
SPQCop: Side-channel protected Post-Quantum
Cryptoprocessor

Arpan Jati1, Naina Gupta2,3, Somitra Kumar Sanadhya4 and Anupam
Chattopadhyay2

1 IIIT, Delhi, arpanj@iiitd.ac.in
2 NTU, Singapore, naina003@e.ntu.edu.sg,anupam@ntu.edu.sg

3 Fraunhofer, Singapore, naina.gupta@fraunhofer.sg
4 IIT, Ropar, somitra@iitrpr.ac.in

Abstract. The past few decades have seen significant progress in practically realizable
quantum technologies. It is well known since the work of Peter Shor that large
scale quantum computers will threaten the security of most of the currently used
public key cryptographic algorithms. This has spurred the cryptography community
to design algorithms which will remain safe even with the emergence of large scale
quantum computing systems. An effort in this direction is the currently ongoing
post-quantum cryptography (PQC) competition, which has led to the design and
analysis of many concrete cryptographic constructions. Among these, Lattice based
algorithms have emerged to be promising candidates. Therefore, we focus on the
efficient implementation of Ring-LWE based quantum-safe key-exchange algorithms.
Further, deployment of hardware implementing such algorithms in critical applications
requires security against implementation attacks.
In this work, we design a side channel resistant post-quantum cryptoprocessor which
supports NewHope-NIST, NewHope-USENIX and HILA5 key-exchange schemes. The
implemented cryptoprocessor is highly optimized with minimal overhead due to the
countermeasures. It requires about 13,500 LUTs and 8,100 FFs. Due to a significantly
pipelined architecture, an operating speed of 406 MHz could be achieved on the
latest 16nm FPGAs; resulting in a key-exchange time of only 158µS, 157µS and
148µS for the above mentioned designs respectively. We also present detailed area
and performance metrics for different modules required for all the designs. To the
best of our knowledge, this work presents the first side-channel leakage resistant post
quantum accelerator. Furthermore, this is also the fastest hardware implementation
of NewHope-NIST.
Keywords: cryptography · post-quantum · key-exchange · cryptoprocessor · NewHope
· NewHope-Simple · HILA5 · fault-resistance · SCA

1 Introduction
The idea of building computers based on quantum mechanics for solving computational
problems originated in the works of Deutsch and Feynman [Deu98, Fey98]. However,
significant progress in their physical realization took place only in the last decade be-
cause of breakthroughs in stability of entanglement and the development of new materials
[BWM+16]. It has been estimated that in the coming years, practical quantum com-
puters will exist which will be able to break most of the currently used cryptographic
systems [Jus17].

In light of the above, tremendous work has happened in the field of post-quantum
cryptography. There are many classes of hard problems which can protect cryptographic

mailto:arpanj@iiitd.ac.in
mailto:naina003@e.ntu.edu.sg,anupam@ntu.edu.sg
mailto:naina.gupta@fraunhofer.sg
mailto:somitra@iitrpr.ac.in

2 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

constructions against quantum computers. These hard problems span a diverse range
of fields such as hash functions [BDH11, BHH+15], coding theory [Mce78, Nie86], lat-
tices [Pei14,GLP12], etc. Among these, lattice-based cryptography has emerged to be a
promising candidate. This is due to the strong theoretical security guarantees obtained
from constructions based on the hardness of some lattice problems. The significant theoret-
ical work in [NS01,Reg04] has led to the development of several lattice based cryptographic
constructions over the years.

In order to be prepared for the post-quantum era, National Institute of Standards
and Technology (NIST) published a call for proposals in December 2016 [NIS]. The
purpose of the proposal was to standardize some quantum-safe key-exchange, public-
key encryption and signature schemes. As a response, 69 designs were submitted for
public review out of which 26 designs are shortlisted for second round. In this work,
we focus on implementing some key-exchange schemes based on the ring-learning-with-
errors (RLWE) problem [LPR10]. The design NewHope-USENIX [ADPS15], its variants
NewHope-Simple [ADPS16] and NewHope-NIST introduced by Alkim et al., and the design
HILA5 [Saa17] designed by Saarinen are the focus of this work. HILA5 was originally submit-
ted as an individual candidate in first round but was later merged with Round2 [BBGM+17]
(now known as Round5 [BGML+18]). Further, a variant of NewHope-Simple referred as
NewHope-NIST in this paper and Round5 are two of the shortlisted candidates for second
round to the NIST PQC competition.

1.1 Motivation for a flexible design
Designing a unified hardware architecture supporting multiple cryptographic algorithms
has been a well established practice. Many such interesting works have been reported in
literature [SKR+13,BHO04,RVM+13]. Designing a flexible cryptoprocessor has multiple
advantages for both FPGA as well as ASIC implementations. For instance, such a design
supporting multiple implementations has the major benefit of significantly reduced area
usage compared to separate implementations. There is also an added benefit in the
scenario when, either due to a recently discovered security vulnerability or due to efficiency
considerations, there a need to switch the algorithm being used. The unified hardware
allows this switch easily. Furthermore, different applications can have different requirements.
Using a cryptoprocessor can provide multiple choices to choose from depending on the
specific needs of the applications. It is cheaper as well as easily maintainable from the
user perspective.

Applications using an FPGA with an integrated hard ARM core processor or a soft
Microblaze core instance are interesting from the perspective of a cryptoprocessor since
the combination can be used in a hybrid fashion. Some part of the operation can be
performed in software and some part, which is computationally expensive (for instance the
NTT operation used for the polynomial multiplication), can be executed in the specially
designed hardware.

1.2 Motivation for side-channel resistance
Side-channel attacks are known in literature for quite some time. Implementation attacks
utilize vulnerabilities in the implementation instead of the mathematical structure. There
are several classes of such attacks, for example: faults injected into a system can cause
incorrect results [BS97,BDL97], which may be used maliciously to recover secret keys or
other associated information. A device may also leak sensitive information passively by the
means of power consumption or electromagnetic emanations; which can be captured and
used for attacks [KJJ+98,KJJ99,BCO04]. So, for a practical system protection against
such attacks is mandatory.

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 3

1.3 Contributions
In this work, we present the design for an efficient and flexible Ring-LWE based cryptopro-
cessor designed with fault and side channel leakage resistance. In particular, we make the
following contributions:

1. The cryptoprocessor is designed to support multiple key-exchange algorithms and
can switch between algorithms on the fly. As already mentioned, many such attempts
have been made for classical cryptographic algorithms. However, to the best of
our knowledge, this is the first attempt towards such a combined architecture for
post-quantum algorithms.

2. We implement the design and provide experimental results for two modern FP-
GAs. We also present the first hardware implementation for HILA5 and the fastest
implementation for NewHope-NIST.

3. The cryptoprocessor can also work both in standalone as well as hybrid (hardware/-
software) environments providing acceleration for a wide range of use cases. As
discussed in Section 5.4, the implementation results on a MiniZed board demonstrate
significant performance gains over a purely software based implementation.

4. We have added many fault countermeasures to the overall design. The individual
countermeasures are designed to have high performance and minimal overheads while
providing good fault resistance. The utilized techniques are designed to compliment
each other and further enhance the security. We also present in Section 3.7.1, new fast
hashing based checksum construction with good differential characteristics; which
can be used to detect maliciously injected faults with high probability.

5. Fault countermeasures using inverted/complimentary logic, and state counters were
also implemented and designs for secured FSM’s for fetch and execute operations
are provided in Sections 3.7.3, 3.7.4 and 3.7.5.

6. Many optimization techniques for critical path shortening such as pipelining, register-
retiming, logic-reorganization, resource sharing etc. were used for the processor and
its individual modules, resulting in significant gains in performance and reduction in
area while maintaining a good area-vs-performance trade-off.

In order to support the 512-bit variants of the NewHope-NIST proposal, some extra
instructions may be added, with negligible increase in resources because of the configurable
architecture. This is possible as many of the instruction modules are configurable including
NTT.

2 Preliminaries
In this section, we briefly discuss the three post quantum key exchange protocols NewHope-
USENIX, NewHope-NIST, and HILA5.

2.1 Notations
Throughout the paper, we use bold symbol to represent polynomial coefficients in time
domain (for example s). A hat over the top of a symbol is used to represent coefficients
in the frequency domain (e.g. ŝ). R defined as R = Z[X]/(Xn + 1) denotes the ring of
integer polynomials modulo (Xn + 1), where n is a power of 2. Rq is the polynomial ring
where the coefficients are modulo q. Let X be a probability distribution over R, then
x←$X means that x has been sampled according to X . Further, ψn

k is used to denote an

4 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

array of n elements where each element has been chosen independently at random from
the centered binomial distribution with parameter k.

2.2 Protocol description
The goal of a key-exchange algorithm is to generate a shared secret key between two
distrusting parties. The two parties, conventionally named Alice and Bob, first agree on a
global system parameter a ∈ Rq. Following this, three algorithms are used for the actual
key exchange:

1. KeyGen(a) : Alice chooses two polynomials (s, e) from the noise distribution ψn
16

and computes b = as + e. The public key pair (a,b) is sent to Bob and the secret
key s is stored. The polynomial e is a random masking noise used to hide the secret
key.

2. Encaps(a, b) : Bob samples (s′, e′) from ψn
16. Using these polynomials and the public

key of Alice, Bob computes u = as′ + e′ and sends this to Alice. Bob also generates
v = bs′ = (as + e)s′ = ass′ + es′.

3. Decaps(u) : Alice can now compute v′ = us = (as′ + e′)s = ass′ + e′s

As the noise polynomials e and e′ are small, the computed shared secrets of Alice and Bob
(resp., ass′ + e′s, and ass′ + es′) are approximately the same (≈ ass′). Thus, both Alice
and Bob have approximately equal shared secret. A problem arises when the value ass′ is
near the boundary between where the point rounds to 0 or to 1. Addition of different noise
terms by Alice and Bob may result in different values after rounding. In order to solve
this problem and extract exactly the same shared secret, error recovery/reconciliation
mechanism is used. This mechanism is used to send some “hints" about the shared secret.
Both the parties use these hints to extract secret bits, which are same with high probability.

In this section, we first present an overview of the operations required in a key exchange
protocol using NewHope-USENIX as an example. We do not describe the detailed workings
of NewHope-NIST and HILA5. Instead, later in this section, we explain the differences
among these protocols.

In contrast to Peikert’s KEM mechanism [Pei14] where ‘a’ is kept fixed, the NewHope-
USENIX algorithm randomly generates ‘a’ using SHAKE-128 for every key exchange. Further,
the LWE secret and error polynomials are now derived from ψn

k . In the protocol definition
[ADPS15, Protocol 2], the elements in key exchange messages are polynomials in Rq. The
description of the protocol is shown in Figure 1.As can be seen in the protocol description,
Bob adds more random noise (denoted as e′′) to its version of the shared secret in the
Encapsulation algorithm. This noise is also sampled from the noise distribution ψn

16. As
mentioned earlier, this extra random noise is required to ensure that both the parties
extract same secret bits with high probability. The HelpRec function is used to generate
the hints. Finally, Alice and Bob use the reconciliation function Rec with these hints to
extract the secret bits from the already shared approximately-equal secret.

2.2.1 Algorithms

We are now ready to briefly describe various algorithms and their parameters used in the
implemented protocols.

