
Verifiable Computing for Approximate Computation
Shuo Chen

Microsoft Research
shuochen@microsoft.com

Jung Hee Cheon
Seoul National University

jhcheon@snu.ac.kr

Dongwoo Kim
Seoul National University

dwkim606@snu.ac.kr

Daejun Park
Runtime Verification, Inc.
daejunpark@gmail.com

Abstract—Verifiable computing (VC) is a complexity-theoretic
method to secure the integrity of computations. The need is
increasing as more computations are outsourced to untrusted
parties, e.g., cloud platforms. Existing techniques, however, only
deal with exact computations, without the capability of rounding
(e.g., “1.11 × 2.22 = 2.4642” is verifiable, but “1.11 × 2.22
rounds-to 2.46” is not). Hence, in a long sequence of calculations
(e.g., multiplications), the number of digits of the result keeps
increasing and will quickly exceed the precision limit of the
underlying system. Because of this limitation, VC is currently
missing the opportunity in the whole AI space where approximate
computations are unavoidable.

In pursuit of the vision of verifiable AI computing, a solution
to support the rounding operation is necessary. In this paper, we
present an efficient verifiable computing scheme to achieve it. The
main idea is to reduce the rounding operation into an efficient
arithmetic circuit representation, and reuse the machinery of the
Goldwasser, Kalai, and Rothblum’s protocol (also known as the
GRK protocol), the state-of-the-art interactive proof protocol.
Specifically, we shift the algebraic structure from a field to a
ring to better deal with the notion of “digits”, and generalize
the original GKR protocol over a ring. Then, we reduce the
rounding operation to a low-degree polynomial in a ring, and
present a novel, optimal circuit construction of an arbitrary
polynomial to transform the rounding polynomial to an optimal
arithmetic circuit representation. Moreover, we further optimize
the proof generation cost for rounding by employing a Galois
ring. We provide experimental results that show the efficiency
of our scheme for approximate computations. For example,
our implementation performed two orders of magnitude better
than the existing GKR protocol for a nested 128×128 matrix
multiplication of depth 12 on the 16-bit fixed-point arithmetic.

I. INTRODUCTION

Verifiable computing (VC) [4], [34], [25], [23] aims to
ensure the integrity of computations performed by an untrusted
party. In the cloud computing era, as more computationally
heavy tasks are delegated to the cloud, VC is considered by the
research community as a very compelling solution for proving
their security.

The existing literature has demonstrated the feasibility
of several basic primitives, such as addition, multiplication,
comparisons [52], set operations [31], and key-value store
retrieval [43]. Using these primitives, VC was shown feasible
for a number of tasks, including matrix multiplication [18],
[39], [45], certain SQL-like queries [59], and state-machine
updates [13]. A fundamental commonality of the above tech-
niques is that they only deal with exact computations. For ex-
ample, they can assert that 1.11× 2.22 = 2.4642 is verifiable,
but 1.11×2.22 ' 2.46 is not, although b1.11×2.22e2 = 2.46
(where b·e2 denotes rounding to two decimal places). Being

incapable of approximate computations, i.e., not being able to
drop insignificant digits, VC is currently missing the opportu-
nity in the whole AI space, as we discuss next.

Motivation. This paper is motivated by our vision about
verifiable AI computation. Specifically, consider a deep neural
network (DNN) training task: it is a computation that takes a
set of samples, and produces an output model represented as
one or more matrices. The computation often takes hours or
even days. Should the training set be poisoned or the training
machine(s) be compromised, the output model would have
potentially devastating hidden behaviors. Unlike programming
bugs or malicious code, compromised AI models are extremely
difficult to detect, because the models are nothing but some
matrices. However, if verifiable AI computation is achieved,
we will be able to trust a model by only trusting the fun-
damental mathematics, not any other factors such as human
operators, program, or platform doing the training.

AI computations are many orders of magnitude heavier and
involve more challenging operations than the aforementioned
primitives in the VC literature, so it could be a long journey to
fully realize the vision. Specifically, DNN training processes
mainly consist of an overwhelmingly large amount of com-
puting matrix multiplication and a relatively small amount of
computing various non-linear functions such as ReLU, max-
pooling, and softmax, where all the operations are performed
using approximate arithmetic such as fixed-point or floating-
point arithmetic. Here the following fundamental operations
are required for DNN training computations: (1) approximate
arithmetic, (2) comparison (for ReLU and max-pooling), and
(3) natural exponentiation ex (for softmax and sigmoid). While
the comparison operation was shown to be feasible in [52], and
ex can be approximated as a (piecewise) polynomiali, approxi-
mate arithmetic is not supported in existing VC schemes (e.g.,
acknowledged in [52], [46]), to the best of our knowledge.ii

Fixed precision and rounding. A DNN training often
involves hundreds of thousands nested multiplications. Since
the exact multiplication doubly increases the number of sig-
nificant digits, the rounding operation is essential to allow
the computation to be performed within a fixed precision. As

iIn particular, it is a well-known practice to use an input normalization for
ex [51] to avoid overflow when computing softmax or sigmoid, in which case
x ≤ 0, and thus a (piecewise) polynomial approximation of ex for x ≤ 0 can
provide a sufficient precision since ex is converging in the negative domain.

iiAlthough the technique used for comparison [52] has a potential to be
used for rounding, their approach inherently introduces a significant overhead
which is not involved in our approach. See Section IX for more details.

mentioned earlier, the traditional VC only deals with exact
computations, and the underlying algebraic structure is a finite
field. It is worth noting that, when the exact multiplication
is replaced by the rounded multiplication, the structure is
no longer a field. (Recall that, for a structure to be a field,
every nonzero element would need to have a multiplicative
inverse. However, the rounded multiplication is a many-to-one
mapping, thus some elements do not have an inverse.) This
presents a need for a substantial re-thinking about existing
theories and re-targeting them to the new problem.

In this paper, we present a verifiable computing scheme
that supports rounding efficiently. We base our scheme on
a so-called GKR protocol, a state-of-the-art interactive proof
protocol originally proposed by Goldwasser, Kalai, and Roth-
blum [25], and improved by [18], [47], [54], [58].iii In
particular, we consider interactive proofs instead of non-
interactive arguments such as SNARKs [24], [8], [10], since
interactive proofs have the advantage of admitting much better
performance in generating proofs (roughly >1000× faster [10],
[47]) than noninteractive arguments that rely on expensive
cryptographic operations. Note that the proof generation cost
is a dominating factor in the overall complexity of VC, and
for practical purpose, it is critical to reduce the cost to deal
with a heavy computation workload such as DNN training.

Our contributions. In pursuit of the vision of verifiable
AI, finding a solution to support rounding is an unavoidable
effort. It demands a paradigm shift for VC, because it re-
quires re-thinking the underlying algebraic structure, existing
techniques, and results from other areas. We have made
contributions in these aspects:

1) Extending the underlying algebraic structure to a ring.
We explained above that the existing theorems need to be
adapted to handle approximate computations. More tech-
nically, when VC is performed on exact computations,
the notion of “digit” is not needed, so the underlying
algebraic structure is simply a finite field Zp, where p
is a prime number. (Note that Zp represents the integer
set from 0 to p − 1, and all operations are performed
with modulo p.) To support approximate computations,
we need the notion of “digit”, since it is essential in the
rounding operation. We shift the algebraic structure to
a finite ring Zpe , which is used to represent e digits,
each from 0 to p− 1. Although Zpe is a ring, not a field
(since pe is not a prime), we found that the GKR protocol,
originally defined over a finite field, can be generalized
over a finite ring (Section IV).

2) Reducing the rounding operation to an efficient com-
bination of the plain ring operations. With the Zpe

structure, the rounding operation becomes the operation
of removing the lowest digit. Interestingly, we were

iiiAlthough our approach is applicable to all of the existing variants of
the GKR protocol, we report the complexity of our scheme (in Section VI
and Section VII) based on Thaler’s variant [47]. Note that the asymptotic
complexity of our scheme does not change even if a more recent variant
(including the latest one [58, Section 3]) is employed, because of our optimal
circuit construction that we will explain later.

able to relate our need to a recent study [16] in the
homomorphic encryption area. The study was oriented
to improving performance of a homomorphic encryption
scheme, but we found that its core idea can be utilized
for our purpose. Specifically, it allows us to construct
an efficient (low-degree) polynomial that performs the
rounding operation. This in turn allows us to represent
the rounding operation as a combination of the plain ring
operations (e.g., addition and multiplication), which can
be easily admitted by our generalized GKR protocol over
a ring mentioned earlier.

3) Optimal circuit construction for arbitrary polynomial. In
the GKR protocol (as well as our generalized one), a
computation of interest needs to be represented in the
form of an arithmetic circuit, and the performance of the
protocol could be largely affected by the structure of a
circuit. Now that we have the aforementioned rounding
polynomial, it is important to carefully construct a circuit
of the polynomial to achieve good performance. To this
end, we devised a novel, optimal circuit construction
of an arbitrary polynomial for the GKR protocol. A
constructed circuit is regular with depth O(log d) and
size O(d) where d is the degree of the polynomial. The
circuit construction is optimal in that the proof generation
complexity is linear in d. Moreover, the complexity for
proof generation becomes even sublinear in case that
the same polynomial is evaluated on multiple inputs
(Section VI-B), while the previously best known result
is linear [58]. Such a single-polynomial-multiple-inputs
computation is common in data-parallel computing as
well as DNN training (e.g., the activation function of each
layer is pointwisely applied to a weight vector/matrix).
Note that our circuit construction is general, admitting
an arbitrary polynomial, and thus can be used in other
contexts, e.g., computing (a polynomial approximation
of) the activation function in DNN training.

4) Optimization of proof generation cost for rounding. Con-
sider an approximate computation on Zpe . The underlying
ring Zpe can be replaced by another ring Zqde with
a much smaller prime q ' d

√
p, via base conversion,

that is, converting numbers in the base-p system to the
corresponding numbers in the base-q system.iv Here the
advantage of employing Zqde is that the size of the
rounding polynomial in Zqde is much smaller than that
of Zpe , which in turn significantly reduces the proof
generation cost for rounding. However, employing Zqde

leads to sacrificing the soundness of the protocol. To
mitigate this dilemma, we proposed a technique that
allows us to employ Zqde without compromising the
soundness, by exploiting an interesting property of a Ga-
lois ring (Section VII). However, there is a cost overhead
when employing a Galois ring, since the operations on

ivThe converted number may be marginally different from the original,
but such an inaccuracy is acceptable in approximate computation such DNN
training.

a Galois ring become more expensive as its dimension
increases. Thus, having a too small prime q may offset
the aforementioned cost benefit. Nevertheless, one can
find an optimal q given a set of parameters, and our exper-
iment showed that two orders of magnitude performance
improvement can be made by finding such a sweet spot
(Section VIII).

These techniques lay the foundation for theoretical feasi-
bility of verifiable approximate computations. In particular,
our approach provides a desirable asymptotic complexity. For
each rounding layer, the proof generation cost is linear, and
the verification cost is logarithmic in the number of rounding
gates in the layer.v Moreover, we conducted experiments to
quantify the performance of verifiable rounding operations.
In a moderate laptop, for 212 number of 16-bit rounding
operations, the proof generation took a second, while the proof
verification took less than a millisecond. Also, considering that
matrix multiplication dominates (constituting ∼90% of) DNN
training workloads [57], we experimented with our scheme
on matrix multiplication. Given a nested 128 × 128 matrix
multiplication of depth 12 over fixed-point numbers with 16-
bits below the decimal point, our refinement took 3 minutes
to generate a proof for each matrix multiplication, while the
original GKR protocol took 2.5 hours for the same task. The
gap between the two will increase exponentially as the depth
of multiplication increases, while the depth often increases to
hundreds of thousands in real DNN training.

Other applications of individual results. While we have
initially developed various technical results (i.e., the general-
ized GKR protocol over a ring, the optimization via a Galois
ring, and the optimal circuit construction) for the sole purpose
of realizing an efficiently verifiable rounding operation, each
individual result turns out to have its own applications as well.
We will further discuss about this in Section X.

