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Abstract—Estimating entropy of random processes is one of the
fundamental problems of machine learning and property testing.
It has numerous applications to anything from DNA testing and
predictability of human behaviour to modeling neural activity
and cryptography. We investigate the problem of Rényi entropy
estimation for sources that form Markov chains.

Kamath and Verd (ISIT’16) showed that good mixing prop-
erties are essential for that task. We prove that even with very
good mixing time, estimation of entropy of order o > 1 requires
Q(K?71/*) samples, where K is the size of the alphabet; par-
ticularly min-entropy requires Q(X %) sample size and collision
entropy requires Q(K 3/ 2) samples. Our results hold both in
asymptotic and non-asymptotic regimes (under mild restrictions).
The analysis is completed by the upper complexity bound of
O(K?) for the standard plug-in estimator. This leads to an
interesting open question how to improve upon a plugin estimator,
which looks much more challenging than for IID sources (which
tensorize nicely).

We achieve the results by applying Le Cam’s method to two
Markov chains which differ by an appropriately chosen sparse
perturbation; the discrepancy between these chains is estimated
with help of perturbation theory. Our techniques might be of
independent interest.

Index Terms—Sample Complexity, Markov Chains, Entropy

I. INTRODUCTION

We follow up after [16] to investigate efficiency of estima-
tors for other popular notions of entropy - namely min-entropy,
collision entropy and in general Rényi entropy.

Entropy estimation is one of the fundamental problems in
the field of distribution testing. In addition to being mathe-
matically interesting it has multiple applications to anything
from DNA introns identification to predictability of human be-
haviour [30], [31], [49], [50], [53]. In all of those applications
one could use Rényi entropy in place of Shannon entropy.

Rényi entropy [45] arises in many applications as a gener-
alization of Shannon Entropy [48]. It is also of interests on
its own right, with a number of applications including unsu-
pervised learning (like clustering) [26], [57], multiple source
adaptation [37], image processing [36], [39], [46], password
guessability [3], [19], [43], network anomaly detection [35],
quantifying neural activity [41] or to analyze information flows
in financial data [27].

In particular Rényi entropy of order 2, known also as
collision entropy, is used in quality tests for random number
generators [29], [52], to estimate the number of random

bits that can be extracted from a physical source [8], [23],
characterizes security of certain key derivation functions [4],
[12], helps testing graph expansion [15] and closeness of distri-
butions to uniformity [6], [42] and bounds the number of reads
needed to reconstruct a DNA sequence [38]. In turn the min-
entropy is of fundamental importance to cryptography [47].

There are two models of randomness source which we
consider when estimating entropy: model with iid samples,
and one which samples from a Markov chain. Over the years
asymptotic regime for iid samples got the most attention [2],
[91, [13], [18], [20], [56]. More recent works consider exact,
non-asymptotic behaviours of the estimators under the iid
model [17], [41], [51], [55]. Only recent papers considered
Rényi entropy for iid samples [1], [40].

Estimation of entropy of Markov chains is a much harder
task. [28] gave Rényi entropy estimators for reversible Markov
chains in a non-asymptotic regime. They also showed that
there are no guarantees on the estimator for chains with
bad mixing time properties. In [16] authors give bounds for
Shannon entropy of Markov chains. In [21], [54] authors study
a general problem of learning Markov chains from limited
samples space.

In this paper we develop lower bounds on the sample
complexity of Rényi entropy estimators in Markov chain
models. Our results hold both when estimating the asymptotic
entropy, and when estimating the entropy per symbol of a
finite sample. The bounds hold even for the Markov chains
with close to optimal mixing properties (i.e. are not due to
badly mixing behaviors).