• Generation of a: A randomly generated seed is given as input to the function
Parse. This function expands the seed to generate the secret consisting of required
number of bits. The parse function for NewHope-USENIX and NewHope-NIST uses
SHAKE-128 whereas HILA5 uses SHAKE-256. Keccak permutation is used inside
SHAKE-128 and SHAKE-256 for the expansion.

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 5

Parameters: q = 12289 < 214, n = 1024
Error Distribution: ψn

16

Alice (server) Bob (client)
seed←$ { 0, . . . , 255 }32

â← Parse(SHAKE(seed))
s, e←$ ψn

16 s′, e′, e′′ ←$ ψn
16

ŝ← NTT(s)

b̂← â ◦ ŝ + NTT(e)
ma=encodeA(seed,b̂)

1824 Bytes
(b̂, seed)← decodeA(ma)

â← Parse(SHAKE(seed))
t̂← NTT(s′)
û← â ◦ t̂ + NTT(e′)
v← NTT−1(b̂ ◦ t̂) + e′′

(û, r)← decodeB(mb)
mb=encodeB(û,r)

2048 Bytes
r←$ HelpRec(v)

v′ ← NTT−1(û ◦ ŝ) ν ← Rec(v, r)
ν ← Rec(v′, r) µ← SHA3-256(ν)
µ← SHA3-256(ν)

Figure 1: NewHope-USENIX Protocol Description

• Number-Theoretic Transform : Multiplication of two polynomials of degree
n using school-book method (i.e. term by term multiplication) requires O(n2)
operations. Number Theoretic Transform (NTT) introduced by Nussbaumer [Nus80]
is an efficient method to perform this multiplication in O(n logn) time. Polynomial
multiplication using NTT is performed as c = NTT−1(NTT(a) ◦ NTT(b)) where
a,b, c ∈ R.
For a polynomial g =

∑n−1
i=0 giX

i ∈ Rq, NTT is defined as follows:

NTT(g) = ĝ =
n−1∑
i=0

ĝiX
i, with, ĝi =

n−1∑
j=0

γjgjω
ij

where, ω is a primitive nth root of unity and γ is given by γ =
√
ω mod q. For

NewHope-USENIX and NewHope-NIST, γ = 7 whereas for HILA5 γ = 1945. The
corresponding inverse NTT operation is defined as below with γ−1mod q = 8778
for NewHope-USENIX and NewHope-NIST and γ−1mod q = 4050 for HILA5. This
operation also multiplies each coefficient with n−1mod q = 12277.

NTT−1(ĝ) = g =
n−1∑
i=0

giX
i, where, gi = n−1γ−i

n−1∑
j=0

ĝjω
−ij

• Modular Reductions: A single NTT operation for NewHope-USENIX requires 5120
butterfly operation [GS66], each consisting of one addition, one subtraction, one
multiplication and two modular reductions. The large number of reductions required
for a high degree polynomial results in a performance bottleneck. The Montgomery
algorithm [Mon85] and the Short Barrett algorithm [Bar86] are well known tech-
niques for fast-modular multiplication and fast-modular reduction. The Montgomery
reduction algorithm in Listing 1 is used to reduce the result after multiplication,

6 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

whereas the Barrett reduction algorithm in Listing 2 is used to reduce the result after
additions.

ushort mred(uint a) {
uint u;
u = (a * 12287);
u &= ((1 << 18) - 1);
a += u * 12289;
return a >> 18;

}

Listing 1: Montgomery Reduction
(R=218, q=12289)

ushort bred(ushort a) {
uint u;
u = ((uint) a * 5) >> 16;
a -= u * 12289;
return a;

}

Listing 2: Short Barrett Reduction
(q = 12289)

It is known that the Montgomery algorithm requires the modulus to be an odd
integer. In order to calculate the modulus with an even integer, we used the technique
presented by Koc [Koç94]. This operation is needed for the SafeBits operation in
HILA5 where modulus by 12289/4 ≈ 3072 is required. The complete algorithm for
modulus with 3072 is presented in Listing 5.

• Noise Sampling: A common way for sampling high-precision discrete Gaussian
distribution is by using the Knuth-Yao algorithm [Knu76]. This is a considerably
complicated algorithm to be implemented in hardware. Sampling at such a high
precision may lead to side-channel attacks due to non-constant execution time. To
avoid these drawbacks, all the three protocols discussed in this paper use a centered
binomial distribution ψn

k . The protocols NewHope-USENIX and HILA5 differ from
NewHope-NIST in the distribution parameter k where the former uses k = 16 whereas
later uses k = 8. The technique mentioned in [ADPS15] requires 32 random bits to
generate a single coefficient. These random bits can be generated from any suitable
uniformly distributed randomness source (in this case ChaCha20 with random seed).

• Error Recovery Mechanism: The algorithms presented in this paper differ in the
approach used for sending additional information (hints) during key exchange. As
mentioned earlier, these hints are required to extract the exact secret key instead of
the approximate one. For example, in case of NewHope-NIST, a random 256-bits secret
ν is chosen and encoded into four coefficients using NHSEncode. The corresponding
NHSDecode function is used to extract the original secret bits from the encoded
coefficients. The compression (NHSCompress) and decompression (NHSDecompress)
functions of NewHope-NIST are used to switch the coefficient-wise modulus between
modulus 12289 and modulus 8 [ADPS16, Section 2.2]. The NewHope-USENIX al-
gorithm uses HelpRec function to compute the reconciliation information and Rec
is used to extract the secret key using hints from the reconciliation information.
Similarly, functions Safebits and XE5_Cod are used to generate the reconciliation
information and the error correcting code in case of HILA5. The corresponding
functions Select and XE5_Fix are used to compute the secret using the reconciliation
information and to correct the error.

2.3 Resistance against Side-channel Attacks
2.3.1 Fault-Attacks

Resistance against fault attacks is a challenging yet important requirement for designing
secure cryptographic systems. There are several types of fault injection techniques and
countermeasures known in literature [BECN+06]. There are three categories of fault
injection: non-invasive, semi-invasive and invasive. Non-invasive faults do not damage the

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 7

chip functionality and the package is not opened. The other two types are more powerful
and partially or fully damage the device.

Most of the techniques work by actively modifying some memory/logic element or the
other. Faults injected to the program counter can result in instruction skip, jumps to
invalid locations etc, changes to FSM/state causes control flow modification, etc [MHER14,
EFGT16]. Faults in data or instruction memory leads to incorrect results which then can
be utilized to mount very powerful attacks against an otherwise secure implementation.
However, by utilizing certain countermeasures like error-detection, protection of instruction-
pointers and state registers by duplication, checksum or similar techniques, it is possible
to make the fault attack significantly more difficult, especially for non-invasive attacks
[BECN+06]. In this work, we focus on such countermeasures.

2.3.2 Power and Timing Attacks

Power attacks work by analyzing the power consumption during the execution of crypto-
graphic operations. Simple Power Analysis (SPA) utilizes information from a single power
trace during a cryptographic operation to reveal secret information. Whereas, Differential
Power Analysis (DPA) utilizes the differences between two simultaneous invocations of a
cryptographic algorithm to form a statistical model and then attempts to recover secrets
by comparing it with power consumption traces. As the dynamic power consumption
of a CMOS circuit is highly correlated to the operation being performed, these are very
powerful techniques to extract sensitive data from hardware circuits.

Timing attack comes under another class of attacks which rely on the differences in
execution time depending on differences in operands. To protect against timing-attacks,
we have ensured that all the modules in this implementation are constant time. The
constant-time execution strictly thwarts all attempts at timing attacks. One should note
that the rejection-sampling as expected is not constant time.

3 Design
In this section, we discuss the main design decisions that led to the development of the
overall proposed architecture. Most RLWE algorithms are complex in structure and
utilize a large number of constructs, many of which typically have very long critical paths.
These long paths lead to poor performance in hardware if directly implemented without
consideration. Identifying and optimizing such paths, so that good performance to area
trade-offs are achieved is one of the major challenges in any hardware implementation. In
this work, the main goal is to have high performance with moderate area utilization. In
order to achieve these goals, the following key strategies (among many others) can be used
depending on the specific module:

• Targeting high clock frequency:

– Pipelining
– Balancing logic for critical path shortening
– Adding registers whenever needed

• Reducing the number of clock cycles:

– Algorithm level modifications
– Pipelining
– Efficient memory bandwidth utilization

8 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

However, a high performance implementation will utilize a lot of resources (area).
Such a design may not be suitable for low-power or resource constrained applications. So,
area optimization techniques such as resource sharing, mutual exclusion, usage of FPGA
primitives, etc. can be used.

3.1 Design Rationale
3.1.1 Memory

The memory design in any cryptographic system needs careful consideration for good
performance and protection against attacks. In this work, we use the following design
principles for memory design.

Bus-Width Most processors typically use 8 or 32-bit as the data bus-width. The algo-
rithms discussed in this paper require polynomial operations with coefficients which fit
within 15-bits [ADPS15, Section 7.2]. Using 32-bit as bus-width would lead to inefficient
usage of memory resources as most of the bits will remain unused. Also, it would require
more resources like registers and arithmetic/DSP blocks. Using smaller 8-bit bus is also
not preferable as it would require multiple clock cycles to fetch single operands, and would
reduce the performance. So, using 16-bit data bus is a good option for our design. In
order to allow for usage as a co-processor with extended memory range access, the internal
address bus supports 16-bit addresses. As a result the data and instruction memory can
be easily extended up-to 128 KiB.

Use of Dual-Port Memories Single port memories are most commonly used for memory
access. These allow only a single read or write operation at a time. Unlike single port
memories, dual port memories have two sets of address and data lines along with control
ports, allowing two simultaneous independent read/write operations. Even though single
port memory is most commonly used, such a memory is not preferable for Post-Quantum
algorithms as they are typically complex and need a large number of read/write operations.
For example, the operation like NTT implemented using single port memory will have
drastically reduced performance compared to its dual port counterpart. It is also possible
to have quad port memories, but they are not typically supported by the common FPGA
platforms/tools and also suffer from issues like large area and reduced performance. Hence,
we chose to use dual port memories wherever possible.

Caching / No-Caching Post-quantum algorithms requires large polynomials to be stored
in registers. The load and store operations on these registers takes several hundred clock
cycles. Having a cache memory to load such large registers is not beneficial and would
significantly reduce performance. This is due to the significant latency in transferring data
to and from the cache. As a result, we are not using cache memories in our design.

Instruction and Data Memory Among the two popular memory architectures Harvard
and von Neumann, the Harvard architecture typically leads to better performance. This is
because it has separate signal path for instructions and data. Such an architecture allows
for simultaneous access to the instruction and data memory, wherein, the instruction
memory can be changed, while a long-running instruction is executing and utilizing the
data memory. This allows for easier use as a cryptographic accelerator. This is why, in
our design instruction and data memories are kept separate.

Regarding memory sizes there is no defined upper or lower bound. The sizes are purely
application dependent. In our design, the instruction memory is a 1 KiB (16-bit × 512)
simple dual port RAM. This is enough for implementing all the supported protocols. The

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 9

data memory is a 16 KiB dual-port memory with (16-bit × 8192) and (32-bit × 4096)
ports.