Roadmap. The rest of the paper is organized as follows. Sec-
tion II provides the preliminaries of our work. The overview
of our approach is described in Section III. Section IV to
Section VII explain our approach in details. Experimental
results are analyzed in Section VIII. We present related work
in Section IX and conclude in Section X.

II. PRELIMINARIES

In this section, we review a number of basic concepts about
verifiable computing (VC). In a VC scenario, a customer
delegates a computation to an untrusted platform, and wants
to be assured that the computational result is correct. The
untrusted platform is called the Prover P , and the customer is
called the Verifier V . As a motivating scenario of our work,
V submits a DNN training job to P , which may take days
to run. The goal of VC is to give V the ability to quickly

vAs we will explain in Section II, in the GKR protocol, an arithmetic circuit
is layered, and the proof generation and verification are performed by layer,
where the overall cost of the protocol is simply the sum of the cost for each
layer.

verify the correctness of the computational result provided by
P , without re-running the same job by V itself.

Next, we delve a little deeper into the type of VC we discuss
in this paper, the interactive proof protocol.

A. Interactive Proof Protocol

We start with a definition of the interactive proof protocol
for a function f as follows.

Definition 1. (Interactive Proof Protocol for f [18], [47])
Consider a prover P and a verifier V who wishes to compute
a function f : X → Y . For an input x ∈ X chosen by V ,
P gives the claimed output y to V . Then, they exchange a
sequence of messages and V accepts or rejects.
• Completeness. For all inputs x ∈ X , if P follows the

protocol and y = f(x), Pr[V accepts] = 1.
• δ-Soundness. For all inputs x ∈ X , if y 6= f(x),

Pr[V accepts] < δ.
We will call δ the soundness probability bound. If P and V
exchange r messages, we say the protocol has dr/2e rounds.

The GKR protocol is an interactive proof protocol for the
evaluation of a layered arithmetic circuit over a finite field F
where the circuit is composed of addition and multiplication
gates (over F) of fan-in 2.

B. Schwartz-Zippel Lemma

We first recall the Schwartz-Zipple lemma, the Sum-Check
protocol, and the Multilinear Extension which constitute the
GKR protocol.

Lemma 1. (Schwartz-Zippel [41]) Let F be a field, and f :
Fn → F be an n-variate nonzero polynomial of total degree
(the sum of degrees of each variable) D. Then on any finite
set A ⊆ F with D ≤ |A|, Pr~x←Am [f(~x) = 0] ≤ D

|A| .

Note that the lemma implies that two different polynomials
can coincide at only tiny fractions of points. It contributes to
soundness of the following sum-check protocol and thus the
GKR protocol.

C. Sum-Check Protocol

The Sum-Check protocol [32] is an interactive proof proto-
col for a specific summation function S(f) over a field F as
follows.

Theorem 1. (Sum-Check Protocol [32]) Let F be a finite field.
Let f : Fn → F be an n-variate polynomial of degree at
most d < |F| in each variable. The Sum-Check protocol is an
interactive proof protocol with soundness nd

|F| for the function:

S(f) :=
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

f(x1, x2, . . . , xn).

Protocol description: the protocol proceeds in n rounds. In
the first round, P sends the value S(f), and a polynomial

f1(t) :=
∑

(x2,x3,...,xn)∈{0,1}n−1

f(t, x2, x3 . . . , xn).

V checks if f1(0) + f1(1) = S(f), and rejects otherwise. In
the i-th (2 ≤ i ≤ n) round, V chooses ri−1 randomly from F,
and sends it to P . In response, P sends a polynomial

fi(t) :=
∑

(xi+1,...,xn)∈{0,1}n−i

f(r1, . . . , ri−1, t, xi+1, . . . , xn).

V checks if fi−1(ri−1) = fi(0) + fi(1), and rejects oth-
erwise. After the final n-th round, V accepts if fn(rn) =
f(r1, r2, . . . , rn) for a random element rn ∈ F, and rejects
otherwise.

Proof. For soundness condition, see Appendix B1.

Note that the soundness of sum-check protocol is based
on Schwartz-Zippel lemma (Lemma 1); if dishonest P ′ sent
wrong value S′(f) 6= S(f), he must send a polynomial
f ′1(t) 6= f1(t) resulting in f ′1(r1) 6= f1(r1) with high prob-
ability. Repeatedly, the lemma forces P ′ to send polynomials
f ′i(t) 6= fi(t) and to be rejected (at the final round) with high
probability.

Note that the sum-check protocol enable V to reduce the
verification task on S(f) to that on the evaluation of f on one
random point. It is the core functionality of sum-check in the
GKR protocol.

D. Multilinear Extension (MLE)

Lemma 2. (Multilinear Extension [18]) Given a function V :
{0, 1}n → F, there exists a unique multilinear polynomialvi

Ṽ (x) : Fn → F extending V , i.e., Ṽ (x) = V (x) for all
x ∈ {0, 1}n. We call Ṽ the multilinear extension (MLE) of V
over F.

The existence of multilinear extension Ṽ is guaranteed from
the following construction.

Ṽ (x1, x2, . . . , xn) :=
∑

b∈{0,1}n
V (b)·

n∏
i=1

[(1−bi)(1−xi)+bixi].

The uniqueness of multilinear extension is also straightfor-
ward, see Appendix B2. In GKR protocol, the output of each
layer in the circuit give rise to the unique multilinear extension.

E. GKR Protocol

Now we describe the GKR protocol which is an interactive
proof protocol for the evaluation of a layered arithmetic circuit
over a finite field F.vii We only give an overview of the
protocol, and a detailed description can be found in [25], [48]
or in Section IV-B.

Overview. Assume we are given a layered arithmetic circuit
(over F) of depth d, of size S, and of fan-in 2. Each layer is
composed of gates outputing addition or multiplication of two
inputs. The layers are numbered in a way that output layer is 0,
input layer is d, and gates of i-th layer take as input the output
of gates in i+ 1-th layer. Let Si denotes the size of i-th layer,

viAn n-variate polynomial f(x1, . . . , xn) : Fn → F is called multilinear
if it is linear in each variable, e.g., f(x1, x2, x3) = ax1x2x3+bx2x3+cx3.

viiIn particular, we describe the recent variant [18], [49], [47] of the GKR
protocol that our technical development later will be based on.

and assume it is a power of 2, i.e., Si = 2si for simplicity.
We can number each gate of i-th layer with a binary string in
{0, 1}si , and it defines a function Vi : {0, 1}si → F relating
the given binary string to output of the corresponding gate. Let
Ṽi be the MLE of Vi, then there exists an interesting relation
between MLEs defined from adjacent layers as follows [49]:

Ṽi(z) =
∑

(ω1,ω2)∈{0,1}
2si+1

[˜addi(z, ω1, ω2)(Ṽi+1(ω1) + Ṽi+1(ω2)

+ ˜multi(z, ω1, ω2)(Ṽi+1(ω1)Ṽi+1(ω2))]
(1)

where ˜addi (or ˜multi) is a MLE of a function which is
1 only if the input binary strings indicate an addition (or
multiplication) gate and its corresponding two gates providing
inputs, and 0 otherwise. We call ˜addi (and ˜multi) as wiring
predicates [18].

Now, the GKR protocol proceeds in layer by layer starting
from the output layer. V having an output of the circuit, gets
a claim Ṽ0(z0) = v0 evaluating Ṽ0 on random point z0.
Then, she reduces the claim to Ṽ1(z1) = v1 executing the
sum-check protocol on the relation of MLEs we described.
Continuing this process layer by layer, she finally gets a claim
that Ṽd(zd) = vd, and checks if it is correct evaluating Ṽ0
defined with her inputs.

Computational complexity. The computational complexity
of P and V in the number of operations over F, and the
communication cost C in the number of elements of F are
as follows [18], [47], [52]:viii

P : O(S logS), V : O(n+ d logS), C : O(d logS) (2)

where n is the number of input and output values. Here the
prover’s cost can be further reduced to O(S) in the latest
variant of the GKR protocol [58, Section 3], to which our
technique is still applicable.

We note that the prover’s cost can be broken down into the
circuit evaluation cost and the proof generation cost. They are
asymptotically the same in general, but later we will show
certain circuits for which the proof generation cost is smaller
than the circuit evaluation cost (Section VI).

III. OVERVIEW OF OUR APPROACH AND RESULT

This section provides an overview of the technical details
of our approach and result. The goal of this work is to present
an extended GKR protocol that efficiently admits the rounding
operation. The idea is to reduce the rounding operation into an
efficient circuit representation, and reuse the machinery of the
GKR protocol on it. Specifically, we consider an approximate
arithmetic circuit over a ring Zpe = Z/peZ (i.e., integers in
a base p system of e digits), where p is a prime and e > 1,
and the (floor) rounding operation, x 7→ bx/pc. (Note that the
proper rounding, bx/pe, can be represented using the floor
rounding, i.e., bx/pe = b(x + p−1

2)/pc.) Below we explain
each of our main technical developments.

viiiWe assume that the wiring predicates of circuit are efficiently computable
by V [18]. If not, the cost can be amortized by batching [52].

Efficient circuit representation of rounding operation (Sec-
tions VI and V). We present an efficient circuit representation
of the rounding operation over the base p system. At first, we
employ the lowest digit removal polynomial [16], ldr, that we
borrowed from the literature of the homomorphic encryption
area. The polynomial ldr sets the least significant digit to zero,
i.e., ldr : x 7→ bx/pc · p, and thus we can have the floor
rounding operation by ldr(x)/p. We exploit the fact that ldr
is the lowest degree polynomial whose degree is < ep, while
the degree of such a polynomial could be as large as pe if it
is generated by using the general interpolation technique.ix

Then, we present an optimal construction of the ldr circuit,
an arithmetic circuit over Zpe that computes ldr (Section V-B).
We carefully design the circuit to be optimal in the prover’s
cost. Specifically, our circuit exploits the linear-sum gate,
(x1, · · · , xn) 7→ a1x1 + · · · + anxn, and the fused multiply-
add gate, (x, y, z) 7→ xy + z, which can be efficiently
verified via the Sum-Check (and GKR) protocol. Indeed, our
circuit construction is general, being applicable for an arbitrary
univariate polynomial of degree d, yielding a circuit of size
O(d) and depth O(log d), for which the prover’s cost is
O(d) and the verifier’s cost is O(log2 d). Furthermore, in
case that the same polynomial is evaluated on m inputs, our
circuit construction yields a circuit of size O(md) and depth
O(log d), for which the proof generation cost is O(m

√
d+d),

which is sublinear in the circuit size (i.e., the proof generation
is faster than even the circuit evaluation!), while the previously
best known result is linear [58]. This improvement of the proof
generation cost is significant for a rounding layer that consists
of multiple rounding gates, which is common in DNN training
as mentioned in the introduction.

Generalization of the GKR protocol over a ring (Sec-
tion IV). While the original GKR protocol is valid over a
finite field, since the domain Zpe we consider is no longer
a field for e > 1, we identify a minimal modification to the
original protocol to admit a ring (Section IV-B), and present
its construction for a specific family of rings, i.e., Zpe and its
extension rings.

Specifically, the GKR protocol is based on the Sum-Check
protocol that in turn is based on the Schwartz-Zippel lemma.
However, the Schwartz-Zippel lemma does not hold for a ring
in general. To extend the original protocol, we first employ the
generalized Schwartz-Zippel lemma [12] over a ring, which
restricts the (randomness) sampling set to a subset of the do-
main such that the difference between any two elements of the
subset is not a zero divisor. Then, we show that the Sum-Check
protocol as well as the GKR protocol can be extended over
a ring by restricting the (verifier’s randomness) sampling set
to a subset satisfying the aforementioned property. Moreover,
we further identify a stronger condition for the sampling set
(Section 1), the “unit difference” property [36], that is, that the
difference between any two elements of the sampling set has
an inverse. This stronger condition allows us to employ the

ixMoreover, when e > 1 or p is not a prime, such polynomials may not
even exist, where the interpolation techniques are not applicable.

cost reduction technique [47] proposed for the original GKR
protocol to our extended protocol.

