
Athena: A verifiable, coercion-resistant

voting system with linear complexity

Ben Smyth

December 17, 2019

Abstract

Seminal work by Juels, Catalano & Jakobsson delivered a verifiable,
coercion-resistant voting system with quadratic complexity. This man-
uscript attempts to advance the state-of-the-art by delivering a voting
system with equivalent security and linear complexity.

1 Introduction

Voting systems must ensure free-choice [57, 58, 71]. A notion of which is for-
malised by ballot secrecy (i.e., a voter’s vote is not revealed to anyone) [8,9,11,
17,65]. This notion can be satisfied by voting systems that simply instruct vot-
ers to encrypt their vote. But, free-choice may be compromised by an adversary
that is able to communicate with voters, since the coins used for encryption
serve as proof of how voters voted and voters may communicate those coins to
the adversary. Hence, formulations of free-choice must be accompanied by op-
erational assumptions and limitations on the adversary’s capabilities. Indeed,
ballot secrecy assumes that voters’ ballots are constructed and tallied in the pre-
scribed manner, and that the adversary’s capabilities are limited to controlling
ballot collection.

Receipt-freeness (i.e., a voter cannot collaborate with a conspirator to gain
information which can be used to prove how they voted) formalises a notion
of free-choice in the presence of an adversary that can communicate with vot-
ers [10, 14, 27, 31, 46, 56]. Yet free-choice may be compromised if voters deviate
from the prescribed voting procedure. Coercion-resistance (i.e., a voter can de-
viate from a coercer’s instructions, to cast their own vote, without detection)
formalises a stronger notion of free-choice assuming that not only can voters de-
viate, but the adversary can instruct voters how to deviate [40, 51, 68, 72]. The
distinction between receipt-freeness and coercion-resistance is subtle: “receipt-
freeness deals with a [conspirator] who is only concerned with deducing informa-
tion about how someone voted from receipts and public information, but who
does not give detailed instructions on how to cast the vote. Coercion resistance,
on the other hand, includes dealing with a coercer who gives details not just

on which candidate to vote for but also on how to cast the vote” [37, §1.1].
Both receipt-freeness and coercion-resistance retain the assumption that voters’
ballots are tallied in the prescribed manner, and receipt-freeness additionally
assumes voters’ ballots are constructed in the prescribed manner.

Beyond free-choice, voting systems must ensure that only voters vote [57,
58, 71], which can be achieved by issuing credentials to voters and using cryp-
tography to ensure that authorised ballots are unforgeability (i.e., only voters
can construct authorised ballots) [66,69]. (Unforgeability is sometimes known as
eligibility verifiability.) Moreover, voting systems must ensure that voters have
equal influence in the decision [57, 58, 71], which can be achieved by universal
verifiability (i.e., anyone can check whether an outcome corresponds to votes
expressed in collected ballots that are authorised, except for votes expressed in
ballots from the same voter, which are all discarded, except for the voter’s last
vote) and individual verifiability (i.e., a voter can check whether their ballot is
collected) [22,46,47,50,69].

Seminal work by Juels, Catalano & Jakobsson [39–41] made significant prog-
ress towards a voting system satisfying the aforementioned properties, moreover,
Clarkson, Chong & Myers [20, 21] implemented their results as Civitas, albeit,
complexity is O(|bb|2), i.e., quadratic in the length of the bulletin board (bb).
Quadratic complexity arises from the use of pairwise plaintext equality tests on
the bulletin board’s ballots to discard all but the last vote cast using a private
credential. Pairwise plaintext equality tests are also used on mixed ballots and
mixed public credentials to discard mixed ballots that are unauthorised, with
complexity O(|L| · |bb|), where L is the electoral roll.

Contribution. We advance the state-of-the-art with Athena: A verifiable,
coercion-resistance voting system with linear complexity O(|bb|). Our system
reveals anonymised credentials to discard ballots cast using the same private
credential (with linear complexity) and uses plaintext equality tests on each
individual mixed ballot – which includes a mixed public credential – to discard
any mixed ballot that is unauthorised (with linear complexity). Athena works
as follows.

Voting. Voters are issued with credential pairs, wherein the private credential is
a nonce and the public credential is an encryption of that nonce. Each voter en-
crypts the negation of their private credential and their vote, and publishes the
two resulting ciphertexts prepended with their public credential and appended
with a counter (to the bulletin board). A voter computes ballots for any re-votes
similarly, using an incremented counter. It follows that the bulletin board will
contain voters’ ballots, plus any adversarial ballots.

Tallying. Any ballots not containing a public credential are discarded, the sec-
ond ciphertext of each remaining ballot is homomorphically combined with itself
n-times (for some nonce n), and the resulting combination is decrypted to re-
veal an anonymised credential. Entries that share an anonymised credential are

2

Sidebar 1 Notation
We let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and coins r, and we let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where
coins r are chosen uniformly at random from the coin space of algorithm A.
Moreover, we let x ← T denote assignment of T to x; x

r←− A(x1, . . . , xn)
denote assignment of A(x1, . . . , xn; r) to x, where coins r are chosen uniformly
at random from the coin space of algorithm A; and x←R S denote assignment
to x of an element chosen uniformly at random from set S (we use the same
notation when S is a distribution). Furthermore, we let x[i] denote component
i of vector x and let |x| denote the length of vector x. Finally, we write (x1,
. . . , x|T |)← T for x← T ;x1 ← x[1]; . . . ;x|T | ← x[|T |], when T is a vector, and
x, x′ ←R S for x←R S;x′ ←R S.

discarded, except for the one with the highest counter, thus, only the last vote
associated with each anonymised credential is retained. The first two cipher-
texts of each retained ballot are homomorphically combined, deriving either: 1)
the combination of a private credential and the negation of that credential, or
2) the combination of a private credential and some other message (excluding
the credential’s negation). The resulting homomorphic combinations and cor-
responding encrypted votes are mixed (using the same permutation), plaintext
equality tests are used to determine whether the mixed homomorphic combina-
tions where constructed using private credentials, and the corresponding mixed
encrypted votes are decrypted if they were.

Intuitively, Athena achieves coercion-resistance, because a well-formed ballot
that encrypts the negation of a voter’s private credential is indistinguishable
from an ill-formed ballot that encrypts some other message, hence, a voter
cannot prove whether they cast a well-formed ballot (that will be counted, as
opposed to an ill-formed ballot that will not), during the voting phase. More-
over, mixing ensures that ballots cannot be mapped to votes during tallying.
Thus, coercion-resistance is achieved. (Unlike the voting system by Juels, Cata-
lano & Jakobsson, Athena reveals the number of ballots cast using a voter’s
public credential, which requires voters to deny casting ballots when instructed
by the coercer to abstain. This is a reasonable strategy, since no voter can prove
whether they even cast a well-formed ballot.) Moreover, verifiability is achieved
too, because only voters have access to private credentials, hence, only vot-
ers can construct authorised ballots (unforgeability), tallying produces evidence
(specified in Definition 1) demonstrating that election outcomes correspond to
the votes expressed in collected ballots that are authorised (universal verifia-
bility), and ballots are recorded on a bulletin board, hence, voters can check
whether their ballot is collected (individual verifiability).

3

2 Our voting system: Athena

Our voting system (Setup,Register,Vote,Tally,Verify) is used as follows: The
tallier initiates an election using algorithm Setup to compute a key pair, which
includes a public key pk for an underlying multiplicative-homomorphic asym-
metric encryption scheme (Gen,Enc,Dec), for which there exists a generator g
of the scheme’s message space. Next, the registrar uses algorithm Register to
compute a credential pair, wherein the private credential is a nonce d and the
public credential is an encryption Enc(pk , gd ; r) of that nonce, for some coins
r. The registrar repeats the process to create further credential pairs and these
pairs are issued to voters. Each voter uses algorithm Vote to compute their
ballot, which includes: their public credential; an encryption Enc(pk , g−d ; s) of
their negated private credential, for some coins s; an encryption Enc(pk , v; t) of
their vote v, for some coins t; and a counter cnt . A voter similarly computes
ballots for re-votes, using an incremented counter. It follows that the bulletin
board will contain a ballot for a voter’s first vote

Enc(pk , gd ; r) Enc(pk , g−d ; s1) Enc(pk , v1; t1) cnt1,

ballots for any of the voter’s re-votes

Enc(pk , gd ; r) Enc(pk , g−d ; s2) Enc(pk , v2; t2) cnt2, . . . ,

Enc(pk , gd ; r) Enc(pk , g−d ; sk) Enc(pk , vk; tk) cntk,

such that cnt1 < · · · < cntk, and any other ballots cast using the voter’s public
credential, without the private credential (including those cast by the adversary
or even the voter themselves), namely,

Enc(pk , gd ; r) Enc(pk , gD1 ; s1) Enc(pk , v1; t1) cnt1, . . . ,

Enc(pk , gd ; r) Enc(pk , gDl ; sl) Enc(pk , vl; tl) cnt l.

