prime. Elements in ring Z or Zq are

denoted by regular font letters viz. a,b ∈ Z or Zq . For an integer

r and an even positive integer α , we define centered reduction

modulo q denoted as r (mod
± α ), to be the unique integer r0

such that, r ≡ r0 (mod α ) and −α
2
< r0 ≤

α
2
. The usual modulo

reduction is denoted by r (mod q). For a set X , we write x
$

← X to

denote that x is chosen uniformly at random from X . We denote

the polynomial ring Zq[X ]/⟨Xn + 1⟩ as Rq . Polynomials in ring

Rq are also represented as equivalent vectors of length n such

that a ≡ (a0, a1, . . . , an−1) for ai ∈ Zq . For an element a ∈ Rq ,
we define ∥a∥∞ = max

0≤i≤n−1

∥ai ∥∞, where ∥ai ∥∞ = |ai (mod
± q) |.

While matrices and vectors with elements in Zq are denoted by

bold upper case letters (A ∈ Znq ), polynomials in Rq or matrices

and vectors with elements in Rq are denoted using bold lower case

letters (a ∈ Rq , b ∈ Rℓq ). Multiplication of two polynomials a, b ∈ Rq
is denoted as a·b or ab ∈ Rq . Due to the special structure (cyclotomic

nature) of the factor polynomial used in Rq , multiplication can also

be alternatively viewed as a matrix-vector multiplication such that

a · b = a · B = b · A wherein the columns of the matrices A,B ∈
Zn×nq are anti-cyclic rotations of a, b ∈ Rq respectively. Point-wise

multiplication (scalar product) is represented as a ∗ b ∈ Rq . For a
given η ∈ N, define Sη = {a ∈ Rq | ∥a∥∞ ≤ η}. We use â to denote

the faulty value of a given a ∈ Rq .

Lattice-based Cryptography:Most of the efficient lattice-based

cryptographic schemes derive their hardness from two average-

case hard problems, known as the Ring-Learning With Errors prob-

lem (RLWE) [20] and the Ring-Short Integer Solutions problem

(RSIS) [21]. Both the problems reduce to worst-case hard problems

over structured ideal lattices. Given a public key (a, t) ∈ (Rq ,Rq ),
an RLWE attacker is asked to find two small polynomials s1, s2 ∈ Rq
with s1, s2 ∈ Sη such that t = a · s1 + s2. Givenm uniformly random

elements ai ∈ Rq , an MSIS attacker is asked to find out a non-zero

vector z with a small norm z ∈ Smη such that

∑m
i ai · zi = 0 ∈ Rq .

The more generalized versions of these problems known as

Module-LWE (MLWE) and Module-SIS (MSIS) respectively deal

with computations over the space Rk×ℓq = Zk×ℓq [X ]/(Xn + 1) for

k, l > 1 (as opposed to Rq for their ring variants) and also provide

better security guarantees compared to their corresponding ring

variants. Any change in the security of a scheme (based on either

MLWE or MSIS) only requires changes in the value of the module

parameters (k, ℓ) while keeping the underlying structure of the

ring fixed, thus warranting very minimal changes from a designer’s

perspective.
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2.1 Dilithium
Dilithium is a deterministic lattice-based signature scheme whose

security is based on MLWE and MSIS problems. In particular, secu-

rity against key-recovery attack under the classical random oracle

model is based on the hardness assumption of the MLWE problem;

and the security against existential signature forgery is based on the

MSIS hardness assumption. The scheme’s security against strong

signature forgery attack, under the quantum random oracle model,

is also discussed by the authors [19].

2.1.1 Rounding Algorithms. This section starts off by briefly de-

scribing the various rounding procedures used in Dilithium. The

purpose of them is to provide better compression of Dilithium’s

public-key and signatures. For non-negative integers r ,α , the proce-
dure r (mod

± α ) outputs a unique integer r0 in −α/2 < r0 ≤ α/2
such that r ≡ r0 (mod α ). The procedure Decompose : Dq (r ,α )
decomposes r into a pair of integers (r1, r0) and the procedures

HighBits : HBq (r ,α ) and LowBits : LBq (r ,α ) extract r1 and r0

fromDq (r ,α ) respectively. The procedureMakeHint : MHq (u, r ,α )
produces a bit h ∈ {0, 1} and subsequently the procedure UseHint :

UHq (h, r ,α ) shows how to use the bit h as a hint to deriveHBq (u+
r ,α ). The relation between the procedures MHq (u, r ,α ) and

UHq (h, r ,α ) is stated in the following lemma.

Lemma 2.1 ([19]). For r , z ∈ Zq with | |z | |∞ ≤ α/2, we have

UHq
(
MHq (z, r ,α ), r ,α

)
= HBq (r + z,α ) (1)

The exact details of these algorithms are provided in Algorithm

4 in Appendix A. All these algorithms naturally extend to higher

abstractions like matrices, vectors, rings and modules by simply

performing the same computations over their individual elements.

2.1.2 Description of Dilithium. In the following, we recall the de-

tails of the Dilithium signature scheme [19]. The underlying ap-

proach of the scheme is based on the “Fiat-Shamir with Aborts”

framework [18] while the scheme in itself is an improved vari-

ant of the lattice-based signature scheme proposed by Bai and

Galbraith[3]. The scheme operates over the base ring Rq with

n,q = (256, 8380417) while offering flexibility with the module pa-

rameters (k, ℓ) allowing to operate over varying dimensions (k × ℓ)
for different security levels. Since all/most of our analysis deals with

the signing procedure of Dilithium, we present the details of the

signing procedure in Algorithm 1, while we present its respective

key-generation and verification procedures in Algorithm 5 in the

Appendix A. For more information on the scheme, please refer [19].

Key Generation: The key generation algorithm, KeyGen(), gen-
erates the public constant a ∈ Rk×ℓq by expanding a given seed

ρ←{0, 1}256
such that a = ExpandA(ρ). Next, the secret module

s1 ∈ S
ℓ
η and the error module s2 ∈ S

k
η are sampled after which the

MLWE instance t ∈ Rkq is computed as t = a · s1 + s2. The LWE

instance is not directly output as the public key but is decomposed

into t0, t1 such that t1 = HBq (t, 2d ) and t0 = LBq (t, 2d ). Subse-
quently, t1 is published as part of the public key while t0 is kept

secret. Subsequently, the published public key is (ρ, t1) while the
secret key sk is (ρ,K , tr , s1, s2, t0).

Signing: The signing procedure is iterative in nature with a number

of conditional checks and it exits with a valid signature only when

all the conditional checks are successfully passed. This is done to

primarily ensure that the output signatures do not leak the distri-

bution of the secret key. Moreover, these selective rejections in the

signing procedure are also performed to ensure 100% correctness

of the signature scheme.