The extended protocol enjoys the same complexity with the
original, provided that the unit difference property holds for
the sampling set A. Specifically, given a circuit of size S and
depth d, the prover’s cost is O(S logS),x and the verifier’s
cost is O(n+ d logS), where O(n) is the additional cost (for
generating the multi-linear extension) at the input/output layer,
and n is the number of input/output values. The communica-
tion cost is O(d logS). The soundness probability, however,
becomes bigger (i.e., worse) than that of the original. That is,
it is bounded by (7d logS+log n)/|A|, where the denominator
is the size of the sampling set A, while it was the size of the
entire domain for the original protocol. Note that, however, for
practical purposes, the soundness probability can be quickly
improved by simply having multiple prover-verifier pairs in
parallel, which does not affect the overall throughput.

Performance optimization of the generalized GKR protocol
(Section VII). We further extend the domain of Zpe into a
Galois ring, Z(qd)e [t]/f(t), where f(t) is a monic irreducible
polynomial, which allows us to employ a smaller prime q ∼
d
√
p where d is the degree of f(t). Employing a smaller prime

leads to further reducing the size of the rounding circuit, since
the degree of the lowest digit removal polynomial drastically
decreases from ep into edq ' ed d

√
p. Note that the soundness

probability is not compromised at all with the smaller prime q,
because the extension ring yields a sampling set of the similar
size, qd ' p, to that of the original one (Theorem 4). However,
employing the extension ring incurs additional costs for the
individual ring operations, which may offset the benefit from
the smaller rounding circuit. To better understand such a trade-
off, we provide a formal analysis as well as a microbenchmark
experimental result on it.

IV. GENERALIZATION OF GKR PROTOCOL OVER A RING

In this section, we show that the GKR protocol can be
applied to an arithmetic circuit over a ring, a more general
algebraic structure than a field. Throughout this paper, we refer
a ring R to a finite commutative ring with the multiplicative
identity 1. It is similar to a field in that it has two opera-
tions, i.e., addition and multiplication that is distributive over
addition, an additive identity 0, and a multiplicative identity
1. It also has an additive inverse for every element, but does
not necessarily have a multiplicative inverse, in contrast to a
field. A zero divisor of a ring R is an element x ∈ R which
divides 0, i.e., there exists a nonzero element y ∈ R such that
xy = 0. An integral domain is a ring that has no zero divisors
other than 0. Typical examples of ring are Z (integers) and
ZN (integers modulo N). Note that Z is an integral domain,
and ZN is a field if N is a prime, but is not even an integral
domain otherwise.

xThe prover’s cost becomes O(S) if the generalization is made on top of
the latest GKR variant [58].

A. Schwartz-Zippel Lemma and Sum-Check Protocol Over a
Ring

Since the original GKR protocol is based on the Schwartz-
Zippel lemma (Lemma 1), the starting point of generalization
is also the lemma. Here we exploit more generalized form
given by Bishnoi et al. [12] as follows.

Lemma 3. (Generalized Schwartz-Zippel [12]) Let R be a
ring, and f : Rn → R be an n-variate nonzero polynomial of
total degree (the sum of degrees of each variable) D over R.
Let A ⊆ R be a finite set with |A| ≥ D such that ∀x 6= y ∈ A,
x− y ∈ R is not a zero divisor. Then, Pr~x←An [f(~x) = 0] ≤
D
|A| . We will call A a sampling set.

Proof. Appendix B3

This lemma guarantees that the identity check of a polyno-
mial over R can be done similarly as in a field if we sample
the random points from a sampling set A ⊆ R.

Example 1. Let R = Zpe for an odd prime p, and
A = {0, 1, 2, . . . , p− 2, p− 1}. Then, A is the sam-
pling set of Lemma 3, since ∀x 6= y ∈ A, x− y ∈
{−(p− 1), . . . ,−1, 1, . . . , p− 1} is not a zero divisor. Note
that zero divisors of R are exactly the nonzero multiples of p.
The set A is maximal in that a ∈ A implies a+ np /∈ A for
any nonzero integer n.

Now we can naturally extend the Sum-Check protocol
(Theorem 1) over R, only restricting the random points chosen
by V .

Theorem 2. (Generalized Sum-Check Protocol) Let R be a
ring, f : Rn → R be an n-variate polynomial of degree
at most d in each variable. Let A ⊆ R be a sampling set of
Lemma 3 such that d < |A|. Then, the Generalized Sum-Check
protocol where V chooses each random point ri from A, is an
interactive proof protocol with soundness nd

|A| for the function:

S(f) :=
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

f(x1, x2, . . . , xn).

Proof. Appendix B4.

Note that the soundness probability is nd
|A| in contrast to nd

|F|
in Theorem 1.
Remark 1 (Additional condition for efficient specification of
fi(t)). In the i-th round of the Sum-Check protocol, (honest)
P should provide

fi(t) :=
∑

(xi+1,...,xn)∈{0,1}n−i

f(r1, . . . , ri−1, t, xi+1, . . . , xn)

to V . While the fi(t) is specified by evaluations of it on
degif + 1 distinct points from A, we need more condition on
that distinct points for Lagrange interpolation to be available;
the distinct points must satisfy the condition that all of their
differences have inverses in R. It is a stronger condition than
that of A. Note that, in all specific rings we use in this paper,
the sampling set A also satisfies that stronger condition.

Example 2. Let R = Zpe for an odd prime p, and A =
{0, 1, 2, . . . , p− 2, p− 1} as Example 1. Then, A also satisfies
the stronger condition mentioned above, i.e., ∀x 6= y ∈ A,
x− y has a multiplicative inverse in R. It follows from the
fact that all elements of R = Zpe other than multiples of p
have a multiplicative inverse in R = Zpe

xi.

B. GKR Protocol Over a Ring

Now we present a generalized GKR protocol over R. We
can see that the original GKR protocol can be applied to an
arithmetic circuit over R by restricting random points required
in the protocol to the sampling set A of Lemma 3. Below we
clarify and validate the modification made in each step of the
protocol.

Multilinear extension & initial step. We first need to ensure
that the existence and uniqueness (Lemma 2) of Multilin-
ear Extension (MLE) Ṽ : Rn → R extending a function
V : {0, 1}n → R. It follows from the fact that the proof of
Lemma 2 is valid in R since it exploits only the properties (i.e.,
commutativity and distributivity of addition and multiplication,
and existence of the multiplicative inverse 1) that hold in R as
well. At the initial step, V reduces the task of checking output
values to that of checking Ṽ0(z0) = v0 where Ṽ0 is a MLE
of the output values. In the original protocol, the reduction is
valid by Lemma 1. In the generalized protocol, the reduction
is valid by Lemma 3, provided that V samples the random
point z0 from the set A of Lemma 3.

Applying Sum-Check protocol. We already have shown that
the Sum-Check protocol is valid in R as well by Theorem 2.
Therefore, reducing the task of checking Ṽi(zi) = vi to that
of checking both Ṽi+1(ω∗1) = vi+1,1 and Ṽi+1(ω∗2) = vi+1,2

can be done using the generalized Sum-Check protocol. Note
that V samples each random points from the set A in the
generalized Sum-Check protocol.

Reduction to verification at a single point & final step. Re-
ducing the task of checking both Ṽi+1(ω∗1) = vi+1,1 and
Ṽi+1(ω∗2) = vi+1,2 to that of checking Ṽi+1(zi+1) = vi+1

requires the generalized Schwartz-Zippel lemma (Lemma 3),
and V must evaluate the polynomial h(t) := Ṽi+1(l(t)) on
ti+1 that is randomly sampled from the set A, to compute
Ṽi+1(zi+1) = h(ti+1). Finally, V having Ṽd(zd) = vd checks
if it is correct by evaluating the MLE Ṽd of the input values
on zd by herself.

Complexity & soundness. Note that the computational cost
of the generalized protocol is the same with that of the original
protocol (Equation 2) except that the cost is measured by the
number of operations or elements of R instead of F. The
cost reduction techniques [18], [52], [47], [58] proposed in
refinements of GKR protocol are also applicable if R satisfies
the additional condition introduced in Remark 1.

Soundness of the generalized GKR protocol follows from
that of the generalized Sum-Check protocol. Hence, it has

xiIf x ∈ Zpe is not a multiple of p, gcd(x, pe) = gcd(x, p) = 1, and
ax+ bpe = 1 for some a, b ∈ Z, i.e., a (mod pe) ∈ Zpe is a multiplicative
inverse of x.

the same soundness with the original one except that |F| is
substituted by |A| (see following Theorem 3).

Theorem 3. (GKR protocol over R) Let R be a finite ring,
and C be an arithmetic circuit of size S, depth d, with m
outputs over R. Let A be the sampling set of R in Lemma 3.
The generalized GKR protocol described above is an interac-
tive proof protocol for the evaluation of C with soundness
(7d logS + logm)/|A|. The complexity of the generalized
GKR protocol is the same with that of the original protocol
described in Section II-E.

V. VERIFIABLE ROUNDING OPERATION

In this section, we explain how to support the rounding
operation on top of the generalized GKR protocol described
in Section IV. As explained in Section I, we consider an
approximate arithmetic circuit over a ring Zpe (i.e., integers
in the base-p system) where p is a prime and e > 1,
and the rounding gate that performs the (floor) rounding:
x 7→ bx/pc.xii Like closely related previous work [25], [18],
[47], we assume that the given circuit is layered. For the
simplicity of the presentation, we also assume that the given
circuit is structured to have rounding layers each of which
consists solely of rounding gates, while the other layers have
only addition and multiplication gates.xiii

The idea is to replace each rounding gate with a com-
bination of plain arithmetic gates, and use our generalized
GKR protocol over Zpe . Specifically, we employ a low-degree
polynomial ldr(x) such that bx/pc = ldr(x)/p, where ldr(x)
can be represented as a circuit over addition and multiplication
gates. (Later, in Section VI, we will provide an optimal circuit
construction for arbitrary polynomials including ldr(x).) Then,
the rounding gate can be replaced with the circuit of ldr(x)
followed by a division-by-p gate, x 7→ x/p. Below we will
explain what is the polynomial ldr(x), and how to verify the
division-by-p gate in our generalized GKR protocol.

A. Lowest-Digit-Removal Polynomial Over Zpe

Chen and Han [16] recently showed the existence of a
polynomial over Zpe that sets the input’s lowest-digit to zero.
They also provided an exact construction of such polynomial.

Lemma 4. (Lowest-digit-removal polynomial [16]) Let p be
a prime and e ≥ 1 be a positive integer. Then there exists a
polynomial ldr(x) of degree at most (e − 1)(p − 1) + 1 such
that for every integer 0 ≤ x < pe, we have

ldr(x) ≡ x− (x mod p) mod pe,

where (x mod p) ∈ {0, 1, . . . , p− 1}.

Note that the degree of ldr(x) is small: roughly logarithmic
in the size of Zpe . It provides us an efficient representation of
rounding as a combination of additions and multiplications.

xiiAs mentioned earlier, the proper rounding, bx/pe, can be represented
using the floor rounding, i.e., bx/pe = b(x+ p−1

2
)/pc.

xiiiAn arbitrary circuit can be adjusted to satisfy this assumption by adding
dummy gates (i.e., a multiplication-by-p gate followed by a rounding gate)
for each non-rounding gate.

Example 3. ([16]) For e = 2, we have:

ldr(x) = −x(x− 1) · · · (x− p+ 1)

B. Verification of Division-by-p Layer

As mentioned earlier, the rounding operation (t 7→ bt/pc)
can be represented as t 7→ ldr(t)/p. Here the problem is that
division is not admitted in an arithmetic circuit over a ring
(thus not in the generalized GKR protocol over a ring) in
general. However, in ldr(x)/p, the division is always well-
defined, since the result of ldr(x) is guaranteed to be a multiple
of p, where p is constant. Also, as mentioned earlier, the
given circuit is assumed to have a separate rounding layer that
consists solely of rounding gates. Thus, the reduced circuit will
have a separate division-by-p layer that also consists solely of
the division-by-p gates, and we have the following equation:

Ṽi(z) = Ṽi+1(z)/p (3)

where Ṽi (and Ṽi+1) denotes the MLE of outputs (and inputs,
resp.) of the division-by-p layer. Now, in the generalized GKR
protocol, the verifier verifies the outputs of the division-by-
p layer by reducing the verification task of Ṽi(r) = v, to
the verification task of Ṽi+1(r) = pv. This reduction enjoys
the perfect soundness, since for Ṽ ′i (r) 6= Ṽi(r), we have
Ṽi+1(r) = pṼi(r) 6= pṼ ′i(r) = Ṽ ′i+1(r) (mod pe).
Remark 2 (Modulus change at division-by-p layer). Note that
the codomain of Ṽi is Zpe−1 , while the codomain of Ṽi+1

is Zpe . That is, the outputs of each rounding layer should be
regarded as an element of Zpe−1 while the inputs are elements
of Zpe . This is because t = ap + b ∈ Zpe represents (ap +
b) + npe ∈ Z for some n ∈ Z where 0 ≤ b < p, while
bt/pc ≡ a+ npe−1 ∈ Z is represented by a ∈ Zpe−1 .