(Ballots also prove correct ciphertext construction, moreover, they prove that
the second ciphertext of each ballot encrypts a message of the form gm. Hence,
we restrict ourselves to well-defined ballots above.) Furthermore, the bulletin
board will contain ballots cast using other public credentials.

The tallier uses algorithm Tally to compute the election outcome as follows:
The tallier generates a nonce n, homomorphically combines the second cipher-
text of each entry on the bulletin board with itself n-times, decrypts the result-
ing homomorphic combinations to reveal anonymised credentials, and prepends
entries with anonymised credentials, thereby producing output including

g−d·n Enc(pk , gd ; r) Enc(pk , g−d ; s1) Enc(pk , v1; t1) cnt1, . . . ,

g−d·n Enc(pk , gd ; r) Enc(pk , g−d ; sk) Enc(pk , vk; tk) cntk,

gD1·n Enc(pk , gd ; r) Enc(pk , gD1 ; s1) Enc(pk , v1; t1) cnt1, . . . ,

gDl·n Enc(pk , gd ; r) Enc(pk , gDl ; sl) Enc(pk , vl; tl) cnt l.

4

Entries with the same public credential that are prepended with the same value
are discarded, except for the one with the highest counter. Hence, the first k−1
entries (above) are discarded, whilst the kth entry is preserved. The remaining
entries are similarly processed, therefore, the last will be kept if any entries
sharing the prepended value (gDl·n) have counter values lower than counter
cnt l. (For example, suppose only the penultimate entry shares prepended value
gDl·n, i.e., Dl = Dl−1, and further suppose cnt l > cnt l−1. Hence, the last entry
will be preserved and the penultimate entry will be discarded. By comparison,
the penultimate entry will be kept if cnt l < cnt l−1.) The first two ciphertexts
of preserved entries are homomorphically combined and paired with encrypted
votes, producing

Enc(pk , gd � g−d ; r ⊕ sk) Enc(pk , vk; tk),

for the kth entry (above), and

Enc(pk , gd � gDl ; r ⊕ sl) Enc(pk , vl; tl),

for the last (assuming it is preserved). The homomorphic combinations and
encrypted votes are mixed (using the same permutation). The tallier performs
(optimised) plaintext equality tests on each of the mixed homomorphic com-
binations to determine whether they contain plaintext one, and decrypts the
corresponding mixed encrypted votes when the test holds. Thus, the voter’s
vote vk (above) is revealed, because mixed ciphertext Enc(pk , gd � g−d ; r ⊕
sk ⊕ w) encrypts 1, whereas vote vl is not revealed, because mixed ciphertext
Enc(pk , gd�gDl ; r⊕sl⊕w) does not (recall gDl was constructed without private
credential d), where w and w are coins introduced during mixing. The election
outcome is the tally of revealed votes.

Athena is formally specified by Definition 1, using cryptographic primitives
introduced in Appendix A. Those primitives include sigma protocols for proving
correct key generation, ciphertext construction, and decryption, which behave
as one might expect. They also include a sigma protocol for proving iterative
homomorphic combination, that is, proving that a ciphertext c is computed
from another ciphertext c′ such that c =

⊗n
1 c
′, for some nonce n. We apply

the Fiat-Shamir transformation to sigma protocols to derive non-interactive
proof systems, which we use to achieve verifiability.

Definition 1 (Athena). Suppose Π = (Gen,Enc,Dec) is a multiplicative-
homomorphic asymmetric encryption scheme with a message space that is super-
polynomial in the security parameter and for which a generator exists; M is a
verifiable pairwise mixnet; Σ1, Σ2, Σ3 and Σ4 are sigma protocols that prove key
generation, ciphertext construction, decryption and iterative homomorphic com-
bination, respectively; and H is a hash function. Let FS(Σ1,H) = (ProveKey,
VerKey), FS(Σ2,H) = (ProveCiph,VerCiph), FS(Σ3,H) = (ProveDec,VerDec),
and FS(Σ4,H) = (ProveComb,VerComb). Athena, denoted Athena(Π,M,Σ1,
Σ2,Σ3,Σ4,H) = (Setup,Register,Vote,Tally,Verify), is defined by the following
algorithms.

5

• Setup(κ). Compute

(pk , sk ,m)
r←− Gen(κ);

ρ← ProveKey((κ, pk ,m), (sk , r), κ);
pk← (pk ,m, ρ);
sk← (pk , sk),

let mb be the largest integer upper-bound by a polynomial in the security
parameter, let mc be the largest integer such that {0, . . . ,mc} ⊆ {0} ∪ m
and mc is upper-bound by a polynomial in the security parameter, and
output (pk, sk,mb,mc).

• Register(~pk , k). Parse ~pk as (pk ,m, ρ), outputting (⊥,⊥) if parsing fails
or VerKey((κ, pk ,m), ρ, κ) = ⊥, generate nonce d, compute

pd ← Enc(pk , gd);
d← (pd , d),

and output (pd ,d), where g is a generator of message space m.

• Vote(~d , ~pk , v, cnt ,nc, κ). Parse ~d as a vector (pd , d) and ~pk as a vector
(pk ,m, ρ), outputting ⊥ if parsing fails or VerKey((κ, pk ,m), ρ, κ) = ⊥ ∨
v 6∈ {1, . . . ,nc} ∨ {1, . . . ,nc} 6⊆ m, compute

c1
s←− Enc(pk , g−d);

c2
t←− Enc(pk , v);

σ1 ← ProveCiph((pk , g, c1,m), (−d , s),m, κ);
σ2 ← ProveCiph((pk , c2, {1, . . . ,nc}), (v, t),m, κ),

and output (pd , c1, c2, σ1, σ2, cnt), where message m = (pd , c1, c2, cnt) and
g is the aforementioned generator of message space m.

• Tally(~sk , bb,nc, L, κ). Parse ~sk as vector (pk , sk), initialise v as a zero-
filled vector of length nc, and proceed as follows.

1. Remove invalid ballots: Let {b1, . . . , b`} be the largest subset of senary
vectors in bb such that b1[1] ≤ · · · ≤ b`[1] and for each (pd , c1, c2,
σ1, σ2, cnt) in the subset we have pd ∈ L ∧ VerCiph((pk , g, c1,m),
σ1,m, κ)∧VerCiph((pk , c2, {1, . . . ,nc}), σ2,m, κ), where g is again the
aforementioned generator of message space m and message m = (pd ,
c1, c2, cnt). If the subset is empty, then output (v,⊥).

2. Mix final votes: Initialise pfr as an empty vector and A as an empty
map from pairs (comprising a ciphertext and a group element) to
triples (comprising a counter and two ciphertexts), generate nonce
n, compute

6

for 1 ≤ i ≤ ` do
c′i ←

⊗n
1 bi[2];

N ← Dec(sk , c′1);
t← A[(bi[1], N)];
if t = null ∨ t[1] < bi[6] then

// Update the map if A[(bi[1], N)] is empty

// or contains a lower counter

A[(bi[1], N)]← (bi[6], bi[1]⊗ bi[2], bi[3]);

else if t[1] = bi[6] then
// Disregard duplicate counters

A[(bi[1], N)]← (bi[6],⊥,⊥);

ς ← ProveDec((pk , c′i, N), sk , κ);
if |pfr| > 0 then

// Prove c′i−1 and c′i are derived by iterative

// homomorphic combination wrt nonce n
ω ← ProveComb((pk , (c′i−1, c

′
i), (bi−1[2], bi[2])), n, κ);

pfr← pfr ‖ (c′i, N, ς, ω);

else
pfr← pfr ‖ (c′i, N, ς),

and apply (pairwise) mixnet M to the pairs of ciphertexts in map A
to derive vector B.