Similar to the DSA and ECDSA signature schemes, the most

important component of the signing procedure in case of Dilithium

(apart from the secret key) is the ephemeral nonce y ∈ Rℓq . Knowl-
edge of a single value of y or reuse of y for different messages leads

to a trivial break of the signature scheme. Moreover, the method

of generation of the ephemeral nonce y also determines the deter-

ministic nature of the signature scheme. In Dilithium, y ∈ Sℓη is

deterministically generated using the ExpandMask function which

takes as input, the message µ to be signed, the secret key component

K and the iteration count (Line 6 of Sign in Algorithm 1). Further,

the product w = a · y ∈ Rkq is computed and decomposed into w1

andw0 such thatw = w1 ·2γ2+w0. The signing procedure requires

the verifier to recover the value ofw1 for successful signature verifi-

cation. To facilitate the same, a hint vector h ∈ Rkq with coefficients

in {0, 1} is also generated and output as part of the signature. Fur-

thermore, a challenge polynomial c (sparse polynomial with only

60 non-zero coefficients in either ±1) is also generated by hashing

the ephemeral nonce along with the public key information and

the message. The product cs1 is computed which is subsequently

masked with the ephemeral nonce y through addition and the re-

sult is output as the primary signature component z ∈ Rℓq (Line

10 of Sign in Figure 1). The details of the verification procedure

of Dilithium are provided for completeness in Algorithm 5. It is

important to note that all attacks presented on the deterministic

variant of Dilithium can also be easily adopted to the deterministic

variant of qTESLA
1
. A detailed description of the qTESLA signa-

ture scheme along with the note on applicability of our attacks are

deferred to the Appendix B.

3 MOTIVATION
In this section, we motivate our work by reviewing existing fault at-

tacks on lattice-based signature schemes based on the “Fiat-Shamir

with Aborts” framework. We observe that the generation of the

primary signature component z has been the target of most of the

reported attacks. Generation of z is done as follows:

z = s1 · c + y (2)

We will henceforth refer to this step as zgen. We also refer to s1

alternatively as the primary secret of Dilithium aswewill show later

in this work that knowledge of s1 is enough to perform an existential

forgery attack on Dilithium. While both z and c are revealed as part
of the signature, y is the ephemeral masking polynomial used to

mask the product s1 · c. Injection of faults in any of the operations

within zgen helps the attacker derive a direct relation of the faulted

signature ẑ with the primary secret s1, thus naturally becoming a

target of most of the previously reported attacks [8, 11, 13].
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Algorithm 1: Dilithium Signature scheme

1 Procedure Sign(sk,M)

2 A ∈ Rk×ℓq := ExpandA(ρ)
3 µ = CRH(tr∥M )

4 κ = 0, (z, h) = ⊥
5 while (z, h) = ⊥ do
6 y ∈ Sℓγ1−1

:= ExpandMask(K ∥µ∥κ)

7 w = A · y
8 w1 = HBq (w, 2γ2)

9 c ∈ B60 = H (µ∥w1)

10 z = y + c · s1

11 (r1, r0) := Dq (w − c · s2, 2γ2)

12 if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β or r1 , w1 then
13 (z, h) = ⊥
14 else
15 h = MHq (−c · t0,w − c · s2 + c · t0, 2γ2)

16 if ∥c · t0∥∞ ≥ γ2 or wt(h) > ω then
17 (z, h) = ⊥
18 end
19 κ = κ + 1

20 end
21 return σ = (z, h, c)

3.1 Note on Skipping fault attacks
Bindel et al. [8] proposed skipping fault attacks targeting the addi-

tion operation within zgen, over a number of non-deterministic Fiat-

Shamir abort based signature schemes such as GLP [16], BLISS [12],

and Ring-TESLA [1]. They proposed to completely skip the addition

operation for all the n coefficients thereby yielding either z = s1 · c
or z = y, depending on the order of operands for addition. While

successful faults in the first case (z = s1c) directly yields the primary

secret s1, the attack does not work in the latter case (z = y) since
no information on the primary secret is revealed, also because the

attacker cannot use the same y to generate another valid signature

due to their non-deterministic nature. Thus, switching the order

of operands was proposed as a potential countermeasure against

skip-addition faults. The authors also proposed to store the result

of addition in a variable different from the operands as another po-

tential countermeasure against such skip-addition attacks. But, we

later show that our attack is able to defeat both the aforementioned

countermeasures.

Moreover, there are multiple questionable aspects with respect

to the practicality of Bindel et al.’s [8] skipping fault attack. It re-
quires to inject several hundreds of precisely targeted faults (1024

for recommended parameter sets of Dilithium) within a single run

of the signing procedure. Such a scenario is highly unrealistic in a

practical setting as it requires the attacker to achieve impeccable

precision with respect to all the injected faults, especially when

faults are not realizable with 100% repeatability. Achieving such

faults would require very precise equipments along with high at-

tacker’s expertise. Secondly, the attacker has no apriori knowledge

about the number of iterations of the signing procedure for a given

messagem. This makes it impossible if not very difficult to achieve

precise synchronization with the target operation to be faulted.

Thus, these practical aspects which were overlooked make the

skipping attack of Bindel et al. very difficult, if not impossible to

implement in practice.

3.2 Note on Loop Abort fault attacks
Espitau et al. [13] proposed a generic fault attack based on loop

abort faults targeting both Fiat-Shamir Abort and Hash-and-Sign

based signature schemes and later practically validated their at-

tack in an updated work on the 8-bit Atmel XMEGA128 microcon-

troller [15]. It worked by converting the signature component z
(generated using the zgen step) into a solvable closest vector prob-

lem instance when the masking polynomial, y, is limited to low

degrees using loop-abort faults. The basic assumption was that all

the non-sampled coefficients of the masking polynomial (due to

the premature loop abort), would assume zero or a constant value
C . We tried to validate this assumption for our target device (ARM

Cortex-M4F microcontroller) but observed that the non-sampled

coefficients retained random values on the contrary, instead of zero

or a constant value, violating a critical pre-requisite of the attack.

Figure 1 shows the comparison between the observed and expected

values of coefficients of y after sampling 10 coefficients of y. Thus,
the attack proposed by Espitau et al. [15] was not directly applicable
and motivated us to explore other attack settings.

(a) Expected

(b) Observed

Figure 1: Comparison between expected and observed values
of the coefficients of y on our DUT after sampling 10 coeffi-
cients. The blocks colored in green denote the sampled coef-
ficients while those colored in blue denote the non-sampled
coefficients. (a) Expected values for coefficients of y to facil-
itate the loop-abort attack (C denotes a constant value) (b)
Actual values of coefficients of ywith random initial values.

3.3 Implementation Attacks on Lattice-based
signatures

As stated earlier, the deterministic nature of ECC signature schemes,

like ECDSA and EdDSA, were heavily exploited to demonstrate

a number of fault attacks [2, 5]. Thus, one obvious question is
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whether such determinism can also be exploited in case of the sim-

ilarly structured lattice-based signature schemes. The first attack

on deterministic lattice-based signatures was proposed by Bruin-

derink and Pessl [11] who developed a differential style fault attack

mainly exploiting the deterministic nature of the Dilithium and

qTESLA signature schemes. The attack only required to inject a

single random fault in the signing procedure and also showed that

injection of such faults over a large section of the execution time of

the signing procedure (∼68%) could result in successful recovery of

the primary secret. They also further propose a forgery algorithm

to forge signatures for any message with only the primary secret
3
.

The implementation security of lattice-based signature schemes

have also been heavily scrutinized through a number of other side-

channel attack vectors such as power/EM analysis [25], branch-

tracing [14] and cache-timing [10, 26]. Most of these attacks demon-

strated over the predecessor lattice-based schemes such as GLP [16],

BLISS [12], and Ring-TESLA [1] were possible due to vulnerabilities

in efficient implementations of the Gaussian samplers and rejection

sampling procedures. The attacks on the Gaussian samplers and

rejection sampling techniques later prompted the designers of the

newer signature schemes like Dilithium and qTESLA, to instead

sample from uniform distributions during signing. This both sim-

plifies the rejection step in addition to simplifying the sampling

procedure, albeit with the cost of increased size of the signatures.