3.1.2 Register access across multiple instructions

In accumulator based instruction sets (like Intel 8085) the results of instructions are
written to a few specific registers, while temporary registers are used to hold local variables.
Applications in such processors require a lot of copying between the accumulator and
temporary registers. This is acceptable as it only takes one clock cycle to copy the result
from the accumulator to temporary registers. However, the polynomial registers used in
post-quantum algorithms are quite large and there is a latency of several hundred clock
cycles to copy data between registers. In such a design, limiting register access to separate
instructions would hamper performance.

Further, to provide full flexibility in writing assembly instructions, the proposed
instruction-set is designed in a way that all the registers (of the specified type) can be
accessed by all instruction ports (input and output). For this purpose, a switch matrix
is used to connect the large number of interface wires dynamically depending on the
instruction. Also, separate enable signals are assigned to each instruction so that registers
can be accessed by only one instruction at a time.

3.2 Architecture
Considering the above mentioned design considerations, the high level architecture of the
proposed cryptoprocessor is shown in Figure 2. The Fetch, Decode and Execute units are
the major components of the processor. Protecting these units against side channel attacks
is challenging as any such measure typically leads to increase in area and reduction in
performance. Later in this section, we discuss how a combination of multiple techniques
leads to a significantly secure design with minimal overheads and high performance. A

Instruction RAM
1 KiB (16-bit x 512)

(Max 32 KiB)

Fetch Unit Decode Unit Execute Unit

Data RAM
16KiB (Dual Port)
32-bit & 16-bit

in
st
r[
1
6
]

idxPORTB[3]

idxPORTC[3]

idxPORTA[3]

idc-enables[18]

next instruction pointer[16]

fetch enable

jmp next en

immediate data[16]

instruction[16]

in
st
r
p
tr
[1
6
]

ad
d
r A
[1
2
]

ad
d
r B
[1
3
]

d
i A
[3
2
]

d
i B
[1
6
]

d
o
A
[3
2
]

d
o
B
[1
6
]

w
e A

w
e B

Instantiates all the instructions,
memory controllers, and
processor state-machines

AXI Controller
For use as a
coprocessor

Decode current
instruction and set
enable-signals and

port-numbers

Fetch instructions.
(including prefetch

and jump)

AMBA-AXI
interface

Figure 2: Overall Architecture of the Cryptoprocessor

10 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

LWE cryptoprocessor is quite similar to a general-purpose CPU in some aspects, but due
to its specific nature certain features are quite different. One major difference is that
the instructions are quite large in terms of the area as well as the number of clock-cycles
required. Many of the instructions take a few thousand clock-cycles. As a result the fetch
and decode units, which require a few clock-cycles are implemented without pipelining.

3.3 Fetch and Decode Units
The fetch unit reads the instructions from an external RAM based on the signals from the
execute unit. As mentioned previously, some of the instructions also need an immediate
address/data which is stored next to the instruction. The fetch unit handles this requirement
transparently. It also accepts next instruction addresses and jumps to the given address
when required. The decode unit decodes the instruction as per the instruction specification
and generates separate enable signals (instruction decoder enable - idc-enables) for each
instruction. It also generates I/O port indexes to be used by the switch-matrix in the
register units.

3.4 Execution Unit

reg idxA[3]

Control Logic,
Sequencer,

Address Generation,
& Clock Gating

Dual Port k/p - Switch Matrix

L
oa
d
S
to
re

1
6

reg idxB[3]

reg idxC[3]

clk

PORTA[8]

PORTB[8]

PORTC[8]

register-k

L
oa
d
S
to
re

8

G
N
O

U
N
F

A
D
P

P
W
S

N
T
T

IN
T
T

H
L
R
E
C

R
E
C

PORTA[16]

PORTB[16]

PORTC[16]

register-p

8-Bit × 32

16-Bit × 1024

8-Bit × 32

instruction[16]

imm data[16]

fetch enable

jmp next

next inst pointer[16]

idc enables[18]

fr
om

d
ec
o
d
er

to
fe
tc
h
u
n
it

In
st
ru
ct
io
n

M
o
d
u
le
s

fetch fault

reg fault

global fault

Figure 3: Execution Unit

The execution unit as shown in Figure 3 is the largest and the most important part of
the processor. Because of the subscalar design, we decided to implement the control/logic
unit within the execution unit. Also, all the modules for instructions are instantiated in
the execution unit. Although, this design decision is straightforward; the implementation
was challenging. This is because it was difficult to manage the large number of connections

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 11

between signals (415), registers (101), multiplexers (144) and the specific instruction
modules (29). The major building blocks of an execution unit and their functions are
described below.

3.4.1 Register Modules

As mentioned previously, registers can be accessed by instructions for read and write
operations. As shown in Figure 4, a register module contains a set of registers which can
be individually addressed and connected to any of the ports. The 3 ports can be used
simultaneously and they work independent of each other. The only requirement is that a
single register cannot be connected to more than one port. The functionality is achieved by
using a simple dual-port bus matrix which allows any register to be selected and connected
to any of the port. One of the major challenges while designing this unit was the large

register-p

PORTA[16]

PORTB[16]

PORTC[16]

idxPORTA[3]

Control
Logic

4 - dual-port RAMs
3 - I/O Ports

Dual Port Bus
Switch Matrix

R0 R1 R.. Rn

16-bit × 1024 Poly Registers

idxPORTB[3]

idxPORTC[3]

bad config

clk

Figure 4: Register-P: 16-bit × 1024 Polynomial Registers. It is assumed that the polynomial
coefficients would fit a 16-bit register.

number of connections in the switch-matrix. As every module needs to be connected to
the Load-store units the multiplexer became very large. Leading to very long critical paths
across multiple LUTs (used for MUXes). As the bus-matrix is an inherently combinatorial
circuit, adding a large number of registers will cause reduced timing performance. As a
result, we decided to allow for up-to 8 registers, but, implementing the least number of
registers as possible is recommended (in our design we were able to implement all the
algorithms using only 4 registers). If more registers are needed, pipelining may be needed
to maintain good performance.

3.4.2 Load-Store Units

The load-store units and the associated instructions are one of the most used parts of the
processor. This is because any data coming in and out of the processor has to pass through
it. There are three load-store units, one each for the 16-bit poly, the 8-bit keys/associated
data, and the large scratch-pad usage.

In order to maximize the throughput of the load-store unit, dual-port memories were
used to transfer two chunks of data at a time. But, the load-store units use both 8-bit and
16-bit memory elements. Using asymmetric dual-port memories with a 32-bit port and a
16-bit port as external RAM, and generating requisite addresses; we were able to perform
two transfers per-clock for both the 8-bit and 16-bit load store units resulting in optimal
performance for this unit.

12 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

16-bit Load/Store Unit
reg inA[16]

reg outA[16]

reg inB[16]

reg outB[16]

reg weA

reg weB

reg addrA[16]

reg addrB[16]

ram in[32]

ram out[32]

ram we

Address
Generationmem address[16]

registers*

ram addr[16]

do store[2] enable[2]
done[2]

Control
Logic

Fault &
Checksum
Generation

ram chk in[16]

ram chk out[16]

reg chk in[8+ 8]

reg chk out[8+ 8]

fault

Figure 5: Load-Store Unit

3.5 Execution Sequence
Figure 6 shows the execution sequence of the processor. The processor starts by fetching
an instruction from the instruction memory. The decoder then decodes the instruction
and provides control signals and register port indexes. These control signals then enable

Fetch
Instruction

Decode
Instruction

Select
Instruction

Enable
Clock

Start
Execution

Done ?

Reset
Internal
State

Set Next
Instruction
Address

Jump?

NoNo

1 2 3 4 4

5
N+5

N+5

YesRandom
Delay

Yes

N+5+∆

Figure 6: Execution Sequence

the specific instruction module instance and start the clock for it. Following this, the
instruction module is reset (this is not needed for some instructions) and the execution
starts. The execution unit then waits for the specific instruction to complete. When
the instruction is complete, status is updated and jump requirements are evaluated and
calculated. SFBT and SEL can set the error flag which causes the CJMP instruction to
jump to the immediate address. If no jump is needed, the address is incremented. The
execution unit then waits for the random delay delta (∆) to prevent side-channel attacks.
The new instruction is fetched only after the ∆ clock cycles. This cycle repeats itself until
a halt instruction (all zero) is encountered.

3.6 Instruction Set Design
Since this processor is designed to support multiple algorithms, the instructions are designed
so that there can be a good overlap between designs. At the same time some specific
instructions are needed to cater for algorithmic differences. The instruction set is designed
mainly on the basis of instruction and register count, simultaneous register accesses and
decoding speed. But, we did not try to optimize or encode large amount of information.

We have defined and implemented two types of registers as discussed below:

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 13

Table 1: Instruction set
Mnemonic Instruction Instruction Usage

Load, Store and Jump Instructions
LDP load poly 1000 0001 | XXXX XPPP
LDK load seed or key 1000 0010 | XXXX XKKK
STP store poly 1000 0100 | XXXX XPPP
STK store seed or key 1000 0101 | XXXX XKKK
CJMP jump when error flag 1000 0111 | XXXX XXXX
EQP equality check poly 0100 0001 | XX ppp ppp
EQK equality check key 0100 0010 | XX kkk kkk

Common Instructions
UNF uniform 0000 0010 | XX PPP kkk
GNO8 getnoise ψ8 1000 1000 | XX PPP kkk
GNO16 getnoise ψ16 1000 1001 | XX PPP kkk
ADP add polynomials 0000 0011 | PP ppp ppp
PWS pointwise multiply 0000 0100 | PP ppp ppp
BREV bit reverse poly 0000 1001 | XX XXX PPP
NTT fwd NTT (γ = 7) 0000 0101 | XX XXX PPP
INTT inv NTT (γ = 7) 0000 0110 | XX XXX PPP
NTT2 fwd NTT (γ = 1945) 0000 0101 | XX XXX PPP
INTT2 inv NTT (γ = 1945) 0000 0110 | XX XXX PPP
HASHB sha3-begin 0010 0000 | XX XXX XXX
HASHU sha3-update 1010 0001 | XX XXX XXX
HASHF sha3-final 0010 0010 | XX XXX kkk
TRNDP true random poly 0010 0011 | XX XXX KKK
TRNDK true random key 0010 0100 | XX XXX PPP

NewHope Instructions
HLREC helprec 1000 0111 | PP ppp kkk
REC rec 0000 1010 | KK ppp ppp
ENC encode 0000 1011 | XX PPP kkk
DEC decode 0000 1100 | XX KKK ppp
COMP compress 0000 1101 | XX PPP ppp
DCMP decompress 0000 1110 | XX PPP ppp
SUBP subtract polynomials 0000 1111 | PP ppp ppp

HILA5 Instructions
SFBT safebits 0001 0000 | PP PPP ppp
SEL select 0001 0001 | PP ppp ppp
COD xe5-cod 0001 0010 | XX KKK kkk
FIX xe5-fix 0001 0011 | XX KKK kkk

1. Poly Registers (P) : These registers are used to store the 1024 polynomial coefficients.
They are implemented using 16-bit wide dual-port RAM blocks. Rp0 - Rp7 are used
to represent poly registers.