3. Reveal eligible votes: Initialise pfd as an empty vector, generate
nonces n1, . . . , n|B|, and compute

for (c1, c2) ∈ B do

c′ ←
⊗n|pfd|+1

1 c1;
m← Dec(sk , c′);
ω ← ProveComb((pk , c′, c1), n|pfd|+1, κ);
ς1 ← ProveDec((pk , c′,m), sk , κ);
if m = 1 then

// c1 encrypts g0, hence, is derived from homo

// comb of pub cred and enc of neg priv cred

v ← Dec(sk , c2);
v[v]← v[v] + 1;
ς2 ← ProveDec((pk , c2, v), sk , κ);
pfd← pfd ‖ (c′, v, ω, ς1, ς2);

else
pfd← pfd ‖ (c′,m, ω, ς1),

and output (v, (pfr,B,pfd)), where g is the aforementioned generator
of message space m.

• Verify(~pk , bb,nc, L, v, pf , κ). Parse ~pk as vector (pk ,m, ρ) and v as a vec-
tor of length nc, outputting 0 if parsing fails, VerKey((κ, pk ,m), ρ, κ) = ⊥,
or nc 6≤ mc, where mc is computed as per algorithm Setup. Perform the

7

following checks.

1. Check ballot removal. Compute {b1, . . . , b`} as per Step 1 of algorithm
Tally and check {b1, . . . , b`} = ∅ implies v is a zero-filled vector.

2. Check mix. Check pf parses as a vector (pfr,B,pfd) and pfr
parses as a vector ((c′1, N1, ς1), (c′2, N2, ς2, ω2), . . . , (c′`, N`, ς`, ω`))
such that

∧
1≤i≤` VerDec((pk , c′i, Ni), ςi, κ) and

∧
1<i≤` VerComb((pk ,

(c′i−1, c
′
i), (bi−1[2], bi[2])), ωi, κ), initialise A as an empty map from

pairs to triples, compute

for 1 ≤ i ≤ ` do
t← A[(bi[1], Ni)];
if t = null ∨ t[1] < bi[6] then

A[(bi[1], N)]← (bi[6], bi[1]⊗ bi[2], bi[3]),
else if t[1] = bi[6] then

A[(bi[1], N)]← (bi[6],⊥,⊥);

and check B was output by the mix applied in Step 2 of algorithm
Tally on input of the pairs of ciphertexts in A.

3. Check revelation. Checks pfd parses as a vector of length |B| such
that for each v ∈ {1, . . . ,nc} we have

∃=v[v]i ∈ {1, . . . , |B|} : ∃c1, c2, c′, ω, ς1, ς2 : (c1, c2) = B[i] ∧
(c′, v, ω, ς1, ς2) = pfd[i] ∧ VerComb((pk , c′, c1), ω, κ) ∧

VerDec((pk , c′, 1), ς1, κ) ∧ VerDec((pk , c2, v), ς2, κ),

and for each remaining integer i ∈ {1, . . . , |B|} we have B[i] parses
as (c1, c2), pfd[i] parses as (c′,m, ω, ς1), and VerComb((pk , c′, c1), ω,
κ) ∧ VerDec((pk , c′,m), ς1, κ) ∧m 6= 1.

Output 1 if all the above checks hold.

Athena is specified in terms of election scheme syntax by Smyth, Frink &
Clarkson [69], which we extend to include re-voting (Appendix B). Election
schemes must satisfy a correctness condition that ensures such schemes function,
i.e., election outcomes correspond to votes expressed in ballots (except for votes
expressed in ballots from the same voter, which are all discarded, except for
the voter’s last vote), when ballots are constructed and tallied in the prescribed
manner, and we prove Athena satisfies the condition.

Lemma 1. Athena(Π,M,Σ1,Σ2,Σ3,Σ4,H) is an election scheme when cryp-
tographic primitives satisfy the preconditions of Definition 1 and asymmetric
encryption scheme Π is perfectly correct.

A proof of Lemma 1 appears in Appendix C. Beyond correctness, verifiable
election schemes should satisfy completeness, i.e., auditing should succeed for

8

evidence produced by tallying, hence, algorithm Verify should accept outputs of
algorithm Tally. We prove Athena satisfies completeness in Section 4.1.

Athena should be instantiated with an asymmetric encryption scheme sat-
isfying IND-CPA and sigma protocols satisfying special soundness and special
honest verifier zero-knowledge. This ensures the non-interactive proof systems
derived by application of the Fiat-Shamir transformation satisfy zero-knowledge
and simulation sound extractability [12], which help achieve both privacy and
verifiability. Moreover, this ensures that ballots are non-malleable [12], which
is necessary for privacy [65]. Furthermore, for linear complexity, we require
computation

⊗n
1 c to be linear in the length of c, which is possible for El

Gamal, for instance. (Indeed, we have
⊗n

1 (gr, (gx)r ·M) ≡ (gr, (gx)r ·M)n ≡
(gr·n, (gx)r·n ·Mn).)

Implementation. Athena is formally stated independently of the underlying
cryptographic primitives (for generality, algorithm agility, and ease of proofs). In
practice, Athena(Π,M,Σ1,Σ2,Σ3,Σ4,H) can be instantiated with established
cryptographic primitives. For instance, we might instantiate asymmetric en-
cryption scheme Π as El Gamal [28] and we might instantiate sigma protocols
as follows: Σ1 as the protocol for proving knowledge of discrete logarithms by
Chaum et al. [15, Protocol 2], Σ2 as the protocol for proving knowledge of dis-
junctive equality between discrete logarithms by Cramer et al. [26, Figure 1], Σ3

as the protocol for proving knowledge of equality between discrete logarithms
by Chaum & Pedersen [16, §3.2], and Σ4 as a slight variant of the protocol by
Chaum & Pedersen.1

3 Privacy results

An Athena ballot contains a public credential, i.e., an encryption of the corre-
sponding private credential, and an encryption of the negated private credential.
Yet, no voter can prove that any ballot contains their private credential. Indeed,
a well-formed Athena ballot that encrypts the negation of a voter’s private cre-
dential is indistinguishable from an ill-formed ballot that encrypts some other
value, rather than such a negation. Hence, during the voting phase, a voter
cannot prove whether they cast a well-formed ballot (that will be counted, as
opposed to an ill-formed ballot that will not), let alone prove how they voted,
thereby assuring coercion-resistance during the voting phase.

Associating each public credential with anonymised credentials (to discard
early votes prior to mixing) reveals the number of ballots whose second cipher-
text contains the same plaintext (be that a private credential or some other
value). For instance, a voter that casts a specific number of ballots containing
such a plaintext can check to see whether an anonymised credential appears

1To prove iterative homomorphic combination using equality between discrete log-
arithms, witness that

∧
1≤i≤n(αi, βi) = (α′i, β

′
i)
n iff

∧
1≤i≤n logα′i

αi ≡ logβ′i
βi ∧∧

1<i≤n logαi−1
αi−1 ≡ logαi αi, where (α1, β1), (α′1, β

′
1), . . . , (αn, βn), (α′n, β

′
n) are El Gamal

ciphertexts.

9

the specified number of times (in association with the voter’s public credential).
But, no voter can prove that those ballots are well-formed. Indeed, the voter
may cast the expected number of ballots using a nonce in place of their private
credential’s negation, which will result in the expected relation, yet the ballots
are ill-formed and will not be counted. Hence, coercion-resistance is preserved
before mixing.

Finally, homomorphically combining ciphertexts, mixing those combinations
and encrypted votes, and using plaintext equality tests to determine voters’
votes (as opposed to adversarial votes) preserves coercion-resistance, as does
decrypting mixed (voters’) votes. (Ballots prove that votes are selected from
the sequence of candidates, which provides protection against randomisation
attacks [41, §1.1].) It follows that tallying preserves coercion-resistance. Thus,
Athena is a coercion-resistant voting system.