VI. OPTIMAL CIRCUIT CONSTRUCTION OF POLYNOMIAL

In this section, we present a novel, optimal circuit construc-
tion of an arbitrary polynomial for the GKR protocol. The
circuit has an optimal depth, and is regular so that a prover
(and a verifier) enjoys an optimal cost (and high efficiency)
when proving (and verifying) the circuit via the GKR protocol.
It has an additional advantage when applied to the parallel
evaluation of the same polynomial on multiple inputs, in
which case, once a prover has evaluated the circuit, the proof
generation cost becomes sublinear in the size of the circuit
(i.e., the proof generation is much faster than even the circuit
evaluation!), which is better than the previously best known
results [54], [58].

A. Overview of Our Circuit Construction

Our circuit construction is inspired by the Paterson-
Stockmeyer algorithm [40] evaluating a polynomial g(t) of
degree N in O(

√
N) non-constant multiplications.xiv Specif-

ically, for a given polynomial g(t) =
∑N

i=0 ait
i, our circuit

is constructed to first compute
√
N sub-polynomials gk’s (for

1 ≤ k ≤
√
N) where gk(t) =

∑√N
j=1 aj+

√
N(k−1)t

j , and then

xivFor the simplicity of the presentation, let N = 22n be the smallest power
of four such that N ≥ deg(g).

compute a0 +
∑√N

k=1 gk(t) · t
√
N(k−1), which gives g(t). For

example, for a polynomial g(t) = a0 + a1t + · · · + a16t
16

of degree 16, the constructed circuit (as shown in Figure 1)
computes the polynomial as follows:

a0+
(
(a1t+ · · ·+ a4t

4) + (a5t+ · · ·+ a8t
4) · t4

)
+
(
(a9t+ · · ·+ a12t

4) + (a13t+ · · ·+ a16t
4) · t4

)
· t8

Here we note two properties of the above evaluation method
that contributes to our optimal circuit construction. First, not
all powers of t are needed, but only, for example, t, t2, t3,
t4, and t8 are. In general, only (

√
N + log

√
N) powers of

t, that is, t, t2, · · · , t
√
N , t2

√
N , t4

√
N , t8

√
N , · · · , tN/2, are

needed to compute g(t) in the above evaluation method. Also,
every sub-polynomial gk is computed using the same small
subset of powers of t, that is, t, t2, · · · , t

√
N . These properties

contribute to reducing the circuit size, and increasing the
circuit regularity.

Now we describe certain observations that led us to our
circuit construction. The first observation is that the GKR
protocol admits any efficiently computable gate with fan-in >2
without affecting the asymptotic complexity of the protocol,
as long as the fan-in is constant. Also, the GKR protocol
can admit a layer that solely consists of the linear-sum gates,
~x 7→

∑
aixi, at no cost overhead, by exploiting its nice

evaluation structure, even if its fan-in is not constant (see
Appendix A for more details). These observations give us more
flexibility in constructing a circuit, and we utilize the linear-
sum gate for the evaluation of gk’s, and the fused multiply-add
gate, (x, y, z) 7→ xy+z, for the summation of gk’s. This yields
a circuit of width 2

√
N and depth (3 + logN) with a regular

wiring pattern.
Figure 1 shows our circuit construction of a single poly-

nomial g(t). The circuit is composed of four parts. The
first part referred to as polygen, consisting of log

√
N layers

with multiplication gates, takes as input t and computes its
powers, t, t2, · · · , t

√
N . The second part referred to as eval,

consisting of a single layer over the linear-sum gates, computes
the sub-polynomials gk(t)’s. The third part referred to as
unify, consisting of log

√
N layers over the fused multiply-

add gates, computes the summation of the sub-polynomials,
g(t)− a0. Note that the unify part also computes the square-
powers, t2

√
N , t4

√
N , t8

√
N , · · · , tN/2 by the side of the main

computation, where the same multiply-add gate is used along
with introducing dummy gates, to achieve a regular wiring
pattern. The last part referred to as extract, consisting of a
single layer of a constant-addition gate, computes the final
result g(t). More details and a precise definition of our circuit
construction are provided in Appendix A.

In case that multiple inputs need to be evaluated on the
same polynomial, our circuit construction simply puts multiple
copies of the same circuit shown in Figure 1 side-by-side. This
yields a circuit that has a larger width O(M

√
N) but the same

depth O(logN), where M is the number of inputs.

Fig. 1: Our circuit construction of a polynomial of degree 16,
g(t) =

∑16
i=0 ait

i. The value of each gate denotes the output
of the gate, where gk =

∑4
j=1 aj+4(k−1)t

j . The green arrow
denotes the linear-sum gate wiring. The gates computing zero
are dummy gates that are added to achieve a regular wiring
pattern and thus admit an optimal prover and an efficient
verifier. The presence of the dummy gates does not affect the
asymptotic cost.

B. Cost Analysis

Let us consider the case of multiple inputs being evaluated
on the same polynomial. The following lemma shows the
complexity of the GKR protocol (precisely, the variants [47]
or [58, Section 3]) on our circuit construction for such a case.
(The complexity for the single-input case is an instance of that
of the single-polynomial-multiple-inputs case.)

Lemma 5 (Complexity of Protocol on Our Circuit Construc-
tion). Let C be a circuit generated by our construction for the
case of M inputs being evaluated on the same polynomial of
degree N . Then, the complexity of the GKR protocol on C is
as follows:
• Circuit evaluation: O(MN)
• Proof generation: O(M

√
N +N)

• Verification: O(M + logN logMN)
• Communication: O(logN logMN)
• Soundness: O((logN logMN)/A)

where A is the size of the sampling set, and the verification
cost excludes the offline precomputation cost O(N). The
complexity for the single input case is simply the one having
M = 1 in the above.

Proof. Appendix B5, and Appendix B6.

Here we note that our proof generation cost is better than
the previously best known result. Specifically, let C be the
circuit described in Lemma 5, and C ′ be a circuit that is
equivalent to C with the same size O(MN) and the same
depth O(logN), but is constructed in a standard way (i.e.,
computing all the powers of t using the exponentiation-by-
squaring method, computing all the monomials, and adding

all the monomials in a binary tree fashion). Then, the proof
generation cost of Giraffe [54] and Libra [58] on C ′ are
O(MN + N logN) and O(MN), respectively, while ours
is O(M

√
N + N). Their other costs (i.e., circuit evaluation,

verification, and communication) on C ′ are the same with
ours.

VII. COST OPTIMIZATION FOR ROUNDING OPERATION

In this section, we present an optimization technique that
can significantly reduce the prover’s cost for the rounding
layers described in Section V.

A. Galois Ring over Zpe and Sampling Set

A Galois ring Zpe [t]/(f(t)) over Zpe for a monic irreducible
polynomial f(t) ∈ Zp[t] is a natural generalization of the
Galois field GF(pn) over a finite field Fp. The representation
of elements and operations in Zpe [t]/(f(t)) is similar to that
of GF (pn) modulo the difference between Zpe and Fp. Let
d be the degree of f(t) = td + fd−1t

d−1 + . . . + f0, where
fi ∈ Zp. Then, the dimension of Zpe [t]/(f(t)) is d, and each
element is represented as a d-dimensional tuple in Zd

pe whose
standard basis corresponds to 1, t, t2, . . . , td−1. Thus, the ad-
dition corresponds to the component-wise addition in Zd

pe , and
the multiplication by an element a = (a0, a1, . . . ad−1) corre-
sponds to the matrix multiplication by its corresponding matrix
according to the multiplication rule t · (a0, a1, . . . , ad−1) =
(0, a0, a1, . . . , ad−2)− ad−1 · (f0, f1, . . . , fd−1).

A nice property of the Galois ring Zpe [t]/(f(t)) is that
every nonzero element whose coefficients are in {−(p −
1), . . . ,−1, 0, 1, . . . , p − 1} is invertible, which leads to the
following theorem.

Theorem 4. [33] Let p be an odd prime, e be a positive
integer, and R be a Galois ring Zpe [t]/(f(t)) of dimension d.
Then, all nonzero elements in {a0 + a1t + . . . + ad−1t

d−1 |
ai ∈ [−(p− 1), p− 1] ∩ Z} ⊆ R, are invertible (hence are
not zero-divisors) in R. Therefore, the subset A = {a0 +a1t+
. . .+ad−1t

d−1 | ai ∈ [0, p− 1]∩Z} ⊆ R is a valid sampling
set for the generalized Schwartz-Zippel lemma (Lemma 3) as
well as the generalized GKR protocol (Theorem 3).

Note that the cardinality of the sampling set A in Theorem 4
is pd � p, which is maximal.xv. Moreover, A satisfies the
additional condition of Remark 1.

Irreducible Polynomial in Zp[t]. To construct a Galois ring
Zpe [t]/(f(t)), we need an irreducible polynomial in Zp[t].
Indeed, there exist many irreducible polynomials f(t) ∈ Zp[t]
for any degree d, but a sparse polynomial (where most of
its coefficients are zero) is desired for the efficiency of
multiplication in Zpe [t]/(f(t)). Below we provide examples
of such a sparse irreducible polynomial. (More irreducible
polynomials can be systemically found. See Appendix B7.)

xvA set containing more than pd elements has distinct elements x and
y such that x− y = (n0p, n1p, . . . , nd−1p) ∈ Zpe [t]/(f(t)) by the
Pigeonhole principle where ni’s are integers, and (n0p, n1p, . . . , nd−1p)
is a zero-divisor.

Lemma 6. Let p be a prime number. All of the following
polynomials are irreducible in Zp:

(i) Φ4(x) = x2 + 1 when p ≡ 3 mod 4.
(ii) Φ5(x) = x4 + x3 + x2 + x+ 1 when p ≡ ±2 mod 5.

(iii) Φ9(x) = x6 + x3 + 1 when p ≡ 2 or 5 mod 9.
(iv) x3 − a for some a when p ≡ 1 mod 3.
(v) x4 − 2 when p ≡ 5 mod 8.

(vi) x4 − 3 when p ≡ 5 mod 12.

Proof. Appendix B7

B. Optimization of Prover’s Cost for Rounding Layers

Now we explain how to optimize the prover’s cost for the
rounding layers. Let Cp be a given approximate arithmetic
circuit over Zpe , and q be a prime such that p ' qd. First,
we convert Cp to an approximately equivalent circuit Cq over
Zqde , by the base-p-to-base-q conversion, where each base-
p rounding gate (x 7→ bx/pc) in Cp is replaced with d-
consecutive base-q rounding gates (x 7→ bx/qc) in Cq . Then,
we apply the generalized GKR protocol over a Galois ring
Zqde [t]/(f(t)) where f(t) is a monic irreducible polynomial
of degree d. Here, we employ the sampling set given in
Theorem 4, whose cardinality is qd ' p, which affects the
soundness. Moreover, in the process of the protocol, we have
the circuit evaluation to be performed over Zqde , and the
proof generation and the verification to be conducted over
Zqde [t]/(f(t)). This is valid, since Zqde [t]/(f(t)) naturally
embeds Zqde as constant terms.