4 FAULT ATTACK TO RETRIEVE THE
PRIMARY SECRET

Our existential forgery attack on Dilithium consists of two parts.

The first part involves recovery of the primary component of the

secret key s1 using our skip-addition fault attack. Though the secret

key sk of Dilithium consists of multiple other components apart

from the primary secret s1, we propose a novel forgery signing

procedure that can create valid signatures with only the knowledge

of the primary secret thus completing our attack. This section

explains recovery of the primary secret s1 through our skip-addition
fault attack.

4.1 Adversary Model
We assume that the attacker has complete physical access to the

victim device during computation of the signing procedure. The

attacker should also be able to trigger the device arbitrarily many

number of times into generating valid signatures for any message

of his/her choice. The attacker should also be able to access the

generated signatures. He/She should be able to actively interfere

with the operation of the signing procedure through fault injection

and passively observe through side-channels such as power/EM.

The underlying fault model we use for our attack is the in-

struction skip fault model. It has been widely studied and prac-

tically demonstrated on a range of devices (AVR and ARM mi-

crocontrollers) with high repeatability to satisfy our attack re-

quirement [28–30]. Instructions skips over load, store, arithmetic

and logical instructions been realized through multiple fault in-

jection methodologies like laser shots [30] and electromagnetic

3
We note that the forgery signing algorithm proposed in this work operates in a

different manner by exploiting the properties of the rounding algorithms of Dilithium.

injection [28, 29] thus serving as a basis for multiple cryptanalytic

efforts.

4.2 Attack Methodology
Our attack mainly works by targeting the zgen operation, specif-

ically by performing skipping faults over the addition operation

within zgen. But, unlike the attack from Bindel et al. [8], which
proposes to fault multiple coefficients in a single run of the signing

procedure, our attack leverages upon the deterministic property

of Dilithium and works by injecting single targeted faults. For the

attack, we will assume that the target is creating P signatures of

the form (z[i][j], c[i]) with i ∈ {1, . . . , P }, while j ∈ {0, . . . , ℓ − 1}

denotes the individual polynomials within the module z (we ignore
the hint component h of the signature σ since it is not involved in

our target operation, zgen). The signature component z is generated
as follows:

z[i][j] = s1[j] × c[i] + y[i][j]

To simplify notations, we perform our analysis over Eqn.2 (i.e)

z = s1c + y, considering its individual components as polynomials

in Rq , since the polynomials are handled independently of each

other. The attacker faults the addition operation corresponding to

a single coefficient (z)t of z with t ∈ {0, . . . ,n − 1}, using single

faults and aggregates information from multiple faulty signatures

obtained by faulting different coefficients to recover the primary

secret s1. We hereby propose two fault attacks based on the order

of the operands in the addition operation.

4.2.1 Case 1. We first consider the zgen step as is present in the

reference implementation of the Dilithium signature scheme sub-

mitted to NIST. The signature component z is generated as follows:

z = s1 · c
z = z + y

(3)

If the addition operation is performed according to Equation 3,

then skipping the addition corresponding to a single coefficient, t ,
will result in a scenario where (ẑ)t = (s1c)t . The attacker with the

knowledge of a single coefficient (s1c)t can construct the following

equation:

(ẑ)t = ⟨s1,Rot(c, t )⟩ (4)

Here, the attacker knows coefficient (ẑ)t , of z, and ϵt = Rot(c, t ),
the rotated coefficient vector of challenge c rotated by t times in

an anti-cyclic fashion. Thus, Equation 4 is nothing but a modular

linear equation with n unknowns, with the unknowns being the

coefficients (s)t of the primary secret for t ∈ {0, . . . ,n − 1}.

For a given messagem, let I (m) be the number of iterations of

the non-faulted signing procedure. For our attack, we only consider

single faults injected over addition in the last iteration I (m) of the
signing procedure. Let If (m, t ) denote the number of iterations

when faulting the addition operation for the t th coefficient and let

∆(I , If )m,t = I (m) − If (m, t ) be the difference between the number

of iterations of the non-faulted and faulted signing procedures.

Since we consider only single faults, the attacker uses a faulty

pair Pi = (ϵt , (ẑ)t ) for the attack if and only if ∆(I , If )m,t = 0. If

∆(I , If )m,t , 0, it means that the faulty signature ẑ corresponding
to the last iteration has been rejected by the check on ∥z∥∞ and

subsequently the signing procedure outputs another valid signature

5



corresponding to another iteration N > I (m), which cannot be used
for our attack.

We address the issue of precisely targeting the addition operation

of the last iteration for fault injection in Section 6.3, but for now

we assume that the attacker is capable in doing so. Upon faulting,

the attacker can easily estimate whether ∆(I , If )m,t = 0 by simply

checking the equality of challenge polynomials c output as part
of the faulty and non-faulty signatures. When ∆(I , If )m,t = 0 the

challenge polynomials are the same, but are otherwise different. The

goal of the attacker is to finally collect n pairs Pi for i ∈ {0, . . . ,n −
1} by faulting across different coefficients and possibly different

message inputs. There is no restriction on both the aforementioned

variables. Once collected, they can build a well defined system of

linear equations as follows:

s1C = L (5)

where the columns of matrix C (size n×n) correspond to the vectors
ϵt and the vector L (length n) is formed using the correspondingly

faulty signature coefficients (ẑ)t . The above system can be trivially

solved using Gaussian elimination to recover the primary secret s1.

Considering the possibility of rejecting the faulty signature, the

faulty coefficient (ẑ)t which is equal to the corresponding coeffi-

cient (s1c)t always lies in the allowable range for coefficient of z,
that is, ∥z∥∞ ≤ γ1 − β while ∥s1c∥∞ < β with high probability and

β << γ1 − β . Thus, the probability of rejecting a faulted coefficient

of ẑ is zero (i.e) (pcoef f _r e j = 0) and hence no faulty signature will

be rejected by the signing procedure. Thus, the number of required

signatures to be faulted for recovery of the primary secret is equal

to its number of coefficients, n.

4.2.2 Case 2. We consider the alternate case wherein the zgen
operation is performed as follows:

z = y
z = z + s1 · c

(6)

From Equation 6, we can infer that skipping the addition oper-

ation for coefficient t will result in a scenario where (ẑ)t = (y)t .
This only provides the attacker with information about (y)t of

the masking polynomial y. Bindel et al. [8] proposed this case as

a countermeasure for non-deterministic signatures since another

signature using the same y could not be generated and hence no in-

formation about the primary secret can be extracted from the faulty

coefficient. But, the deterministic nature of Dilithium ensures that

the attacker can generate signatures for the same y multiple times

for a given messagem. Assuming the attacker faults the addition

operation of the last iteration corresponding to the t th coefficient

and ∆(I , If )m,t = 0, the attacker computes the corresponding t th

coefficient of the product s1c as follows:

(s1c)t = ⟨s1,Rot(c, t )⟩ = (z)t − (ẑ)t (7)

The attacker simply has to repeat the process across different

coefficients corresponding to one or more message inputs until

he can extract n such equations to be used for the attack. He can

then construct Equation 5 similar to that of Case-1, which can be

subsequently solved using Gaussian elimination for the primary

secret s1. The faulted coefficient (ẑ)t in this case retains the value

of the corresponding coefficient (y)t of y wherein | |y| |∞ ≤ γ1 − 1.