The desire to formally prove that Athena satisfies coercion resistance initi-
ated a study of definitions by Juels, Catalano & Jakobsson [39–41], Gardner,
Garera & Rubin [32], Unruh & Müller-Quade [72], and Küsters, Truderung &
Vogt [48, 51]. The study reveals that definitions by Gardner, Garera & Ru-
bin and Unruh & Müller-Quade are satisfiable by voting systems that are not
coercion resistant, and that the definition by Küsters, Truderung & Vogt is un-
satisfiable by systems that are [68]. Hence, those definitions do not adequately
formalise coercion resistance and are unsuitable for the analysis of Athena. It
remains to study the definition by Juels, Catalano & Jakobsson, and a formal
proof that Athena satisfies coercion resistance is deferred until the suitability of
their definition (or another) is established.

Distributed tallying. Coercion-resistance does not provide assurances when
deviations from the prescribed tallying procedure are possible. Indeed, such
deviations include revealing the tallier’s private key, which undermines privacy.
Hence, the tallier must be trusted. Alternatively, we can design voting systems
that distribute the tallier’s role amongst several talliers and ensure free-choice
assuming at least one tallier behaves. Extending Athena in this direction is
straightforward, since distributed variants of the underlying primitives are well-
known. Ultimately, we would prefer not to trust talliers; unfortunately, this is
only known to be possible for decentralised voting systems, e.g., [33, 36, 43–45,
61], which do not scale.

4 Verifiability results

Athena records ballots on a (public) bulletin board, hence, voters can check
whether their ballot is collected (individual verifiability). Moreover, tallying
produces evidence demonstrating that the announced election outcome corre-
sponds to the votes expressed in collected ballots that are authorised (universal
verifiability). Furthermore, only voters can construct authorised ballots (un-
forgeability). It follows that Athena is a verifiable election scheme, as we shall

10

prove using formal definitions from Smyth, Frink & Clarkson [69] that we extend
to include re-voting (Appendix D).

4.1 Universal verifiability

Universal verifiability asserts that anyone must be able to check whether an
election outcome corresponds to votes expressed in collected ballots that are
authorised. Since checks can be performed by algorithm Verify, it suffices that
the algorithm accept if and only if the outcome corresponds to votes expressed
in collected ballots that are authorised. The only if requirement is formalised by
Soundness (Definition 10), which requires algorithm Verify to only accept correct
outcomes, and the if requirement is captured by Completeness (Definition 11),
which requires election outcomes produced by algorithm Tally to be accepted
by algorithm Verify.

Proposition 2 (Soundness). Election scheme Athena(Π,M,Σ1,Σ2,Σ3,Σ4,H)
satisfies Soundness, when asymmetric encryption scheme Π is perfectly correct,
mixnetM is verifiable, sigma protocols Σ1, Σ2, Σ3 and Σ4 satisfy special sound-
ness and special honest verifier zero-knowledge, and H is a random oracle, as-
suming Injectivity is satisfied.

We defer consideration of Injectivity (Definition 9) to Section 4.3.

Proof sketch. We must establish that outcomes accepted by algorithm Verify
correspond to votes expressed in collected ballots that are authorised. Step 1 of
the algorithm ensures accepted outcomes are only influenced by bulletin board
entries constructed by algorithm Vote, i.e., only (valid) ballots have influence
(invalid ballots do not), and only when they contain a public credential. Step 2
ensures no influence from any mixed ballots that share a public credential (and a
anonymised credential) with another mixed ballot, whilst being associated with
a (strictly) lower counter value. Moreover, pairs of mixed ballots that share a
public credential (and a anonymised credential) and a counter are ensured to
have no influence either. It follows that only mixed ballots expressing the last
vote associated with a public and an anonymised credential may have influence.
Finally, Step 3 restricts influence to mixed ballots associated with a voter’s
public and private credential, i.e., only voters’ last votes have influence, hence,
accepted outcomes correspond to votes expressed in authorised collected ballots.

A detailed proof of Proposition 2 and all other verifiability proofs appear in
Appendix E.

Proposition 3 (Completeness). Election scheme Athena(Π,M,Σ1,Σ2,Σ3,Σ4,
H) satisfies Completeness when mixnet M is verifiable, sigma protocol Σ2 sat-
isfies special soundness and special honest verifier zero-knowledge, and H is a
random oracle.

11

Proof sketch. We must establish that outcomes produced by algorithm Tally
are accepted by algorithm Verify. It is trivial to see that an outcome output by
the first step of algorithm Tally will be accepted by the first step of algorithm
Verify, and it remains to consider outcomes output by the last step of algorithm
Tally. Simulation sound extractability (of sigma protocol Σ2) assures us that
such outcomes are derived from ballots containing well-formed ciphertexts. It
is straightforward to see that computations performed by the second step of
algorithm Tally can be successfully checked in the second step of algorithm
Verify, in particular, proofs can be verified, because proof systems are complete.
Moreover, since map A is equivalently computed (from well-formed ciphertexts)
by both algorithms and since the mixnet is verifiable, it follows that checks
performed on the mixnet’s output succeed. Finally, the checks performed by
the third step of algorithm Verify succeed, because proof systems are complete,
thus, outcomes produced by algorithm Tally are accepted.

4.2 Unforgeability

Unforgeability asserts that only voters can construct authorised ballots. Since
ballots are authenticated by private credentials, it suffices to ensure that knowl-
edge of a private credential is necessary to construct an authentic ballot, which
is formalised by Unforgeability (Definition 12). We defer a formal proof to later
work.

Comparison with the voting system by Juels, Catalano & Jakobsson.
Smyth, Frink & Clarkson [69, §6] show that the voting system by Juels, Catalano
& Jakobsson only achieves unforgeability assuming the tallier is honest, because
the tallier’s private key can be used to discover private credentials (by decrypting
public credentials), which enables adversarial construction of authorised ballots.
By comparison, Athena achieves unforgeability even if the tallier is dishonest,
since the tallier’s private key can only be used to recover gd or g−d , neither of
which can be used to construct an authorised ballot, because ballots must prove
knowledge of private credential d . Thus, Athena improves upon the security of
the voting system by Juels, Catalano & Jakobsson. (Their voting system can
probably be improved using a similar idea.)

4.3 Individual verifiability

Individual verifiability asserts that voters must be able to check whether their
ballot is amongst those collected. Since ballots should be collected and recorded
on a bulletin board, and since the board must be available to everyone, it suffices
for voters to check that their ballot (i.e., the ballot they constructed) is on the
bulletin board. Hence, it is necessary for voters to check that their ballot has
not been omitted from the bulletin board. Yet, this is insufficient, because the
presence of a ballot identical to a voter’s ballot, does not imply the presence
of the ballot constructed by the voter. Indeed, such a ballot might have been
constructed by another voter. Thus, individual verifiability requires that voters

12

must be able to uniquely identify their ballot, i.e., ballots do not collide, which
is formalised by Individual-Verifiability (Definition 13).

To ensure Athena satisfies individual verifiability, it suffices to require that
the underlying encryption scheme produces distinct ciphertexts with overwhelm-
ing probability. Smyth explains that “[s]ecurity properties of asymmetric en-
cryption schemes ensure [distinct] ciphertexts...But, such security properties
assume public keys are generated (by key generation algorithms) using coins
chosen uniformly at random. By comparison, individual verifiability and in-
jectivity assume public keys are constructed by the adversary. Thus, security
properties are insufficient to ensure...individual verifiability and injectivity” [67].
Nonetheless, given that Athena checks correct key generation, it suffices that
ciphertexts are distinct for correctly generated keys.

Proposition 4 (Individual-Verifiability). Election scheme Athena(Π,M,Σ1,Σ2,
Σ3,Σ4,H) satisfies Individual-Verifiability if for all probabilistic polynomial-time
adversaries A and security parameters κ we have Pr[(pk ,m, ρ,m,m′) ← A(κ);
c ← Enc(pk ,m); c′ ← Enc(pk ,m′) : VerKey((κ, pk ,m), ρ, κ) = 1 ∧m,m′ ∈ m ⇒
c 6= c′] > 1 − negl(κ), where Π = (Gen,Enc,Dec) and FS(Σ,H) = (ProveKey,
VerKey). Moreover, Injectivity is satisfied if the probability is 1 when plaintexts
m and m′ are distinct.