Now we analyze the complexity of the protocol for a
rounding layer that consists of r rounding gates. First, note
that the degree of the rounding polynomial (ldr) of Cp is ep,
while that of Cq is deq ' de d

√
p, which is much smaller than

ep for some d. On the other hand, the cost of the individual
addition (and multiplication) operation in Zqde [t]/(f(t)) is
O(d) (and O(d2), resp.) times larger than that of Zpe . Based on
these facts and Lemma 5, the complexity of the unoptimized
protocol on Cp and the optimized protocol on Cq can be
summarized as follows (the two are equivalent when d = 1):

Cp Cq

Circuit eval. O(epr) 2d2e d
√
pr

Proof gen. O(epr) 32d4e d
√
p+ 70d3

√
de d
√
pr

Verification O(log2 epr) d3(log de d
√
p)(log de d

√
pr10)

Soundness O(log2 epr
p) d(log de d

√
p)(log de d

√
pr6)/4p

Here the optimization problem is to find d such that the costs
for Cq are minimized. In particular, given p, the term d4 d

√
p

is minimized to ((e ln p)/4)4, which is much smaller than p,
when d = (ln p)/4, where e is Euler’s number. In Section VIII,
we will present an experimental result where two orders of
magnitude cost reduction was made by finding a proper d.

VIII. EXPERIMENTAL RESULTS

We present experimental results that quantify the efficiency
of our scheme. Specifically, we conducted experiments that
show how efficiently our scheme support rounding, and how

effective the optimization technique is. Also, to show the im-
portance of rounding, we compare our scheme (with rounding)
to the original GKR protocol (without rounding) on deeply
nested matrix multiplications. We consider matrix multipli-
cation since it is a well-experimented subject considered by
all of the existing GKR protocol variants, making it easier to
compare with them. More importantly, matrix multiplication
constitutes about 90% of DNN training workloads [57].

A. Experimental Setup

We implemented our generalized GKR protocolxvi over a
ring R = Zpe [t]/(f(t)) where f(t) is a monic irreducible
polynomial over Zpe . The modulo operations of Zpe are im-
plemented using the Montgomery modular multiplication [38].
The code is written in C++11 using the GMP library, and
compiled with the LLVM GCC compiler 9.1.0 (with -O3).
All the experiments were performed on a laptop machine
with Intel Core i5 CPU running MacOS (64-bit) at 2.9GHz
processor and 8GB memory. Throughout this section, we
report the verification cost excluding the cost of evaluating
MLE of input/output layers, since they are not involved in
verifying rounding layers placed in the middle of a circuit.

B. Effectiveness of Optimization via Galois Ring

To show the effectiveness of the optimization technique de-
scribed in Section VII, we instantiated our scheme with differ-
ent Galois rings and compared their performance. Specifically,
given an original ring, R1 = Z(65537)7 , we took two Galois
rings, R2 = Z(271)14 [t]/(x2+1) and R3 = Z(17)28 [t]/(x4−3),
where |R1| ' |R2| ' |R3| ' 2112. Then, we instantiated our
optimized protocol (Section VII) with the three different rings,
and experimented with them for a rounding layer that consists
of 214 rounding gates, where each rounding gate performs,
roughly speaking, the 16-bit rounding, i.e., truncating the least-
significant 16 bits.xvii

Figure 2 shows the performance of the protocol over the
different rings. The circuit evaluation cost drastically decreases
as the dimension of a Galois ring increases. This is because
the size of the rounding circuit for R3 is much smaller than
that of R1, since the size depends on ep. However, the proof
generation cost is not the case, since the cost of individual ring
operations quadratically increases as the dimension of a Galois
ring increases, thus it offsets the benefit of a smaller rounding
circuit when the dimension is too high. In our experimental
setup, the protocol over R2 of dimension two performed best
in generating proofs. On the other hand, the verification cost
increases as the dimension of a Galois ring increases, since
the verification cost logarithmically depends on the rounding
circuit size, thus the benefit of a smaller rounding circuit
is insignificant, but the cost of individual ring operations
dominates. In general, the optimal dimension varies depending

xviSpecifically, the generalization was made on top of Thaler’s variant [47],
since we considered Thaler’s variant to compare ours to the original GKR
protocol as explained in Section VIII-D.

xviiMore precisely, each rounding gate takes as input x, and outputs
bx/65537c, bx/(2712)c, and bx/(174)c, respectively, for each R1, R2,
and R3.

p log p e f(t) d λs

R1 65537 ∼16 7 N/A 1 0.020
R2 271 ∼8 14 x2 + 1 2 0.011
R3 17 ∼4 28 x4 − 3 4 0.007

(a) Galois ring structures Zpe [t]/(f(t))

 1

 10

 100

 1000

1 2 4

Pr
ov

er
 T

im
e

(s
)

Dimension of Galois Ring

Circuit Evaluation
Proof Generation

215.7

3.6

1.1

11.5

4.2

13.4

 0.0001

 0.001

 0.01

 0.1

 1

1 2 4

Ve
rif

ie
r

Ti
m

e
(s

)

Dimension of Galois Ring

Verification

(b) Performance of protocol over different Galois rings

Fig. 2: Performance of our protocol over different Galois rings
Zpe [t]/(f(t)), for a rounding layer consisting of 214 gates. The
table describes three different rings R1 = Z(65537)7 , R2 =
Z(271)14 [t]/(x2 + 1) and R3 = Z(17)28 [t]/(x4 − 3), where d
denotes the dimension of a Galois ring, and λs denotes the
soundness probability bound of the protocol over the ring.
Each rounding gate performs x 7→ bx/(pd)c, i.e., roughly the
16-bit rounding.

on the set of parameters of the protocol and the characteristics
of computation of interest. Also, we note that the circuit
evaluation cost does not involve the cost overhead of individual
operations of a Galois ring, since the circuit evaluation is
performed over a base ring Zpe instead of its Galois ring
Zpe [t]/(f(t)), as mentioned in Section VII. This is why the
proof generation cost is bigger than the circuit evaluation
cost when the dimension is greater than one, although our
optimal circuit construction offers the proof generation cost
that is asymptotically smaller than the circuit evaluation cost,
as described in Section VI-B.

C. Efficiency of Verifiable Rounding Operation

To quantify the efficiency of our scheme for rounding, we
applied our scheme for a single rounding layer that consists
of multiple rounding gates. Specifically, we consider our
generalized GKR protocol over R2 = Z(271)14 [t]/(x2+1), and
the rounding operation x 7→ bx/(2712)c, roughly the 16-bit
rounding. Figure 3 shows the performance of our protocol for
a rounding layer of various sizes, from 28 to 219. As described
in Section VI-B, the cost of circuit evaluation and proof
generation is linear in the number of rounding gates, while the
cost of verification and communication is logarithmic in the
number of rounding gates. We also note that the verification
becomes even faster than the native evaluation (i.e., performing

10-6

10-4

10-2

100

102

104

28 210 212 214 216 218 220
 0

 100

 200

 300

 400

 500
Ti

m
e

(s
)

Si
ze

 (
KB

)

Rounding gates

Proof Generation (s)
Circuit Evaluation (s)

Verification (s)
Native Eval. (s)

Comm. Cost (KB)

Fig. 3: Performance of our protocol for a rounding layer of
various sizes. The protocol is over R2 = Z(271)14 [t]/(x2 + 1),
and the rounding operation is x 7→ bx/(2712)c, roughly the
16-bit rounding.

the rounding operation directly in the native processor, without
going through the arithmetic circuit) when the number of
rounding gates is more than 218.

D. Comparison to Original GKR Protocol for Rounding

Now we compare our protocol (that supports rounding) to
the original GKR protocol (that does not support rounding)
on deeply nested matrix multiplications. The most important
value of rounding is that it controls the number of digits
within the limit of the underlying system, which is especially
necessary for AI computations. This is the most fundamental
advancement of our approach, compared to the original GKR.
Moreover, in order to understand the end-to-end performance
of our approach, we conducted a performance comparison with
the original GKR as follows.

We considered the Thaler [48]’s implementation for the
original GKR protocol since it shows the best performance
for matrix multiplication among other variants (e.g., [54],
[58]). To be a fair comparison, we modified the Thaler’s
implementation to employ the same GMP library we used in
our protocol implementation.xviii

Moreover, we consider a nested multiplication of depth n,
(· · · ((M2)2)2 · · ·)2 = M2n , where M is a 128× 128 matrix
whose elements are fixed-point numbers with 16 fractional bits
(i.e., 16 bits below the decimal point), and no overflow occurs
during the computation.xix

In the original GKR protocol (over a finite field Zq) that
does not support rounding, the above nested multiplication
over the fixed-point numbers is represented as the integer-
scaled nested multiplication, i.e., (· · · (((216M)2)2)2 · · ·)2 =
(216)2

n

M2n . This means that the prime q must be taken to be
larger than (216)2

n

, that is, the bit-size of field elements (in

xviiiWhile we experimented with matrix multiplication, we considered
Thaler’s general-purpose machinery instead of the special-purpose scheme
for matrix multiplication, for the generality of experimental results.

xixFor simplicity, we consider M such that the elements of M and M2n

are positive fixed-point numbers less than 1, i.e., being represented in 16 bits.

101

102

103

104

 6 8 10 12

T
im

e
(s

)

Multiplicative Depth

Prover

Ours
Tha

 0.01

 0.1

 1

 10

 6 8 10 12

T
im

e
 (

s)

Multiplicative Depth

Verifier

Ours
Tha

 0.01

 0.1

 1

 10

 6 8 10 12

C
om

m
.
C
os

t
 (

M
B)

Multiplicative Depth

Communication

Ours
Tha

Fig. 4: Performance comparison of ours to Thaler [47]’s on
a single 128 × 128 matrix multiplication (over fixed-point
numbers with 16 fractional bits) in the context of different
multiplication depths. The domain of each protocol is chosen
to be large enough to admit a given multiplication depth.
That is, our protocol is over Z(271)e [t]/(t3 + 2), where e =
14, 18, 22, and 26, respectively. Thaler’s is over Zq , where
q = (21279 − 1), (24253 − 1), (219937 − 1), and (286243 − 1),
respectively. The performance of Thaler’s on the multiplicative
depth 12 is extrapolated.

Zq) exponentially grows in the multiplication depth n. In our
protocol (over a ring Zpe), however, the nested multiplication
is represented as the integer-scaled nested multiplication with
rounding, i.e., b(· · · b(b(b(216M)2e)2e)2e · · ·)2e ' 216M2n ,
where b·e denotes x 7→ bx/(216)c. Thus pe can be only larger
than 216 ·216n (the additional term 216n is due to the modulus
change by rounding as described in Remark 2). That is, the
bit-size of ring elements (in Zpe) is linear in the multiplication
depth.

In our experiment, we considered nested matrix multipli-
cations of depth n = 6, 8, 10, and 12. Depending on the
multiplication depth, we took different sized fields or rings.
That is, for the original GKR protocol over Zq , we took
the smallest Mersenne prime q > (216)2

n

, i.e., (21279 − 1),
(24253−1), (219937−1), and (286243−1), respectively, while
for our protocol over Zpe [t]/(t3 + 2), we took p = 271 ' 28

and the smallest e such that pe > 216(n+1), i.e., pe = 27114,
27118, 27122, and 27126, respectively, for each multiplication
depth n = 6, 8, 10, and 12.

In Figure 4, we compare the performance of our protocol
to that of Thaler’s on nested matrix multiplication of different
depths. To highlight the net effect of rounding, we report
the cost for a single matrix multiplication in the context of
different multiplication depths. That is, the cost for the entire
nested multiplication is the one in Figure 4 multiplied by the
number of matrix multiplications.

Figure 4 shows that the cost of Thaler’s exponentially
increases in the multiplication depth, while ours is linear in the
depth. When the multiplication depth is small (e.g., depth 6),
the cost of our protocol could be bigger than Thaler’s, due to

the overhead of rounding. However, when the multiplication
depth is greater than a certain amount (e.g., depth 8), ours
is much better than Thaler’s (e.g., two orders of magnitude
better when depth is 12), and the difference will be exponential
as the depth increases. This experimental result confirms that
it is critical to support the rounding operation for verifiable
computing of an approximate arithmetic circuit with a large
multiplication depth.

E. Discussion

We want to note that there is still room for improvement
of our implementation, since in this work, we have mainly
focused on the proof-of-concept evaluation of our approach. In
particular, the implementation of the individual operations of
a Galois ring can be further improved. While those operations
are sequentially executed in our current implementation, they
can be easily broken down into multiple independent subrou-
tines, being suitable for parallelization [17], [21] or hardware
acceleration. This optimization will drastically reduce the
overhead of increasing the dimension of a Galois ring, which
in turn will allow us to employ a much smaller prime p, further
improving the overall performance of the protocol.