Since it is required that | |z∞ | | ≤ γ1 − β , the probability that the

faulted coefficient lies in the bad range is pcoef f _r e j =
2(β − 1)

(2γ1 − 1)
(pcoef f _r e j ≈ 5× 10

−4
for recommended parameter sets). Since the

number of iterations of the signing procedure varies with the input

message m and is not known apriori, we do not derive a closed

form expression for the rejection probability of faulty signatures,

but empirically estimate the number of required faulted signatures

for key recovery using fault simulations.

We perform fault simulations for both the cases (Case-1 and

Case-2) of the zgen operation, each over 10
5
runs of the signing

procedure. Refer to Table 1 for the number of signatures to be faulted

for recovery of the complete primary secret s1 (with ℓ polynomials)

across the multiple parameter sets of Dilithium. We also provide

corresponding numbers for an attacker with a brute-force capability

of 2
64
. For Case-1, the faulty signatures are never rejected and hence

the number of signatures to be faulted is equal to the number of

coefficients to be recovered (ℓ × n). For Case-2, since pcoef f _r e j is

very small (≈ 5 × 10
4
), we observe that the number of signatures to

be faulted for successful recovery of the primary secret is still very

close to that of Case-1 for all the parameters (that is, ℓ×n). We again

emphasize the fact that our attack requires to only inject single

faults and the attacker has to simply repeat the faults over multiple

runs of the signing procedure to extract enough information to

recover the primary secret of Dilithium.

5 EXISTENTIAL FORGERYWITH
KNOWLEDGE OF PRIMARY SECRET

The attacker can successfully retrieve the primary secret s1 using

our skip-addition fault attack. But the secret key of Dilithium secret

key sk is composed of multiple components (ρ,K , tr , s1, s2, t0). In
this section, we show that the knowledge of the primary secret s1 is

sufficient to perform an existential forgery attack on the Dilithium

signature scheme.

For the following attack, refer to the function Sign in Algorithm

1. We consider an adversary A, who has knowledge of s1, whose

goal is to produce a valid signature of a new message. Execution

of Lines 10 through 18 require knowledge of the primary secret s1

(Line 18), which is already recovered and the secret K ∈ {0, 1}256

(Line 14). K is simply used for generation of the ephemeral y in the

signing procedure. Since the verifier does not check for the validity

of y, that is whether or not is y generated using the same valid K .
Thus, A proceeds through Lines 10 to 18, choosing y uniformly at

random from Sℓγ1−1
in Line 14 and computing z in Line 18 using the

recovered s1.

Signature verification requires knowledge ofw1. Noww− cs2 =

(−ct0)+ (w−cs2+ct0). Writing u = −ct0, r = w−cs2+ct0, and the
fact that P[∥u∥∞ ≤ γ2] ≈ 1 (indeed, ∥ − ct0∥∞ ≤ ∥t0∥∞ < 2

d < γ2)

together ensure that w1 can be computed as follows (Lemma 2.1):

UHq
(
MHq (u, r, 2γ2), r, 2γ2

)
= HBq (u + r, 2γ2)

= HBq (w − cs2, 2γ2)

= w1.

But computation ofMHq (u, r, 2γ2) requires knowledge of u = −ct0,
and therefore subsequently the secret-key component t0. The prob-
lem forA is now to compute hint matrix h = MHq (u, r, 2γ2) without
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Table 1: Fault simulation results for our skip-addition fault attack on the various recommended parameter sets of Dilithium.
Results were obtained over 10

5 runs of the signing procedure.

Attacker’s brute-force capability
No. of Faulted Signatures

Weak Medium Recommended High
Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2

None 512 512.065 768 768.092 1024 1024.017 1280 1280.034

2
64

496 496.062 751 751.089 1006 1006.016 1258 1258.033

the knowledge of t0. In the following we first show that UHq func-

tion could be inverted to produce the correct hint. In particular

UHq (h, r ,α ), given q, α , r ∈ Zq and HBq (u + r ,α ), is invertible on
h if ∥u∥∞ ≤ α/2. Lemma 5.1 summarizes this fact.

Lemma 5.1. Let u ∈ Zq with ∥u∥∞ ≤ α/2, where α > 0. Then,
given any r ∈ Zq andHBq (u+r ,α ), it is easy to computeMHq (u, r ,α ).

Proof: The algorithm in Figure 2, given below, illustrates this claim.

The correctness of the algorithm follows immediately from Lemma

2.1 and Lemma 5.2.

Algorithm 2: Inverting UHq for the hint bit h

Input :q, r ,α ,θ = HBq (u + r ,α )
Output :MHq (u, r ,α )

Set h = 0

Compute ϕ = UHq (h, r ,α )

if ϕ = θ then
return h

else
return 1

end

Lemma 5.2 ([19]). Let r ∈ Zq and h,h′ ∈ {0, 1}. If UHq (h, r ,α ) =
UHq (h

′, r ,α ), then h = h′.

Thus, in order to compute h,A must ensure that it has access to

HBq (u+ r, 2γ2) = HBq (w− cs2), and r = w− cs2 + ct0. Computing

r is easy asw−cs2+ct0 = Az−ct12
d
. To computeHBq (w−cs2) all

A has access to isw1. But it is known that HBq (w− cs2, 2γ2) = w1

provided ∥LBq (w−cs2, 2γ2)∥∞ ≤ γ2−β . A valid signer could ensure

this check, but forA it is not possible as it requires knowledge of s2.

Thus, the signer has to ignore the conditional checks on ∥r0∥ and

∥c · t0∥. Thus, it is natural for our forgery scheme to produce some

invalid signatures with certain non-negligible probability. We now

finally present complete details of our existential forgery attack in

Alg.3.

We present the results of our forgery signing algorithm when

implemented on an Intel Core-i5 (Haswell) processor running at 2.6

GHz with Turbo Boost and hyper-threading disabled and compiled

with gcc-4.2.1 and compilation flags -march=native
-mtune=native -O0 -g4. We obtained an average signing time

of about 0.3253 msecs for our forgery signing procedure which is

about 2.67 times faster than the original signing procedure which

runs at 0.8689 msec. The improved speed can be attributed to the re-

duced number of operations, but also to the removal of conditional

checks over ∥r0∥ and ∥c · t0∥. We attempted to empirically compute

the failure probability of our forgery signing procedure. We ran

our forgery algorithm for a total of 2
28

times while not obtaining a

single invalid signature. This along with its increased signing rate

leads us to hypothesize if our forgery algorithm can be used as an

alternative signing procedure for Dilithium. Concrete estimation

of its error-probability and security of the generated signatures is

left for future work.

