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Abstract. We show how to perform a full-threshold n-party actively secure MPC protocol over a
subgroup of order p of an elliptic curve group E(K). This is done by utilizing a full-threshold n-party
actively secure MPC protocol over Fp in the pre-processing model (such as SPDZ), and then locally
mapping the Beaver triples from this protocol into equivalent triples for the elliptic curve. This allows
us to transform essentially any (algebraic) one-party protocol over an elliptic curve, into an n-party
one. As an example we show how to transform a general Σ-protocol over elliptic curves and the shuffle
protocol of Abe into an n-party protocol. This latter application requires us to also give an MPC
protocol to derive the switches in a Waksman network from a generic permutation, which may be of
independent interest.

1 Introduction

Over the years there have been a number of protocols developed for elliptic curves, starting with basic
protocols such as encryption and signature, through to zero-knowledge proofs, and secure shuffles. In some
application instances one wants to perform these protocols where the secret data of a party is not held by a
single party but held by a set of parties via a secret sharing scheme. Obvious examples include distributed
decryption and distributed signing protocols. Indeed the case of distributed signatures for EC-DSA has
recently undergone a renewed interest, see [8,14–16], due to applications to block-chain. In addition, general
distributed cryptographic solutions for decryption and signature operations are becoming more in vogue, as
evidenced by the recent NIST workshop in this space3.

There are however a large number of other protocols which applications may require to be distributed in
this manner. For example take a simple elliptic curve based Sigma-protocol to prove equality of two discrete
logarithms, see [18][Chapter 21]. If the application requires the two discrete logarithms to be secret shared,
then the protocol to produce the proof must be executed in a distributed manner. In this work we present
a simple method to produce n-party actively secure distributed elliptic curve based protocols.

Our method applies to what we term algebraic protocols over E(K). These are protocols which do not
involve non-algebraic operations on secret data. Thus EC-DSA signing is an algebraic protocol as the non-
algebraic operation (the hash-function operation) is performed on public data, but EC-IES decryption is not
as the key-derivation needs to be applied on secret data. Thus our technique is unable to deal with the issues
raised in [17]. Despite this restriction our model captures a number of useful cryptographic protocols.

We take the underlying elliptic curve as E(K) where the (cryptographically interesting) subgroup order is
a prime p. For such protocols we need to secret share both finite field elements in Fp, and elliptic curve group
elements in E(K). In both cases we do this via an additive secret sharing scheme. Linear operations in Fp

and in E(K) are then able to be performed for free, and the problem then comes in performing the non-linear
operations. For non-linear operations in Fp (i.e. multiplication) we utilize the idea of Beaver triples from
general Multi-Party Computation (MPC) protocols (such as [7]), and thus our protocol is in the offline/online
paradigm. For non-linear operations in E(K), which are point multiplications of a secret shared point by a
secret shared field element, we can utilize the same Beaver triples. Thus supporting additively secret shared
elements in E(K) can be accomplished using the same offline phase as is needed to perform MPC over Fp.

To achieve active security we utilize the methodology of the SPDZ protocol [7] and its improvements,
e.g. [6]. This protocol is a so-called MPC-with-abort system, in that if a dishonest party deviates from the

3 https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-workshop-2019.
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protocol then the honest parties will abort with overwhelming probability. In SPDZ for each field element
x ∈ Fp which is secret shared, we also secret share a MAC-value α·x for some global secret shared MAC value
α. We then translate this to the elliptic curve sharing by not only additively sharing an element P ∈ E(K),
but also additively sharing its MAC value [α]P , for the same MAC key α as used to authenticate the shares
over Fp.

The first part of this paper is devoted to giving the details of this MPC protocol over elliptic curves, and
the associated security proofs. We then give three applications, the first to show how distributed EC-DSA
signing can be performed using this protocol. The online time for this EC-DSA signing operation will be very
fast, the only drawback being the offline time inherited from the SPDZ protocol for generating authenticated
Beaver triples over Fp. Our second application shows how to perform a simple distributed Sigma protocol
for an OR-proof, using the same methodology.

We then turn to a more complex application. In a number of applications one has a set of ElGamal
ciphertexts and one wishes to perform a secure shuffle on them. The traditional method for doing this is
to pass them through a sequence of so-called Mix-Nets. Each mixer applies their own private shuffle, and
provides a zero-knowledge proof, that their mix has been performed correctly. The final recipient of the mix
needs to verify each individual zero-knowledge proof. Thus if we have n-mixers we have a proof n times
larger than that produced by a single mixer. Another way of achieving the same security, but with a smaller
zero-knowledge proof, would be for the mixers to produce the mix in a distributed manner and generate a
single joint proof of correctness of the mix. We show how the mix protocol of Abe [2] can be performed in
such a distributed manner using our underlying MPC protocol.

Given a permutation as a Waksman network [20], with each Waksman switch secret shared, we show how
to generate in a distributed manner the proof presented by Abe. This is essentially a more complex version
of the Sigma protocol for equality of two discrete logarithms discussed earlier. We note, that more efficient
proofs of correct shuffle have been given since Abe’s work, see for example [4, 9–11], but we concentrate
on this one as it shows how our elliptic curve MPC protocol can be applied to more complex higher level
protocols. Our solution is more efficient than an equivalent solution to the problem of n-mixers discussed
by [1].

A problem with Abe’s mixer is how to generate the secret shared Waksman network. Simply generating
the switch values at random does not produce a uniformly random permutation (as was noticed in [3]). We
can easily produce a secret shared uniformly random permutation, by each party Pi generating a permutation
σi, sharing it, and then using as the secret-shared final permutation the product permutation σ = σ1 · · ·σn.
However, the question then remains how to convert the secret-shared permutation σ, given by (say) a
permutation matrix, into a set of switches for a Waksman network. There is a classical algorithm to do
this, which appears to require solving a set of non-linear equations. However, by closely examining this
algorithm we see that one can perform the conversion from a permutation matrix to Waksman switches
using a relatively simple algorithm which is suitable for implementation via an MPC system. Our algorithm
for obtaining the Waksman switches in secret shared form is actively secure, if the underlying MPC system
used is actively secure (which is what we assume throughout this work).

We end this introduction by re-iterating that our MPC system is in the full threshold paradigm, where
active security is obtained by authenticating a share using a global shared MAC key. We note that our
methodology can also be applied in the case of Q2 access structures (for example honest majority threshold
access structures) if we accept MPC-with-abort. In such systems one can obtain similar authentication of
the shares by utilizing the error detection properties of the underlying error correcting code associated to
the secret sharing scheme, see [19] for a discussion of MPC for Q2 access structures in the case of MPC-
with-abort. It can be easily seen that minor adaptations to our MPC protocol over elliptic curves will also
enable one to support such Q2 access structures. Our methodology can also be applied to protocols over any
finite abelian group of prime order, and not just elliptic curves. We concentrate on elliptic curves to make
the presentation more down to earth.
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2 Preliminaries

In this section we present some basic notation and the underlying MPC protocols we will make extensive
use of.

Notation: We assume that all the parties P1, . . . ,Pn are probabilistic polynomial time Turing machines.
We let [n] denote the interval [1, . . . , n]. We let a ← X denote randomly assigning a value a from a set X,
where we assume a uniform distribution on X. If A is an algorithm, we let a← A denote assignment of the
output, where the probability distribution is over the random tape of A; we also let a ← b be a shorthand
for a ← {b}, i.e. to denote normal variable assignment. If D is a probability distribution over a set X then
we let a← D denote sampling from X with respect to the distribution D.

We let G ⊆ E(K) denote a subgroup of large prime order of an elliptic curve E over a finite field K. Let
the order of G be p. Any (non-zero) element of G can be taken as a generator, however we assume that a
specific generator P is given as part of the group description. An element Q ∈ G can be multiplied by an
element x ∈ Fp to produce another element R ∈ G. We call this operation the point multiplication between
a point Q and a multiplier x, and we write it as R← [x] ·Q.

The SPDZ Protocol: Our protocols will be built on top of a number of existing functionalities/protocols.
The main two being an ideal commitment functionality FCommit (given in Appendix A ) and the SPDZ MPC
protocol [7] for performing actively secure MPC over Fp for full-threshold adversaries. The SPDZ protocol
processes data using an authenticated secret sharing scheme defined over a finite field Fp, where p is prime.

We describe the variant of authentication and checking presented in [6]. The secret sharing scheme is
defined as follows: Each party Pi holds a share of a global MAC key αi ∈ Fp, where the global MAC key is
defined to be α =

∑
i αi. A data element x ∈ Fp is held in secret shared form as a tuple {xi, γi}i∈[n], such

that x =
∑

i xi and
∑
γi = α · x. We denote a value x held in such a secret shared form as 〈x〉F . If we wish

to denote the specific value on which γi is a MAC share then we write γi[x].

Functionality FOnline[SPDZ]

Initialize: On input (init , p) from all parties, the functionality stores (domain, p).
Input: On input (input ,Pi, varid , x) from Pi and (input ,Pi, varid , ?) from all other parties, with varid a fresh

identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and

varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y).
Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory

and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).
Triple: On input (triple, varid1, varid2, varid3) from all parties (if none of the varid i are stored in memory),

the functionality generates a uniformly random a, b ∈ Fp and computes c = a · b and then stores (varid1, a),
(varid2, b) and (varid3, c)

Output: On input (output , varid , i) from all honest parties (if varid is present in memory), the functionality
retrieves (varid , y) and outputs it to the environment. The functionality waits for an input from the envi-
ronment. If it is Deliver then y is output to all players if i = 0, or y is output to player i if i 6= 0. If the
adversarial input is not equal to Deliver then ∅ is output to all players.