The preconditions used by Proposition 4 are due to Smyth [67, §3], and our proof
is structurally similar to his proof of individual verifiability and injectivity for
a class of encryption-based voting systems.

5 Complexity analysis

Analysing the complexity of algorithms Setup, Register, and Vote is straightfor-
ward (given the simplicity of those algorithm): Setup generates a key pair and
proof of correct generation, Register computes a ciphertext, and Vote computes
two ciphertexts along with proofs of correct construction. Hence, complexity of
the registration phase is linear in the number of voters and complexity of the
voting phase is linear in the number of ballots cast. Algorithms Tally and Verify
are more elaborate and analysis is more involved. We proceed by a detailed
inspection of each algorithm and find that complexity remains linear.

Tally. We consider each step of algorithm Tally: It is trivial to see that com-
plexity is upper-bound by the bulletin board’s length in Step 1. For Step 2,
we have assumed computation

⊗n
1 c is linear in the length of c (§2), hence, it

is straightforward to see that complexity is upper-bound by the number of for-
loop iterations, which is constrained by the number of valid ballots on the bul-
letin board, therefore, complexity is again upper-bound by the bulletin board’s
length, because the number of valid ballots is at most the number of ballots on
the bulletin board. Complexity of Step 3 is similarly upper-bound by the num-
ber of for-loop iterations, which is constrained by the number of pairs output

13

by the mix and at most the number of ballots on the bulletin board, therefore,
complexity is upper-bound by the bulletin board’s length.

Verify. We consider the steps of algorithm Verify: Complexity of Step 1 is triv-
ially linear in the bulletin board’s length; Step 2 is straightforwardly linear in
the number of for-loop iterations, which is linear in the bulletin board’s length;
and Step 3 is straightforwardly linear in the number pairs output by the mix,
which is again linear in the bulletin board’s length.

Thus, Athena has linear complexity O(|bb|) in the length of the bulletin board
(bb), assuming linear complexity of iterative homomorphic combinations (§2),
which is possible for El Gamal, for instance.

Comparison with the voting system by Juels, Catalano & Jakobsson.
Complexity of the voting system by Juels, Catalano & Jakobsson is quadratic,
due to pairwise plaintext equality tests performed on ballots to ensure that
only the last choice of each voter has influence, which is needed for universal
verifiability. By comparison, Athena uses anonymised credentials in a manner
that achieves the same property, whilst reducing complexity. (The voting system
by Juels, Catalano & Jakobsson also performs pairwise plaintext equality tests
on mixed ballots and mixed credentials, to identify authorised ballots. The
complexity of those tests is upper-bound by O(|L| · |bb|), where L is the electoral
roll and |bb| is the bulletin board’s length. By comparison, the plaintext equality
tests performed by Athena are upper-bound by O(|bb|).)

6 General design principles

General design principles were identified and embraced during the development
of Athena. This section shares these principles to aid the development of fu-
ture voting systems, especially those with linear complexity. Our first design
principle is guided by definitions of correctness and universal verifiability:

1. Algorithm Tally must map votes expressed in authorised ballots to the
outcome corresponding to those votes, except for any early votes.

It follows that:

2. Algorithm Vote must authenticate ballots.

The next two design principles follow from our informal definitions of ballot
secrecy and coercion resistance, respectively:

3. Algorithm Vote must ensure votes cannot be revealed from ballots; and

4. Algorithm Tally must not reveal any (meaningful) mapping between ballots
and the outcome.

14

Forgoing coercion resistance (in favour of ballot secrecy), the previous design
principle can be generalised: Algorithm Tally must not reveal any (meaning-
ful) mapping between authorised ballots and the outcome. But this permits
revealing authorised ballots, which allows simulation attacks [41, §1.1], whereby
a coercer instructs a voter to reveal their private credential, uses that private
credential to cast a ballot, and determines whether the voter followed instruc-
tion by checking whether the cast ballot is authorised. By comparison, (4) gives
way to the following design principle:

5. Algorithm Tally must not reveal authorised ballots.

Similarly, authorised ballots must not be revealed during casting and collection:

6. Algorithm Vote must not reveal authorised ballots.

Since ballots must be authenticated (1) without revealing authorised ballots (5 &
6), the following principle emerges:

7. Algorithm Tally should anonymise ballots prior to authentication.

Given that ballots should be anonymised (7) and that bulletin boards may
contain more than just ballots, it is proposed that:

8. Algorithm Vote should prove correct ballot construction; and

9. Algorithm Tally should discard garbage, i.e., non-ballots.

Revealing re-votes after anonymisation can be problematic, for instance, a voter
that casts a specific number of ballots can deanonymise their anonymised ballots.
Thus, our final design principle is suggested:

10. Algorithm Tally should discard ballots representing early votes prior to
anonymisation.

For compatibility between (7 & 10) and (4), our notion of meaningful should
exclude garbage and early votes, i.e., algorithm Tally is permitted to reveal
mappings between the outcome and garbage, ballots representing early votes,
or both.

By combining our design principles, we observe that algorithm Tally should
filter the bulletin board to remove garbage (9) and ballots representing early
votes (10). Moreover, after anonymising any remaining ballots, the algorithm
should authenticate anonymised ballots and remove any unauthorised anony-
mous ballots (7). Finally, votes expressed in any authenticated anonymous
ballots should be mapped to the outcome corresponding to those votes (1).

15

7 Related work

Acquisti [1], Smith [64], and Weber, Araújo & Buchmann [73] reduce complex-
ity to linear in variants of the voting system by Juels, Catalano & Jakobsson,
but those reductions led to the lose of coercion-resistance [3–6, 21]. Araújo et
al. [3–5] make better progress, albeit, without supporting audits for statistically
determining whether non-voters are issued with credentials [6,60,70] and with-
out supporting reuse of credentials between elections [2, 6]. Haghighat, Dousti
& Jalili do not permit reuse either [35], whereas Araújo et al. do [2, 6], albeit,
Araújo et al. do not achieve strong non-reusability (i.e., only the last choice of
each voter has influence [54]) nor universal verifiability, in the presence of an
adversary that can re-order ballots (e.g., a network adversary), because they
are reliant on ballot order to discard early votes. (The voting system by Juels,
Catalano & Jakobsson does not satisfy strong non-reusability nor universal ver-
ifiability against such an adversary either, whereas Civitas does [69, §4.2.2].)
Schläpfer et al. and Spycher et al. also make progress, albeit, Schläpfer et al.
only achieve linear complexity for a trade in the degree of coercion-resistance
and they leak the number of ballots each voter casts [60] and Spycher et al.
make an additional trust assumption, namely, they assume the tallier intro-
duces a secret number of dummy votes for each voter (without any means
for voters to confirm they did) [70]. Beyond variants of the voting system by
Juels, Catalano & Jakobsson, distinct voting systems have also been introduced:
The system by Schweisgut [63] achieves linear-complexity, but fails to achieve
coercion-resistance [5]. Clark & Hengartner propose the Selections voting sys-
tem, which makes better progress, albeit, some degree of coercion-resistance is
traded to achieve linear complexity and the number of ballots each voter casts
is leaked [18, 19]. (Athena leaks the number of ballots cast in association with
each public credential, but not the number of ballots each voter casts.) Finally,
Essex, Clark & Hengartner propose the Cobra voting system, which achieves
remarkably fast tallying, albeit, registration has quadratic complexity in the
number of voters [29]. With the exception of Juels, Catalano & Jakobsson,
Haghighat, Dousti & Jalili, and Clark & Hengartner, none of these prior works
present security proofs and proving their security remains an open problem.
(Araújo et al. [2, 5] formally state theorems, but defer proofs to full versions of
their papers, which do not appear to be public.)