Algorithm 3: Forgery(pk, s1,M )

input :public-key pk = (q, ρ, t1), Primary secret = s1, A

messageM
output :A forged Dilithium signature

A ∼ Rk×ℓq := Sam(ρ)

µ = H (H (ρ∥t1)∥M )

y
$

← Sℓγ1−1

w = Ay
w1 = HBq (w, 2γ2)

c = H (µ,w1)

z = y + cs1

for i = 1 to k do
for j = 0 to n − 1 do

hi, j = 0

end
end
for i = 1 to k do

for j = 0 to n − 1 do
θi, j = UHq (hi, j , [Az − ct12

d
]i, j

end
end
for i = 1 to k do

for j = 0 to n − 1 do
if θi j , [w1]i j then

Set hi j = 1

end
end

end
if UHq (h,Az − ct12

d , 2γ2) , w1 or ∥z∥∞ ≥ γ1 − β or
wt(h) > ω then

Go to 3

else
return (σ = (z, h, c))

end

4
Code is available online on https://github.com/jameshoweee/dilithium_forgery
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6 EXPERIMENTAL RESULTS
In this section, we perform an experimental validation of our pro-

posed attacks on a real device. We start by introducing our ex-

perimental setup, providing details of our device under target, im-

plementation details and our attack setup. We analyze several im-

plementation variants of the zgen operation and its susceptibility

to our proposed skipping fault attacks. We demonstrate practical

faults over the different implementation variants with very high

repeatability.

6.1 Experimental Setup
For our experiments, we target the reference implementation of

Dilithium taken from the pqm4 library, a benchmarking and testing

framework for PQC schemes on the ARM Cortex-M4 family of mi-

crocontrollers [17]. We ported its reference implementation to the

STM32F4DISCOVERY board (DUT) housing the STM32F407, ARM

Cortex-M4 microcontroller. Our implementation (compiled with

-O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard
-mfpu=fpv4-sp-d16) runs at a clock frequency of 24 MHz. We use

the ST-LINK/v2.1 add-on board for USART communication with

our DUT. We used the OpenOCD framework for flash configuration

and on-chip hardware debugging with the aid of the GNU debug-

ger for ARM (arm-none-eabi-gdb). We use Electromagnetic Fault

injection (EMFI) to inject faults into our device.

PC

EM pulse 
generator

DUT 
(ARM Cortex-M4F)

Injection Probe

X-Y Table

Figure 2: Experimental setup for the fault injection

Refer Figure 2 for our EMFI setup. The EMFI setup injects elec-

tromagnetic pulses with high voltage (upto 200 V) with low rise

time (<4ns) in order to disturb the target operation. A controller

software running on the laptop controls both the EM pulse genera-

tor and the DUT and synchronizes their operation through serial

communication. The EM pulse generator is directly triggered by

an external trigger signal from the DUT. The EM pulse injector

is a customized hand-made EM probe designed as a simple loop

antenna. Refer Figure 3 for the EM probe used for our experiments.

6.2 Implementation of EMFI attack
Given that our fault attack requires to inject targeted faults, it

becomes necessary to precisely identify the exact instructions to

be faulted within the implementation. We attempt to analyze the

fault vulnerabilities of three different variants of the zgen operation.

(a) (b)

Figure 3: (a) Hand-made probe used for our EMFI setup (b)
Probe placed over the DUT

We will give the following terminology to the three considered

variants:

• Variant-1: Adding y to s1c
• Variant-2: Adding s1c to y
• Variant-3: Prevent Overwriting the result onto the operands

The first two variants are based on the order of the operands

within the addition operation while the result of addition in both

the variants is overwritten into the same variable as one of the

operands. But, the third variant is based on storing the result into a

new variable different from the operands. While we demonstrate

our attack against all the three variants, it is important to note that

Variant-2 and 3 were proposed as concrete countermeasures against

the skip-addition attack in a number of works [8, 9].

1 LDR .W r3 , [ r4 , # 4 ] !

2 LDR .W r1 , [ r2 , # 4 ] !

3 CMP r4 , r5

4 ADD r3 , r1

5 / ∗ Ta rge t s t o r e op e r a t i o n ∗ /

6 STR .W r3 , [ r0 , # 4 ] !

Figure 4: Assembly code snippet from implementation of
Dilithium containing the target store operation

6.2.1 Variant-1: Adding y to s1c. This variant corresponds to Case-
1 of zgen where random information (y) is added to secret informa-

tion (s1c) stored in z. Refer Figure 5 for the C code snippet of the

operations corresponding to zgen. It is important to note that all

C-code snippets in this paper only include those operations (lines of

code) relevant to our attack. Referring to the assembly code snippet

in Figure 4 corresponding to the target addition operation, we can

see that the result (Line 4 of Figure 4) in register r3 is stored back

to the memory location pointed to by register r0 offset by 4 (Line 6

of Figure 4).

Utilizing the on-chip hardware debugging feature, we found that

the pointers to both the source and destination memory locations

of the addition operation contain the same value (i.e) r4 = r0 in

line 1 and 6 of Figure 4 respectively. This confirms our claims that

the result of addition is stored back into the memory location of s1c
through the STR instruction (Line 6 in Figure 4). Skipping this STR

(store) instruction once effectively has the same effect as skipping

the addition operation for that coefficient. The addition operation

8



1 / ∗ Sampl ing y ∗ /

2 f o r ( i = 0 ; i < L ; ++ i )

3 poly_unif_gamma1m1 ( y . vec+ i , key , nonce ++ ) ;

4 / ∗ Computing NTT( y ) ∗ /

5 yhat = y ;

6 p o l y v e c l _ n t t (& yhat ) ;

7 / ∗ Computing NTT( c ) ∗ /

8 cha t = c ;

9 po l y _n t t (& cha t ) ;

10 / ∗ Computing produc t s c ∗ /

11 f o r ( i = 0 ; i < L ; ++ i )

12 {

13 po ly_p tw i se_ imont ( z . vec+ i ,& chat , s1 . vec+ i ) ;

14 po ly_ in t t _mon t ( z . vec+ i ) ;

15 }

16 / ∗ L a s t a d d i t i o n to gene r a t e z ∗ /

17 / ∗ ( y added to s c ) ∗ /

18 po l yv e c l _ add (&z ,&y ,& z ) ;

Figure 5: Code snippet: C-Code of Variant-1, Adding y to s1c
with the result of addition stored in the same variable that
contains s1c

1 / ∗ Sampl ing y in z ∗ /

2 f o r ( i = 0 ; i < L ; ++ i )

3 poly_unif_gamma1m1 ( z . vec+ i , key , nonce ++ ) ;

4 / ∗ Computing NTT( y ) ∗ /

5 yhat = z ;

6 p o l y v e c l _ n t t (& yhat ) ;

7 / ∗ Computing NTT( c ) ∗ /

8 cha t = c ;

9 po l y _n t t (& cha t ) ;

10 / ∗ Computing produc t s c ∗ /

11 f o r ( i = 0 ; i < L ; ++ i )

12 {

13 po ly_p tw i se_ imont ( s c . vec+ i ,& chat , s1 . vec+ i ) ;

14 po ly_ in t t _mon t ( s c . vec+ i ) ;

15 }

16 / ∗ L a s t a d d i t i o n to gene r a t e z ∗ /

17 / ∗ ( s c added to y ) ∗ /

18 po l yv e c l _ add (&z ,& sc ,& z ) ;

Figure 6: Code snippet: C-Code of Variant-2, Adding s1c to y
with the result for addition stored in the same variable that
contains y

corresponding to other coefficients could also be similarly faulted

to yield multiple faulted signatures using which the attacker can

recover the primary secret s1 using our analysis presented for Case-

1.