Figure 1. The ideal functionality for MPC over Fp

The SPDZ protocol implements the functionality given in Figure 1. The functionality permits the secure
computation of any function f on parties’ inputs, assuming that any (reactive) function f is expressed in
term of additions and multiplications over a finite field. Parties can also choose to whom the output of f is
sent.
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The functionality FOffline[SPDZ]

Let A be the set of indices of corrupted players. Symbols in bold denote vectors in (Fp)k. Arithmetic is compo-
nentwise.

Initialize: On input (Start, p) from honest players and adversary, it does the following:
1. For each corrupted player i ∈ A, the functionality accepts shares αi from the adversary, and it samples

at random αi for each i /∈ A. Then the functionality sets α← α1 + · · ·+ αn.
2. The functionality calls the macro Abort() below.
3. The functionality outputs αi to player i.

Macro Abort() This macro performs the following steps
1. The functionality waits for signal from the adversary.
2. If it receives Proceed the macro returns, otherwise the protocol aborts.

Macro Angle(v1, . . . ,vn,∆γ , k) This macro will be run by the functionality at several points to create repre-
sentations 〈·〉F .
1. The functionality obtains {γi}i∈A from the adversary.
2. The functionality calls the macro Abort().
3. Let v = v1 + · · ·+ vn, set γ[v]← α · v +∆γ .
4. Sample at random γi[v]← (Fp)k for i /∈ A, subject to γ[v] =

∑n
i γi[v].

5. Return (γ1[v], . . . , γn[v]).
Input Production: On input DataType = (InputPrep, nI),

1. The functionality choose random values I = {r(i) ∈ (Fp)nI | i /∈ A}.
2. It accepts from the adversary corrupted values {r(i) ∈ (Fp)nI | i ∈ A}, corrupted shares {r(i)k ∈

(Fp)nI | k ∈ A, i ≤ n}, and offset for data and MACs {∆(i)
r ,∆

(i)
γ ∈ (Fp)nI | i ≤ n}.

3. The functionality calls the macro Abort().

4. The functionality samples honest shares {r(i)k | k /∈ A, i ≤ n} subject to r(i) +∆
(i)
r =

∑n
k=1 r

(i)
k .

5. It then runs the macro Angle(r
(i)
1 , . . . , r

(i)
n ,∆

(i)
γ , nI), for i ≤ n.

6. Finally it outputs {r(i), (r(j)i , γi[r
(j)])j≤n} to player i.

Multiplication Triples: On input DataType = (Triples, nm),
1. Choose 2 · nm honest shares I = {(ai,bi) ∈ (Fp)2·nm | i /∈ A}.
2. It accepts corrupted shares {(ai,bi, ci) ∈ (Fp)3·nm | i ∈ A} and MAC offsets {(∆(a)

γ ,∆
(b)
γ ,∆

(c)
γ ) ∈

(Fp)3·nm} from the adversary.
3. The functionality calls the macro Abort().
4. The functionality sets c← (a1 + · · ·+ an) · (b1 + · · ·+ bn).
5. It computes a set of honest shares {ci | i /∈ A} subject to c =

∑n
i=1 ci.

6. The functionality then runs the macros Angle(a1, . . . ,an,∆
(a)
γ , nm), Angle(b1, . . . ,bn,∆

(b)
γ , nm),

Angle(c1, . . . , cn,∆
(c)
γ , nm).

7. Finally it outputs {(ai, γi[a]), (bi, γi[b]), (ci, γi[c])} to player i.

Figure 2. SPDZ Offline Functionality
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As explained earlier, SPDZ is an MPC-with-abort system. In such a system, an adversary can always de-
viate from the protocol, however, honest parties will abort when this happens with overwhelming probability.
This behavior explains why FOnline[SPDZ] is written as such. That is, within the output stage, an adversary
can choose between not sending Deliver, which translates the fact that they can deviate from protocol during
the online phase, and sending Deliver, which means that the adversary is following the protocol so far.

The SPDZ protocol works in an offline-online manner, the precise offline protocol will not concern us in
this work, but in Figure 2 we give the SPDZ offline functionality we shall be using. The main goal of the
SPDZ offline phase is to produce random triples (〈a〉F , 〈b〉F , 〈c〉F ) such that c = a · b. It is convenient in
some protocols to assume that the Beaver triples produced in the offline phase are also available to the user
of the online phase. Thus we have a command in the online functionality that exports this data.

Protocol ΠOnline[SPDZ]

Initialize: The parties call FOffline to get the shares αi of the MAC key, a number of multiplication triples
(〈a〉F , 〈b〉F , 〈c〉F ) and mask values (ri, 〈ri〉F ) as needed for the circuit being evaluated. If FOffline aborts then
abort, otherwise the operations specified below are performed according to the circuit.

Input: To share his input xi, player i takes an available mask value (ri, 〈ri〉F ) and does the following:
1. Broadcast e← xi − ri.
2. The players compute 〈xi〉F ← 〈ri〉F + e.

Add: On input (〈x〉F , 〈y〉F ), the players locally compute 〈x+ y〉F ← 〈x〉F + 〈y〉F .
Multiply: On input (〈x〉F , 〈y〉F ), the players do the following:

1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ) and open 〈x〉F −〈a〉F , 〈y〉F −〈b〉F to get s and t respec-
tively.

2. Locally each player computes 〈z〉F ← 〈c〉F + s · 〈b〉F + t · 〈a〉F + s · t
Triple: Here the players simply take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ) off the pre-computed list ob-

tained in the offline phase.
Output: This procedure is entered once the players have finished the circuit evaluation, but still the final output
〈y〉F has not been opened.
1. The players call the MACCheck[SPDZ] protocol on input all opened values so far.
2. The players open 〈y〉F and call MACCheck[SPDZ] on input y to verify its MAC.

Figure 3. Operations for Secure Function Evaluation

The online protocol ΠOnline[SPDZ] is given in Figure 3, and can be shown (see e.g. [6]) that it realises the
FOnline[SPDZ] functionality in the (FOffline[SPDZ], FCommit)-hybrid model. The online protocol makes use of a
crucial sub-protocol, called ΠMACCheck[SPDZ], which we have given in Figure 4. This sub-protocol is executed
(in batches) on every opened value throughout the computation, in order to check if the adversary is trying
to deviate from the protocol without being caught.

Since 〈·〉F is a linear secret sharing scheme it is easy to compute linear functions on the share values.
In particular given 〈x〉F and 〈y〉F and three field constants a, b, c ∈ Fp we can compute the sharing of
z = a · x+ b · y + c locally by each player computing

z1 ← a · xi + b · yi + c for i = 1

zi ← a · xi + b · yi for i 6= 1

γi[z]← a · γi[x] + b · γi[y] + αi · c for all i.

Waksman Networks: A Waksman network [20] is a circuit with m input and output wires, to make our
discussion cleaner we will assume m is a power of two. Within the circuit, inputs are shuffled with respect
to a permutation. The building blocks of a Waksman network are switches; where a switch is a circuit with
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Protocol ΠMACCheck[SPDZ]

Usage: Each player has input αi and (γi[aj ]) for j = 1, . . . , t. All players have a public set of opened values
{a1, . . . , at}; the protocol either succeeds or outputs failure if an inconsistent MAC value is found.

MACCheck({a1, . . . , at}):
1. All players Pi sample si and asks FCommit to broadcast τsi ← Comm(si).
2. Every player Pi calls FCommit with Open(τsi ) all players obtain sj for all j.
3. Set s← s1 ⊕ · · · ⊕ sn.
4. Players using s sample a random vector r from Ftp; note all players obtain the same vector as they have

agreed on the seed s.
5. Each player computes the public value a←

∑t
j=1 rj · aj .

6. Pi computes vi ←
∑t
j=1 rj · γi[aj ], and wi ← vi − αi · a.

7. Pi asks FCommit to broadcast τwi ← Comm(wi).
8. Every player calls FCommit with Open(τwi ), all players obtain wi for all i.
9. If w1 + · · ·+ wn 6= 0Fp , the players output ∅ and abort.

Figure 4. Method To Check MACs On Partially Opened Values

two input and output wires, with a hardwired bit called the control bit. If the control bit equals one, the
switch swaps its inputs, otherwise, the switch simply forwards its inputs to the output wires.

The construction of a Waksman network follows a recursive structure (Figure 5), that is to say a Waksman
network contains:

– One inward layer.
– One outward layer.
– Two parallel subnetworks of size m

2 , linked in a butterfly manner to the inward and outward layers.

The inward layer contains m
2 switches, whereas the outward layer contains m

2 − 1 switches. That is, the
missing switch (switch 1∗) is fixed by setting its control bit to be zero. The inner networks are constructed
in a similar manner, and there are 2 · log2(m)− 1 layers in total. Thus the total number of switches within
the whole network is m · log2(m)−m+ 1. Given any permutation, there is a classical algorithm to determine
a set of control bits realizing it. That is to say, this algorithm takes as input the permutation, and outputs
a control bit for every switch, such that the resulting Waksman network realizes this permutation. In our
work (for ease of implementing the algorithm to create a Waksman network in a data-oblivious manner) we
use a more relaxed definition of a Waksman network in which the first gate of the outer layer is not fixed
to be an empty switch. This increases the total number of switches in a network by m/2 − 1 to the value
m · log2(m)−m/2.