2. Seed/Key Registers (K) : The initial seed required for key generation, secret keys, etc
are stored in these registers. They are 8-bits wide, can be accessed using a dual-port
bus and can store 32 bytes in a single register. These registers are represented using
Rk0 - Rk7.

Table 1 lists the instructions supported by the processor. All the instructions are 16-
bits long. Instructions such as load, store, getnoise and helprec require extra immediate
address/ data fields (for example, the helprec instruction needs an initial seed). Thus,
these instructions are followed by another field (consisting of 16-bits of content depending
on the specific instruction).

As shown in Figure 7, this is indicated using the first bit of the opcode. PORTA,

14 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

PORTB and PORTC are used to indicate the register port indexes. The values of these
ports are optional depending on the instruction being executed. For instance, for the
point-wise polynomial multiply operation ‘PWS Rp3, Rp2, Rp1’, poly register Rp3 is the
output, while Rp1 and Rp2 are the inputs. PORTA and PORTB are used to set the register
indexes for the inputs while PORTC indicates the register index for the output.

0. the instruction is complete and can execute
independently

1. the next 16-bits correspond to the immediate
data for the current instruction

instruction opcode PORTB

Optional
16-bit

immediate
data

.

PORTAPORTC

0 0 0 0 0 0 01 0 0 0 01 1 1 1

Figure 7: Instruction format: Using PWS point-wise polynomial multiplication.

3.7 Fault Protection
Over the years, several countermeasures have been proposed to protect against fault
attacks targeted towards a multitude of designs and surfaces [BECN+06, SL80]. The
following section discusses about the proposed checksum construction and the different
countermeasures implemented to protect different attack targets.

3.7.1 Fault Detection Hashes

Error detection schemes such as CRC (cyclic redundancy check) are used widely to verify
the integrity of data stored on disk or transferred over networks. Similarly, parity checks
by means of Hamming Codes are good for error detection. But, usage of such schemes
is not justified as they are designed for correction of random errors and not maliciously
injected faults. For example, if a fault is injected in the input, then the propagation of the
error to the checksum is not guaranteed. Hence, we designed some low-latency checksum
functions. These functions are used in multiple modules to ensure that random single or
multi-bit faults lead to error conditions with high probability.

Figure 8 shows two constructions which have been specifically designed to detect faults
with high probability. The basic idea behind the design is that whenever a single or
multiple bits change on the input side, the output bits should change unpredictably, with
high probability while ensuring uniformity. Such a design can be adapted from block
cipher constructions with good differential properties. A good example can be AES,
unfortunately, the AES-128 round function is complex and has high latency and area
requirements. Hence, using a lightweight cipher is a better option. The designed hashes
use the SPN (Substitution Permutation Network) structure, but with drastically reduced
rounds and XOR for compression. The substitution layer uses the PRESENT SBOX because
of its known good properties.

In order to design good functions for fault detection, we designed and analyzed several
possible candidates. Some performed well and some were highly unsuitable. One of the
techniques for analyzing a function was to see how differential bias propagates through it.
We considered only the single and double bit fault-models for the candidates. Figure 9
shows the results for the function shown in Figure 8a. The histograms are calculated in
two steps:

• Performing differential propagation analysis and computation of a bias distribution
table for all the input bits. This results in a table containing 8 columns corresponding

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 15

S
4

S
4

S
4

S
4

S

S

4
S

S
4

B A

(a) 16× 8 Fault Detection Hash

S
4

S
4

S
4

(b) 8× 4 Fault Detection Hash

Figure 8: Fast Hash Functions for Fault Detection: The current implementation
primarily uses the 16× 8 hash for instruction-pointer and memory protection. The 8× 4
version can also be used for different applications, at the cost of reduced protection.

to the output bits, and 16 rows for the single bit inputs. We used 105 random inputs
per-bit in the computation. The expected value should be 0.5 for all the entries.

• We subtract 0.5 from all the values in the table and get absolute values for all the
entries. The histogram is then generated using all the values from this table.

It is clear from Figure 9a and 9c that the histograms corresponding to the point A has
many significant peak with high probabilities (close to 0.25), they also have many peaks
throughout the probability axis. This means that for certain inputs there is some probability
that the fault will not uniformly propagate. The Figures 9b and 9d corresponding to the
complete function shows much better results. This limited analysis does not guarantee
suitability for all applications, but it demonstrates good fault propagation results.

Both the hashes can be implemented within 4 levels of logic using 6-input LUTs.
This allows the design to be fast enough for our purposes. Even stronger hashes can be
constructed, but, the latency and long critical paths, make them harder to use without
pipelining.

3.7.2 Protecting Critical Signals using Complimentary Duplicate Logic

Having multiple copies of the same circuit with equality checks protects an implementation
from random fault as it is much harder to fault two signals simultaneously [BECN+06].
Such a countermeasure requires twice the area and memory resources. But, most Ring-LWE
algorithms are quite complex and require large memories to store polynomials. Hence,
addition of redundancy (especially in logic) should only be used sparingly. Therefore, only
protecting critical signals like state, instruction, jump, etc. using duplicate logic is a good
option. Although this will help prevent fault attacks, using inverted duplicate logic will
add on to the overall fault resistance. Inverted logic is the implementation of some logic
using ‘1’ instead of ‘0’ and vice versa. This makes insertion of faults further difficult as
now two signals have to be faulted but with opposite polarity.

Differential Control Using the same technique, the signals done and enable can also be
protected avoiding instruction skip (for example by setting done signals).

16 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

0 5 ·10−2 0.1 0.15 0.2 0.25

0

20

40

Probability

C
ou

nt

(a) Single bit at point A.

0 5 ·10−2 0.1 0.15 0.2 0.25

0

10

20

30

Probability

C
ou

nt

(b) Single bits at output.

0 5 ·10−2 0.1 0.15 0.2 0.25

0

100

200

300

Probability

C
ou

nt

(c) Double bit at point A.

0 5 ·10−2 0.1 0.15 0.2 0.25

0

100

200

Probability

C
ou

nt
(d) Double bits at the output.

Figure 9: Differential bias histograms for single and double bit random faults.

3.7.3 Protecting the instruction pointer

This is one of the most common targets for fault injection. The ability to skip/manipulate
instructions (especially conditional jumps) allow attackers to thwart many software based
protection schemes. To protect against such attacks we use two countermeasures:

• Hashing: We add an hash to the instruction pointer using the above mentioned
16× 8 function. The hash is written every time the value is updated, and the hash
value is verified at every clock cycle.

• Inverted Logic: To further protect the instruction pointer, we also implemented
a duplicate pointer with inverted logic. Every time the pointer needs a increment,
the value is inverted incremented and inverted again: ptrn+1 <= ~ (~ptrn + 1). The
inverted logic also contains the hash function checks.

Both these circuits are evaluated at every clock cycle and they generate error signals
whenever a fault state occurs. Figure 10 shows the detailed instruction pointer update
function.

3.7.4 Protection against Control Flow (FSM state) Modification

Proper execution of internal state machines are critical to the overall operation of any
processor. If the attacker can manipulate the current state register or next state cal-
culations/registers for FSMs, security of the design would be compromised. Similar to
instruction pointer manipulations, any software countermeasures can be rendered useless.
We, use duplicate inverted logic state machines with concurrent matching on all critical
FSMs in the cryptoprocessor. Figure 11 shows the detailed implementation.

3.7.5 Protection against Memory Faults

Any fault injected to the data memory leads to incorrect results. There are many results
on a wide variety of cryptographic constructions, where even a single bit error leads to the

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 17

Fetch State
Logic

Increment
Logic

state

state

Checksum

Instr Ptr

Checksum

Instr Ptr

Checksum
Verify

Checksum
Verify

fetch stop

do fetch

jmp nxt

fault

instr ptr

Fetch State
Logic

INSTRUCTION POINTER

Increment
Logic

6= 6=

Figure 10: Instruction Pointer Update: Fault Countermeasures

State FSM

State FSM

st
at
e

st
at
e

jm
p
nx
t

jm
p
nx
t

do
fe
tc
h

do
fe
tc
h

6=

en
6=

6=

en

Checksum
Verify

EQP Logic

EQK Logic

done

fetch valid

inst chk

inst

imm data chk

imm data

decode fault

fetch fault

Checksum
Verify

D Q

clk

halt

global
fault

6=

Figure 11: Execution State FSM: Fault Countermeasures

recovery of the entire state or secret keys. Similarly, faults in instruction memory can lead
to arbitrary code execution. This can also be used to mount several attacks.

For instruction and data memory extra error detection data (result of a hash) is stored
along-with the memory itself. Basically, with every 16-bits of data 8 extra bits of hash
are stored. Any load operation from the memory verifies the data integrity before passing
the data to other modules. Likewise, during write operations to the memory, the error
detection data is calculated and stored. This ensures any access to the external memory is
secure and fault-attack resistant.

3.7.6 Additional Protection: Instruction Cycle Count

As all the instructions in the implementation are constant-time and take the same number
of clock cycles. Counters can be used to ensure that they indeed do take the correct number
of clock cycles. This ensures once an instruction module starts execution, it completes fully
and is not skipped in between. For example the NTT instruction requires 6206 clock cycles,
any injected fault to the numerous control logic signals can cause it to end prematurely,
possibly with minimal change to the operands, leading to attacks. Even though, one can
use techniques like duplication and inverted logic for all the modules and all state machines,
such a design would lead to a significant increase in area. By ensuring clock-cycle count
correctness, we protect against this powerful attack vector with relatively cheap/minimal

18 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

hardware resources.

3.7.7 Fault Tolerance: Direct Memory Access Isolation

Although many of the instructions can be allowed to access the external memory, we chose
to maintain an isolation. Only two instructions LDx and STx are permitted to load and
store data to and from the external RAM. This is done in order to prevent fault attacks
during the execution of a cryptographic operation. More specifically, whenever data is
read the checksum is also calculated/validated, similarly, during every write operation, a
new checksum is calculated and written to the memory with the data, to be used during
verification later. This protects the data in memory from maliciously injected faults. This
isolation also simplifies both the instruction set design and the overall architecture.

3.7.8 Fault Tolerance: Equality Instructions

The two instructions EQK and EQP have been added to help in the implementation of
software based fault countermeasures. These instructions compare two register values
and generate a reset signal whenever there is a mismatch. So, in software/assembly, the
implementation can perform an operation twice (using different memory/register) and then
compare the results to ensure correctness. For example, Listing 3 shows a code snippet
to use the cryptoprocessor’s equality instruction EQP for the safe execution of getnoise
operator to generate the centred binomial distribution.

LDK Rk0 , 0 // noise (from memory 0 -31)
GNO16 Rp0 , Rk0 , 0 // poly_gno (Rp0 , noise , 0)
GNO16 Rp1 , Rk0 , 0 // poly_gno (Rp1 , noise , 0)
EQP Rp0 , Rp1 // verify the two results

Listing 3: Example assembly listing for verifying the output of getnoise.
Errors in EQP would reset the module.

3.8 True Random Number Generator
Designing a good true random number generator is challenging and requires several
considerations. There are several techniques to generate true random numbers in FPGA,
many techniques like metastability, delay lines, have been used for this purpose. In this
work, we use, ring oscillator based TRNG’s because they offer good performance on a wide
variety of platforms, we have implemented, designed and tested a TRNG with 32 rings,
using a design similar to the one presented in [WT09]. The secure element is followed by a
shift register. All the modules share this common source of randomness whenever required.