A. Estimation for Iid Samples

It is interesting to recall the lower bounds for Rényi entropy
estimators sample complexity for the case of iid samples,
bounds were achieved in a series of papers by [1], [40].
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TABLE I: Lower bounds for estimating Rényi entropy « of
iid samples from a finite alphabet S, as in [40]



B. Our Results and Techniques (Rényi Entropy Rates)

We consider irreducible and aperiodic Markov chains. Our
main results are

o we establish lower bounds for the sample complexity
under Markov model of dependency, for Rényi entropy,
known results only concern IID samples; we complete by
upper bounds for the natural ”plugin” estimator.

o we show that those bounds hold both when estimating
asymptotic entropy of Markov chain, and when estimat-
ing entropy of fixed-length paths

Our techniques

« we develop a lemma on closeness of sample paths of two
chains; it non-trivially extends the classical result on the
distance two IID sequences and is of independent interest.
The motiviation is to make Le Cam’s method work on
Markov chains - for the IID case it is easier as certain
discrepancies like KL or Hellinger tensorize, here not.

o We use perturbation theory to get insights into spectral
properties of matrices; this simplifies otherwise compli-
cated calculations and is of independent interest.

Theorem 1 (Lower Bounds for Asymptotic MC Entropy
Estimation). For any state space S and any estimator of the
entropy rate of Markov chains on S, the minimum number of
samples to achieve a constant additive error is as in Table II.
This holds even for chains with contant spectral gap (which
mix quickly).

Renyi Entropy Min. num. of samples
Ho Q(JSP%)
3
H, Q (|S\§
Ho, (1<a< o) Q(|5\2*é)

TABLE II: Lower Bounds for Entropy Estimation under
Markov Chain Model on State Space S and spectral gap 0.01.

Theorem 2 (Lower Bounds for Finite-Sample MC Entropy
Estimation). Bounds from Theorem [ apply to entropy-per-
symbol of fixed-length samples, assuming a) the entropy order
1.001 < « b) the starting distribution probability masses are
at least |S|~°M) ¢) the length of samples n = w(log |S|).

For illustration, we prove the upper bound O(|S|?) under
certain restrictions (relaxing them is outside of the scope).

Theorem 3 (Plugin Estimator for MC Entropy). The plug-
in estimator achieves an additive error of ¢ = 0.001 with
n = 0(5)2)1og® YV (|S|) samples, assuming a) the entropy
order o > 1.001 b) the spectral gap is (1) c) the stationary
probability masses are Q(|S|™1) d) the transition matrix
entries are Q(]S|71).

II. PRELIMINARIES

A. Notation

By 1,, we denote the matrix of ones of size p X q. By
0,,, we denote the matrix of zeros of size p x q. By I, we

denote the identity matrix of size p x p. By AT we denote the
transpose of A.

The spectral radius of M is denoted by p(M). The «-th
Hadamard power of M is defined as (M°*); ; = (M; ;)
(the entry-wise power).

Matrix norms induced by vector p-th norms are denoted as

usual by || - ||.
Troughout the paper by the transition matrix M of a Markov
chain X we understand the matrix M, ,, = Pr[X, =

$2|Xn—1 = s1]; by the definition of MC it doesn’t depend
on n. Note that in our convention M is row-stochastic.

B. Entropy Rates

For a single distribution X the Rényi entropy of order
o > 1 is defined as Hy(X) = ——5log>, Pr[X = z].
In the case @ = oo we obtain (in the limit) the min-entropy
H.(X) = —logmax, Pr[X = z|. The entropy rate of
a stochastic process X1, Xo,... is the limiting entropy per
symbol TH,(X1,...,X,) (where v may be also a = c0).
For Markov chains this limit exists under standard conditions
(irreducibility, aperiodicity) and can be explicitly evaluated.

1) Entropy Ho: It is known that the min-entropy rate of a
markov chain is determined by the average heaviest cycle [28].
The average weight of a cycle C = sg — s1 — 52780 =
so is defined as w(C) = ([]_; M(si—1,s;))" where M is
the transition matrix; the entropy rate equals

H (M) = flogmcaxw(C). (1)

2) Entropy H,: To evaluate the limiting Rényi entropy of
order o, one considers spectral properties of the Hadamard
power of the chain transition matrix M. Namely [44]

HL (M) = 1

—

log p (M°®) )

where p(-) denotes the spectral radius of a matrix.