As an example consider the permutation matrix

M̃ =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0


realizing the permutation π̃ ∈ S8. This can be represented by the Waksman network in Figure 6. One
immediately sees an advantage of using a Waksman network to represent a permutation on a vector v.
Instead of evaluating π on v by a matrix vector product, we apply a series of transpositions on v using the
permutation networks. This is more efficient in terms of operations performed. That is, the matrix based
approach requires m2 multiplications to apply a permutation on a vector, whereas a network based approach
using (our modified) Waksman network, would require at most m · log2(m)−m/2 swaps. In terms of an MPC
based implementation of the network for secret shared control bits, one swap consists of two multiplications.
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Fig. 5. Waksman network of size 8 Fig. 6. A realization of the permutation π̃

3 Multiparty Computation Over Elliptic Curve Groups

Our goal in this section is to define a protocol to perform efficient actively secure (with abort) MPC in
the context of elliptic curve calculations. This will enable us to efficiently transfer any algebraic ECC based
cryptographic protocols into the distributed domain. Such protocols require us to perform arithmetic not
only in the elliptic curve group, but also over the finite field given by the order of the large prime subgroup
(the so-called exponent group, even though it is a field). Our basic strategy is to use the SPDZ protocol to
conduct the MPC in the exponent group, and to use a similar protocol with the same MAC key to define
the MPC protocol to work in the elliptic curve group itself.

The functionality we aim to produce a secure realisation of is FOnline[ECC], given in Figure 7. This func-
tionality permits the parties to compute over elliptic curve points, and as explained earlier, this essentially
requires doing computation over a finite field, as well as over an elliptic curve group. Therefore, one imme-
diately notes that this is essentially an extension of the FOnline[SPDZ] functionality in that we have added
an additional set of variables corresponding to elliptic curve points. Given this similarity it should not be
surprising that we utilize the same secret sharing as in SPDZ to share values in the exponent group.

In our realisation of this functionality, an elliptic curve data element Q ∈ G is held in secret shared form
as a tuple {Qi, Γi}i∈[n], such that Q =

∑
iQi and

∑
Γi = [α] ·Q where α is the same MAC key as used in

the secret sharing 〈·〉F . We denote a value Q held in such a secret shared form as 〈Q〉E . Again if we want to
denote the specific value on which Γi is a MAC share we will write Γi[Q].

Again, as 〈·〉E is a linear secret sharing scheme it is easy to compute linear functions on the share values.
In particular given 〈Q〉E and 〈R〉E , two field constants a, b ∈ Fp and one public curve point S we can compute
the sharing of T = [a] ·Q+ [b] ·R+ S locally by each player computing

T0 ← [a] ·Qi + [b] ·Ri + S for i = 0

Ti ← [a] ·Qi + [b] ·Ri for i 6= 0

Γi[T ]← [a] · Γi[Q] + [b] · Γi[R] + [αi] · S for all i.

One can also compute U = [a] ·Q when a is shared and Q is public, with only local computation. This can
be done by having each player locally compute

Ui ← [ai] ·Q for all i.

Γi[U ]← [γi[a]] ·Q for all i.
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Functionality FOnline[ECC]

Initialize: On input (init ,G) from all parties, the functionality stores (domain,G). Two lists of identifiers are
established, one called field identifiers and one called curve identifiers.

Input-F: On input (inputF ,Pi, varid , x) with x ∈ Fp from Pi and (input ,Pi, varid , ?Fp) from all other parties,
with varid a fresh identifier, the functionality stores (varid , x) in the list of field identifiers.

Input-G: On input (inputG,Pi, varid , Q) with Q ∈ G from Pi and (input ,Pi, varid , ?G) from all other parties,
with varid a fresh identifier, the functionality stores (varid , P ) in the list of curve identifiers.

Add-F: On command (addF , varid1, varid2, varid3) from all parties where varid1, varid2 are in the list of field
identifiers and varid3 is not, the functionality retrieves (varid1, x), (varid2, y) from the list of field identifiers
and stores (varid3, x+ y) in the list of field identifiers.

Add-G: On command (addG, varid1, varid2, varid3) from all parties where varid1, varid2 are in the list of
curve identifiers and varid3 is not, the functionality retrieves (varid1, Q), (varid2, R) from the list of curve
identifiers and stores (varid3, Q+R) in the list of curve identifiers.

Multiply-F: On command (multiplyF , varid1, varid2, varid3) from all parties where varid1, varid2 are in the
list of field identifiers and varid3 is not, the functionality retrieves (varid1, x), (varid2, y) from the list of
field identifiers and stores (varid3, x · y) in the list of field identifiers.

Triple: On input (triple, varid1, varid2, varid3) from all parties (if none of the varid i are stored in memory),
the functionality generates a uniformly random a, b ∈ Fp and computes c = a · b and then stores (varid1, a),
(varid2, b) and (varid3, c) in the list of field identifiers.

Multiply-G-P: On command (multiplyGP , varid1, Q, varid2) from all parties where varid1 is in the list of field
identifiers, Q ∈ G, and varid2 is a fresh identifier from the list of the curve identifiers, the functionality
retrieves (varid1, x), from the list of field identifiers and stores (varid2, [x] ·Q).

Multiply-G-S: On command (multiplyGS , varid1, varid2, varid3) from all parties where varid1 is in the list
of field identifiers and varid2 is in the list of curve identifiers and varid3 is not, the functionality retrieves
(varid1, x), (varid2, Q) from the respective lists and stores (varid3, [x] ·Q).

Output-F: On input (outputF , varid , i) from all honest parties (if varid is present in the list of field identifiers),
the functionality retrieves (varid , y) from the set of field identifiers and outputs it to the environment. The
functionality waits for an input from the environment. If this input is Deliver then y is output to all players
if i = 0, or y is output to player i if i 6= 0. If the adversarial input is not equal to Deliver then ∅ is output
to all players.

Output-G: On input (outputG, varid , i) from all honest parties (if varid is present in the list of curve identifiers),
the functionality retrieves (varid , R) from the set of curve identifiers and outputs it to the environment. The
functionality waits for an input from the environment. If this input is Deliver then R is output to all players
if i = 0, or R is output to player i if i 6= 0. If the adversarial input is not equal to Deliver then ∅ is output
to all players.

Figure 7. The ideal functionality for MPC over G ⊆ E(K) with #G = p
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Which we write as
〈U〉E ← [〈a〉F ] ·Q. (1)

The only complex part is then to perform non-linear operations, namely to compute the point multiplication
of a secret shared element in Fq by a secret shared elliptic curve point. An operation which we write as

〈U〉E ← [〈a〉F ] · 〈Q〉E . (2)

Protocol ΠMACCheck[ECC]

Usage: Each player has input αi, (γi[aj ]) for j = 1, . . . , t and (Γi[Ak]) for k = 1, . . . , u. All players have two
public sets of opened values : {a1, . . . , at} over Fp, and {A1, . . . , Au} over G; the protocol either succeeds or
outputs failure if an inconsistent MAC value is found.

MACCheck({a1, . . . , at}, {A1, . . . , Au}):
1. Every player Pi samples a seed si and asks FCommit to broadcast τsi ← Comm(si).
2. Every player Pi calls FCommit with Open(τsi ) and all players obtain sj for all j.
3. Set s← s1 ⊕ · · · ⊕ sn.
4. Players using s sample a random vector r from Ft+up ; note all players obtain the same vector as they

have agreed on the seed s.
5. Each player computes the public values a←

∑t
j=1 rj · aj and A←

∑u
k=1[rk+t] ·Ak

6. Player i computes vi ←
∑t
j=1 rj · γi[aj ], and Γi ←

∑u
k=1[rk+t] · Γi[Ak]

7. Player i computes Wi ← [vi − αi · a] · P + Γi − [αi] ·A, where P is the generator of G
8. Player i asks FCommit to broadcast τWi ← Comm(Wi).
9. Every player calls FCommit with Open(τWi ), and all players obtain Wi for all i.

10. If W1 + · · ·+Wn 6= 0G , the players output ∅ and abort.

Figure 8. Method To Check MACs On Partially Opened Values

3.1 MACCheck Protocol

Before presenting our protocol for performing the arithmetic operation in equation (2), we first modify the
SPDZ MACCheck protocol so that it also checks the MAC values on the authenticated sharings of elliptic
curve points. This is done in Figure 8. The intuition behind correctness and soundness of this protocol, comes
from the fact that we took the MAC check protocol from SPDZ operating over elements in Fp, and replicated
it for elements of G. Then, we combined these two checks in order to execute the protocol only once. So
we perform the MAC check in a single operation on both opened elements in Fp and opened elements in
G. Thus at step 7 we map the share vi − αi · a of player i to the point [vi − αi · a] · P over G. This makes
the protocol inherit the correctness and soundness properties from the one in SPDZ. This is captured in the
following theorem, the proof of which is given in Appendix B.

Theorem 1. The protocol ΠMACCheck[ECC] is correct and sound. That is, it accepts if all values {a1, . . . , at}
and {A1, . . . , Au} along with their corresponding MACs were correctly computed, and it rejects except with
negligible probability if at least one value or MAC was not correctly computed.

3.2 MPC Online Protocol

We introduce now in Figure 9 our protocol for the online phase. Similar to FOnline[ECC], which was con-
structed by extending FOnline[SPDZ], we do the same here while realizing FOnline[ECC]. That is, the sub-
functionalities Initialize, Input-F, Add-F, and Multiply-F, will be realized the same way as in the
protocol ΠOnline[SPDZ]. For the remaining functionalities, we will realize them using essentially the same
techniques as in the SPDZ protocol.
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Protocol ΠOnline[ECC]

Initialize: The parties call FOffline to get the shares αi of the MAC key, a number of multiplication triples
(〈a〉F , 〈b〉F , 〈c〉F ), and mask values (ri, 〈ri〉F ) as needed for the circuit being evaluated. If FOffline aborts then
abort, otherwise the operations specified below are performed according to the circuit.