3.9 Side Channel Protection
A large number of countermeasures such as masking [ITT01,KHL11], threshold implemen-
tation [NRR06] etc. have been developed over the years to protect against these attacks.
But, most of the fully secure countermeasures are expensive or difficult to apply on certain
schemes. As a Ring-LWE implementation contains several large modules there is a large
attack surface for SPA/DPA, so adding specific countermeasures would be difficult and
expensive. In a typical scenario for key-exchange, multiple traces of the same execution
are not available, so DPA cannot be attempted easily. SPA or Template Attack are still
possibilities. In this work, the following countermeasures are used to provide a good
balance between performance and security:

• Random Delays: Delays added to the instruction scheduler can make the power
analysis very difficult. This is especially true for FPGA implementations where the

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 19

Signal to Noise Ratio (SNR) is typically very low for good quality automated trace
alignment like Dynamic Time Warping. This random delay (dummy clock cycles) is
generated from the common/system Ring-Oscillator based TRNG. A 4-bit output
(value 0-15) is used per instruction; this range can be adjusted during synthesis, as
per requirements.

• Address Randomization: We implemented a randomization scheme for I/O operations.
For example, during ADP, PWS, GNOx and many other instructions; the order of
operation does not matter. Hence, we used a permutation for addresses randomization
initially created at system start-up/reset using random data and the knuth-shuffle
technique. The permutation is updated during the random wait cycles at the end of
every instruction.

To further improve resistance against such an attack, the system clock can be dynami-
cally varied using a circuit as demonstrated in [BVR+13]. One should note that such a
module normally reduces the clock frequency and performance and should be carefully
designed to prevent glitches.

4 Implementation & Optimizations
In this section, we present details regarding the hardware implementation and the corre-
sponding design decisions.

We implemented a general lattice cryptography accelerator for Microblaze/ARM based
soft/hard cores within modern FPGAs. For this, instruction modules were individually
implemented and a controller state machine was added along with fetch and decode units.
This allows for a flexible design and full support for multiple schemes. Further, we focus
on achieving a good area-vs-performance trade-off.

4.1 A Fast and Configurable NTT Module
One of the most expensive operation in LWE/RLWE is the polynomial multiplication.
Many of the current PQC schemes explicitly define and use NTT/NTT−1 (section 2.2.1) as
a core operation for this purpose. As NTT requires multiplications and modular reductions
to be performed at every step (N

2 logN butterflies), it may take a very large number of
clock cycles depending on different implementations. In view of this, implementing a fast
and efficient NTT module needs careful consideration. Roy et.al. in [RVM+13] present
comprehensive and detailed implementation and optimization techniques for NTT. Further
details regarding other NTT implementation can be found in [APS13,PG13]. The primary
implementation aspects of our design are as follows:

• Modular Multiplication and Reduction:
The NTT algorithm requires multiplication operations between the coefficients and
the twiddle factors. The result of these multiplications need to be reduced so that they
do not exceed the available 16-bits. One should also ensure that minimum number of
reductions are performed as they tend to be expensive. Techniques like conditional
subtraction for modular reduction, though faster, are not constant time. Thus, they
cannot be pipelined effectively, apart from leaking side-channel information. Even
though, the conditional subtraction can be used after additions, at high clock rates,
three operations (with internal carry-chain) cannot be combined.
Considering the above factors, the Montgomery and the Barrett reduction algorithms
from [ADPS15] were used in this implementation. In order to further improve
performance, these modules were pipelined.

20 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

• Twiddle Factor Unit: The coefficients needed for multiplication/scaling and the
butterfly operations can be obtained either by pre-computation and stored in a
RAM/ROM or they can be generated on-the-fly. Generating these coefficients
instead of storing them saves area in ASIC implementations. However, it adds to the
design complexity. Most moderate FPGA’s have a good amount of BRAM (Block
RAM) blocks and storing the twiddle factors is not a major issue and hence we take
this approach. As we store the twiddle factors in RAM, it is possible to update
them on the fly using a custom AXI-Controller to switch between different algorithms
very easily. A large volume full-custom ASIC should preferably use a more complex
design with on-the-fly generation with some pipeline stages.

for (i = 0; i < 10; i++)
{

for (m = 0; m < d; m++)
{

t = 0;
for (n = m; n < N - 1; n += 2 * d)
{

W = omega[t++];
U = a[n]; V = a[n + d];
a[n] = bred(U + V);
a[n + d] = mred((W * (U + 3 * Q - V)));

}
}
d = 2 * d;

}

Listing 4: NTT Algorithm, using the Gentleman-Sande butterfly.

• NTT Butterfly Address Generation: The NTT algorithm shown in Listing 4
has two inner loops, the m-loop and n-loop. It is clear that, for higher values of d,
there will be a lot of switching between the m and n loops, even though the number
of overall operations remains the same. For a pipelined implementation will lead to
the introduction of a lot of bubbles whenever the inner loop ends. As a result, the
pipeline will be stalled for several clock cycles. To alleviate this problem, the logic of
two loops can be combined into one. The resulting module generates 5120 address
pairs in the correct sequence, with no delays and no extra cycles (stalls). These
addresses correspond to the 512× 10 = 5120 butterfly operations. The control unit
then uses these addresses to perform the butterfly operations in the correct order.

• Control and Memory Address Generation:
This module generates control signals for all operations in the NTT module. As
there are multiple pipeline stages, extra delay registers are required for the addresses
and the enable signals. The control unit generates signals depending on the current
operation.

Figure 12 shows the overall architecture of our NTT module. The NTT module can
perform both forward and inverse transforms using the same hardware just by changing
some control signals. The twiddle factor RAM can store constants for two different
algorithms with different values of γ. This allows our NTT module to be very flexible as
consecutive NTT invocations may be used for different PQC algorithms.

Forward Transform: The first step of the forward transform is the pointwise multi-
plication of the coefficients of the input parameters with the constants in the twiddle factor
RAM (gx×R). This is also known as scaling. The multiplication by R = 218 mod q = 4075

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 21

Twiddle Factor RAM
(16-bit x 1024) × 4

(8 KiB)

poly from register-p
2KiB (Dual Port)
16-bit × 1024

ad
d
r A

p

ad
d
r B

p

doA[16]

doB[16]

w
e A

p

w
e B

p

Montgomery
Reduce

Pipeline depth: 3

Barrett
Reduce

Pipeline depth: 3

diB[16]

diA[16]

∗

−

+

CONST

+

3216 16

16

delay/register

ad
d
r m

em

m
em

se
le
ct
[2
]

to execution
unit

a’

a

b’

b

c

temporary poly
2KiB (Dual Port)
16-bit × 1024

Address Generation Control, Logic and Delay
ad

d
r A

t

ad
d
r B

t

w
e A

t

w
e B

t

address

control

doA t

doB t

d
o
A
p

d
o
B
p

diA p

diB p diB t

diA t

Figure 12: Pipelined NTT Module.

is required as the Montgomery reduce step expects the inputs in the Montgomery form.
This pre-computation saves a multiplication and a reduction.

Elements from the poly register are read one by one from the port doA marked as ‘a’
and multiplied to the twiddle factors marked as ‘c’. The result is then reduced and is
written back using the port diB. There are 3 register stages along the path. As a result, it
takes (1024 + 3 + ε = 1027 + ε) 1 clock cycles in total.

The second step is the actual NTT operation. This step is an iterative process with
three levels of loops. For N = 1024, the outer loop iterates log2(1024) = 10 times. For
this implementation, the NTT address generator outputs an address pair every clock cycle.
The actual implementation can be done in many ways. The simplest way is to read data
from addresses (for the current butterfly) process and store, this will take 5120× 2 = 10240
clock cycles. The reason for this is that we cannot read and write at the same clock cycle
at two different addresses using normal dual port BRAM memories. A better method,
and the one that we use, is to utilize two memories and swap (read and write operations)
between them for every layer of the NTT for every 512 butterfly operations. This also

1ε is the time it takes to load data, initialize and finalize an instruction. Typically, ε lies between 2 to 5.

22 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

ensures that the butterfly calculation and the reduction units are fully utilized. So initially,
data from the operand register is read and the results are stored in a temporary poly
register. Then after 512 butterfly operations, the direction is reversed and the data from
the poly register is read and the results are stored to the operand register. This swapping
continues till all the 10 levels of the NTT are complete.

The total number of clock cycles for the main part of NTT is (512 + 5)× 10 = 5170.
Five clock cycles are required for the pipelining and state machines. As a result, the total
number of clock cycles for the NTT instruction (scaling + main NTT) is 6206 (5170 +
1024 + 12). The 12 cycles are needed for the deep pipelines, internal module resets, NTT
state machine, and initialization steps. The extra cycles can possibly be reduced, but at
negligible real benefits.

4.2 Modular Reductions
LWE/RLWE schemes need reductions of some form or the other. As mentioned in
section 4.1 we work with values in the Montgomery domain and then perform Montgomery
and Barrett reductions whenever needed. Initial implementation of both the reduction
algorithms were running at 96 MHz and 175 MHz respectively. Since, these reduction were
required in many places, they became the critical path for those modules resulting in an
overall low performance. Hence, to overcome this performance bottleneck, we added several
pipeline stages to reduce the overall critical path for both the modules. We required two
versions of the reduction: one with 2 register stages and another with 3 stages. Basically,
when the input values are used directly without significant (time-sensitive) operations,
the input register stage can be removed. Figure 13 shows the 3-stage pipelined reduction
circuit. The algorithm presented in Listing 5 is pipelined with 2 register stages.

× ×

12287

IN OUT&

12289

+ �

stage1 stage2 stage3

Montgomery Reduction

× ×IN OUT

stage1 stage2 stage3

12289

� −

5

Barrett Reduction

Figure 13: Pipelined Modular Reductions

It is known that the Montgomery algorithm does not support the modulus with an
even integer. As calculating modulus using a division operation is very expensive in
hardware, it is not preferable to use this technique. Hence, in order to calculate modulus
by an even integer (for example 12289/4 ≈ 3072), we used the technique presented by
Koc [Koç94]. This modulus is required for the SafeBits operation in HILA5. As one can see
from the Listing 5, modulus by 3072 has been reduced to modulus by 1024 and modulus
by 3. We know that modulus by 1024 is free in hardware, thus resulting in an efficient
implementation in hardware. The same technique can easily be used for modulus by
different even integers.
ushort mod_even(uint a) {

uint x1, x2, x, y, u ;
// a % 3 using Montgomery Reduction
u = (a * 87381);
u &= ((1 << 18) - 1);
u = 3 * u;
a = a + u;
x1 = a >> 18;

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 23

x2 = a % 1024;
// Combining the two; mod (3 and 1024)
// to get (a mod 3072)
y = ((x2 - x1) * 683) % 1024;
x = x1 + (3 * y);
return (x);

}

Listing 5: Modulus by 3072 (R = 218)

4.3 Error Recovery Functions
Error recovery / correction is one of the most important steps in a LWE/RLWE algorithm.
This step is critical to correct the introduced errors and obtain the desired intermediate
values which are then used to compute the shared secret. Even though reconciliation
operations are cheap in terms of clock cycles, they can lead to poor performance. For
example, the f and g functions in NewHope-USENIX has many multiplication operations
which if not pipelined will result in long critical paths. Hence, the reconciliation for
NewHope-USENIX, NewHope-NIST and HILA5 needed significant pipelining to achieve good
performance.