C. Le Cam’s method

The popular technique of proving lower bounds on a mini-
max estimator is to find two sample distributions such that (a)
they are statistically close and (b) the true values of estimated
parameters or functionals are far away.

Since the values of estimated parameters are far away, we
can use the estimator as a distinguisher between two sample
distributions. But the samples are close together (say e-close)
thus any distinguisher with constant chance of success requires
at least 2(1/¢) samples, which provides lower bound.

D. Perturbation Theory

The spectrum of a matrix remains (somewhat) stable under
perturbations. There are many results of this form and we refer
to [24], [25], [58] for more details and a survey; for our needs
the classical result due to Bauer-Firke will be enough.

Lemma 1 (Bauer-Firke Eigenvalue Perturbation [7]). If A is a
real normal matrix, that is AAT = AT A then each eigenvalue
of the matrix A+ E is at most §-apart from some eigenvalue
of A, where 6 = || E||.



Also the perturbations of eigenvectors have been studied.
We recall bounds depending on a hitting times

Lemma 2 (Perturbation of MC stationary distributions [10]).
The stationary distribution before and after the perturbation
by a matrix E differ in £1-norm by at most & - ||E|| o, for any
K such that max; ; i L 2k where m; j 18 the expected time
of hitting j when the cham starts from 1.

E. Coupling

Coupling refers to building joint distribution with given
marginals and is very useful in studying Markov chains [14].
The following slightly extends the standard construction

Proposition 1 (Consistent Coupling). For any four dis-
crete random variables X1, Xo,Y1,Ys there exist distribu-
tions X1, X5, Y], Y] over same probability space, such that
X =X1,X,=X0,Y] =Y1,Y] =Y, and Pr[X| #Y]] =
drv (X1, Y1).

FE. Chernoff-Type Bounds for Markov Chains

Chernoff-type bounds hold for Markov chains with expo-
nentially small tails, but the constant depends on spectral
properties of the transition matrix [34] or on (related) mixing
times [11]. We use them to estimate the transition matrix and
analyze the plugin estimator.

ITI. RESULTS AND PROOFS
A. Sample Paths of Perturbed Markov Chains

The lemma below states that sample paths of two chains
with close transition matrices remains statistically close, when
the number of samples is not too big.

Lemma 3 (Total Variation of Markov Chains with Close Tran-
sitions). Consider two Markov chains with transition matrices
M and M + E, starting from their stationary distributions
uM ., MHE The total variation & between n+ 1 samples from
both chains is bounded by

<N = 4 ()T B

where |E| is the matrix of absolute entries of E and 1 is the
vector of ones.

Before we proceed to the proof let us make few remarks.

Remark 1 (Sparsity of Perturbation Helps). Note that ()T -
|E| -1 is a combination of row-sums of |E| with weights ™
For fixed i the mapping E — p™ - |E| - 1 is a matrix norm
which captures sparsity.

Remark 2 (Bounds for IID distributions). Consider the
following matrices

MX = [ﬁlm,m—l Om,g} and My =
[0, ml_ 7Lmm—t|. They describe 1ID distributions
w™  uniform over 1,....m — £ and p* uniform over
£,...,m respectively. We can write My = Mx + E where
E = [—ﬁlm,z 0, m—2¢ ﬁlm,g]. Applying Lemma 3
we get that the total variation between n samples from X and

n samples from Y is bounded by n - ﬁ =n-dpv(p;pY),

as in the standard bound for the distance of IID variables.