Input-F: To share his input xi, player i takes an available mask value (ri, 〈ri〉F ) and does the following:
1. Broadcast e← xi − ri.
2. The players compute 〈xi〉F ← 〈ri〉F + e.

Input-G: To share his input Qi, Player i takes an available mask value (ri, 〈ri〉F ) and does the following:
1. Broadcast E ← Qi − [ri] · P .
2. The players compute 〈Qi〉E ← [〈ri〉F ] · P + E using Multiply-G-P.

Add-F: On input (〈x〉F , 〈y〉F ), the players locally compute 〈x+ y〉F ← 〈x〉F + 〈y〉F .
Add-G: On input (〈Q〉E , 〈R〉E), the players locally compute 〈Q+R〉E ← 〈Q〉E + 〈R〉E .
Multiply-F: On input (〈x〉F , 〈y〉F ), the players do the following:

1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ) and open 〈x〉F −〈a〉F , 〈y〉F −〈b〉F to get s and t respec-
tively.

2. Locally each player sets 〈x · y〉F ← 〈c〉F + s · 〈b〉F + t · 〈a〉F + s · t
Triple: Here the players simply take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ) off the pre-computed list ob-

tained in the offline phase.
Multiply-G-P: On input (〈x〉F , Q), where Q is a public point in G, the players locally compute 〈[x] · Q〉E ←

[〈x〉F ] ·Q using the operation defined in (1) .
Multiply-G-S: On input (〈x〉F , 〈Q〉E), the players do the following:

1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ), locally compute 〈U〉E ← [〈b〉F ]·P and 〈V 〉E ← [〈c〉F ]·P
using Multiply-G-P.

2. Open 〈x〉F − 〈a〉F , 〈Q〉E − 〈U〉E to get s and T respectively.
3. Locally each player sets 〈[x] ·Q〉E ← 〈V 〉E + [s] · 〈U〉E + [〈a〉F ] · T + [s] · T

Output-F: This procedure is entered once the players have finished the circuit evaluation, but still the final
output 〈y〉F has not been opened.
1. The players call the MACCheck[ECC] protocol on input all opened values so far.
2. The players open 〈y〉F and call MACCheck[ECC] on input y to verify its MAC.

Output-G: This procedure is entered once the players have finished the circuit evaluation, but still the final
output 〈R〉E has not been opened.
1. The players call the MACCheck[ECC] protocol on input all opened values so far.
2. The players open 〈R〉E and call MACCheck[ECC] on input R to verify its MAC.

Figure 9. Operations for Secure Function Evaluation
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– Input-G is realized using the same trick as used to impement Input-F. That is, assuming player i holds
(Ri, 〈Ri〉E), this player can share a point Qi ∈ G by broadcasting E = Qi − Ri, then players compute
〈Qi〉E = 〈Ri〉E + E to obtain a share of Qi. However, as we are using only the preprocessing of SPDZ,
we need to somehow provide (Ri, 〈Ri〉E) to player i, using only the generated data from FOffline[SPDZ].
This can be done using the generator P , That is, from a SPDZ input mask (ri, 〈ri〉F ), one can obtain a
mask (Ri, 〈Ri〉E) by setting 〈Ri〉E ← [〈ri〉F ] · P , which requires only local computation.

– Add-G is realized similarly to Add-F. That is, players will locally compute 〈Q+R〉E ← 〈Q〉E + 〈R〉E .
– Multiply-G-P is realized by having players locally compute 〈R〉E ← 〈x〉F ·Q.
– Multiply-G-S is realized using the Beaver trick. That is, assuming players hold a triple (〈a〉F , 〈U〉E , 〈V 〉E)

such that V = [a]·U , to compute [〈x〉F ]·〈Q〉E , players open 〈x−a〉F and 〈Q−U〉E to obtain s and T . Then
the product can be obtained by setting 〈[x]·Q〉E ← 〈V 〉E+[s]·〈U〉E+[〈a〉F ]·T+[s]·T . However, the SPDZ
preprocessing doesn’t provide this type of triples, nonetheless, we still can obtain them locally by taking
a SPDZ-triple (〈a〉F , 〈b〉F , 〈c〉F ) and having players locally compute 〈U〉E = 〈b〉F ·P and 〈V 〉E = 〈c〉F ·P .
This results in a triple (〈a〉F , 〈U〉E , 〈V 〉E), which is a valid triple since V = [c] · P = [a · b] · P = [a] · U .

– Output-F and Output-G are realized the same way as in SPDZ, where we call here the MAC check
protocol ΠMACCheck[ECC] that we defined in the previous section, operating over all opened values in Fp

and G so far, then we open the final output y (resp. R) and call ΠMACCheck[SPDZ] (resp. ΠMACCheck[ECC])

Theorem 2. The protocol ΠOnline[ECC] securely implements FOnline[ECC] in the FOffline[SPDZ] hybrid model.

Proof. We construct in Figure 10 a simulator SOnline[ECC], such that no polynomial time environment, who
corrupts a set of parties A among {P1, . . . ,Pn} and chooses inputs for all parties, can distinguish with
significant probability, a view obtained by running ΠOnline[ECC] between A and the honest parties, and a
simulated execution of the protocol between SOnline[ECC] and FOnline[ECC]. The environment’s view consists
of the intermediate messages sent and received by A, inputs he chose for all players, along with outputs of
all players.

The simulator SOnline[ECC]

Initialize: The simulation of the initialization procedure is performed running a local copy of FOffline[SPDZ].
Notice that all data given to the adversary is known by the simulator.

Input-F: Honest inputs are performed according to the protocol, with a dummy input, for example 0Fp . For
inputs given by a corrupt player Pi, the simulator waits for Pi to broadcast the (possibly incorrect) value
e′, computes x′i ← ri + e′ and uses x′i as input to FOnline[ECC].

Input-G: Honest inputs are performed according to the protocol, with a dummy input, for example 0G . For
inputs given by a corrupt player Pi, the simulator waits for Pi to broadcast the (possibly incorrect) value
E′, computes Q′i ← [ri] · P + E′ and uses Q′i as input to FOnline[ECC].

Add-F, Add-G, Multiply-F, Multiply-G-P, Multiply-G-S: These procedures are performed according to
the protocol. The simulator also calls the respective sub-functionalities in FOnline[ECC].

Output-F, Output-G: FOnline[ECC] outputs y (resp. R) to the simulator. The simulator now has to provide
the honest players’ shares of such value, it already computed an output value y′ (resp. R′), using the dummy
inputs for the honest players. The simulator will then modify the share of the player Ph (Ph is one of the
honest players) by adding y− y′ (resp. R−R′) and modify the MAC adding α(y− y′) (resp. [α] · (R−R′)),
which is possible for the simulator, since it knows α. After that, the simulator is ready to open y (resp. R)
according to the protocol. If MACCheck[ECC] doesn’t abort, the simulator sends Deliver to FOnline[ECC].

Figure 10. Simulator for the Online phase

Prior to the output stage, computation of the protocol is either local, or involves openings that reveal
values uniformly at random. Thus, the environment’s view, up to this point, will not leak whether inputs
used by honest players’ are dummy inputs or the ones the environment provided. Note that at the meantime,
the simulator is querying the respective sub-functionalities from FOnline[ECC].
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At the output stage, the simulator queries the output sub-functionality on the functionality FOnline[ECC]
so as to obtain y (or R). This output is automatically consistent with the values communicated by A. The
simulator will then modify the share of the honest player Ph to make the sum of honest players’ shares
consistent with the output generated by FOnline[ECC]. The simulator sends then honest players’ shares of the
output to A.

Note that, while performing an operation that involves only local computation (namely Add-F, Add-G or
Multiply-G-P), the share of every player of the resulting value is a linear combination of his shares of other
values. Therefore, for a value to be opened, that can be written using only the 3 operations above on values
that are already opened, the honest players’ shares are already known to A. This means that the simulator
needs to send A those shares. We guaranteed this by modifying the shares of the same player Ph each time
we are in the output stage.

Finally, MACCheck[ECC] is executed on all opened values. If it succeeds, the simulator inputs Deliver into
FOnline[ECC] and honest players get the output. Otherwise, the simulator aborts. Therefore, the only case
where the environment can distinguish between a real execution and a simulated one, is when A succeeds
in introducing an error in opened values, without being caught by MACCheck[ECC]. This can happen only
with negligible probability.

4 Simple Example Applications

In this section we present two toy applications of our methodology to perform MPC over elliptic curves,
distributed EC-DSA signing and a distributed zero-knowledge proof.

EC-DSA Signing

Given a secret key x ∈ Fp for a public key Q = [x] · P , for P an element of order q in E(K), a hash function H
with codomain Fp, and a message m, the EC-DSA operation is given by:

1. k ← Fp.
2. R← [k] · P .
3. r ← x− coord(R) (mod p).
4. e← H(m).
5. s← (e+ x · r)/k (mod p).
6. Output (r, s).

Figure 11. EC-DSA Signing Operation

Distributed EC-DSA: The EC-DSA signing operation is given in Figure 11. To produce a distributed
version we assume that the secret key x is already secret shared 〈x〉F using our secret sharing scheme. For
simplicity we ignore the unlikely event that r = 0 in our description. The associated distributed version is
given in Figure 12. The protocol requires two multiplication triples from the offline phase (one to produce
the initial sharings of (〈k〉F , 〈b〉F , 〈k · b〉F ) and one to enable the secure computation of 〈v〉F . Note, that
we have correctness since the s produced by the distributed EC-DSA protocol is equal to s = v/c =
(u · b)/(k · b) = (e + x · r)/k. The trivial simulation of the distributed protocol appears to leak a minor
amount of information. In particular the execution of the distributed protocol reveals R, whereas the ideal
functionality for distributed signing will only reveal r = x− coord(R) (mod p). However, the verification
operation recovers R in any case, thus this is not an actual leak of information.