On the other hand, the soundness probability of our protocol
in Figure 4 is set to 2−14, which is not high, but sufficient
in certain contexts. Moreover, it can be quickly improved
by simply running n parallel pairs of the prover and the
verifier, which yields (2−14)n soundness, without affecting
the throughput performance. For example, running only four
prover-verifier pairs in parallel will achieve 2−56 < 10−16

soundness,xx which is similar to the soundness probability
(2−45 to 2−20 [48], [46]) of existing verifiable computing
scheme experiments.xxi

IX. RELATED WORK

The problem of delegating computation with securing in-
tegrity has been extensively studied in both theory and practice
perspectives. Here we mainly focus on the general-purpose
protocols and systems that aim to be practical.

A. Interactive Proofs: GKR Protocol and Refinements

Goldwasser, Kalai, and Rothblum [25] proposed an inter-
active proof protocol (also known as GKR protocol) that runs
in polynomial time. For a layered arithmetic circuit of size S
and depth d, the prover of their protocol runs in time poly(S),
and the verifier runs in time poly(d, logS).

Several refinements of the GKR protocol have been pro-
posed to improve the cost of the protocol, especially the
prover’s cost. Cormode, Mitzenmacher, and Thaler [18] pre-
sented a refinement of the GKR porotocol (hereafter, CMT)
that allows the prover to run in O(S logS). Thaler [47]
further improved the protocol, which allows the prover to
run in O(S) for a circuit with a “sufficiently” regular wiring

xxFor comparison, 10−16 to 10−13 is the uncorrectable bit error rate of a
typical hard disk [26].

xxiPinocchio [39] offers roughly 2−128 soundness, but it is based on strong
cryptographic assumptions.

pattern. Subsequently, it has been shown that the prover’s
cost can be reduced when a circuit is composed of many
parallel copies of subcircuits. Specifically, the prover’s cost
is reduced to O(S logSc) in [48], [59], and further reduced to
O(S+Sc logSc) in [54], where Sc is the size of a subcircuit.
Recently, Xie et al. [58] proposed a refinement that allows
the prover to run in O(S) for an arbitrary circuit. Although
being asymptotically equivalent, Thaler’s refinement [47] still
performs better than Xie et al.’s [58] for a regular circuit.

On the other hand, substantial efforts have been made to
support more operations than the plain field arithmetic. Vu et
al. [52] proposed an extension of CMT that supports in-
equalities by augmenting a circuit with additional verification
logic and auxiliary inputs to be fed by the prover. However,
their approach suffers from a significant overhead of the
verifier due to the irregularity of their augmented circuit, which
needs to be amortized by batching verifications (i.e., verifying
the same circuit against many different inputs at the same
time) for practical purposes. Zhang et al. [59] improved this
by combining CMT with a verifiable polynomial delegation
scheme, and showed that an arithmetic circuit with auxiliary
inputs can be efficiently verified.

There are other lines of refinement work such as supporting
“streaming” verifiers [15], [19] that run in a limited space; em-
ploying hardware accelerators such as ASICs and GPUs [53],
[54], [50]; and supporting zero-knowledge proofs [56], [58].

Note that, however, no existing interactive proof systems
support a verifiable rounding operation, to the best of our
knowledge, which is critical to deal with an approximate
arithmetic circuit with a large depth.xxii

B. Arguments: Non-Interactiveness and Zero-Knowledge

Argument systems are different from interactive proofs in
that they are secure only against computationally bounded
dishonest provers. Employing cryptographic primitives, they
can provide versatile properties such as non-interactiveness,
public verifiability, and zero-knowledge proofs. However, the
use of expensive cryptographic primitives incurs a significant
overhead to the prover’s cost.

There have been substantial efforts [30], [34], [11], [7]
of developing argument systems based on probabilistically
checkable proofs (PCPs) [3], [2], especially ones called “short”
PCPs. Although being asymptotically similar to their counter-
parts (that we will explain below), the PCP-based arguments
involve large constants, being too expensive to be practical.

On the other hand, there have been much efforts on devel-
oping argument systems without using the short PCPs. Setty et
al. [45], [46], [44] proposed argument systems based on linear
PCPs [29], where their systems were shown to achieve a prac-
tical performance in the batch verification setting. Gennaro et

xxiiAlthough, in theory, the existing work can support rounding by degen-
erating to much verbose Boolean circuits, it is highly inefficient to implement
such Boolean circuits in practice. Also, although the approach used to
support inequalities [52] has a potential to be used for rounding, our circuit
construction yields a circuit that is sufficiently regular, thus does not suffer
from their overhead due to the irregularity of their augmented circuit.

al. [24] introduced quadratic arithmetic programs (QAPs),
a novel efficient encoding of computations, and proposed a
zero-knowledge non-interactive argument system (zkSNARK).
Much of improvements have been proposed [39], [8], [10],
[27], but these argument systems suffer from a trusted setup
cost that needs to be amortized to be practically efficient. The
trusted setup issue, however, has been largely addressed in
recent work [5], [9], [14], [56], [1], [42].

There also has been substantial work [6], [8], [10], [13],
[55] to extend the coverage of verifiable computing to a more
generalized form of computations. Essentially, they developed
a “compiler” that translates C-like programs (with e.g., mem-
ory accesses and control flows) into corresponding arithmetic
circuits. However, their approaches often do not efficiently
scale, due to the blowup in the size of generated circuits. On
the other hand, [46], [44] presented an encoding of rational
numbers in a finite field, but still did not support rounding,
suffering from the same problem (i.e., the exponential blowup
of the field size) with the integer scaling method described in
Section VIII.

X. CONCLUDING REMARKS

We presented a verifiable computing scheme that supports
rounding which is essential for approximate computations.
Based on the (latest variant of) GKR protocol that is most effi-
cient in generating proofs among existing verifiable computing
protocols, our scheme consists of the following elements:
generalization of the GKR protocol over a ring, reduction
of the rounding operation to a low-degree polynomial in a
ring, optimal circuit construction of arbitrary polynomials, and
optimization of proof generation for rounding via a Galois
ring. We implemented our scheme, and presented experimental
results that show the efficiency of our scheme for approximate
computations. For example, ours performed two orders of
magnitude better than the existing GKR protocol for a nested
matrix multiplication of depth 12 on the 16-bit fixed-point
arithmetic.

Application to Verifiable AI. We believe that this work is
an important step toward the vision of verifiable AI computa-
tions. Specifically, the DNN training iterates the forward and
backward passes over the sequence of layers, where each layer
computation (in both forward and backward passes) consists
of matrix multiplication and nonlinear function application
on approximate arithmetic. Without the ability of rounding,
the number of digits of the computation results will keep
increasing and exceed the limit. Thus the existing VC ap-
proaches are not capable in the AI space. Our approach gives
a theoretical feasibility for these computations. In addition, it
also sheds light on the real-world performance – as shown in
Section VIII, matrix multiplication on the fixed-point arith-
metic can be efficiently supported by our scheme.

Among the nonlinear functions, the ReLU and maxpooling
functions can be represented in an (approximate) arithmetic
circuit by using the comparison operation [52], [59]. The
sigmoid and tanh functions were shown to be effectively

approximated as a polynomial [28] with achieving a sufficient
accuracy, while such a polynomial can be efficiently repre-
sented in a circuit by using our optimal circuit construction.
The softmax function requires to compute the natural expo-
nentiation function ex, which can be also approximated as a
polynomial for x ≤ 0, using the input normalization [51], as
mentioned in Section I.

Moreover, multiple iterations can be “squashed” [54] into a
wide and shallow circuit by laying identical subcircuits of a
single iteration side by side. This squashing can drastically re-
duce the depth of a circuit, which can significantly improve the
protocol’s performance [48], [54] at the cost of communication
overheads. Finally, the protocol performance can be further
improved by using hardware accelerators such as GPUs [50],
[48] and ASICs [53], [54].

Other applications of individual results. As mentioned
in the introduction, the individual technical results that we
developed for the verifiable rounding operation have their own
applications as well. First, our generalized GKR protocol can
be used in other settings where rounding is not necessarily
involved. For example, a ring Zpe has a nice property that
addition and multiplication on Zpe are equivalent to that of
the e-bit machine integer arithmetic when p = 2, including the
“wrapping-around” behavior in case of overflow (e.g., “4+4 ≡
0” in both Z23 and the 3-bit (unsigned) machine integer
arithmetic). Thanks to this property, for certain computations
that inherently require the modular arithmetic (e.g., ones in
cryptography implementations), one can construct arithmetic
circuits of such computations at no extra cost.xxiii Note that to
admit such computations with the original GKR protocol, one
needs to additionally develop a circuit representation of the
modulo reduction, i.e., x 7→ x mod 2e, which incurs additional
overheads in protocol performance due to the circuit size
blowup.

On the other hand, our optimal circuit construction is appli-
cable to the original GKR protocol (and its variants) as well,
since it is not specific to the underlying algebraic structure.
That is, when a given computation involves evaluation of
certain polynomials, our circuit construction scheme can be
used to optimize the protocol performance.

REFERENCES

[1] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:
Lightweight sublinear arguments without a trusted setup,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17, 2017, pp. 2087–2104.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof
verification and the hardness of approximation problems,” J. ACM,
vol. 45, no. 3, pp. 501–555, 1998.

[3] S. Arora and S. Safra, “Probabilistic checking of proofs: A new
characterization of np,” J. ACM, vol. 45, no. 1, pp. 70–122, 1998.

xxiiiIn this case, the optimization via a Galois ring (Section VII) is needed
to secure a sampling set that is large enough for the protocol soundness.
Moreover, the same technique is applicable to a more general ring Zn for
an arbitrary integer n by using the Chinese remainder theorem, i.e., reducing
operations on Zn to that of

∏
i Zp

ei
i

where
∏

i p
ei
i is the prime factorization

of n. Note that the modular arithmetic on Zn is commonly used in, e.g., the
lattice-based cryptography [35].

[4] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy, “Checking com-
putations in polylogarithmic time,” in Proceedings of the twenty-third
annual ACM symposium on Theory of computing. ACM, 1991, pp.
21–32.

[5] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-
parent, and post-quantum secure computational integrity,” Cryptology
ePrint Archive, Report 2018/046, 2018.

[6] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer, “Fast reductions
from rams to delegatable succinct constraint satisfaction problems,”
in Proceedings of the 4th conference on Innovations in Theoretical
Computer Science. ACM, 2013, pp. 401–414.

[7] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer, “On the concrete
efficiency of probabilistically-checkable proofs,” in Proceedings of the
Forty-fifth Annual ACM Symposium on Theory of Computing, ser. STOC
’13, 2013, pp. 585–594.

[8] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “Snarks
for c: Verifying program executions succinctly and in zero knowledge,”
in Advances in Cryptology–CRYPTO 2013. Springer, 2013, pp. 90–108.

[9] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P.
Ward, “Aurora: Transparent succinct arguments for r1cs,” Cryptology
ePrint Archive, Report 2018/828, 2018.

[10] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture.” in USENIX
Security Symposium, 2014, pp. 781–796.

[11] E. Ben-Sasson and M. Sudan, “Short pcps with polylog query complex-
ity,” SIAM J. Comput., vol. 38, no. 2, pp. 551–607, 2008.

[12] A. Bishnoi, P. L. Clark, A. Potukuchi, and J. R. Schmitt, “On zeros of a
polynomial in a finite grid,” Combinatorics, Probability and Computing,
vol. 27, no. 3, pp. 310–333, 2018.

[13] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish, “Verifying computations with state,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 341–357.

[14] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, 2018, pp. 315–334.

[15] A. Chakrabarti, G. Cormode, and A. Mcgregor, “Annotations in data
streams,” in International Colloquium on Automata, Languages, and
Programming. Springer, 2009, pp. 222–234.

[16] H. Chen and K. Han, “Homomorphic lower digits removal and improved
FHE bootstrapping,” in Advances in Cryptology – EUROCRYPT 2018,
2018, pp. 315–337.