8 Conclusion

For one and a half decades, researchers have strived to improve upon seminal
work by Juels, Catalano & Jakobsson. This work attempts to deliver such an
improvement: A verifiable, coercion-resistant voting system with linear com-
plexity. We have seen how several of the ideas can help improve security of ex-
isting voting systems. Moreover, they generalise beyond voting to other systems
that require strong forms of privacy, authentication, and verifiability, thereby
advancing not just voting technology, but the science of security.

16

A Cryptographic primitives

A.1 Asymmetric encryption

Definition 2 (Asymmetric encryption scheme [42]). An asymmetric encryption
scheme is a tuple of probabilistic polynomial-time algorithms (Gen,Enc,Dec),
such that:

• Gen, denoted (pk , sk ,m) ← Gen(κ), inputs a security parameter κ and
outputs a key pair (pk , sk) and message space m.

• Enc, denoted c← Enc(pk ,m), inputs a public key pk and message m ∈ m,
and outputs a ciphertext c.

• Dec, denoted m ← Dec(sk , c), inputs a private key sk and ciphertext c,
and outputs a message m or an error symbol. We assume Dec is deter-
ministic.

Moreover, the scheme must be correct: there exists a negligible function negl,
such that for all security parameters κ and messages m, we have Pr[(pk , sk ,m)←
Gen(κ); c ← Enc(pk ,m) : m ∈ m ⇒ Dec(sk , c) = m] > 1 − negl(κ). A scheme
has perfect correctness if the probability is 1.

Definition 3 (Homomorphic encryption [69]). An asymmetric encryption scheme
Π = (Gen,Enc,Dec) is homomorphic, with respect to ternary operators �, ⊕,
and ⊗,2 if there exists a negligible function negl, such that for all security pa-
rameters κ, we have the following.3 First, for all messages m1 and m2 we have
Pr[(pk , sk ,m) ← Gen(κ); c1 ← Enc(pk ,m1); c2 ← Enc(pk ,m2) : m1,m2 ∈ m ⇒
Dec(sk , c1⊗pk c2) = Dec(sk , c1)�pk Dec(sk , c2)] > 1− negl(κ). Secondly, for all
messages m1 and m2, and all coins r1 and r2, we have Pr[(pk , sk ,m)← Gen(κ) :
m1,m2 ∈ m⇒ Enc(pk ,m1; r1)⊗pk Enc(pk ,m2; r2) = Enc(pk ,m1�pk m2; r1⊕pk

r2)] > 1− negl(κ). We say Π is multiplicative homomorphic, if for all security
parameters κ, key pairs pk , sk, and message spaces m, such that there exists
coins r and (pk , sk ,m) = Gen(κ; r), we have �pk is the multiplication operator
in group (m,�pk).

A.2 Proof systems

Definition 4. Let (Gen,Enc,Dec) be a homomorphic asymmetric encryption
scheme and Σ be a sigma protocol for a binary relation R.4

2For brevity, we write Π is a homomorphic asymmetric encryption scheme as opposed to
the more verbose Π is a homomorphic asymmetric encryption scheme, with respect to ternary
operators �, ⊕, and ⊗.

3We write X ◦pk Y for the application of ternary operator ◦ to inputs X, Y , and pk . We
occasionally abbreviate X ◦pk Y as X ◦ Y , when pk is clear from the context.

4Given a binary relation R, we write ((s1, . . . , sl), (w1, . . . , wk)) ∈ R ⇔ P (s1, . . . , sl, w1,
. . . , wk) for (s, w) ∈ R ⇔ P (s1, . . . , sl, w1, . . . , wk) ∧ s = (s1, . . . , sl) ∧ w = (w1, . . . , wk),
hence, R is only defined over pairs of vectors of lengths l and k.

17

• Σ proves key generation [69] if a ((κ, pk ,m), (sk , s)) ∈ R ⇔ (pk , sk ,m) =
Gen(κ; s).

Further, suppose that (pk , sk ,m) is the output of Gen(κ; s), for some security
parameter κ and coins s.

• Σ proves ciphertext construction if ((pk , c,m′), (m, r)) ∈ R ⇔ c =
Enc(pk ,m; r) ∧ m ∈ m′ ∧ m′ ⊆ m [69], or ((pk , g, c,m′), (m, r)) ∈ R ⇔
c = Enc(pk , gm; r) ∧m ∈ m′ ∧m′ ⊆ m, where g is a generator of message
space m.

• Σ proves decryption [69] if ((pk , c,m), sk) ∈ R⇔ m = Dec(sk , c).

• Σ proves iterative homomorphic combination if ((pk , c, c′), n) ∈ R ⇔∧
1≤i≤|c| c[i] =

⊗n
1 c′[i] ∧ |c| = |c′|.5

Definition 5 (Non-interactive proof system [69]). A non-interactive proof sys-
tem for a relation R is a tuple of algorithms (Prove,Verify), such that:

• Prove, denoted σ ← Prove(s, w, κ), is executed by a prover to prove
(s, w) ∈ R.

• Verify, denoted v ← Verify(s, σ, κ), is executed by anyone to check the
validity of a proof. We assume Verify is deterministic.

Moreover, the system must be complete: there exists a negligible function negl,
such that for all statement and witnesses (s, w) ∈ R and security parameters κ,
we have Pr[σ ← Prove(s, w, κ) : Verify(s, σ, κ) = 1] > 1− negl(κ). A system has
perfect completeness if the probability is 1.

Definition 6 (Fiat-Shamir transformation [30]). Given a sigma protocol Σ =
(Comm,Chal,Resp,VerifyΣ) for relation R and a hash function H, the Fiat-
Shamir transformation, denoted FS(Σ,H), is the non-interactive proof system
(Prove,Verify), defined as follows:

Prove(s, w, κ) =

(comm, t)← Comm(s, w, κ);
chal← H(comm, s);
resp← Resp(chal, t, κ);
return (comm, resp);

Verify(s, (comm, resp), κ) =

chal← H(comm, s);
return VerifyΣ(s, (comm, chal, resp), κ);

A string m can be included in the hashes computed by algorithms Prove and
Verify. That is, the hashes are computed in both algorithms as chal← H(comm,
s,m). We write Prove(s, w,m, κ) and Verify(s, (comm, resp),m, k) for invoca-
tions of Prove and Verify which include string m.

5We write ProveComb((pk , c, c′), n, κ) for ProveComb((pk , (c), (c′)), n, κ) when c and c′ are
ciphertexts (rather than vectors), where (ProveComb,VerComb) = FS(Σ,H) for a sigma pro-
tocol Σ that proves iterative homomorphic combination and a hash function H.

18

Definition 7 (Simulation sound extractability [12, 34, 69]). Suppose Σ is a
sigma protocol for relation R, H is a random oracle, and (Prove,Verify) is a non-
interactive proof system, such that FS(Σ,H) = (Prove,Verify). Further suppose
S is a simulator for (Prove,Verify) and H can be patched by S. Proof system
(Prove,Verify) satisfies simulation sound extractability if there exists a proba-
bilistic polynomial-time algorithm K, such that for all probabilistic polynomial-
time adversaries A and coins r, there exists a negligible function negl, such that
for all security parameters κ, we have:6

Pr[P← (); Q← AH,P(—; r); W← KA
′
(H,P,Q) :

|Q| 6= |W| ∨ ∃j ∈ {1, . . . , |Q|} . (Q[j][1],W[j]) 6∈ R ∧
∀(s, σ) ∈ Q, (t, τ) ∈ P . Verify(s, σ, κ) = 1 ∧ σ 6= τ] ≤ negl(κ)

where A(—; r) denotes running adversary A with an empty input and coins r,
where H is a transcript of the random oracle’s input and output, and where
oracles A′ and P are defined below:

• A′(). Computes Q′ ← A(—; r), forwarding any of A’s oracle queries to
K, and outputs Q′. By running A(—; r), K is rewinding the adversary.

• P(s). Computes σ ← S(s, κ); P ← (P[1], . . . ,P[|P|], (s, σ)) and outputs
σ.

Algorithm K is an extractor for (Prove,Verify).

Theorem 5 (from [12]). Let Σ be a sigma protocol for relation R, and let H be
a random oracle. Suppose Σ satisfies special soundness and special honest veri-
fier zero-knowledge. Non-interactive proof system FS(Σ,H) satisfies simulation
sound extractability.