In practice the specialist threshold EC-DSA protocols of [8, 14–16] may be preferable than our general
one. This is because whilst our protocol is especially simple in the online phase, and so will be able respond
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Distributed EC-DSA Signing

1. Call Triple on FOnline[ECC] so as to obtain (〈k〉F , 〈b〉F , 〈c〉F ) where c = k · b.
2. Compute 〈R〉E ← [〈k〉F ] · P by calling Multiply-G-P on FOnline[ECC].
3. Open 〈R〉E so all parties obtain R by calling Output-G on FOnline[ECC].
4. r ← x− coord(R) (mod p).
5. e← H(m).
6. 〈u〉F ← e+ r · 〈x〉F using linearity of the sharing.
7. 〈v〉F ← 〈u〉F · 〈b〉F using Multiply-F.
8. Open 〈c〉F using Output-F.
9. 〈s〉F ← 〈v〉F /c.

10. Open 〈s〉F using Output-F.
11. Output (r, s).

Figure 12. Distributed EC-DSA Signing Operation

to requests much faster than the specialist protocols, the downside comes from needing to perform the offline
phase. Thus the preferred protocol depends on whether the application supports offline processing. For
intermittent signing operations, such as in an individual crypto wallet, the offline costs could be prohibitive.
But for applications on an crypto-currency exchange the offline cost could be a cost worth bearing in order
to respond faster to signing requests as they arise.

Distributed OR-Proof: The above EC-DSA application did not use the full power of our MPC over
elliptic curves, in particular we did not make use of any non-linear operations on the elliptic curve. Here we
present a more complex example, which will be useful later when we consider the MixNet proof of Abe, and
which does present an application of these additional non-linear operations.

Suppose we want to give a non-interactive zero-knowledge proof the statement L =
{
xb : T0 = [x0] ·

P or T1 = [x1] ·P
}

, where xb ∈ Fp, for b ∈ {0, 1}, is the secret value. Non-interactive zero-knowledge proofs
of such statements are trivial to obtain, in the random oracle model, using the OR-proof technique for Sigma
protocols [5]. To fix notation for what follows it can make more sense to consider the statement as being
given by

{
b, xb : Tb = [xb] · P

}
, where b ∈ {0, 1}, xb ∈ Fp are the secret values. In Figure 13 we give the

standard non-interactive proof for such a statement, again we assume a hash function with codomain Fp.

If we assume the secret inputs to the zero-knowledge proof are now distributed via our secret sharing
scheme 〈b〉F , 〈xb〉F , then we need to execute the above protocol using our elliptic curve based MPC protocol.
We make use of the standard trick of multiplexing between two values depending on a hidden bit b, via
yb ← b ·y1 +(1−b) ·y0. Our distributed protocol then can be described as in Figure 14. Note, that operations
of the form 〈x〉F ← Fp can be performed by utilizing the first two elements in a Beaver triple produced in
the offline phase. Notice how in lines 4, 5 and 6 we use non-linear secret-shared operations on the curve.

5 Application to MixNets

The rest of the paper is devoted to applying the above techniques to providing a more efficient (in terms of
bandwidth and verification time) for a standard ElGamal based shuffle due to Abe [2]. As remarked in the
introduction more efficient single party shuffles are now known, here we are focused on providing a general
n-party shuffle.

Secure shuffling consists of randomly shuffling a vector of m elements v using a uniformly random
permutation π ∈ Sm unknown to the adversary. Secure shuffling is used in several contexts such as Oblivious-
RAM, secure voting, etc. Within any context, we can distinguish three sets of parties, the parties A that
provide input elements v, the parties B that shuffle v to get v′, and the parties C that will use v′. These
sets are not necessarily disjoint sets. That is, it depends on the context whether a party is part of more than
one set.
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Non-Interactive Zero-Knowledge Proof of the Statement L.

Proof The proof proceeds as follows:
1. If b = 0 then

(a) k0, e1, s1 ← Fp.
(b) R0 ← [k0] · P .
(c) R1 ← [s1] · P − [e1] · T1.
(d) e← H(R0, R1, T0, T1, P ).
(e) e0 ← e− e1.
(f) s0 ← k0 + e0 · x0.

2. Else
(a) k1, e0, s0 ← Fp
(b) R0 ← [s0] · P − [e0] · T0.
(c) R1 ← [k1] · P .
(d) e← H(R0, R1, T0, T1, P ).
(e) e1 ← e− e0.
(f) s1 ← k1 + e1 · x1.

3. Output (e0, e1, s0, s1).
Verify Verification of the above proof is done as follows:

1. R0 ← [s0] · P − [e0] · T0, R1 ← [s1] · P − [e1] · T1.
2. e← H(R0, R1, T0, T1, P ).
3. Reject if e 6= e0 + e1.

Figure 13. Non-Interactive ZKPoK for the statement L

Distributed Non-Interactive Zero-Knowledge Proof of the Statement L.

1. 〈ku〉F , 〈ev〉F , 〈sv〉F ← Fp
2. 〈Ru〉E ← [〈ku〉F ] · P .
3. 〈Tv〉E ← [〈b〉F ] · T0 + [1− 〈b〉F ] · T1.
4. 〈Rv〉E ← [〈sv〉F ] · P − [〈ev〉F ] · 〈Tv〉E .
5. 〈R0〉E ← [〈b〉F ] · 〈Rv〉E + [1− 〈b〉F ] · 〈Ru〉E
6. 〈R1〉E ← [〈b〉F ] · 〈Ru〉E + [1− 〈b〉F ] · 〈Rv〉E
7. Open 〈R0〉E and 〈R1〉E .
8. e← H(R0, R1, T0, T1, P ).
9. 〈eu〉F ← e− 〈ev〉F .

10. 〈su〉F ← 〈ku〉F + 〈ev〉F · 〈xb〉F .
11. 〈e0〉F ← [〈b〉F ] · 〈ev〉F + [1− 〈b〉F ] · 〈eu〉F
12. 〈e1〉F ← [〈b〉F ] · 〈eu〉F + [1− 〈b〉F ] · 〈ev〉F
13. 〈s0〉F ← [〈b〉F ] · 〈sv〉F + [1− 〈b〉F ] · 〈su〉F
14. 〈s1〉F ← [〈b〉F ] · 〈su〉F + [1− 〈b〉F ] · 〈sv〉F
15. Open 〈e0〉F , 〈e1〉F , 〈s0〉F and 〈s1〉F .
16. Output (e0, e1, s0, s1).

Figure 14. Distributed Non-Interactive ZKPoK for the statement L
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Prior MPC use in shuffles has primarily considered two cases: In the first case, used in [13], the data
donors A provide the sensitive data v to the computing parties (where here B = C) via secret sharing. The
parties in B then shuffle the secret shared data with respect to a uniformly random permutation π to get
v′, and then perform computation on v′ on behalf of a client. The permutation π ∈ Sm is generated by
each party i ∈ B locally generating their own permutation πi and then secret sharing this, with the final
permutation being computed via the product π =

∏
πi. If the permutations are represented as permutation

matrices this can be achieved by simply multiplying the secret shared permutation matrices. Active security
being obtained by performing the obvious checks on the final matrix representing π, i.e. that all entries are
in {0, 1} and that the row and column sums are all equal to one.

In [12] the case of A = B = C is considered for an application of Oblivious-RAM within an MPC
calculation. Parties are already assumed to have secret shares of the values to be shuffled. In order to hide
the data access pattern on v, that is which component of v is queried at any specific point, v is shuffled
with a uniformly random permutation. To generate π, every party i generates their own permutation πi and
(locally) transforms it into control bits for a Waksman network. Then every party secret shares its control
bits among the other parties, and all permutations are evaluated in sequence. The switch with respect to
a control bit being evaluated using the traditional multiplex (x, y) −→ ((1− b) · x+ b · y, b · x+ (1− b) · y).
To ensure active security, we check whether control bits b are in {0, 1} by opening b · (b− 1).

In traditional MixNets one has that the sets A, B and C are disjoint. A MixNet works by A entering a
set of input ciphertexts, consider for example ElGamal style ciphertexts over our elliptic curve group G, i.e.
the vector v = (vi) consists of values of the form

vi = (Mi + [ki] ·Q, [ki] · P )

for some ElGamal public key Q = [x] ·P . We then want to shuffle these ciphertexts and output a new set of
ciphertexts v′ which are the result of the shuffle. Here we utilize the malleability of ElGamal ciphertexts to
transform an encryption of a message Mi into another ciphertext encrypting the same message. Traditionally
each Mixer in the MixNet performs a shuffle and provides a zero-knowledge proof that the resulting output
ciphertexts are in fact the permuted (and randomized) input ciphertexts. Then the data is passed onto
another Mixer which does the same operation. Thus B consists of a number of parties all of whom operate
in sequence. The receiving parties C need to verify all of the zero-knowledge proofs from each Mixer.

In this work we examine whether one can treat B as a single multi-party mixer, and thus end up with
a single zero-knowledge proof. To do this we examine the MixNet protocol of Abe [2], and cast it not as a
single player protocol but as a multi-party protocol. Our protocol consists of two stages. In the first stage
we generate a secret-shared permutation π, then in the second stage we utilize the permutation π to shuffle
the ciphertexts and produce the zero-knowledge proofs.