As shown in Figure 14, 8 stage pipelines were required for both the f and g functions
in the HelpRec and Rec functions of NewHope-USENIX respectively. The execution of

× � ×

2730 12289

− − �

�

− &

�

+ ×

−
12288

abs

IN

OUT

stage1 stage2 stage3 stage4 stage5
− &

�

+

2× 12289

v1

v0

× � ×

2730 49156

− − �

�

− &

�

+ × −

49155

8× 12289

absIN OUT

g-function used in Rec

f -function used in HelpRec

stage1 stage2 stage3 stage4 stage5

1
stage6 stage7

OUT

stage6 stage7

OUT

stage8

stage8

Figure 14: f and g internal functions used for reconciliation in NewHope-USENIX.

HelpRec is shown in Figure 15. The implementation is fully pipelined with a latency
of 9 cycles. As a result it takes 1024+9+ε clock-cycles to complete. Similarly, the Rec
instruction takes 1024+9+ε clock-cycles. As the Rec instruction generates a key bit every
cycle, a byte of the key is written every 8 clock-cycles. Similarly, for NewHope-NIST, the
error-correction functions NHSEncode and NHSDecode are pipelined with a latency of 2
cycles. For these modules, we used the dual port RAM to write the key bytes. This results
in a total of 512+3+ε clock-cycles for both the modules. The functions NHSCompress
and NHSDecompress are also pipelined with a latency of 10 cycles for the former and a
latency of 3 cycles for the latter. In case of NHSDecompress, we used dual port RAM to
write the ciphertext. This results in a total of 1024+8+ε clock-cycles for NHSDecompress
and 512+3+ε clock-cycles for NHSCompress. Figure 16 presents the 3-stage pipelined
architecture for HILA5 Safebits function. As discussed in section 2.2.1, this module uses

24 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

Fetch input (from memory)

Load input

f-stage 1

f-stage 2

f-stage 7

FI

LI

Si

LI S0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Clock cycle

9-stage
P

ip
elin

e

.

LI S256

LI

LI

LI

LI

LI

LI

FI

FI

FI

FI

FI

FI

FI

FI

f2 f3 f4 f5

f2 f3 f4 f5

f2 f3 f4 f5

f2 f3 f4 f5

f2 f3 f4 f5

f2 f3 f4 f5

f2 f3 f4 f5

f2 f3 f4 f5

S512

S768

S1

S257

S513

S769

f1

f2

f7

f-stage 8 / Store ith

coefficient of poly c

f7f6

f6

f6

f6

f6

f6

f6

f6

f7

f7

f7

f7

f7

f7

f7

f1

f1

f1

f1

f1

f1

f1

f1

...
Figure 15: Pipelined HelpRec Function from NewHope-USENIX

4 12289

vi

stage1 stage2 stage3

× ÷

mod even

�

1
sel

seli[2:0]

pld

pldi[2:0]

∧

∧

∨

⊕

⊕

t0

S0

S0

S0

1

1

1

reci[2:0]

rec

S0 = ((t0 ≥ 737) and (t0 ≤ 2335))

sel

rec

pld

Figure 16: Pipelined HILA5 Safebits Function

the algorithm presented in Listing 5. It is also interesting to note that on every iteration,
this function sets a bit of the three outputs at a time. Hence, we write the output to
the memory after every 8 clock-cycles. Similar pipeline strategy has been used for the
implementation of Select function used in HILA5. These functions are data dependent
and may fail depending on the number of obtained payload and reconciliation bits. The
maximum number of clock-cycles required for our implementation is 1024+5+ε. All the
subcodewords in XE5_COD of HILA5 are computed in parallel. Hence, this module is not
pipelined. Same is the case with XE5_FIX of HILA5.

4.4 Pipelining ChaCha20
A simple implementation for a fast version of ChaCha20 would have a design with one
round per clock-cycle. Unfortunately all the operations in the Quarter-Round operation are
chained; leading to very long critical paths. On the Zynq-7000 platform, the maximum
frequency was a mere 74 MHz, leading to a performance bottleneck. Hence, to overcome
this issue, we implemented a using 2-stage pipeline for the ChaCha20 Quarter-Round as
shown in the Figure 17. Using the 2-stage pipeline architecture, we were able to achieve a
frequency of 204 MHz, resulting in performance gains of about 175%. The points I and II
in the figure indicates possible locations for adding more pipeline stages to further increase
the performance. But, this would results in addition of two more 512-bit register stages;
a significant increase in area. So, in order to keep a balanced design, we ony used two
pipeline stages for Chacha20.

4.5 Resource Sharing
Resource sharing is a common optimization technique in hardware implementations. The
primary benefit is reduction in the area/number of FPGA resources being used. One side

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 25

≪ 12 ≪ 7

≪ 8

a

b

c

d

a

b

c

d≪ 16

I II

Figure 17: Pipelined ChaCha20 Quarter-Round.

effect is the reduction in performance as sharing is often implemented using multiplexers
and de-multiplexers. This is not a major concern when the modules are not a part of
the timing critical path. We used resource sharing at many places in our implementation.
Most notably, the KECCAK module was shared between the UNF and the SHA-3 hash
units. Similarly, the ChaCha20 module was shared between (GNO and HLREC). This led
to an increase in the number of LUTs in the Execute unit, because of extra multiplexers.
However, as the shared modules are large, there were significant savings overall. In total
saving about 5000 LUTs and about 1000 flip-flops, which is almost 37% of the current area
in LUTs.

4.6 Use as a coprocessor
The proposed processor can be used in a standalone mode; but using it as a coprocessor
as shown in Figure 18 significantly improves flexibility and ease of use. For this purpose,
a custom AXI interface controller was implemented. The interface exposes some control
and status registers to the CPU core, it also provides direct memory-mapped access to
the Instruction and Data memories of the cryptoprocessor, while handling fault signals
and checksum computations transparently. The AXI Slave interface controller connected
to a processor (Microblaze/ARM) can be used to update the instructions, load/set keys
to the data memory, and control the coprocessor to significantly improve key-exchange
performance over embedded software implementations. The comparison results from the
tests are presented in Section 5.4.

ARM CoreClock Gen

AXI
Interconnect

AXI
Peripheral

Crypto
Processor

Instr RAM

RAM Data

DDR3

ZYNQ PSPL

done interrupt
fault interrupt

Central
Interconnect

Figure 18: Usage as a cryptographic accelerator on the Xilinx Zynq Platform.

4.7 Clock Network & Power Consumption
The fan-out for the CLK network after initial synthesis was 8663. This meant that the
clock signal had to reach 8663 points in the FPGA with minimal skew. Increased skew
causes setup and hold time violations, leading to reduced maximum clock frequencies.
Further, the large number dynamically switching clock signals causes increased power

26 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

consumption. To counteract both these problems, we implemented clock-gating in the
design by manually adding BUFHCE (Regional Horizontal Clock Buffer, with enable) and
BUFGCE (Global Clock Buffer) to all the instruction modules. In total 21 such modules
were added, reducing the average fan-out to about 400. Clock was only enabled to the
instruction modules one cycle before start of operation. These changes led to improved
timing and reduction in power consumption.

4.8 Assembler

An assembler was written to assemble handwritten assembly routines for the processor to
binary files. This is not strictly necessary, but it significantly helps in writing protocols
and code for debugging; primarily because fiddling with bits tends to be very error prone.

void newhope_shareda(
unsigned char *sharedkey,
const poly *sk,
const unsigned char *received)

{
poly v, bp, c;

decode_b(&bp, &c, received);
poly_pointwise(&v, sk, &bp);
poly_invtt(&v);
rec(sharedkey, &v, &c);

}

Listing 6: C code

1000000100000000 <= LDP Rp0, 5120
0001010000000000
1000000100000001 <= LDP Rp1, 128
0000000010000000
0000010010001000 <= PWS Rp2, Rp1, Rp0
0000100100000010 <= BREV Rp2
0000011000000010 <= INTT Rp2
1000000100000000 <= LDP Rp0, 7168
0001110000000000
0000101011010000 <= REC Rk3, Rp2, Rp0
1000010100000011 <= STK Rk3, 96
0000000001100000

Listing 7: Equivalent binary codes

Listing 6 contains a partial and simplified2 C implementation for the shareda operation
in NewHope-USENIX. Listing 7 shows the assembled binary opcodes generated from the
user written equivalent mnemonics and operands. RpX are 16-bit poly registers, while RkX
are the 8-bit key/associated data registers. Full code for NewHope-USENIX can be found in
Appendix A.

5 Implementation Results

This section presents performance evaluation and comparison with other implementations.

5.1 Evaluation Platform

We used Xilinx Vivado 2018.1 for synthesis, placement and routing. The results are
presented for two FPGAs Xilinx Zynq-7000 XC7Z020CLG484-3 (28nm) and Zynq Ultrascale+
XCZU4EGSFVC784-3 (16nm). The latter is significantly faster and more efficient due to
the modern architecture and the 16nm FinFET+ Programmable Logic, but, the former
is much more common and we use it to compare this work with other similar designs.
We present data for the highest (-3) speed grade; in our experiments, the more common
(-2) speed grade has about 10% performance degradation for our design in case of both
the FPGA’s. The timing and utilization results are quite sensitive to the synthesis and
implementation strategy as well as the timing constraints. We used PerfOptimized_high for
synthesis and ExtraTimingOpt for the implementation strategy. This resulted in a slightly
large, but better performing implementation.

2The SHA-3 at the end is not shown for clarity.

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 27

5.2 Results and Discussion
Table 2 shows implementation results for all the modules. It is clear from the results that
the functions SHA3 and ChaCha20 used by the uniform and binomial sample generation
modules, occupy most of the area and have the longest timing path (hence are the slowest).
There are many possible low area implementations possible for these modules, but those
designs have a comparatively poor performance due to their large latencies. As we are
targeting high performance, using modules with low latency is important. In order to
obtain optimal performance from the target FPGAs, we used the resources like DSPs and
BRAMs whenever suitable. We tried to ensure that we don’t overuse certain hard-blocks;
and attempted to maintain a good LUT/FF to BRAM/DSP ratio.

In order to evaluate timing (maximum frequency) for the modules, we synthesized
and implemented each of them separately as well. For two of the modules (ChaCha20 &
Keccak) which had a large number of I/O ports, it was not possible to implement them
separately. For them, we had to use out_of_context mode for the synthesis, which does
not connect the module to the pads. This slightly improves the overall timing. This was
not an important factor as the modules are anyways not connected to the pads in the final
design.

It is interesting to note the wide variation in the maximum achievable frequency for
each of the modules. This is quite significant for the XCZU4 FPGA. As the processor is
subscalar with large instruction latencies, one possible future extension is to use multiple
PLLs in the FPGA to generate multiple clocks and run different modules at different clock
frequencies (this is a well known optimization). This can easily improve performance by
15-20 percent.