We give two proofs of Lemma 3- one by a coupling, the
other by a dynamic programming technique where the distance
for n samples is expressed in terms of the distance of n — 1
samples, and the connection is explicit due to factorization of
finite-sample distributions under the Markov assumption.

by Coupling. Let Xg,..., X, and Yy,...,Y, be samples
from two Markov chains with transition matrices Mx and
My respectively; let X< = (X1,..., X}). For any coupling

drv(X<n, Y<n) =

Pr[X<n—1=Ycn1] - dov(Xn; Yo |X<no1 =

Y§n—1 + Pr[Xgn—l 7& an—l}'

. dTV(Xn; Yn|X<n—1 7é Yén—l)

< dTV(Xn; Yn‘anl = Ynfl) + Pf[Xgn—l 7é Yénfl] (3)
where we used drv(Xn;Yn|X<n-1 = Ygno1) =
drv(Xn; Yn|Xn—1 = Y,—1) which follows from the Markov

property. For two Markov matrices Mx, My and any (com-
mon) distribution p we have

[u" - (Mx — My)|1 < p* - |Mx — My|-1

If X starts from the stationary distribution X we have X, 4
u~ for all n. Therefore

Ay (Xn; Y| Xpo1 = Yoo1) < (0)7 - |Mx — My| -1 (4)
There is a coupling such that

PriX<,—1# Y<n—i1] = drv(X<n-1,Y<n-1) )
Putting Equations (4) and (5) into Equation (3) we get
drv(X<n, Yen) <
T Mx — My | -1+ Pr[X¢n1 # Yen1)-
so that the statement follows by induction. [

by Dynamic Programming. Consider the total variation dis-
tance of n+ 1 samples, and let x| ™+ be as in Lemma 3.

no__
TV —

50,e-18n

C0n51der us ITI_, M, ,s, as the difference between
Mso [[y M, ys - (Msn—lysn + E) and

pd TT7 ) Ms,_, s, - E; then by the triangle inequality dry <
I, + I where I; equals:

n—1
2 : M
:LLso H Msi—hél
i=1

+E
/’Léo Mél 1,Si
S05eeesSn—1

with [|[M + Eflo = max,,_, >

/’LSO HMS«L 1,8 7:“‘50+EH M+E)S7 1,84

=1

|(M+E) | and

Sn—1,8n

Z Mso HM& 1,54 Z|Esn 1571.

505--38n—1 Sn

I, =

M + Ello



with ||Ellec = maxg, , > . |Fs, ,s,|. Observe that |[M +
F|| =1 because M + E is stochastic. Thus I; is at most

n—1 n—1
2 : M M+E —
Hsqy H Msi—hsi — M, H(M+ E>Si71751 -

80538 n—1 =1 =1

(6)
= dy!
If 4™ is stationary for M then by Chapman-Kolmogorov

L=@")" - (M+E)""-|E|1
— (,U/JW)T'Mn_l . |E‘ -1
= (") E -1

Summing up we get
dpy <dpy' + ()" B -1
which by induction implies the statement. O

B. Construction of Extreme Matrix

From now on we assume that the state space has |S| = m
elements. We apply Le Cam’s method to two Markov chains:

o the random walk with uniform transitions %1,,,7,”

o perturbation of the uniform random walk which over-
weights one element. For a parameter 0 < € < % the
transition matrix of this chain is defined as

%1m71,m71 %177171,1
M = 1 € 1 1
o~ mer) ime1 (Gt e)

Our perturbation is sparse (affects only one row and one
column), and thus we expect the change in the distance of
finite samples to be small. On the other hand it will have a
significant effect on the spectrum of Hadamard powers.

)

C. Mixing Time is Good

[28] showed that bad mixing properties heavily impact
the efficiency of an estimator. Here we argue that Markov
chains we mentioned above have very good mixing times, thus
concluding that estimation of entropy is still hard even when
restricted to Markov chains with good mixing properties.

For the unperturbed matrix eigenvalues are 1 (single) and
0 (multiplicity of m — 1) (this follows from known properties
of matrix of ones [22]); it follows that the spectral gap is one.
After the perturbation we maintain the constant spectral gap;
by perturbation theory (Lemma 1) eigenvalues changes by at
most ||E| = O(m~'/2), smaller than 0.01 for sufficiently big
m. We avoided calculating eigenvalues explicitly.