The Fiat-Shamir transformation may include a string in the hashes computed
by functions Prove and Verify. Simulators can be generalised to include such
a string too. We write S(s,m, κ) for invocations of simulator S which include
string m. And remark that Theorem 5 can be extended to this generalisation.

B Election scheme syntax

We extend syntax by Smyth, Frink & Clarkson [69] to include re-voting, thereby
capturing voting systems that consist of the following four steps. First, a tallier
generates a key pair and a registrar generates credentials for voters. Secondly,
each voter constructs and casts a ballot for their vote, and similarly for any
re-votes. These ballots are collected and recorded on a bulletin board. Thirdly,
the tallier tallies the collected ballots and announces the outcome as a fre-
quency distribution of votes. The chosen representative is derived from this

6We extend set membership notation to vectors: we write x ∈ x if x is an element of the
set {x[i] : 1 ≤ i ≤ |x|}.

19

distribution, e.g., as the candidate with the most votes. Finally, voters and
other interested parties check that the outcome corresponds to votes expressed
in collected ballots.

Definition 8 (Election scheme). An election scheme is a tuple of probabilistic
polynomial-time algorithms (Setup,Register,Vote,Tally,Verify) such that:7

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ), is run by the tallier. The algo-
rithm takes a security parameter κ as input and outputs a key pair pk , sk,
a maximum number of ballots mb, and a maximum number of candidates
mc.

Register, denoted (pd , d) ← Register(pk , κ), is run by the registrar. The algo-
rithm takes as input a public key pk and a security parameter κ, and it
outputs a credential pair (pd , d), where pd is a public credential and d is
a private credential.

Vote, denoted b ← Vote(d , pk , v, cnt ,nc, κ), is run by voters. The algorithm
takes as input a private credential d, a public key pk, a voter’s vote v,
a counter cnt, some number of candidates nc, and a security parameter
κ. Vote v should be selected from a sequence 1, . . . ,nc of candidates, and
counter cnt should be incremented between a voter’s runs. (The counter
might be a timestamp which increments with time or an integer that is
manually incremented, for instance.) The algorithm outputs a ballot b or
error symbol ⊥.

Tally, denoted (v, pf) ← Tally(sk , bb,nc, L, κ), is run by the tallier. The algo-
rithm takes as input a private key sk, a bulletin board bb, some number of
candidates nc, an electoral roll L, and a security parameter κ, where bb is
a set. The algorithm outputs an election outcome v and a non-interactive
tallying proof pf , where v is a vector of length nc and each index v of that
vector should indicate the number of votes for candidate v. Moreover, the
tallying proof should demonstrate that the outcome corresponds to votes
expressed in ballots on the bulletin board.

Verify, denoted s ← Verify(pk , bb,nc, L, v, pf , κ), is run to audit an election.
The algorithm takes as input a public key pk, a bulletin board bb, some
number of candidates nc, an electoral roll L, an election outcome v, a
tallying proof pf , and a security parameter κ. The algorithm outputs a
bit s, which is 1 if the outcome should be accepted and 0 otherwise. We
require the algorithm to be deterministic.

7The syntax bounds the number of ballots mb, respectively candidates mc, to broaden the
correctness definition’s scope (indeed, voting systems that encrypt votes typically require mc
to be less than or equal to the size of the encryption scheme’s message space and schemes
that homomorphically combine votes require mb to be less than or equal to the size of that
space). The syntax represents votes as integers, rather than alphanumeric strings, for brevity.
Finally, the syntax employs sets, rather than multisets or lists, to preclude the construction
of schemes vulnerable to attacks that arise due to duplicate ballots [13, §2.1 & §4.3] (systems
vulnerable to such attacks cannot be modelled using the syntax).

20

Election schemes must satisfy correctness: there exists a negligible function negl,
such that for all security parameters κ, integers nv and nc, vectors of votes v1,
. . . ,vnv over {1, . . . ,nc}, and vectors of counters c1, . . . , cnv such that

∧
1≤i≤nv

|vi| = |ci| ∧ ci[1] < · · · < ci[|ci|], it holds that, given a zero-filled vector v of
length nc, we have:

Pr[(pk , sk ,mb,mc)← Setup(κ);

bb← ∅;
for 1 ≤ i ≤ nv do

(pd i, di)← Register(pk , κ);
if 0 < |vi| then

for 1 ≤ j ≤ |vi| do
bj ← Vote(di, pk ,vi[j], ci[j],nc, κ);

bb← bb ∪ {b1, . . . , b|vi|};
v[vi[|vi|]]← v[vi[|vi|]] + 1;

(v′, pf)← Tally(sk , bb,nc, {pd1, . . . , pdnb}, κ) :
|bb| ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ).

The syntax provides a language to model voting systems and the correctness
condition ensures such systems function. Athena is defined in terms of this
syntax, moreover, we will adopt definitions of verifiability and privacy expressed
in the syntax and prove they are satisfied.

C Proof of correctness (Lemma 1)

Let Π = (Gen,Enc,Dec), FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) =
(ProveCiph,VerCiph), and Athena(Π,M,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Register,
Vote,Tally,Verify).

Suppose κ is a security parameter, nv and nc are integers, v1, . . . ,vnv are
vectors over {1, . . . ,nc}, c1, . . . , cnv are vectors such that

∧
1≤i≤nv |vi| = |ci| ∧

ci[1] < · · · < ci[|ci|], and v is a zero-filled vector of length nc. Further suppose
we compute:

(pk, sk,mb,mc)← Setup(κ);
bb← ∅;
for 1 ≤ i ≤ nv do

(pd i,di)← Register(pk, κ);
if 0 < |vi| then

for 1 ≤ j ≤ |vi| do
bi,j ← Vote(di, pk ,vi[j], ci[j],nc, κ);

bb← bb ∪ {bi,1, . . . , bi,|vi|};
v[vi[|vi|]]← v[vi[|vi|]] + 1;

If |bb| 6≤ mb ∨ nc 6≤ mc, then correctness is trivially satisfied, otherwise (|bb| ≤
mb ∧ nc ≤ mc), we proceed as follows.

21

By definition of algorithm Setup, we have pk parses as vector (pk ,m, ρ)
and sk parses as (pk , sk), where (pk , sk ,m) = Gen(κ; r) for some coins r and
ρ is an output of ProveKey((κ, pk ,m), (sk , r), κ). Moreover, by completeness,
we have VerKey((κ, pk ,m), ρ, κ) holds. Let g be a generator of message space
m. By definition of algorithm Register, we have for each i ∈ {1, . . . ,nv} that
pd i = Enc(pk , gdi ; ri) and di = (pd i, di), for some coins ri chosen uniformly at
random and nonce di. Moreover, by definition of algorithm Vote, we have for
each i ∈ {1, . . . ,nv} and j ∈ {1, . . . , |vi|} that bi,j is a vector of length six,
bi,j [1] = pd i,

bi,j [2] = Enc(pk , g−di ; si,j),

bi,j [3] = Enc(pk ,vi[j]; ti,j),

bi,j [4] is an output of ProveCiph((pk , g, bi,j [2],m), (−di, si,j),m, κ), bi,j [5] is an
output of ProveCiph((pk , bi,j [3], {1, . . . ,nc}), (vi[j], ti,j),m, κ), and bi,j [6] = ci[j],
where si,j and ti,j are coins chosen uniformly at random and m = (pd i, bi,j [2],
bi,j [3], bi,j [6]). Let us consider the computation of (v′, pf) by Tally(sk , bb,nc,
{pd1, . . . , pdnb}, κ).

We have bb =
⋃

1≤i≤nv∧|vi|>0{bi,1, . . . , bi,|vi|}. Suppose a subset of that
set is computed as per Step 1 of algorithm Tally. By completeness and since
for each i ∈ {1, . . . ,nv} we have pd i = bi,1[1] = · · · = bi,|vi|[1], that sub-
set is {bπ(1),π1(1), . . . , bπ(1),π1(|v1|), . . . , bπ(nv),πnv (1), . . . , bπ(nv),πnv (|vnv |)} for some
permutation π on {1, . . . ,nv} and for each i ∈ {1, . . . ,nv} some permutation
πi on {1, . . . , |vi|} such that bπ(1),π1(1)[1] ≤ · · · ≤ bπ(1),π1(|v1|)[1] ≤ · · · ≤
bπ(`),π`(1)[1] ≤ · · · ≤ bπ(`),π`(|v`|)[1]. If nv = 0 ∨

∧
1≤i≤nv |vi| = 0, then v

and v′ are both zero-filled vectors of length nc, and we conclude immediately,
otherwise, we proceed as follows.