20.7%

Common Modules
19.6%

ChaCha20

17.9%
Keccak

16.2%

HILA5 Specific

14.4%

Processor Modules

7.1%

NewHope-USENIX Specific

4.1%
NewHope-NIST Specific

Figure 19: Breakup of the different components in terms of the number of LUTs required
for NewHope-USENIX, NewHope-NIST and HILA5

As mentioned earlier, as well as shown in Figure 19, the area taken up by ChaCha20
and Keccak is about 37%, which is quite large. In order to reduce the overall area they
can be replaced by lightweight hardware oriented primitives of similar strength.

Any hardware or software implementation can be optimized to a large extent. But once
significant level of optimization has been achieved, further optimizations either require a
lot of effort or further gains are minimal. In this work, we kept on optimizing individual
modules in terms of timing (frequency improvements and reduction in latency), and in
terms of area (by sharing and using alternative logic), till any further optimization would
provide 5% or more benefits without adversely affecting the overall results. As a result, we
have a design which is well optimized. Of course, there are certain modules which can be
further optimized with small benefits but we do not attempt since the gains are not likely

28 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

Table 2: Implementation Results for all the modules used in the three implemented schemes.
The shown area utilization values are for XC7Z020; the values for XCZU4 are not shown as
they are very similar (within 2-6%). These results are for the unprotected implementation.
The (SCA + FAULT) implementations add about 600 LUTs and 500 FFs without any
effect on the timing performance.

Component Clock Frequency (MHz) Area Utilization

Cycles XC7Z020 XCZU4 LUTs FFs BRAM DSP

Processor Modules (latency) 28nm 16nm 36K 18K

Fetch Unit 1 485 724 9 53 0 0 0
Decode Unit 1 592 850 33 40 0 0 0
Execute Unit (logic & control) - 190 406 1449 14 0 0 0
- Load-Store (16-Bit) 512 378 850 41 18 0 0 0
- Load-Store (8-Bit) 16 520 850 21 13 0 0 0
- 8-bit Register Module 1 290 651 198 12 0 4 0
- 16-bit Register Module 1 271 595 420 12 0 4 0

Multipurpose RLWE Modules (Including NewHope-USENIX)

- Keccak (SHA3) - 238 408 2315 0 0 0 0
- ChaCha20 Stream - 276 664 321 428 0 0 0
- ChaCha20 40 204 480 2534 1037 0 0 0
- Polynomial Add/Sub 512 275 793 230 214 0 0 0
- Polynomial Multiply 512 258 515 163 316 0 0 12
- Polynomial Bit-Reversal 1024 321 811 18 14 0 0 0
- Combined Pipelined NTT 6206 251 528 343 493 0 6 3
- GetNoise (w/o ChaCha20) 2872 287 599 106 379 0 0 0
- Sampler (w/o Keccak) 1837 238 408 1492 1956 0 0 0

NewHope-USENIX Modules

- Helprec 1043 226 605 411 269 0 0 3
- Rec 1043 220 588 504 380 0 0 1

NewHope-NIST Modules

- Encode 519 443 850 45 31 0 0 0
- Decode 515 277 677 182 108 0 0 0
- Compress 1036 195 591 225 67 0 0 1
- Decompress 518 286 850 81 67 0 0 0

HILA5 Modules

- safebits 952 191 430 244 170 0 0 2
- select 998 210 533 159 131 0 0 3
- xe5_cod 276 322 673 873 616 0 0 0
- xe5_fix 224 291 605 816 341 0 0 0

Total - - - 13224 8272 0 16 24

to be significant.

5.3 Comparison
Table 3 shows a comparison of our design with other post-quantum schemes. As of
today, only two directly comparable FPGA implementations by Kuo et al. [KLC+17] and
by Oder et al. [OG17] exist. Even though both are FPGA implementations on similar
hardware platforms, architectural differences and choices in design strategies make a
fair comparison difficult. For completeness, we include other implementations of PQC
schemes [KAKJ17,RVM+13,PG13,HMO+16] in Table 3. However, our implementation

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 29

Table 3: Performance Comparison
Implementation Time Area Device

Freq. Cycles Time LUT FF RAM DSP
(MHz) (×103) (µS) Blocks

Parameters: n = 1024, q = 12289

NewHope-USENIX 190 30.6/33.5 160/175 13244 8272 18 24 XC7Z020
NewHope-NIST 30.6/34.0 160/178 (28nm)
HILA5 30.1/30.0 160/156 (this work)

NewHope-USENIX 406 30.6/33.5 75/82 13961 8149 18 25 XCZU4EG
NewHope-NIST 30.6/34.0 75/83 (16nm)
HILA5 30.5/29.8 75/73 (this work)

NewHope-USENIX 133 6.9+2.8 51.9+21.1 18756 9412 14/14 8/8 XC7Z020
[KLC+17] /131 /10.3 /78.6 /20826 /9975 (28 nm)
NewHope- 125 171 988+473 5142 4452 4 2 XC7A35T
Simple [OG17] /117 /179 /1434 /4498 /4635 4 2 (28 nm)

Parameters: n = 511, 503 bit primes

SIDH [KAKJ17] 177 5967 33700 30031 24499 27 192 7VX690
SIDH [KAMK16] 181 3800 20900 26659 19882 40 192 7VX690

Parameters: n = 512, q = 12289

RLWE [RVM+13] 278 13.3/5.8 47.9/21 1536 953 3 1 V6LX75T
RLWE [PG13] 251 13.8/8.8 54.9/35.4 5595 4760 14 1 V6LX75T

Parameters: n = 125, q = 4096

LWE [HMO+16] 125 98.3/32.8 786/228 6152 4804 73 1 S6LX45T

cannot be directly compared to these works because of significant differences in design,
parameters or mathematical structure.

5.3.1 Comparison with NewHope-Simple Implementation (NHS) [OG17]

The authors of [OG17] present an implementation targeted towards low-cost FPGA’s. The
said implementation is quite small (5K LUTs) but takes a large number of clock cycles
(≈ 170K) for server and client each. In comparison, our design requires 12.9K LUTs for
three algorithms and needs ≈ 32K clock cycles. Comparison in terms of area is further
made difficult as [OG17] uses Trivium instead of ChaCha20. Considering speed, our design
runs about 65 MHz faster on the same FPGA architecture. This means that our design is
overall 8.6 times faster for the complete NHS execution.

5.3.2 Comparison with NewHope-USENIX Implementation (NH) [KLC+17]

The authors of [KLC+17] focused primarily on performance. In order to do so, they used
a 128-bit bus and replicated hardware modules to improve performance. For example,
they use four instances of Uniform and Binomial sampler. Similarly, they use 8 instances of
multiplier, adder and reduction modules. They also use 4 parallel butterfly operations in
the NTT module. In contrast to this, we used a more balanced design, with replication
only in the adder and multiplication units, while all other modules were not replicated.
As we were targeting modularity and support for multiple algorithms, replication of more
modules would require much larger bus sizes and significantly large area overheads.

30 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

5.4 Application and Performance as a Cryptographic Accelerator
We used the Avnet MiniZed board to verify the implementation on real a physical device.
The targeted FPGA was a Xilinx XC7Z007S. It is one of the the smallest Xilnx FPGA with
an embedded hard ARM core processor. The processor is a ARM Cortex A9 (ARMv7-A)
running at 667 MHZ with the DDR3 RAM clocked at 533 MHz. The PL (programmable
logic) clock was running at 125 MHz, mainly because the FPGA used on the board
has the slowest speed-grade of -1. Table 4 shows the performance gains for some of the
instructions. For most of the operations more than an order of magnitude gains are
obtained. For example, the uniform noise sampling UNF is more than 90 times compared
to the software implementation, similarly the NTT operation is about 23 times faster. As
the NTT module supports externally provided twiddle factors and dynamic size options. It
can be used to accelerate any other design which uses it. The value δ represents the extra
time needed to copy the data to and from the memory to the processor; the value can vary
widely depending on amount of data transferred, bus-widths used in the interconnect, and
burst-mode support in the interface used and many other reasons. Having a fast, wide and
low-latency connection to the CPU core is necessary if single instructions are required to
be accelerated.

Table 4: Performance as a Hardware Accelerator (on the MiniZed Board). Measured on
a standalone application using the hardware F_CLK/2 timer. The hardware accelerated
execution time includes the two-way enable and done interrupt execution delays. For the
software implementation we used the reference implementation.

Mnemonic Instruction Hardware (µs) Software (µs)
UNF uniform 14.93 + δ 1356.44
GNO getnoise 23.27 + δ 784.56
ADP add polynomials 4.33 + δ 108.76
PWS pointwise multiply 4.54 + δ 209.87
NTT forward NTT 49.7 + δ 1136.44
INTT inverse NTT 49.7 + δ 1184.68
HLREC helprec 9.64 + δ 258.42
REC rec 8.52 + δ 229.47

6 Conclusions
In this work, we have presented a leakage resistant cryptoprocessor for NewHope-USENIX,
NewHope-NIST and HILA5. To the best of our knowledge, this work presents the first side-
channel protected post-quantum cryptoprocessor. This is also the fastest implementation
of NewHope-NIST. Due to pipelining in most of the modules, this work achieves the
highest clock frequencies among the results reported in literature. This leads to a highly
compact, efficient and modular design. As this work follows the reference implementation
of NewHope-USENIX, it is fully compatible with its software version.

References
[ADPS15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-

quantum key exchange - a new hope. IACR Cryptology ePrint Archive,
2015:1092, 2015.

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 31

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Newhope without reconciliation. IACR Cryptology ePrint Archive, 2016:1157,
2016.

[APS13] Aydin Aysu, Cameron Patterson, and Patrick Schaumont. Low-cost and area-
efficient FPGA implementations of lattice-based cryptography. In Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International Symposium
on, pages 81–86. IEEE, 2013.

[Bar86] Paul Barrett. Implementing the Rivest, Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Conference
on the Theory and Application of Cryptographic Techniques, pages 311–323.
Springer, 1986.

[BBGM+17] Hayo Baan, Sauvik Bhattacharya, Oscar Garcia-Morchon, Ronald Rietman,
Ludo Tolhuizen, Jose Luis Torre-Arce, and Zhenfei Zhang. Round2: Kem
and pke based on glwr. IACR Cryptology ePrint Archive, 2017:1183, 2017.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power
Analysis With a Leakage Model. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 16–29. Springer, 2004.

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS-a practical
forward secure signature scheme based on minimal security assumptions.
In International Workshop on Post-Quantum Cryptography, pages 117–129.
Springer, 2011.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the Importance of
Checking Cryptographic Protocols for Faults. In International conference on
the theory and applications of cryptographic techniques, pages 37–51. Springer,
1997.

[BECN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The sorcerer’s apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370–382, 2006.

[BGML+18] Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald Ri-
etman, Markku-Juhani O Saarinen, Ludo Tolhuizen, and Zhenfei Zhang.
Round5: compact and fast post-quantum public-key encryption. Submitted
for publication, 2018.

[BHH+15] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-based signa-
tures. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 368–397. Springer, 2015.

[BHO04] Rainer Buchty, Nevin Heintze, and Dino Oliva. Cryptonite–A programmable
crypto processor architecture for high-bandwidth applications. In Interna-
tional Conference on Architecture of Computing Systems, pages 184–198.
Springer, 2004.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems. In Annual international cryptology conference, pages 513–525.
Springer, 1997.