D. Entropy Rates

In this section we prove Theorem 1, our result on entropy
rates. Entropy rates for stochastic sources are understood as
the limiting entropy per symbol (for Markov chains they exist
under standard assumptions such as ergodicity).

1) Rate Evaluation for H.,: We find the change in the
entropy rate and statistical distance when setting ¢ > 0 and
e = 0 in Equation (7).

Claim 1 (Min-Entopy Rate). For the chain with transition
matrix as in (7)

1
H.(M)=—log ( —|—e>
m
Proof. The heaviest cycle is the self-loop at the m-th state. [

Claim 2 (Statistical Distance Closeness). The variational
distance between n samples from M in Equation (7) and the
random walk, assuming both chains start from their stationary
distributions, is bounded by O(e + ne/m).

Proof. This follows from Lemma 3 applied to M being the
matrix of the random walk and E equal to

Om—1,m=1  Om—11

€
——51lim-1 €

E =

Since pM = L1,, 1 we get
P Bl 15,0 = O(e/m)

The distance between stationary distributions can be bounded
by O(e) according to Lemma 2. O

Corollary 1 (Entropy Separation). If we take € = 1/m, then
min-entropy of perturbed chain will be log('g) while min-
entropy of uniformly random walk remains log(m), thus the
min-entropies of two Markov chains differ by 1.

Corollary 2 (Statistical Distance). Let € = %, by Claim 2 the
distance between n samples is bounded by O(n - m=2).

By the above corollaries and the Le Cam’s method described
in Section II-C we get our lower bound for min-entropy.

2) Rate Evaluation for Hy: Below we estimate the differ-
ence in entropy and closeness in statistical distance for these
two chains, summarizing in Corollary 4 and Corollary 3.

Lemma 4 (Spectral Radius ). For the matrix in Equation (7).
the spectral radius of its second Hadamard power is

2
1 1 2
p(M?) = max ( (5+) ) +o(mY)
m’ \m
More generally, the gigenvalues are O(m_%) (with m — 2
repeats), - + O(m~=%) and (X + 6)2 +O0(m™2).

Corollary 3 (Entropy Separation). For ¢ = +/2/m one
obtains p(M®?) = 2%(1) Sor large m. For ¢ = 0 we have
p(M®?) = % Therefore collision entropy rates of these two
Markov chains differ by at least 1 bit.

Corollary 4 (Statistical Distance). By Claim 2, for e = \/2/m
the distance between n samples is bounded by O(n - m~3/2),

Again by applying the Le Cam’s method described in
Section II-C to above corollaries we get our lower bound for
collision entropy claimed in Theorem 1.



Proof of Lemma 4. We have

11 11
MOQ _ m2 m—1,2m—1 m2+tm—1,1
=|(1 . 1 (L4 6)2
m m—1 1,m—1 m

To compute the spectral radius of M°? we write

| S

M?*=Z+E
where 7 is the block-diagonal matrix given by

Om—1,12:|

1

(7 +6)

and F has non-zero elements only in the last row and

column, of magnitude O(m~2) (we assume € = O(m~1/2).
. . 3

In particular we obtain ||E||z < O(m~2) (for example by

bounding the Frobenius norm which in turn bounds the second

norm) and by Lemma 1 (Z is symmetric hence normal!)

p(M®?) = p(Z) + O(m™ %)

7 — |:7,121m—1,m—1
01,m-1

so that we can focus on finding the spectrum of Z. But they
follow from the block-diagonal structure - the first m — 1 x

m — 1 minor has eigenvalues ”;;1 (simple) and 0 (repeated

m — 2 times); the m-th eigenvalue is (- + 6)2. In view of
the previous bound this finishes the proof.

3) Rate Evaluation for H,, 1 < o < co: We proceed as for
H,. Now Z has same structure but the power of 2 is replaced
by a; also | Ellz = O((m - m~2*)1/2). Thus

1) = max (. (1 )) + O(mi-)

a—1

We choose € = (2/m) = then
p(M°%) > (2/m)*~ (1 + O(m>~2*))

Since o > 1 we have O(m?~2*) = o(1) for large m. Thus
for the two paths studied in Le Cam’s method entropy rates
are log(m/2)+o(1) and log m, differring by at approximately
1 while the statistical distance is O(n - m~2t%).