[17] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[18] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified com-
putation with streaming interactive proofs,” in Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. ACM, 2012,
pp. 90–112.

[19] G. Cormode, J. Thaler, and K. Yi, “Verifying computations with stream-
ing interactive proofs,” Proceedings of the VLDB Endowment, vol. 5,
no. 1, pp. 25–36, 2011.

[20] E. Driver, P. A. Leonard, and K. S. Williams, “Irreducible quartic
polynomials with factorizations modulo p,” The American Mathematical
Monthly, vol. 112, no. 10, pp. 876–890, 2005.

[21] F. Franchetti, M. Puschel, Y. Voronenko, S. Chellappa, and J. M. Moura,
“Discrete fourier transform on multicore,” IEEE Signal Processing
Magazine, vol. 26, no. 6, pp. 90–102, 2009.

[22] P. Garret, “Abstract algebra,” http://www-users.math.umn.edu/~garrett/
m/algebra/notes/Whole.pdf, 2007, pp. 100–102.

[23] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference. Springer, 2010, pp. 465–482.

[24] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2013, pp. 626–645.

[25] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating compu-
tation: interactive proofs for muggles,” in Proceedings of the fortieth
annual ACM symposium on Theory of computing. ACM, 2008, pp.
113–122.

[26] J. Gray and C. van Ingen, “Empirical measurements of disk failure rates
and error rates,” CoRR, vol. abs/cs/0701166, 2007.

[27] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Proceedings, Part II, of the 35th Annual International Conference on
Advances in Cryptology — EUROCRYPT 2016 - Volume 9666, 2016,
pp. 305–326.

[28] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural
networks over encrypted data,” CoRR, vol. abs/1711.05189, 2017.

[29] Y. Ishai, E. Kushilevitz, and R. Ostrovsky, “Efficient arguments without
short pcps,” in Computational Complexity, 2007. CCC’07. Twenty-
Second Annual IEEE Conference on. IEEE, 2007, pp. 278–291.

[30] J. Kilian, “A note on efficient zero-knowledge proofs and arguments
(extended abstract),” in Proceedings of the Twenty-fourth Annual ACM
Symposium on Theory of Computing, ser. STOC ’92, 1992, pp. 723–732.

[31] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi,
and N. Triandopoulos, “Trueset: Faster verifiable set computations,” in
Proceedings of the 23rd USENIX Conference on Security Symposium,
ser. SEC’14. Berkeley, CA, USA: USENIX Association, 2014, pp.
765–780.

[32] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, “Algebraic methods for
interactive proof systems,” Journal of the ACM (JACM), vol. 39, no. 4,
pp. 859–868, 1992.

[33] B. R. McDonald, Finite rings with identity. Marcel Dekker Incorpo-
rated, 1974, vol. 28.

[34] S. Micali, “Cs proofs,” in Foundations of Computer Science, 1994
Proceedings., 35th Annual Symposium on. IEEE, 1994, pp. 436–453.

[35] D. Micciancio, “Lattice-based cryptography,” Encyclopedia of Cryptog-
raphy and Security, pp. 713–715, 2011.

[36] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2012, pp. 700–
718.

[37] J. S. Milne, “Fields and galois theory (v4. 60),” order, vol. 3, p. 138,
2018.

[38] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[39] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security
and Privacy. IEEE, 2013, pp. 238–252.

[40] M. S. Paterson and L. J. Stockmeyer, “On the number of nonscalar
multiplications necessary to evaluate polynomials,” SIAM Journal on
Computing, vol. 2, no. 1, pp. 60–66, 1973.

[41] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-
mial identities,” Journal of the ACM (JACM), vol. 27, no. 4, pp. 701–717,
1980.

[42] S. Setty, “Spartan: Efficient and general-purpose zksnarks without
trusted setup,” Cryptology ePrint Archive, Report 2019/550, 2019.

[43] S. Setty, S. Angel, T. Gupta, and J. Lee, “Proving the correct execution
of concurrent services in zero-knowledge,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’18. Berkeley, CA, USA: USENIX Association, 2018, pp.
339–356.

[44] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish,
“Resolving the conflict between generality and plausibility in verified
computation,” in Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 2013, pp. 71–84.

[45] S. T. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes).” in
NDSS, vol. 1, no. 9, 2012, p. 17.

[46] S. T. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish, “Taking proof-based verified computation a few steps closer
to practicality.” in USENIX Security Symposium, 2012, pp. 253–268.

[47] J. Thaler, “Time-optimal interactive proofs for circuit evaluation,” in
Advances in Cryptology–CRYPTO 2013. Springer, 2013, pp. 71–89.

[48] J. Thaler, “Time-optimal interactive proofs for circuit evaluation,” arXiv
preprint arXiv:1304.3812, 2013.

[49] J. Thaler, “A note on the gkr protocol,” 2015.
[50] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister, “Verifiable

computation with massively parallel interactive proofs,” arXiv preprint
arXiv:1202.1350, 2012.

[51] T. Vieira, “Exp-normalize trick,” https://timvieira.github.io/blog/post/
2014/02/11/exp-normalize-trick/.

[52] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish, “A hybrid architecture
for interactive verifiable computation,” in Security and Privacy (SP),
2013 IEEE Symposium on. IEEE, 2013, pp. 223–237.

http://www-users.math.umn.edu/~garrett/m/algebra/notes/Whole.pdf
http://www-users.math.umn.edu/~garrett/m/algebra/notes/Whole.pdf
https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick/
https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick/

[53] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish, “Verifiable
asics,” in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
2016, pp. 759–778.

[54] R. S. Wahby, Y. Ji, A. J. Blumberg, A. Shelat, J. Thaler, M. Walfish, and
T. Wies, “Full accounting for verifiable outsourcing,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 2071–2086.

[55] R. S. Wahby, S. T. Setty, Z. Ren, A. J. Blumberg, and M. Walfish,
“Efficient ram and control flow in verifiable outsourced computation.”
in NDSS, 2015.

[56] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly-
efficient zksnarks without trusted setup,” in 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 2018, pp. 926–943.

[57] P. Warden, “Why GEMM is at the heart of deep learning,” https:
//petewarden.com/2015/04/20/.

[58] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra:
Succinct zero-knowledge proofs with optimal prover computation,”
Cryptology ePrint Archive, Report 2019/317, 2019.

[59] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou, “vsql: Verifying arbitrary sql queries over dynamic outsourced
databases,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 863–880.

APPENDIX

A. Circuit Representation for Verifiable Polynomial Delega-
tion.

Notation. Assume we are given a polynomial g over a finite
ring Zpe . (Our representation is also valid with a polynomial
over a finite field F.) Let us fix N = 22n to denote the smallest
power of four such that N ≥ deg(g). Let us index each layer
where the input layer is indexed by 0.xxiv Let us also index
each gate in a layer where the left-most gate is indexed by 0,
and the index value is represented in the binary form. We write
Ṽi to denote the MLE of the output values of the ith layer as
usual. For the simplicity of the presentation, we assume that
the number of inputs denoted by M = 2m is a power of two,
in multi-input case. We write βs(x, y) : Zs

pe × Zs
pe → Zpe

to denote the MLE of Bs(x, y) : {0, 1}s × {0, 1}s → {0, 1}
where Bs(x, y) is the comparison function that returns 1 if
x = y, and 0 otherwise. We write ~1s = (1, 1, . . . , 1) ∈ {0, 1}s,
and χs(x) := Bs(x,~1s) : {0, 1}s → {0, 1}. We omit s when
it is obvious.

Description. Now we present the circuit representation for the
polynomial g(t) =

∑N
i=0 ait

i. The circuit is composed of four
parts, each of which is called polygen, eval, unify, and extract,
respectively, as illustrated in Figure 1. We note that, as we will
explain below, the eval and unify layers consist of two sub-
circuits placed in parallel, where the left-hand side sub-circuit
computes the sub-polynomials gi and gi,j , while the right-
hand side one computes the power terms ti. Although the two
sub-circuits compute different types of values, we design them
to have the identical wiring pattern by introducing the dummy
gates (i.e., the gates computing zero), so that the overall circuit
becomes regular, allowing the verifier to be efficient. Here,
the dummy gates affect only the width of the circuit, not the
depth, and thus their effect on the verifier’s cost is negligible,
i.e., asymptotically zero, as the verifier’s cost is logarithmically

xxivIn the GKR protocol, the output layer is indexed by 0.

proportional to the circuit width. We first describe the single-
input case (Figure 1).

The polygen part corresponds to the sub-circuit between the
layers 1 and n, where for each ith layer, the input values are
{tj}2i−1

j=1 , and the output values are {tj}2ij=1. Now we have the
following relation between Ṽi+1 and Ṽi (for 0 ≤ i < n) as
follows.

Ṽi+1(z) = Ṽi(z−0)[(1− z0) + z0Ṽi(~1)]

where z = (z0, z1, . . . zi), z−0 = (z1, z2, . . . zi), ~1 =
(1, 1, . . . , 1), and Ṽ0 = t. The validity of this equation is
derived from the fact that both sides of the equation are
MLEs in z agreeing on {0, 1}i+1, and the uniqueness of MLE
(Lemma 2) that holds for an arbitrary ring (Section IV-B).
Recall that the gate index value is represented in a bit vector,
e.g., Ṽ2(0, 0) = t, Ṽ2(0, 1) = t2, Ṽ2(1, 0) = t3, and
Ṽ2(1, 1) = t4 denote the output value of the first, the second,
the third, and the fourth gate of the second layer, respectively,
as shown in Figure 1.

The eval layer, i.e., the (n + 1)th layer,
produces 2

√
N output values which consists of

g1(t), · · · , g√N (t), 0, 0, · · · , 0, t
√
N , from the input values

{tj}
√
N

j=1. Each gk (for 1 ≤ k ≤ n) is a polynomial of degree

at most
√
N , defined by gk(t) =

∑√N
j=1 aj+

√
N(k−1)t

j . The
zeros are the outputs of dummy gates as explained earlier.
Now we have the following relation between the two MLEs.

Ṽn+1(z) =
∑

q∈{0,1}n
α(z, q) · Ṽn(q) where z = (z0, z1, . . . , zn),

α(z, q) := MLE of

{
a[(x,y)], if z0 = 0

χ2n, if z0 = 1

where [v] denotes the integer value represented by the binary
vector v, e.g., [(1, 1, 0, 1)] = 13.

The unify part follows the eval layer, corresponding to a
sub-circuit of depth log

√
N from the (n + 2)th layer to

the (2n + 1)th layer, as shown in Figure 1. Each layer of
the unify part takes as input, g1(t), . . . , gi(t), 0, . . . , 0, t

j , and
produces g1,2(t), . . . , gi−1,i(t), 0, . . . , 0, t

2j , where gk,k+1 =
gk + gk+1t

j . The final layer of the unify part will produce
(g(t) − a0) and tN . Now we have the following relation
between two adjacent MLEs.

Ṽi+1(z) = Ṽi(z, 0) + Ṽi(z, 1) · Ṽi(1, 1, . . . , 1)

where z = (z0, z1, . . . , z2n−i).
Note that the above equation makes no distinction

between the two sub-circuits, i.e., one that computes
g1,2(t), . . . , gi−1,i(t) and another that computes 0, . . . , t2j ,
which significantly reduces the prover’s cost that otherwise
would have been very large. This is achieved by introducing
the dummy gates that compute zero, as explained earlier.