6.2.2 Variant-2: Adding s1c to y. Here, we consider the case when
secret information (s1c) is added to random information (y) stored
in z illustrating Case-2 of zgen. The C code snippet of the corre-

spondingly modified implementation can be seen in Figure 6. The

compiled assembly code generated for this case was similar to that

of Variant-1 (barring changes in the register values and register

locations). Thus, we use the same assembly code in Figure 4 for

our analysis on Variant-2. Similar to our attack on Variant-1, the

same STR (store) instruction (Line 6 of Figure 4) can be skipped

to effectively skip the addition operation for the given coefficient,

thus ensuring that the faulted coefficient retains the value of cor-

responding coefficient of y. The attacker simply repeats the faults

1 / ∗ Sampl ing y ∗ /

2 f o r ( i = 0 ; i < L ; ++ i )

3 poly_unif_gamma1m1 ( y . vec+ i , key , nonce ++ ) ;

4 / ∗ Computing NTT( y ) ∗ /

5 yhat = y ;

6 p o l y v e c l _ n t t (& yhat ) ;

7 / ∗ Computing NTT( c ) ∗ /

8 cha t = c ;

9 po l y _n t t (& cha t ) ;

10 / ∗ Computing produc t s c ∗ /

11 / ∗ R e s u l t s t o r e d in ztemp ∗ /

12 f o r ( i = 0 ; i < L ; ++ i )

13 {

14 po ly_p tw i se_ imont ( ztemp . vec+ i ,& chat , s1 . vec+ i ) ;

15 po ly_ in t t _mon t ( ztemp . vec+ i ) ;

16 }

17 / ∗ L a s t a d d i t i o n to gene r a t e z ∗ /

18 / ∗ R e s u l t s t o r e d in new v a r i a b l e z ∗ /

19 po l yv e c l _ add (&z ,&y ,& ztemp ) ;

Figure 7: Code snippet: C-Code of Variant-3, Result is stored
in a new variable compared to that of the operands

across different coefficients until he generates enough faulted sig-

natures using which our analysis presented for Case-2 can be used

to recover the primary secret s1 of Dilithium.

6.2.3 Variant-3: Prevent Overwriting the result onto the operands.
We consider a third variant wherein the result of the addition op-

eration is stored in a new variable (new memory location), which

was the other technique that was proposed as a possible counter-

measure against skip-addition fault attacks [8, 9]. Refer Figure 7 for

the C Code of the correspondingly modified implementation of the

zgen step, wherein the result of the addition operation is stored in a

new variable (Line 18) compared to that of the operands. We again

observe a very similar compiled assembly implementation (barring

changes in the register values and register location) and hence use

the same assembly code snippet in Figure 4 for analysis.

But for this case, we found that the pointers to the destination

and source operands now point to different memory locations (i.e)

r0 , r4. Thus, skipping the STR (store) instruction will not result in

a meaningful fault since the faulted coefficient will retain a random

value. But, we see that the ADD instruction (Line 4 in Figure 4)

is implemented as ADD r3,r1 wherein the source and destination

registers are the same (r3). Thus, skipping this ADD instruction will

ensure that register r3 which contains the first operand (coefficient

of s1c of y depending on the order of operands), will be stored as

the result of the addition operation. We attribute this nature of the

ADD instruction (source register and destination register are the

same) to the choice of maximum level of compiler optimization

(O3). Upon successful fault injection, the attacker can use either of

our attacks proposed for Case-1 or Case-2, depending on the order

of operands used in the addition operation, to recover the primary

secret s1.

6.3 Systematic Approach towards targeted
fault injection in Dilithium

The success of our attack depends on the attacker’s ability to pre-

cisely target the addition operation of zgen in the last iteration of

the signing procedure. For a given message, the attacker has to
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(a)

(b)

(c)

Figure 8: First order Pattern Recognition (a) Identification
of multiple iterations of signing procedure on EM trace (b)
Zoomed in view ofmultiple iterations (c) Identifying repeat-
ing patterns in a single iteration and mapping them to the
corresponding operations in the reference implementation

identify the time instance corresponding to the last iteration and

subsequently, the target addition operation within the last itera-

tion. While none of the previous works requiring to inject precisely

targeted faults [8, 13] address this point, we leverage on the deter-

ministic nature of the Dilithium scheme and use the information

from the EM/power side channel for precise identification of our

target operation.

EMMeasurements are observed from the same DUT using a near-

field probe and are processed using a Lecroy 610Zi oscilloscope

at a sampling rate of 50MSam/sec. Refer Figure 8(a) for the EM

trace of a single signing procedure wherein the repeating patterns

corresponding to different iterations can be clearly distinguished

through simple visual inspection
5
. Refer Figure 8(b) for a zoomed-

in-view of the same trace. Thus, mere visual inspection of the trace

allows us to approximately if not accurately locate the different it-

erations and also identify the last iteration which is of most interest

to us for our attack. Given the deterministic nature of the signature

scheme, the position of the last iteration for a given message is the

same (i.e) loc
last_iter

(m), unless targeted faults lead to rejection of

the faulted signature.

The second and trickier task is to locate the position of addi-

tion operation within the last iteration. The offset of the addition

operation (denoted as loc
add(m) ) varies with respect to different

5
We advice the reader to zoom into Figure 8 to identify the repeating patterns. It is

possible that the picture might pixelate upon printing.

iterations within the signing procedure owing to the rejection sam-

pling approach used to sample for y ∈ Sℓγ1−1
. We make two crucial

observations over the reference implementation of the Dilithium

scheme which aids us in locating the addition operation.

• Observation-1: The earliest rejection of the signature oc-

curs during the infinity norm check of z. This operation is

performed just after our target addition operation.

• Observation-2: Almost all operations preceding our target

addition operation are repeating for a certain number of

times depending on the number of polynomials (k, ℓ) in the

module.

We collect multiple fault-free EM traces ti for i = 1, . . . ,N cor-

responding to the signing procedures for corresponding message

inputsmi and further partition the traces into segments correspond-
ing to the individual iterations as stated above. Based on Observa-

tion 1, we know that the offset of addition operation in zgen will

be lesser than the length of the shortest segment (len
short_seg

) and

the addition operation will be approximately located near the end

of the smallest segment, that is (loc
add

(m) ≲ len
short_seg

). Based
on Observation 2 and knowledge of the implementation, we fur-

ther perform a second order pattern recognition to further look

for repeating patterns within a given segment. With the apriori

knowledge of the order of execution of operations and their corre-

sponding repetition counts, the attacker can look for patterns in

the same order and same repetition counts. Refer to Figure 8(c) for

the EM trace corresponding to a single iteration / segment. We can

see that we are able to distinguish the repeating patterns within

the segment and identify our target addition operation within a

certain approximation. We earmark the repeating patterns on the

trace in Figure 8(c) with the corresponding functions (with the

corresponding repetition count in brackets) used in the reference

implementation [19].

For a given messagem to be signed, the identified loc
last_iter

(m)
is added to the estimated offset of the addition operation loc

add
(m)

(i.e) t
add

(m) = loc
last_iter

(m)+ loc
add

(m) to estimate the location of

the target addition operation from the start of the signing procedure.

Considering the trigger-delay of about 130 nsec of our EM pulse

generator, we identify a suitable time-window of sufficient length

around t
add

(m) and simply sweep the fault injection process over

the window until we are able to fault the individual coefficients of

the signature component z.

6.4 Fault Injection results
Considering all the three implementation variants, our attack re-

quires to realize two different faults - skip-STR and skip-ADD faults.