E. Upper Bounds

We sketch a proof for Theorem 3 when @ < oo. The pluggin
estimator is using the empirical (maximum-likelihood) esti-
mate of the transition matrix in Equation (1) or Equation (2).

Remark 3. The estimator is used to validate physical random
number generators [5], without a proof or reference.

Let M and p be the transition matrix and stationary distri-
bution for X. Consider the two-step chain Y,, = (X,,—1, X,)
on S x S. The stationary distribution of Y over (s1, s2) is such
that s; follows p and then probability of sy given s; equals
M (s1, s2). It is easy to see that X,, and u are 0.1-close in drvy
then also Y}, is 0.1-close to its stationary distribution; on the
other hand Y,,; is 0.1-close to its stationary distribution then
X, is 0.1-close to p. Thus the mixing times differ at most by
1. Relating them to spectral gaps [33] we get that the Q(1) gap

in X implies polylog(|S|) mixing time for Y’; this uses the
fact that the probability masses after first step are |S|~©(1),
Let n = O(e_gmg)logo(l)m with sufficiently big con-
stants, m = |.S|. We estimate frequencies of single symbols s;
from X, with a relative error of ¢/m, and frequencies of tuples
(s1,s2) from Y with relative error O(e) by Hoeffding-type
bounds [ 1], [34]; this holds simultaneously for all frequencies
w.h.p. We then know the transition matrix up to additive error
O(e/m) (element-wise). By our assumptions this gives the
relative error O(ae) for the Hadamard power. The spectral
radious is monotone on non-negative matrices [22] so the
estimated matrix when plugged in Equation (2) gives the
entropy rate up to additive error O(ae/(a — 1)) = O(e).

F. Finite Sample Lower Bounds

Our bounds were derived for the asymptotic entropy rate,
but they remain valid also for the task of estimating entropy
of finite number of samples. Here we prove Theorem 2.

For @ = oo this holds because the entropy of n samples
for both matrices considered equals n times the entropy rate.
Indeed, the min-entropy of n samples from the chain with the
transitions as in Equation (7) is full when ¢ = 0 and otherwise
it is achieved for n repetitions of the m-th symbol.

For o« < oo we give a reduction, invoking the derivation
of Equation (2) [32]; let Z = M*®®, then the entropy per sam-
ple H,, of the sequence X1, ..., X,, satisfies 9~ Hnm(a=1) —
T - Z™ .1 where p is the starting distribution. Thus

1 log(pu® - Z™ - 1)

H, = —
" a—1 n

Note that 17 - Z™ and u” - Z™ - 1 differ by a factor at most
m~9) because of the assumption b). Next, the mapping
X — 17 X1 for non-negative X is away by a factor m®)
from the Frobenius norm of X and by another factor m©®
from the spectral norm, by the known equivalence of matrix
norms. Therefore p” - Z™-1 > m~9W)||Z"|| which combined
with the above formula for H,, gives

H, <log(12"[)/((1 — a)n + O(log m) /(1 — a)n)

The second term is o(1) bcause of a) and c). Since || 27| >
p(Z™) (for any matrix norm) and p(Z") = p(Z)™ (by the
Jordan form) we eventually get H,, < H + o(1), where H =
— nz(l’g; - y is the asymptotic entropy rate.

Revise now the application of Le Cam’s method with same
matrices. The claim on statistical distances is unchanged.
As for the entropy, for the perturbed matrix is at most
H + o(1) = log(m) — 1 + o(1) by the above analysis, and
for the unperturbed matrix equals log m; this gives the gap of
1—0(1) so the same bounds apply and we conclude Theorem 2.

IV. CONCLUSIONS

We have shown upper and lower bounds for Rényi entropy
rate estimation under the Markov chain model.
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