Stage 1: Producing the shared permutation: In this stage each of our n parties generates a random
permutation πi, represented as a permutation matrix. They enter it into the MPC system, and the parties
then multiply the permutation matrices together to form a permutation π. We then need to derive switches
for a Waksman network producing the same permutation as π. We leave this step to the next section. Note
that we cannot generate shared random bits and use these as the control bits for a Waksman network, as
this does not result in a uniformly random permutation, as was observed in [3].

Stage 2: Producing the ciphertext permutation and proof: To perform the second step we can
concentrate on what happens at a single switching gate in the Waksman network. Let the control bit for this
gate be secret shared as 〈b〉F , where b ∈ {0, 1}, and we assume the input ciphertexts are given by

v0 = (A0, B0) = (M0 + [k0] ·Q, [k0] · P ),

v1 = (A1, B1) = (M1 + [k1] ·Q, [k1] · P ).

for some unknown messages M0,M1 and ephermal keys k0 and k1. In Abe’s MixNet the output of the
switching gate will be the values

v′b = (Ab, Bb) = (A0 + [r0] ·Q,B0 + [r0] · P ),
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v′1−b = (A1−b, B1−b) = (A1 + [r1] ·Q,B1 + [r1] · P ),

plus a zero-knowledge proof of the statement that(
logQ(A0 −A0) = logP (B0 −B0) = r0

AND logQ(A1 −A1) = logP (B1 −B1) = r1

)
OR

(
logQ(A0 −A1) = logP (B0 −B1) = r1

AND logQ(A1 −A0) = logP (B1 −B0) = r0

)
given the secret input r0 and r1. This is (again) a relatively standard Sigma protocol proof, and we have
already seen how to produce an (albeit simpler) zero-knowledge proof for an OR statement of equality of
discrete logarithms in Section 4. For the values of r0 and r1 we take a Beaver triple (〈r0〉F , 〈r1〉F , 〈r2〉F )
from the pre-processing. These values of 〈r0〉F and 〈r1〉F are also used to generate the zero-knowledge proof.
Thus we only need to produce the values of Ab, Bb etc, which can be derived from the assignments

〈C0〉E ← A0 + [〈r0〉F ] ·Q,
〈D0〉E ← B0 + [〈r0〉F ] · P,
〈C1〉E ← A1 + [〈r1〉F ] ·Q,
〈D1〉E ← B1 + [〈r1〉F ] · P,
〈A0〉E ← [1− 〈b〉F ] · 〈C0〉E + [〈b〉F ] · 〈C1〉E ,
〈B0〉E ← [1− 〈b〉F ] · 〈D0〉E + [〈b〉F ] · 〈D1〉E ,
〈A1〉E ← [1− 〈b〉F ] · 〈C1〉E + [〈b〉F ] · 〈C0〉E ,
〈B1〉E ← [1− 〈b〉F ] · 〈D1〉E + [〈b〉F ] · 〈D0〉E .

We can then open (〈A0〉E , 〈B0〉E , 〈A1〉E , 〈B1〉E), and produce the zero-knowledge proof as well.
Abe, in [1], considers the same problem as ours; namely how to provide a single proof of a sequence of

n-mixnets. Abe’s solution is for the n-servers to prove the input and output ciphertexts are a randomized
shuffle by committing to another shuffle, and then opening (based on a one-bit challenge) the transform
from the input or output ciphertexts to the third shuffle. To obtain 2−sec soundness security this protocol
is repeated sec times. To estimate the proof size we assume that an elliptic curve point requires one finite
field element in terms of size (assuming point compression is used). To open a randomization requires us
to publish one finite field element per ciphertext, and the permutation (which takes at most N2-bits). We
note each ciphertext consists of two elliptic curve points. Thus for such a zero-knowledge proof of a mix
of N elements we require space equivalent to (including the space of the actual initial input and output
ciphertexts)

sec ·N · (2 + 1) + 4 ·N = (3 · sec + 4) ·N
finite field elements; we ignore the cost of the permutation representation here.

For our solution we have 2 · log2(N) − 1 layers in the Waksman network, and in each layer we have N
input and N output ciphertexts. To represent this data we require space equivalent to

2 ·N · (2 · log2N) = 4 ·N · log2N

finite field elements. For the zero-knowledge proof for each Waksman gate we require six finite field elements
(see [2] for the precise proof output). Thus in total we require space equivalent to

6 · (N · log2N −N + 1)

for the proofs for each gate. Thus in total we require space equivalent to

10 ·N · log2N − 6 ·N + 6
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finite field elements to represent our proof.
On the other hand, our solution, in terms of space, will beat that of [1] when

10 ·N · log2N − 6 ·N + 6 ≤ (3 · sec + 4) ·N.

Thus we are more efficient when (approximately) we have

10 · log2N ≤ 3 · sec + 10.

When sec = 128, our solution is more efficient (in terms of space) as long as log2N ≤ 39, i.e. for all practical
ranges of N one would be interested in.

6 Generating the Waksman Control Bits

We are now left with the final problem of giving an algorithm which on input of a secret-shared permutation
matrix, outputs the secret-shared control bits of the associated Waksman network. Recall we simplify the
algorithm, and the network, by not having the fixed switch in the first gate of each output layer (thus
increasing the number of gates by m/2 − 1 from a traditional Waksman network). There is a classical
algorithm for this [20], but it is not obvious how to translate this to work in a data-oblivious manner. Thus
in this section we show how to perform this transformation obliviously. We let M denote the permutation
matrix which we start with, whose i-th row and j-th column element we refer to as Mi,j . We assume that
(the shared value of) M is guaranteed on input to be a permutation matrix; which can be checked by opening
the column and row sums and checking them to be equal to m, as well as opening Mi,j · (Mi,j − 1) and
verifying it is equal to zero for all i and j.

In what follows, to explain the algorithm used to do this conversion from the matrix to control bits, and
how we realized it with MPC, we will use a running example which is the permutation π̃ of matrix given
earlier:

M̃ =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0


The high level idea behind the algorithm uses the fact that a Waksman network has a recursive structure,
hence finding the control bits for a given permutation π can be done recursively. From π we determine two
permutations π1, π2 for the two subnetworks, as well as control bits for the inward and outward layers, such
that the composition of these realizes π. Then we apply the same process on π1, π2 and so on, till a control
bit is determined for every switch. The process proceeds in the three steps:

– Step One: The first step consists of taking the m × m permutation matrix M of π, and merging
coordinates corresponding to the same input or output switch, e.g, the first and second rows correspond
to the first inward switch thus they will be merged. The first and second columns correspond to the first
outward switch, they will be merged as well. Thus, this will result in an m/2×m/2 matrix M ′ such that
M ′i,j = M2·i−1,2·j−1 +M2·i,2·j−1 +M2·i−1,2·j +M2·i,2·j . For instance, for the permutation π̃, M̃ ′ will be

M̃ ′ =


2 0 0 0
0 1 0 1
0 0 2 0
0 1 0 1


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– Step Two: In the second step, we construct two permutation matrices M1 and M2 such that M1
i,j +

M2
i,j = M ′i,j . Those matrices will be the ones corresponding respectively to π1 and π2, the permutations

of the two sub networks. For our example, M̃1 and M̃2 can be (one has a choice obviously)

M̃1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 M̃2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


– Step Three: The last step is then setting the control bits for the inward and outward layers. The

algorithm does this by identifying the coordinates of the entries in M , that correspond to the entries in
M1 which are equal to one. So for our example M̃1

2,2 = 1 as this entry corresponds to the one in position

(4, 4) of M̃ , therefore the coordinates (4, 4) are identified. Note that for some entries, two coordinates
can be identified instead of one, which is the case for M̃1

1,1 and M̃1
3,3 in our example. When this happens,

one of the coordinates is identified (which one does not matter for the algorithm) As such, for example,
the coordinates (2, 1), (4, 4), (5, 5) and (8, 7) could be identified.
Then within each of these coordinates, if there is an even component, the associated switch to this
component is identified and its control bit is set to be one. So for our example, the coordinates (2, 1)
contain an even component (in the first position) and thus the associated switch to this even component
is the switch one, i.e. 2/2, in the inward layer, i.e. control one bit is set to one.
Similarly, the coordinates (4, 4), and (8, 7) contain even components, and so the associated switches to
these even components are 2 = 4/2 and 4 = 8/2 in the inward layer and 2 = 4/2 in the outward layer,
and their associated control bits are also set to one.
The control bit of all the remaining switches in the inward and outward layers are set to zero.

This process is repeated recursively on the sub networks, until we reach the subnetworks of size 2 which are
simply switches. For such switches, if the corresponding matrix is the identity matrix, we set the switch to
be zero, otherwise, we set it to be one. Figure 6 illustrates the resulting realization of the permutation π̃.

Making the algorithm suitable for MPC implementation: Recall, our aim is to transform a secret
shared permutation matrix M of π, into secret shared control bits realizing it. We can achieve this if we
somehow manage to transform the above algorithm into arithmetic operations.

The first step of the algorithm is easy to transform, as constructing M ′ is by definition done by summing
up entries from M of known coordinates, and is thus a local operation when M is presented in secret shared
form.

The last step is also relatively easy to transform; it consists of comparing entries from M1 with entries
from M , then checking whether coordinates contain even components. As such, the control bit bink for the
switch k in the inward layer and boutk in the outer layer can be computed as

bink =

j=m/2∑
j=1

M1
k,j · (M2·k,2·j−1 +M2·k,2·j),

boutk =

i=m/2∑
i=1

M1
i,k · (M2·i−1,2·k · (1−M2·i,2·k−1) +M2·i,2·k).