We scanned the entire top layer of the chip and could identify a

precise location (close to the center of the chip near the ARM logo),

where we could achieve a 100% repeatability in skipping the store
instruction. With this achieved fault model, we were able to attack

both the Variant-1 and Variant-2 implementations of Dilithium. But,

we were not able to achieve practical faults to skip the ADD in-

struction required to attack Variant-3. Though we were not able to

demonstrate a practical fault attack over Variant-3, we do not state

this as a countermeasure against our attack since a more powerful

fault attacker with enhanced capabilities like enhanced precision
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and multiple laser injection might still be able to mount a successful

fault attack on the Variant-3 implementation [29].

7 ZERO COST MITIGATION
There are certain generic countermeasures which provide pro-

tection against our attack. For example, double computation and

verification-after-sign countermeasures provide preliminary pro-

tection against our attack but at a considerable increase in compu-

tational cost [9]. Use of additional randomness for sampling y can

easily thwart our attack since it removes the deterministic assump-

tion. But, the subsequent non-deterministic version of Dilithium is

no longer secure in the quantum random oracle model [19]. Thus,

in this section, we present a zero-cost mitigation strategy against

our skip-addition fault attacks that only requires simple re-ordering

of operations within the signing procedure.

We observe that the vulnerable addition operation is the last

operation performed to generate the signature component z. Tar-
geting the addition operation thus ensures that the attacker can

directly observe the effect of the injected fault from the faulty z.
Moreover, given that the addition is a point-wise operation in Rq ,
a single fault does not cause enough perturbation to be detected.

These aspects enable the attacker to directly derive a relation be-

tween the faulty signatures and the primary secret s1, thus in-turn

enabling the attack. We investigate the possibility of embedding

the vulnerable addition operation deep enough inside the signing

procedure to ensure that succeeding operations propagate the in-

jected fault strong enough so that the faulty signatures never pass

the rejection checks in the signing procedure.

7.1 Utilizing the Number Theoretic Transform
to improve Fault Propagation

We observe that multiplication of polynomials in Rq in Dilithium

is computed efficiently using the Number Theoretic Transform

(NTT). The NTT operation is a deterministic linear transforma-

tion of a given polynomial from a normal domain to NTT do-

main in the same ring, NTT : Rq → Rq . There is also an asso-

ciated inverse NTT transformation (INTT) mapping polynomials

back from NTT domain to normal domain. In the reference im-

plementation of Dilithium, we observe that the addition operation

within zgen occurs in the normal domain. We know that ring Rq ex-

hibits an isomorphism with itself under the NTT transform, that is

NTT(a+b) = NTT(a)+NTT(b)∀a, b ∈ Rq . Moreover, we also take

note of an interesting property of the NTT (resp. INTT) transform

that every coefficient of the output is a unique linear combination

of all the input coefficients, which we term as the diffusion property
of the NTT transform. We thus examine the prospect of performing

the addition in the NTT domain and further invert the result into

the normal domain using the INTT transform.

z = INTT(NTT(s1c) + NTT(y))

We henceforth denote the NTT representation of a polynomial x
as x, that is x = NTT(x). In the above case, the INTT operation is

performed after the addition of polynomials in the NTT domain. A

detailed description of the NTT operation is provided in Appendix

C. Lets say an attacker successfully faulted the addition operation

in the NTT domain introducing a perturbation of δt > 0 at the

t th coefficient. On applying the INTT transformation, its diffusion
property ensures that the fault δt is effectively propagated to all the
coefficients of the output polynomial, which in our case is ẑ. This
ensures that the coefficients of the faulty ẑ in the normal domain

are all uniformly distributed in the range [0,q − 1]. Since valid

signatures are expected to satisfy the condition of ∥z∥∞ < γ1 − β ,
the faulted signatures are rejected by the signing procedure with

a very high probability. The probability of acceptance of a faulty

signature is estimated to be ≈ 2
−4320

for recommended parameters

of Dilithium.

But, we observe that there is one case when the addition op-

eration is not faulted even on injection of a successful skipping

fault, that is addition with a zero coefficient which results in δt = 0.

Here, we observe that our NTT-protected implementation is still

attackable through a slight modification in the attack approach.

Faulty signatures are never output due to the fault propagation by

the INTT transform, hence the attacker should look for safe errors

(valid-signatures) upon successful fault injection. On identification

of a safe error in coefficient t , the attacker can construct a corre-

sponding equation of the form (s1c)t = 0 (Case-1) or (s1c)t = (z)t
for Case-2 (∵ (s1c)t = 0). Both equations are again linear equa-

tions in N variables with the unknowns being the coefficients of

the primary secret s1. Thus, collecting N such equations will lead

to successful recovery of the primary secret. Given that the co-

efficients of y and s1c are uniformly distributed in [0,q − 1], the

probability to observe a zero coefficient in either y or s1c is about
1/q, which equals about 2

−23
for Dilithium and thus observation

of n safe errors for key recovery will require to run the signing

procedure q × ℓ × n times which amounts to about 2
33

signing

procedures for the recommended parameter set of Dilithium, while

our proposed attack on the previous cases only required about ℓ×n
signatures, that is, ≈ 2

10
signing procedures for recommended pa-

rameters. Though the theoretical increase is only about q, the large
size of q ≈ 2

23
exponentially increases the attacker’s complexity.

7.2 Evaluation of our Mitigation Approach
We performed fault simulations of our NTT-protected implemen-

tation for about 2
25

runs of the signing procedure and estimated

that about 2
30

signatures are required to collect enough informa-

tion to construct the ℓ × n equations for recovery of the primary

secret of Dilithium. Referring to the results from Table 2, we can

infer that attacking our NTT-protected implementation requires

around 20 years of signing time, under the same attack model, just

to observe enough safe-errors to recover the primary secret s1 of

Dilithium. This underlines an increase in attacker’s complexity of

2
20

in terms of both computational time and effort.

Implementing the mitigation comes at zero-cost since it involves
only simple re-ordering of instructions within the zgen step. To the

best of our knowledge, we present the first use case of the NTT

transform being used as a countermeasure against fault attacks.

We thus propose our algorithm-level mitigation technique as a

concrete countermeasure against attacks that possibly target the

vulnerable secret-dependent addition operation in lattice-based

signature schemes.

6
The average signing time of the reference implementation is observed to be about

0.6067 secs on ARM Cortex-M4 running at 24 MHz.
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Table 2: Efficacy of our Zero-cost mitigation technique
against skip-addition fault attack. We provide the the num-
bers for recommended parameters of Dilithium assuming
faults injected with 100% repeatability.

Implementation Type No. of Faulted Signatures Estimated Total Signing Time6

Reference 1024 621.26 secs

NTT-Protected ≈ 230 6.44 × 10
8
secs (≈20 years)

8 CONCLUSION
In this work, we have extended the practicality and applicability of

skip-addition fault attacks to deterministic lattice-based signature

schemes. We demonstrate practical fault attacks against determin-

istic variants of Dilithium and qTESLA signature schemes, which

require only single-targeted faults in the signing procedure that

allows key recovery and subsequently an existential forgery attack.

We further demonstrate the efficacy of our attack against two well-

known countermeasures used to protect against the skip-addition
fault attack. We perform experimental validation of our attack us-

ing Electromagnetic fault injection over implementations from the

pqm4 library on the ARM Cortex-M4 microcontroller. Finally, we

also propose a zero-cost mitigation strategy using the NTT op-

eration that exponentially increases the attacker’s complexity to

protect against skip-addition fault attacks and possibly against at-

tacks that target the vulnerable addition operation in lattice-based

signature schemes.
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A DESCRIPTION OF DILITHIUM SIGNATURE
SCHEME

In this section, we present the rounding algorithms, key generation

and verification procedures of the Dilithium signature scheme.