Finally, the extract layer, i.e., the (2n+2)th layer, takes two
inputs (g(t)− a0) and tN , and simply returns g(t) by adding
the constant a0 to the first input. The relation is as follows:

Ṽ2n+2 = Ṽ2n+1(0) + a0

https://petewarden.com/2015/04/20/
https://petewarden.com/2015/04/20/

• For each polygen layer, Ṽi(w, z) : Zm
pe × Zi

pe → Zpe (0 ≤ i ≤ n− 1),

Ṽi+1(w, z) =
∑

q∈{0,1}m
β(w, q)Ṽi(q, z−0)[(1− z0) + z0Ṽi(q,~1i)]

where z = (z0, z1, . . . zi) ∈ Zi+1
pe , and z−0 = (z1, z2, . . . zi) ∈ Zi

pe .
• For the eval layer, Ṽn+1(w, z) : Zm

pe × Zn+1
pe → Zpe ,

Ṽn+1(w, z) =
∑

q∈{0,1}n
α(z, q) · Ṽn(w, q)

• For each unify layer, Ṽj+1(w, z) : Zm
pe × Z2n+1−j

pe → Zpe (n+ 1 ≤ j ≤ 2n),

Ṽj+1(w, z) =
∑

q∈{0,1}m
β(w, q)[Ṽj(q, z, 0) + Ṽj(q, z, 1) · Ṽj(q,~12n+2−j)]

• For the extract layer, Ṽ2n+2(w) : Zm
pe → Zpe ,

Ṽ2n+2(w) = Ṽ2n+1(w, 0) + a0

Fig. 5: Construction of (sub-)circuit representation of a polynomial evaluation that consists of M = 2m inputs. Here we
consider operations over Zpe , and the polynomial in the form of g(t) =

∑N
i=0 ait

i for the smallest N = 22n ≥ deg(g).
We write ~1k = (1, . . . , 1) ∈ Zk

pe , and α(z, q) : Zn+1
pe × Zn

pe → Zpe to denote the MLE of a boolean hypercube function
A(x) : {0, 1}2n+1 → Zpe that represents (a1, . . . , aN , 0, . . . , 0, 1) ∈ Z2N

pe . For example, A(0, 0, . . . , 0) = a1, A(0, 1, . . . , 1) =
aN , and A(1, 1, . . . , 1) = 1. We also write β(w, p) : Zm

pe × Zm
pe → Zpe to denote the MLE of a comparison function

B(x, y) : {0, 1}m × {0, 1}m → {0, 1} where B(x, y) returns 1 if x = y, and 0 otherwise.

The multi-input case with M = 2m number of inputs
follows naturally from single-input case described so far (see
Figure 5).

B. Proofs of Theorems and Lemmas

1) Proof of Theorem 1:

Proof. (Sketch) Completeness directly follows from the pro-
tocol description. The main idea for showing soundness can
be summarized as follows (See [25] or [32] for the full proof).
Assume that a (dishonest) P ′ sends an incorrect result S(f)′ 6=
S(f) to V . Let us distinguish the values claimed by P ′ from
the values which would be claimed by an honest P by adding
the prime (′) symbol. Then f1(t)′ 6= f1(t). Otherwise, V will
reject immediately by checking if S(f)′ = f1(0)′ + f1(1)′.
When V chooses a random r1 from F, by the Schwartz-
Zippel lemma (Lemma 1), f1(r1)′ 6= f1(r1) with the high
probability (1− d

|F|) since f1(t) is a polynomial of degree at
most d. If f1(r1)′ 6= f1(r1), P ′ must send f2(t)′ 6= f2(t)
because of the same reasoning as before. Continuing this, P ′
must send fn(t)′ 6= fn(t) = f(r1, . . . , rn−1, t), and will be
rejected with the high probability by V who finally checks if
fn(rn)′ = f(r1, . . . , rn) for a randomly chosen rn in F. The
soundness probability bound is derived from the probability
1− (1− d

|F|)
n that at least one of the above high probability

events does not occur during the protocol.

2) Proof of Lemma 2:

Proof. Uniqueness follows from the observation that any
multilinear polynomial Ṽ (x1, x2, . . . , xn) can be represented

by
∑

b∈{0,1}n C(b)xb, where xb := Πi∈Ixi with I := {i | bi =
1}, and C(b) ∈ F is a coefficient corresponding to each
monomial xb. Then, C(b) is uniquely determined by Ṽ (b)’s
for b ∈ {0, 1}n. Specifically, for a zero vector ~0, C(~0) = Ṽ (~0).
For an elementary vector ei whose i-th component is 1
and all others are 0, C(ei) = Ṽ (ei) − C(~0). For a vector
ei,j ∈ {0, 1}n (i 6= j) whose i-th and j-th components are 1
and all others are 0, C(ei,j) = Ṽ (ei,j)−C(ei)−C(ej)−C(~0).
Continuing this process with increasing the weight of each
vector b ∈ {0, 1}n, we can see that every C(b) is uniquely
determined by Ṽ (b) for b ∈ {0, 1}n.

3) Proof of Lemma 3:

Proof. It follows from the induction on the number of vari-
ables n as the original Schwartz-Zippel lemma (Lemma 1),
provided that it holds in the single variable case. Let a1 ∈ A
be a root of f(t). By the division algorithm with a monic
polynomial (t − a1), f(t) = (t − a1)f1(t) and the degree
of f1(t) is less than that of f(t). Note that another root, if
exists, a2 ∈ A (a2 6= a1) must be a root of f1(t) since
(a2 − a1) is not a zero divisor and f(a2) = 0. Then, the
division algorithm with a monic polynomial (t− a2) on f1(t)
gives f(t) = (t− a1)(t− a2)f2(t) and the degree of f2(t) is
less than that of f1(t). Continuing this process, we conclude
that f(t) cannot have more roots in A than the degree of
f(t).

4) Proof of Theorem 2:

Proof. The proof is almost the same as that of the original
Sum-Check protocol. The gerenalized Schwartz-Zippel lemma
(Lemma 3) implies that any two distinct univariate polynomi-
als of degree ≤ d over R agree on at most d points among
A. Following the proof of the original Sum-Check protocol
(Theorem 1), the soundness probability of the generalized
Sum-Check protocol is bounded by nd

|A| .

5) Proof of Lemma 5 (Prover Cost):

Proof. The circuit representation is composed of four parts;
polygen, eval, unify, extract, and division as described before,
and the depth is 2n+3 = O(logN). We first estimate the cost
of P for evaluating the circuit. It is simply M times of the
cost for evaluating the circuit of single rounding gate, and we
only estimate the single case (Fig.1). The i-th layer in polygen
requires 2i−1 multiplications resulting in O(2n) total for
polygen part. The eval layer requires O(2n · 2n+1) = O(22n)
operations, since evaluating each fi(t) given {tj}2nj=1 requires
O(2n) operations. The j-th layer in unify requires 22n+3−j

operations resulting in O(2n) total for unify part. Since extract
and division part is of negligible cost, the total cost for
evaluation is O(2n+22n+2n) = O(N), resulting in O(NM)
for M rounding gates.

Now we estimate the cost of P for proving the evaluation
given all output of gates in the circuit. We assume Thaler [48]’s
Reusing Work reducing P’s cost for evaluating all βm(w, p),
Ṽ (q), and α(r) values required for sum-check to be only
O(2m), O(2s), and O(2t) respectively, where m, s, and t
are the number of variables constituting p, q, and r, respec-
tivelyxxv. Thus, for estimation of the cost, it suffices to count
the number of variables appear in summands of the relation
of MLEs in multi rounding case (Figure 5).

In polygen part, reducing from Ṽi+1 to Ṽi requires O(2m +
2m+i) cost for sum-check, and additional O(i · 2i) cost for
reducing to single point, resulting in total O(2m+n + n · 2n)
cost. In eval layer, sum-check requires O(22n+1+2m+n) cost.
In unify part, reducing from Ṽj+1 to Ṽj requires O(2m +
2m+2n+2−j) cost for sum-check, and additional O((2n+ 2−
j) · 22n+2−j) cost for reducing to single pointxxvi, resulting in
total O(2m+n + n · 2n) cost. The extract and division layer
doesn’t affect P’s cost since it does not require sum-check.
Overall, the cost of proving is O(2m+n+22n+2m+n+n ·2n)
which is O(

√
NM +N).

6) Proof of Lemma 5 (Verifier Cost):

Proof. Note that α(z, q) can be precomputed in cost O(N),
using memoization [52], and will not be considered in the
following estimation. Each βm can be evaluated in cost O(m)

xxvThere is a procedure computing the inverse of each compo-
nent zi of z for efficient computation of β(z, p), but we can devi-
ate from it without asymptotic increase of the cost. More precisely,
C(j)[(pj+1, . . . , psi)] in [48, equation (7)] (Full ver. of [47]) can be cal-
culated by rjC(j−1)[1, pj+1, . . . , psi]+(1−rj)C(j−1)[0, pj+1, . . . , psi]
without z−1

j .
xxviIn fact, we perform two consecutive processes of reducing to sin-

gle point, Ṽj(p, z, 1) & Ṽj(p, z, 0) to Ṽj(p, z, r1), then Ṽj(p, z, r1) &
Ṽj(p, 1, 1, . . . , 1) to Ṽj(p, r).

due to its simple form [48, Section 4.3.1], without affecting
the asymptotic cost of V . Also, as the original GKR protocol,
V’s cost for the initial an final step is O(M logM), since there
are O(M) input and output.

Now, we can estimate the cost of V based on that in the sum-
check (Theorem 1). Recall that in sum-check, the cost of V
depends on the number of variables managed by summation. In
polygen layers, reducing from Ṽi+1 to Ṽi requires V to perform
O(m) operations for sum-check, and O(i) for reducing to sin-
gle point. Therefore, the cost for polygen layers is O(mn+n2).
In eval layer, O(n) cost is required. In unify layers, reducing
from Ṽj+1 to Ṽj requires V to perform O(m) operations
for sum-check, O(2n + 2 − j) for reducing to single point,
resulting in O(mn+ n2) cost total. Since the cost for extract
and division layers are negligible, the total cost of V without
initial and final step is O(mn+n2) = O(logN logMN). The
bound of soundness probability and communication cost can
be estimated similarly.

7) Proof of Lemma 6: We exploit following Lemma whose
proof can be found in [37].

Lemma 7. [37, Lemma 5.9] An n-th cyclotomic polynomial
Φn of degree ϕ(n) is irreducible if and only if p is a primitive
root modulo n (i.e., p does not divide n), and its multiplicative
order modulo n is ϕ(n), where ϕ is the Euler’s totient
function.

Proof of Lemma 6. (i), (ii), (iii) directly follows from the
above lemma and the fact that each prime p is a primitive
root modulo 4, 5, or 9, respectively.

More algebraic proof can be found in [22].
For (iv), note that if x3−a is reducible, it has monic factor

and x3− a has a solution in Zp. We show that there exists an
a such that x3−a has no solution in Zp which is equivalent to
the claim that the function t→ t3 : Zp → Zp is not injective.
Note that the multiplicative group Z×p of Zp has order p− 1,
and the order is multiple of 3 when p ≡ 1 mod 3. Now, by
Sylow theorem, there exists a group of order 3 in Z×p , and there
exists at least 3 elements in Zp whose cube is 1. Therefore,
the claim follows.

(v), (vi) follows from general irreducibility results on quartic
polynomials [20, Theorem 3.(iv)].

Note that above Lemma 7 implies that we can find many
irreducible cyclotomic polynomials (with few non-zero coef-
ficients) of higher degree, if needed.

	Introduction
	Preliminaries
	Interactive Proof Protocol
	Schwartz-Zippel Lemma
	Sum-Check Protocol
	Multilinear Extension (MLE)
	GKR Protocol

	Overview of Our Approach and Result
	Generalization of GKR Protocol Over a Ring
	Schwartz-Zippel Lemma and Sum-Check Protocol Over a Ring
	GKR Protocol Over a Ring

	Verifiable Rounding Operation
	Lowest-Digit-Removal Polynomial Over Zpe
	Verification of Division-by-p Layer

	Optimal Circuit Construction of Polynomial
	Overview of Our Circuit Construction
	Cost Analysis

	Cost Optimization for Rounding Operation
	Galois Ring over Zpe and Sampling Set
	Optimization of Prover's Cost for Rounding Layers

	Experimental Results
	Experimental Setup
	Effectiveness of Optimization via Galois Ring
	Efficiency of Verifiable Rounding Operation
	Comparison to Original GKR Protocol for Rounding
	Discussion

	Related Work
	Interactive Proofs: GKR Protocol and Refinements
	Arguments: Non-Interactiveness and Zero-Knowledge

	Concluding Remarks
	References
	Appendix
	Circuit Representation for Verifiable Polynomial Delegation.
	Proofs of Theorems and Lemmas
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Lemma 5 (Prover Cost)
	Proof of Lemma 5 (Verifier Cost)
	Proof of Lemma 6