The control bit corresponding to a subnetwork of size two can be computed as

bmid = M1,2,

as we have M = I2 if no switch occurs and M is the off-diagonal 2× 2 matrix if a switch occurs.
The second step is the most intricate one to transform, given that we need to split a secret shared matrix

M ′ into two secret-shared permutation matrices M1 and M2. Our idea for this step is to express constraints
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on M1 and M2 into equations, where variables are entries of M1 and M2. Therefore, solving these equations
identifies M1 and M2. This solution is then accomplished by making use of the fact that the entries are
integers in {0, 1}, which constrains their possible value considerably.

The first constraint on M1 and M2 is that they sum up to M ′, i.e. for i, j ∈ {1, . . . ,m/2} we have

M1
i,j +M2

i,j = M ′i,j

The second constraint on M1 and M2 is that they are permutation matrices, which translates into the set
of linears equations for j ∈ {1, . . . ,m/2} and k ∈ {1, 2}

m/2∑
i=1

Mk
i,j = 1 and

m/2∑
i=1

Mk
j,i = 1,

as well as the quadratic equations for i, j ∈ {1, . . . ,m/2} and k ∈ {1, 2}

Mk
i,j · (Mk

i,j − 1) = 0.

To find M1 and M2, the strategy will be to solve the linear equations, while allowing entries Mk
i,j to have

values only in {0, 1}, which thus caters for the quadratic equations.
We do this by first initializing the matrices M1, M2, O1 and O2 by having their entries equal to zero.

The matrices M1 and M2 will contain at the end the permutation matrices of π1 and π2, as soon as we
fix an entry in Mk

i,j we set Ok
i,j equal to one. This is represented by the algorithm Init(M1,M2, O1, O2) in

Figure 15
The next step of the process consists of setting entries Mk

i,j that have only one solution, see the function

StartFix(M ′,M1,M2, O1, O2) in Figure 15. When we have M ′i,j = 0 (resp. 2) then we know that the values

Mk
i,j must be equal to zero (resp. one), since these are the only ways integers in {0, 1} can add up to zero

(resp. two).
For our example, after the execution of StartFix our values of Õ1 and Õ2 become

Õ1 =


1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

 Õ2 =


1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0


If Mk are not fully determined at this stage, we need to deal with entries corresponding to one’s in M ′.
Having a one in M ′i,j means that one of the entries M1

i,j ,M
2
i,j is equal to one, and the other equals zero. We

will take (as a free choice) coordinates (i, j) of the first entry in M ′ that is equal to one, and we will set M1
i,j

to be one. See procedure MakeChoice in Figure 15. In our example, after making such a choice, Õ1 and Õ2

become

Õ1 =


1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 0

 Õ2 =


1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 0


Making a choice will fix one entry in Mk, and fixing an entry in Mk will allow us to fix other entries,

see sub-procedure Update in Figure 15. For our example, after executing Update, all entries Õk
i,j are equal

to one and therefore M1,M2 are fully determined. However, executing Update only once does not always
guarantee to fix all entries that can be fixed with respect to the choice made, in addition making one choice
does not guarantee that all entries will be fixed. That is, some permutations require repeated application of
MakeChoice and Update until all the values Õk

i,j are equal to one. Then we need to determine the bounds of
how many times we should iterate these steps.
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Init(M1,M2, O1, O2):
1. For k ∈ {1, 2} and i, j ∈ {1, . . . , m

2
}:

(a) Mk
i,j ← 0, Oki,j ← 0.

StartFix(M ′,M1,M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}:

(a) If (M ′i,j = 0) then set O1
i,j ← 1, O2

i,j ← 1.
(b) If (M ′i,j = 2) then set M1

i,j ← 1, O1
i,j ← 1, M2

i,j ← 1, O2
i,j ← 1.

MakeChoice(M ′,M1,M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}

(a) If (M ′i,j = 1 and O1
i,j = 0) then set M1

i,j ← 1, M2
i,j ← 0, O1

i,j ← 1, O2
i,j ← 1 and return.

Update(M1,M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}:

(a) If (O1
i,j = 0)

i. If (

m
2∏

k=1
k 6=j

O1
i,k = 1) then set M1

i,j ← 1− (

m
2∑

k=1
k 6=j

M1
i,k), O1

i,j ← 1, M2
i,j ← 1−M1

i,j and O2
i,j ← 1.

(b) If (O1
i,j = 0)

i. If (

m
2∏

k=1
k 6=i

O1
k,j = 1) then set M1

i,j ← 1− (

m
2∑

k=1
k 6=i

M1
k,j), O

1
i,j ← 1, M2

i,j ← 1− (M1
i,j) and O2

i,j ← 1.

Waksman-Sub(M ′):
1. Init(M1,M2, O1, O2).
2. StartFix(M ′,M1,M2, O1, O2).
3. For c ∈ {1, . . . , m

4
}

(a) MakeChoice(M ′,M1,M2, O1, O2) .
i. For k ∈ {1, . . . ,m+ 1− 4 · c}

A. Update(M1,M2, O1, O2).

Figure 15. Waksman Algorithm Step 2 Sub-Procedures
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At the end of the execution of StartFix, in each row i (resp. column j) of Mk, either m/2− 2 entries are
fixed (which is the case where the row i (resp. column j) in M ′ contained two one’s), or m/2 entries are
fixed (which is the case where the row i (resp. the column j) in M ′ contained an entry that is equal to two).
Thus, at most n entries in Mk remain unfixed.

Recall once we make a choice to fix one entry in Mk, this allows us to fix other entries. That is, at least
row i and column j in Mk will now contain only one entry that is not fixed, respectively Mk

i,f and Mk
f ′,j .

This is because each row (resp. column) in Ok can contain at most two zero entries before fixing the value
(i, j). These two entries will themselves fix one entry in row f ′ and one entry in column f (if f = f ′ only one
entry will be fixed). Therefore, making a choice and updating with respect to it will fix at least four other
entries, with the minimum occuring when f = f ′. Thus, we will need to execute MakeChoice at most m/4
times.

Assuming that the first execution of Update after MakeChoice will fix at least three entries, and each
execution of Update after the first execution will at least fix one entry of the entries that can be fixed. Also
the choice we made may fix the whole of the matrices Mk. Thus, we will need to execute Update m+ 1−4 · c
times where c is the number of choices already made. This gives the final procedure for the second step in
sub-algorithm Waksman-Sub in Figure 15.

Transforming the algorithm: Having produced an (almost) data-oblivious methodology to generate a
Waksman network we now need to transform it into a fully data-oblivious methodology by replacing all
operations with algebraic operations. Again steps one and three are trivial, thus we are left with step two.
The key step is dealing with the conditional operations, but this can be easily transformed into algebraic
operations as follows.

At various points we need to determine whether a value in {0, 1, 2} is equal to zero, one or two. This can
be done via algebraic operations using three simple quadratic functions, namely

Q0(x) = (x− 1) · (x− 2)/2,

Q1(x) = −x · (x− 2),

Q2(x) = x · (x− 1)/2.

Given these functions converting Figure 15 into a secret shared format is relatively simple; which we give in
Figure 16. That the algorithm implements the conversion from a permutation to a set of Waksman switches
in a data-oblivious manner is then immediate, and thus the algorithm when executed via an actively secure
MPC system will be an actively secure rendition of the said algorithm also follows from the security of the
underlying MPC protocol.

Complexity of the algorithm: We will compute here the complexity of this algorithm. That is, the
complexity of transforming a secret-shared permutation matrix, to the secret-shared control bits of the
associated Waksman network.

Given that the realization of Multiply-F requires interaction between players whereas addition is done
locally, the complexity of our method is dominated by the number of multiplications between secret shared
values. We present in Table 1 the number of multiplications between secret shared values for the sub-
procedures of each step of the algorithm, as well as the number of times each sub-procedure is executed
within one recursion. From these formulae it is easy to evaluate the total number of multiplications between
shared secret values for any value of m for the whole algorithm. We present such a summary in Table 2
for small values of m. As one can easily see, the number of multiplications grows super-polynomially with
m. However the multiplicative depth of the computation only grows logarithmically with m, hence, these
multiplications can be efficiently parallelized.
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Init(〈M1〉F , 〈M2〉F , 〈O1〉F , 〈O2〉F ):
1. For k ∈ {1, 2} and i, j ∈ {1, . . . , m

2
}:

(a) 〈Mk
i,j〉F ← 0, 〈Oki,j〉F ← 0.

StartFix(〈M ′〉F , 〈M1〉F , 〈M2〉F , 〈O1〉F , 〈O2〉F ):
1. For i, j ∈ {1, . . . , m

2
}:

(a) 〈O1
i,j〉F ← Q0(〈M ′i,j〉F ) +Q2(〈M ′i,j〉F ).

(b) 〈O2
i,j〉F ← Q0(〈M ′i,j〉F ) +Q2(〈M ′i,j〉F ).

(c) 〈M1
i,j〉F ← Q2(〈M ′i,j〉F ).

(d) 〈M2
i,j〉F ← Q2(〈M ′i,j〉F ).

MakeChoice(〈M ′〉F , 〈M1〉F , 〈M2〉F , 〈O1〉F , 〈O2〉F ):
1. 〈d〉F ← 1.
2. For i, j ∈ {1, . . . , m

2
}

(a) 〈b〉F ← 〈d〉F ·Q1(〈M ′i,j〉F ) · (1− 〈O1
i,j〉F ).