B qTESLA SIGNATURE SCHEME
The qTESLA signature scheme is an improved practical variant

of the Bai-Galbraith signature scheme [3]. It is also based on the

"Fiat-Shamir with Aborts" framework and hence structurally very

similar to Dilithium. The hardness guarantees of qTESLA are de-

rived from the Ring-LWE and Ring-SIS problem based in the ring
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Algorithm 4: Rounding Algorithms

1 Procedure Decompose Dq(r ,α)
2 Compute r = r (mod q)

3 Compute r0 = r (mod
± α )

4 if r − r0 = q − 1 then
5 r1 = 0

6 r0 = r0 − 1

7 else
8 r1 = (r − r0)/α

9 end
10 return Dq (r ,α ) = (r1, r0)

11

1 Procedure HighBits HBq((r ,α ))
2 Compute (r1, r0) = Dq (r ,α )

3 return HBq (r ,α ) = r1

4

1 ProcedureMakeHint MHq(u, r ,α)
2 Compute r1 = HBq (r ,α )
3 Compute v1 = HBq (u + r ,α )
4 if r1 = v1 then
5 h = 0

6 else
7 h = 1

8 end
9 return MHq (u, r ,α ) = h

10

1 Procedure UseHint UHq((h, r ,α ))
2 Computem = (q − 1)/α

3 Compute (r1, r0) = Dq (r ,α )

4 if h = 1 and r0 > 0 then
5 r1 = (r1 + 1) (mod m)

6 end
7 else if h = 1 and r0 ≤ 0 then
8 r1 = (r1−1) (mod

+ m)

9 else
10 r1 = r1

11 end
12 return UHq (h, r ,α ) = r1

Rq = Zq[X ]/[Xn + 1] with n ≥ 1024. Refer Alg.6 for a brief al-

gorithmic level description of the qTESLA signature scheme. As

stated earlier
1
, our attacks only apply the deterministic variant of

qTESLA and since its updated specification is a probabilistic one

and hence is inherently protected against our attacks.

B.1 Adapting our attacks to qTESLA
The zgen step (i.e) z = s1 · c+ y in Line 10 of Sign in Alg 6, which is

of most interest to our attack computes almost identical operations

as that of Dilithium due to use of the same operating base ring Rq .
We analyzed the reference implementation of qTESLA signature

scheme taken from the pqm4 library and found that the zgen opera-

tion is implemented similar to Variant-3 wherein the result (z) of
the target addition operation is stored in a new variable with the

Algorithm 5: Dilithium Signature scheme

1 Procedure KeyGen()
2 ρ, ρ ′ ← {0, 1}256

3 K ← {0, 1}256

4 N = 0

5 for i from 0 to ℓ − 1 do
6 s1[i] = Sample(PRF(ρ ′,N ))

7 N := N + 1

8 end
9 for i from 0 to k − 1 do

10 s2[i] = Sample(PRF(ρ ′,N ))

11 N := N + 1

12 end
13 a ∼ Rk×ℓq = ExpandA(ρ)
14 t = a · s1 + s2

15 t1 = Power2Roundq (t,d )
16 tr ∈ {0, 1}384 = CRH(ρ | |t1)
17 return pk = (ρ, t1), sk = (ρ,K , tr , s1, s2, t0)
18

1 Procedure Verify(pk,M,σ = (z, h, c))
2 a ∈ Rk×ℓq := ExpandA(ρ)
3 µ = CRH (CRH(ρ∥t1)∥M )

4 w1 := UHq (h, a · z − c · t1 · 2d , 2γ2)

5 if c = H (µ,w1) and ∥z∥∞ < γ1 − β and wt(h) ≤ ω then
6 return 1

7 else
8 return 0

9 end

order of operands similar to Case-2 (z = y upon faulting) of the ad-

dition operation. Thus, our fault attacks demonstrated for Dilithium

directly apply to qTESLA, albeit with different fault complexities

due to differing conditional checks and parameter sets.

Unlike Dilithium, the signatures of qTESLA only contain two

components (z, c). Moreover, the LWE instance t ∈ Rq computed in

the key-generation procedure is directly output as the public key

pk and hence retrieval of s through the skip-addition fault attack

results in a direct break of the signature scheme. Since the NTT

operation is used for polynomial multiplication, our zero-cost miti-

gation technique exploiting the fault propagation characteristics

of the NTT operation is also applicable for concrete protection of

qTESLA against skip-addition fault attacks.

C NUMBER THEORETIC TRANSFORM
The Number Theoretic Transform (abbreviated as NTT) is widely

used in increasing the efficiency of multiple lattice-based schemes,

including the Dilithium and qTESLA signature schemes. The NTT

operation enables the polynomial multiplication in the ring to be

done in quasilinear time (O (nloд(n))) compared to the quadratic

time (O (n2)) time for the schoolbook polynomial multiplier. The

operand polynomials are first converted into their respective rep-

resentations in the NTT domain. They are then further multiplied

point-wise in the NTT domain after which the final product is
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Algorithm 6: qTESLA Signature scheme

1 Procedure KeyGen()

2 seeda , seedy
$

← {0, 1}k

3 a ∈ Rq ← GenA(seeda )
4 Sample :

5 s, e ∈ Rq ← Dσ
6 t ∈ Rq = a · s + e
7 while (checkS(s) | |checkE(e) = 0) do
8 Goto Sample
9 end

10 return pk = (seeda , t), sk = (s, e, seedy, seeda)
11

1 Procedure Sign(sk,M)
2 a← GenA(seeda )
3 counter = 0

4 rand = PRF1 (seedy ,m)

5 Rej :

6 y ∈ Rq ← PRF2 (rand, counter )
7 v ∈ Rq = a · y (mod q)

8 c ∈ Rq = Enc(H (Round(v),M ))

9 z ∈ Rq = s · c + y
10 if (Reject(z) = 0) then
11 counter = counter + 1

12 Goto Rej
13 end
14 w ∈ Rq = v − e · c
15 if (Reject(w) = 0) then
16 counter = counter + 1

17 Goto Rej
18 end
19 return σ = (z, c)
20

1 Procedure Verify(pk,M,σ = (z, c))
2 a← GenA(seeda )
3 w = a · z − t · c (mod q)

4 return c = H (Round(w),M )

obtained through an inverse NTT operation. The NTT operation

in itself is a bijective mapping from one polynomial to another

in the same operating ring. An input sequence p with n elements

(p0, . . . , pn−1) is mapped to its representation p̄ in the NTT domain

as

p̄j =
n−1∑
i=0

pi · ωi ·j
(8)

where j ∈ [0,n−1] andω being thenth root of unity in the operating

ring Zq .
Referring to Eqn.8 which represents the NTT operation, we can

see that every element of the output polynomial in NTT domain is

a unique function of all the elements of the input polynomial. The

same also applies for the inverse NTT operation. Refer Figure 9 for

the data-flow graph of the NTT, where we can clearly visualize this

Figure 9: NTT operation on a polynomial x with degree 8

dependency between elements of the input and the output of the

NTT transform.We leverage over this property, whichwe refer to as

the diffusion property of the NTT operation to ensure that the fault

injected in the addition operation for one element is propagated

uniformly to all the elements in the signature component z. This
further ensures that the resulting faulty signatures are rejected by

the signing procedure with very high probability.
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