32 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

[BVR+13] Ali Galip Bayrak, Nikola Velickovic, Francesco Regazzoni, David Novo,
Philip Brisk, and Paolo Ienne. An eda-friendly protection scheme against
side-channel attacks. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’13, pages 410–415, 2013.

[BWM+16] Bela Bauer, Dave Wecker, Andrew J Millis, Matthew B Hastings, and
Matthias Troyer. Hybrid quantum-classical approach to correlated materials.
Physical Review X, 6(3):031045, 2016.

[Deu98] Deutsch. The Fabric of Reality: The Science of Parallel Universes and Its
Implications. Penguin Books, 1998.

[EFGT16] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Loop-abort faults on lattice-based fiat-shamir and hash-and-sign signatures.
In International Conference on Selected Areas in Cryptography, pages 140–158.
Springer, 2016.

[Fey98] R. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6-7):467–488, 1998.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 530–547. Springer, 2012.

[GS66] W Morven Gentleman and Gordon Sande. Fast Fourier Transforms: for fun
and profit. In Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, pages 563–578. ACM, 1966.

[HMO+16] James Howe, Ciara Moore, Máire O’Neill, Francesco Regazzoni, Tim Güneysu,
and Kevin Beeden. Lattice-based Encryption Over Standard Lattices in
Hardware. In Proceedings of the 53rd Annual Design Automation Conference,
page 162. ACM, 2016.

[ITT01] Kouichi Itoh, Masahiko Takenaka, and Naoya Torii. Dpa countermeasure
based on the âĂĲmasking methodâĂİ. In International Conference on
Information Security and Cryptology, pages 440–456. Springer, 2001.

[Jus17] Russ Juskalian. Practical quantum computers. MIT Technology Re-
view, March/April 2017. https://www.technologyreview.com/s/603495/
10-breakthrough-technologies-2017-practical-quantum-computers/.

[KAKJ17] Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David Jao.
Post-quantum cryptography on FPGA based on isogenies on elliptic curves.
IEEE Transactions on Circuits and Systems I: Regular Papers, 64(1):86–99,
2017.

[KAMK16] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Fast
Hardware Architectures for supersingular Isogeny Diffie-Hellman Key Ex-
change on FPGA. In International Conference in Cryptology in India, pages
191–206. Springer, 2016.

[KHL11] HeeSeok Kim, Seokhie Hong, and Jongin Lim. A fast and provably secure
higher-order masking of aes s-box. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 95–107. Springer, 2011.

[KJJ+98] Paul Kocher, Joshua Jaffe, Benjamin Jun, et al. Introduction to differential
power analysis and related attacks, 1998.

https://www.technologyreview.com/s/603495/10-breakthrough-technologies-2017-practical-quantum-computers/
https://www.technologyreview.com/s/603495/10-breakthrough-technologies-2017-practical-quantum-computers/

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 33

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Annual International Cryptology Conference, pages 388–397. Springer,
1999.

[KLC+17] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng,
Chen-Mou Cheng, and Bo-Yin Yang. High Performance Post-Quantum Key
Exchange on FPGAs. IACR Cryptology ePrint Archive, 2017:690, 2017.

[Knu76] Donald Knuth. The complexity of nonuniform random number generation.
Algorithm and Complexity, New Directions and Results, pages 357–428, 1976.

[Koç94] Ç Kaya Koç. Montgomery reduction with even modulus. IEE Proceedings-
Computers and Digital Techniques, 141(5):314–316, 1994.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 1–23. Springer,
2010.

[Mce78] Robert J Mceliece. A Public-Key Cryptosystem Based On Algebraic Coding
Theory. Deep Space Network Progress Report, 44:114–116, 1978.

[MHER14] Nicolas Moro, Karine Heydemann, Emmanuelle Encrenaz, and Bruno Ro-
bisson. Formal verification of a software countermeasure against instruction
skip attacks. Journal of Cryptographic Engineering, 4(3):145–156, 2014.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding
theory. Prob. Control and Inf. Theory, 15(2), 1986.

[NIS] NIST. Submission requirements and evaluation criteria for
the post-quantum cryptography standardization process. http:
//csrc.nist.gov/groups/ST/post-quantum-crypto/documents/
call-for-proposals-final-dec-2016.pdf.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security,
pages 529–545. Springer, 2006.

[NS01] Phong Q Nguyen and Jacques Stern. The two faces of lattices in cryptology.
In Cryptography and lattices, pages 146–180. Springer, 2001.

[Nus80] Henri Nussbaumer. Fast polynomial transform algorithms for digital con-
volution. IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(2):205–215, 1980.

[OG17] Tobias Oder and Tim Güneysu. Implementing the NewHope-Simple Key
Exchange on Low-Cost FPGAs. Progress in Cryptology–LATINCRYPT, 2017,
2017.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In International Work-
shop on Post-Quantum Cryptography. Springer, 2014.

[PG13] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based
public-key encryption on reconfigurable hardware. In International Confer-
ence on Selected Areas in Cryptography, pages 68–85. Springer, 2013.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/ call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/ call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/ call-for-proposals-final-dec-2016.pdf

34 SPQCop: Side-channel protected Post-Quantum Cryptoprocessor

[Reg04] Oded Regev. Quantum computation and lattice problems. SIAM Journal on
Computing, 33(3):738–760, 2004.

[RVM+13] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede. Compact Ring-LWE based cryptoprocessor.
Cryptographic Hardware and Embedded Systems–CHES 2014, pages 1–1, 2013.

[Saa17] Markku-Juhani O Saarinen. Hila5: On reliability, reconciliation, and error
correction for ring-lwe encryption. In International Conference on Selected
Areas in Cryptography, pages 192–212. Springer, 2017.

[SKR+13] Khawar Shahzad, Ayesha Khalid, Zoltán Endre Rákossy, Goutam Paul, and
Anupam Chattopadhyay. CoARX: a coprocessor for ARX-based crypto-
graphic algorithms. In Proceedings of the 50th Annual Design Automation
Conference, page 133. ACM, 2013.

[SL80] Richard M. Sedmak and Harris L. Liebergot. Fault tolerance of a gen-
eral purpose computer implemented by very large scale integration. IEEE
Transactions on Computers, (6):492–500, 1980.

[WT09] Knut Wold and Chik How Tan. Analysis and enhancement of random
number generator in fpga based on oscillator rings. International Journal of
Reconfigurable Computing, 2009:4, 2009.

Arpan Jati, Naina Gupta, Somitra Kumar Sanadhya and Anupam Chattopadhyay 35

Appendix A Assembly listing for the NewHope-USENIX Key
Exchange

/* NewHope RLWE Test

Memory Map [16 KB]

[seed] [noiseseed] [SK_A]
0-31 32-63 128-2175

[SENA_A_POLY] [SEND_B_POLY]
3072 5120-7167

[SEND_B_HREC] [GEN_KEY_B]
7168-9215 64-95

[GEN_KEY_A]
96-127

*/
// START of keygen

LDK Rk0, 0 // seed
LDK Rk1, 32 // noise

// gen_a(&a, seed);
UNF Rp0, Rk0

// poly_gno(sk, noise, 0);
GNO16 Rp3, Rk1, 0

// poly_ntt(sk);
NTT Rp3

// Store SK_A
STP Rp3, 128

// poly_gno(&e, noise, 1);
GNO16 Rp1, Rk1, 1

// poly_ntt(&e);
NTT Rp1

// poly_pws(&r, sk, &a);
PWS Rp2, Rp3, Rp0

// poly_add(&a, &e, &r);
ADP Rp0, Rp1, Rp2

// Store SEND_A_POLY
STP Rp0, 3072

// --- START of sharedb ---

LDK Rk0, 0
LDK Rk1, 64

// gen_a(&a, seed);
UNF Rp0, Rk0

// poly_gno(&sp, noise, 0);
GNO16 Rp1, Rk1, 0

// poly_ntt(&sp);
NTT Rp1

// poly_gno(&ep, noise, 1);
GNO16 Rp2, Rk1, 1

// poly_ntt(&ep);
NTT Rp2

// poly_pws(&a, &a, &sp);
PWS Rp3, Rp0, Rp1

// poly_add(&a, &a, &ep);
ADP Rp0, Rp3, Rp2

// Store SEND_B_POLY
STP Rp0, 5120

// Load SEND_A_POLY
LDP Rp2, 3072

// poly_pws(&ep, &ep, &sp);
PWS Rp3, Rp2, Rp1

// poly_bit_reverse(&ep),
BREV Rp3

// poly_invntt(&ep);
INTT Rp3

// poly_gno(&sp, noise, 2);
GNO16 Rp1, Rk1, 2

// poly_add(&ep, &ep, &sp);
ADP Rp2, Rp3, Rp1

// helprec(&sp, &ep, noise, 3);
HLREC Rp1, Rp2, Rk1, 3

// Store SEND_B_HREC
STP Rp1, 7168

// rec(sharedkey, &ep, &sp);
REC Rk2, Rp2, Rp1

// Store Shared Key B
STK Rk2, 64

// --- START of shareda ---

// Load SEND_B_POLY
LDP Rp0, 5120

// Load SK_A
LDP Rp1, 128

// poly_pws(&v, sk, &bp);
PWS Rp2, Rp1, Rp0

// poly_bit_reverse(&v)
BREV Rp2

// poly_invntt(&v);
INTT Rp2

// Load SEND_B_HREC
LDP Rp0, 7168

// rec(sharedkey, &v, &c);
REC Rk3, Rp2, Rp0

// Store Shared Key A
STK Rk3, 96

Figure 20: Assembly listing for the NewHope-USENIX Key Exchange (in-place)

	Introduction
	Motivation for a flexible design
	Motivation for side-channel resistance
	Contributions

	Preliminaries
	Notations
	Protocol description
	Algorithms

	Resistance against Side-channel Attacks
	Fault-Attacks
	Power and Timing Attacks

	Design
	Design Rationale
	Memory
	Register access across multiple instructions

	Architecture
	Fetch and Decode Units
	Execution Unit
	Register Modules
	Load-Store Units

	Execution Sequence
	Instruction Set Design
	Fault Protection
	Fault Detection Hashes
	Protecting Critical Signals using Complimentary Duplicate Logic
	Protecting the instruction pointer
	Protection against Control Flow (FSM state) Modification
	Protection against Memory Faults
	Additional Protection: Instruction Cycle Count
	Fault Tolerance: Direct Memory Access Isolation
	Fault Tolerance: Equality Instructions

	True Random Number Generator
	Side Channel Protection

	Implementation & Optimizations
	A Fast and Configurable NTT Module
	Modular Reductions
	Error Recovery Functions
	Pipelining ChaCha20
	Resource Sharing
	Use as a coprocessor
	Clock Network & Power Consumption
	Assembler

	Implementation Results
	Evaluation Platform
	Results and Discussion
	Comparison
	Comparison with NewHope-Simple Implementation (NHS) oder2017implementing
	Comparison with NewHope-USENIX Implementation (NH) kuo2017highperf

	Application and Performance as a Cryptographic Accelerator

	Conclusions
	Assembly listing for the NewHope-USENIX Key Exchange