(b) 〈M1
i,j〉F ← (1− 〈b〉F ) · 〈M1

i,j〉F + 〈b〉F .
(c) 〈O1

i,j〉F ← (1− 〈b〉F ) · 〈O1
i,j〉F + 〈b〉F .

(d) 〈O2
i,j〉F ← (1− 〈b〉F ) · 〈O2

i,j〉F + 〈b〉F .
(e) 〈d〉F ← 〈d〉F · (1− 〈b〉F ).

Update(〈M1〉F , 〈M2〉F , 〈O1〉F , 〈O2〉F ):
1. For i, j ∈ {1, . . . , m

2
}:

(a) 〈b〉F ← (1− 〈O1
i,j〉F ) ·

m
2∏

k=1
k 6=j

〈O1
i,k〉F .

(b) 〈M1
i,j〉F ← (1− 〈b〉F ) · 〈M1

i,j〉F + 〈b〉F · (1− (

m
2∑

k=1
k 6=j

〈M1
i,k〉F )).

(c) 〈M2
i,j〉F ← (1− 〈b〉F ) · 〈M2

i,j〉F + 〈b〉F · (1− 〈M1
i,j〉F ).

(d) 〈O1
i,j〉F ← (1− 〈b〉F ) · 〈O1

i,j〉F + 〈b〉F .
(e) 〈O2

i,j〉F ← (1− 〈b〉F ) · 〈O2
i,j〉F + 〈b〉F .

(f) 〈b〉F ← (1− 〈O1
i,j〉F ) ·

m
2∏

k=1
k 6=i

〈O1
k,j〉F .

(g) 〈M1
i,j〉F ← (1− 〈b〉F ) · 〈M1

i,j〉F + 〈b〉F · (1− (

m
2∑

k=1
k 6=i

〈M1
k,j〉F )).

(h) 〈M2
i,j〉F ← (1− 〈b〉F ) · 〈M2

i,j〉F + 〈b〉F · (1− 〈M1
i,j〉F ).

(i) 〈O1
i,j〉F ← (1− 〈b〉F ) · 〈O1

i,j〉F + 〈b〉F .
(j) 〈O2

i,j〉F ← (1− 〈b〉F ) · 〈O2
i,j〉F + 〈b〉F .

Waksman-Sub(〈M ′〉F ):
1. Init(〈M1〉F , 〈M2〉F , 〈O1〉F , 〈O2〉F ).
2. StartFix(〈M ′〉F , 〈M1〉F , 〈M2〉F , 〈O1〉F , 〈O2〉F ).
3. For c ∈ {1, . . . , m

4
}

(a) MakeChoice(〈M ′〉F , 〈M1〉F , 〈M2〉F , 〈O1〉F , 〈O2〉F ) .
i. For k ∈ {1, . . . ,m+ 1− 4 · c}

A. Update(〈M1〉F , 〈M2〉F , 〈O1〉F , 〈O2〉F ).

Figure 16. Secret Shared Waksman Algorithm Step 2 Sub-Procedures
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Table 1. Number of multiplications and invocations for sub-procedures for one recursion.

Step 1 Step 2 Step 3
StartFix MakeChoice Update Comp.

inward bits
Comp. out-
ward bits

No. of
mult.

0 3 ·m2/2 7 ·m2/4 (m+ 10) ·m2/4 m2/4 m2/2

No. of
exec.

1 1 m/4 m · (m− 2)/8 1 1

Table 2. Number of multiplications between secret shared values for various values of m.

m No. of multiplications needed

2 0

4 120

8 2096 + 2 · 120 = 2336

16 48960 + 2 · 2336 = 53632

32 1306880 + 2 · 53632 = 1414144

64 37708800 + 2 · 1414144 = 40537088

128 1140494336 + 2 · 40537088 = 1221568512

256 35430481920 + 2 · 1221568512 = 37873618944

512 1116666920960 + 2 · 37873618944 = 1192414158848
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A Basic Functionalities

The ideal commitment functionality is given in Figure 17 and a realisation in the random oracle model is
given in Figure 18. The SPDZ offline functionality is given in Figure 2

The Ideal Functionality FCommit

Commit: On input (Comm, v, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), where v is either in
a specific domain or ⊥, it stores (v, i, τv) on a list and outputs (i, τv) to all players and adversary.

Open: On input (Open, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), the ideal functionality
outputs (v, i, τv) to all players and adversary. If (NoOpen, i, τv) is given by the adversary, and Pi is corrupt,
the functionality outputs (⊥, i, τv) to all players.

Figure 17. The Ideal Functionality for Commitments

B Proof of Theorem 1

We design here a similar game, see Figure 19, to the one used in SPDZ, in order to prove that the MAC
check is correct, and that the soundness is negligible. The second step in the game models the fact that
corrupted players can lie about their shares of values opened throughout the protocol execution, whilst ∆
models the fact that the adversary can introduce errors on the MAC values.
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The Protocol ΠCommit

Commit:
1. In order to commit to v, Pi sets o ← v||r, where r is chosen uniformly in a determined domain, and

queries the Random Oracle H to get c← H(o).
2. Player Pi then broadcasts (c, i, τv), where τv represents a handle for the commitment.

Open:
1. In order to open a commitment (c, i, τv), where c = H(v||r), player Pi broadcasts (o = v||r, i, τv).
2. All players call H on o and check whether H(o) = c. Players accept if and only if this check passes.

Figure 18. The Protocol for Commitments.

The MACCheck Security Game

1. The challenger generates the secret key α← α1 + . . .+ αn and MACs γi[aj ]← α · aj and Γi[Ak]← [α] ·Ak.
2. The challenger sends messages a1 . . . at, A1, . . . Au to the adversary.
3. The adversary sends back messages a′1 . . . a

′
t, A
′
1, . . . A

′
u .

4. The challenger generates random values r1, . . . rt, rt+1, . . . rt+u.
5. The adversary provides an error ∆ ∈ E(K).
6. The challenger computes

a ←
t∑

j=1

rj · a′j ,

vi ←
t∑

j=1

rj · γi[aj ],

A ←
u∑
k=1

rk+t · [A′k],

Γi ←
u∑
k=1

[rt+k] · Γi[Ak],

Wi ← [vi − αi · a] · P + Γi − [αi] ·A.

7. The challenger checks whether W1 + . . .+Wn = ∆
8. The adversary wins if there is an i for which a′i 6= ai or A′i 6= Ai, and yet the challengers check passes.

Figure 19. MACCheck Security Game
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We now compute the probability of passing the check. The check goes through if the following equalities
hold:

∆ =

n∑
i=1

Wi =

n∑
i=1

([vi − αi · a] · P + Γi − [αi] ·A)

=

n∑
i=1

([ t∑
j=1

rj · γi[aj ]− αi ·
t∑

j=1

rj · a′j
]
· P

+

u∑
k=1

[rt+k] · Γi[Ak]− [αi] ·
u∑

k=1

[rt+k] ·A′k
)

=

n∑
i=1

([ t∑
j=1

(
rj · γi[aj ]− αi · rj · a′j

) ]
· P

+

u∑
k=1

(
[rt+k] · Γi[Ak]− [αi] · [rt+k] ·A′k

))
=

t∑
j=1

(
[rj ·

n∑
i=1

(
γi[aj ]− αi · a′j

)
] · P

)

+

u∑
k=1

(
[rt+k] ·

n∑
i=1

(Γi[Ak]− [αi] ·A′k)

)

=

t∑
j=1

(
[rj ·

(
α · aj − α · a′j

)
] · P

)
+

u∑
k=1

([rt+k] · ([α] ·Ak − [α] ·A′k))

= [α ·
t∑

j=1

rj ·
(
aj − a′j

)
] · P + [α] ·

u∑
k=1

[rt+k] · (Ak −A′k)

= [α] ·
t+u∑
j=1

[rj · bj ] ·Bj

Where

bj =

{
(aj − a′j) for j ∈ {1, . . . , t}

1 for j ∈ {t+ 1, . . . , t+ u}
and

Bj =

{
P for j ∈ {1, . . . , t}

Aj−t −A′j−t for j ∈ {t+ 1, . . . , t+ u}
Note that rj , bj and Bj are known for the adversary. So the last equality can be written as ∆ = [α] ·N where
N is known to the adversary. Here we distinguish two cases:

– N 6= 0G : in this case, passing the check is equivalent to guessing α, which is, for the adversary, a random
number sampled from Fp. Therefore, passing the check can happen with probability 1/p.

– N = 0G : in this case, the adversary will pass the check, however, N = 0G can happen with only a small
probability (if the adversary is dishonest), which we now show (following the same argument presented
in [6, 7]). Since N = 0G if and only if

∑t+u
j=1[rj ] · ([bj ] ·Bj) = 0G , we define

r = (r1, . . . , rt+u) and M = ([b1] ·B1, . . . , [bt+u] ·Bt+u),

along with the linear map

fM (r)← [r] ·M =

t+u∑
j=1

[rj ] ·Mj .
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Note, that fM is not the identically zero mapping because (assuming a dishonest adversary) there is
at least one j s.t aj 6= a′j or Aj 6= A′j . Following the rank-nullity theorem we can then conclude that
dim(ker(fM )) = t+ u− 1. Also since r is randomly chosen and given to the adversary after choosing a′j
and A′k, the probability of r ∈ ker(fM ) is |Ft+u−1

p |/|F t+u
p | = 1/p.

So to conclude, the probability of wining the game is at most 2/p.

As for correctness, a honest prover will win the game with probability one (this is the case where aj = a′j
for j ∈ [1, . . . , t], Ak = A′k for k ∈ [1, . . . , u], and ∆ = 0.)
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