Suppose ciphertexts, plaintexts, and a map are computed as per Step 2 of al-
gorithm Tally, with respect to nonce n. Since Π is a multiplicative-homomorphic
asymmetric encryption scheme, we have for each i ∈ {1, . . . ,nv} and j ∈ {1,
. . . , |vi|} that

c′i,j =

n⊗
1

bi,j [2] = Enc(pk ,�n1 g−di ;⊕n1 si,j) ≡ Enc(pk , g−di·n;⊕n1 si,j),

hence, by (perfect) correctness, we have

Ni,j = Dec(sk , c′i,j) ≡ g−di·n,

where ciphertext c′i,j and plaintext Ni,j are computed by algorithm Tally. (We
require perfect correctness, because the adopted definition of homomorphic en-
cryption only considers combination of distinct ciphertexts constructed from
distinct coins, whereas we consider iterative combination of a single ciphertext.)
Hence, for each i ∈ {1, . . . ,nv} we have

Ni,1 = · · · = Ni,|vi|.

22

Since d1, . . . , dnv are nonces, g is a generator of message space m, and |m| is
super-polynomial in the security parameter, we have N1,|v1|, . . . , Nnv ,|vnv | are
pairwise distinct, moreover, since |vi| = |ci| ∧ ci[1] < · · · < ci[|ci|] and bi,j [6] =
ci[j] for j ∈ {1, . . . , |ci|}, we have for each i ∈ {1, . . . ,nv} that

A[(pd i, Ni,1)] = (bi,|vi|[6], bi,|vi|[1]⊗ bi,|vi|[2], bi,|vi|[3]),

where map A is computed by algorithm Tally. It follows that map A is de-
fined over ciphertexts b1,|v1|[1] ⊗ b1,|v1|[2], b1,|v1|[3], . . . , bnv ,|vnv |[1] ⊗ bnv ,|vnv |[2],
bnv ,|vnv |[3]. Suppose mixnet M is applied to those pairs of ciphertexts to de-
rive vector B = (b1, . . . ,bnv), as per Step 2 of algorithm Tally. Since Π is a
multiplicative-homomorphic asymmetric encryption scheme, we have for each
i ∈ {1, . . . ,nv} that

bi[1] = Enc(pk , gdι � g−dι ; rι ⊕ sι,|vι| ⊕ wi)
= Enc(pk , g0; rι ⊕ sι,|vι| ⊕ wi)

bi[2] = Enc(pk ,vι[|vι|]; tι,|vι| ⊕ xi),

where ι denotes χ(i) and χ is a permutation over {1, . . . ,nv} and coins wi and
xi were introduced during mixing.

Suppose for each i ∈ {1, . . . ,nv} that c′ =
⊗ni

1 bi[1] and m = Dec(sk , c′) are
computed as per Step 3 of algorithm Tally. It follows by (perfect) correctness and
homomorphic properties that m = 1. Moreover, Dec(sk ,bi[2]) = vχ(i)[|vχ(i)|]
for each i ∈ {1, . . . ,nv}. Since χ is a permutation over {1, . . . ,nv}, it follows
that v is equivalent to the outcome that would be computed by Step 3 of algo-
rithm Tally, which concludes our proof.

D Verifiability by Smyth, Frink & Clarkson

We cast the verifiability definitions by Smyth, Frink & Clarkson [69] into the
context of our syntax, extend their definition of Soundness to include re-voting,
strengthen definitions of Injectivity, Individual-Verifiability and Unforgeability,
and incorporate some minor refinements by Smyth [66, 67]. The definition of
Completeness remains unchanged (beyond syntax changes).

D.1 Universal verifiability

Universal verifiability requires algorithm Verify to accept if and only if the elec-
tion outcome is correct. The only if requirement is captured by soundness and
the if requirement is captured by completeness.

Soundness. Correct outcomes are formalised using function correct-outcome.
The function uses a predicate (∃=`x : P (x)) that holds exactly when there are `
distinct values of x for which P (x) is satisfied [62]. Using the predicate, function

23

correct-outcome is defined such that

correct-outcome(pk ,nc, bb,M, κ)[v] = ` iff

∃=`b ∈ authorised(pk ,nc, (bb \ {⊥}),M, κ) :

∃d , cnt , r : b = Vote(d , pk , v, cnt ,nc, κ; r),

where correct-outcome(pk ,nc, bb,M, κ) is a vector of length nc, 1 ≤ v ≤ nc,
and

authorised(pk ,nc, bb,M, κ) ={
bk
∣∣ ∃!b1, . . . , bk ∈ bb : ∃cnt1, . . . , cntk : cnt1 ≤ · · · ≤ cntk−1 < cntk

∧ ∃(pd , d) ∈M :
∧

1≤j≤k

∃v, r : bj = Vote(d , pk , v, cntj ,nc, κ; r)

∧ ¬∃b ∈ bb \ {b1, . . . , bk}, v, cnt , r : b = Vote(d , pk , v, cnt ,nc, κ; r)
}
.

Function authorised discards all ballots submitted under the same credential,
except for a ballot containing the last vote. Hence, component v of vector
correct-outcome(pk ,nc, bb,M, κ) equals ` iff there exist ` authorised ballots for
vote v on the bulletin board. Function correct-outcome requires that ballots be
interpreted for only one candidate, which can be ensured by injectivity, i.e., a
ballot for vote v can never be interpreted for a distinct vote v′.

Definition 9 (Injectivity). An election scheme (Setup,Register,Vote,Tally,Verify)
satisfies Injectivity, if for all probabilistic polynomial-time adversaries A, security
parameters κ and computations (pk ,nc, d1, v1, cnt1, d2, v2, cnt2) ← A(κ); b1 ←
Vote(d1, pk , v1, cnt1,nc, κ); b2 ← Vote(d2, pk , v2, cnt2,nc, κ) such that v1 6= v2 ∧
b1 6= ⊥ ∧ b2 6= ⊥, we have b1 6= b2.

Equipped with a notion of correct outcomes, we formalise soundness (Defi-
nition 10) as a game that tasks the adversary to compute inputs to algorithm
Verify – including an election outcome and some ballots – that cause the algo-
rithm to accept an incorrect outcome.

Definition 10 (Soundness). Let Γ = (Setup,Register,Vote,Tally,Verify) be an
election scheme, A be an adversary, κ be a security parameter, and Soundness(Γ,
A, κ) be the following game.

Soundness(Γ,A, κ) =

(pk ,nv)← A(κ);
for 1 ≤ i ≤ nv do (pd i, di)← Register(pk , κ);
L← {pd1, . . . , pdnv};
M ← {(pd1, d1), . . . , (pdnv , dnv)};
(bb,nc, v, pf)← A(M);
return Verify(pk , bb,nc, L, v, pf , κ) = 1

∧ v 6= correct-outcome(pk ,nc, bb,M, κ);

We say Γ satisfies Soundness, if Γ satisfies injectivity and for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such that
for all security parameters κ, we have Succ(Soundness(Γ,A, κ)) ≤ negl(κ).

24

Completeness. We formalise completeness (Definition 11) as a game that
tasks the adversary to compute a bulletin board and some number of candidates
such that the corresponding election outcome computed by algorithm Tally is
rejected by algorithm Verify, when the key pair is computed by algorithm Setup
and voter credentials are computed by algorithm Register.

Definition 11 (Completeness). Let Γ = (Setup,Register,Vote,Tally,Verify)
be an election scheme, A be an adversary, κ be a security parameter, and
Completeness(Γ,A, κ) be the following game.

Completeness(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nv ← A(pk , κ);
for 1 ≤ i ≤ nv do (pd i, di)← Register(pk , κ);
L← {pd1, . . . , pdnv};
M ← {(pd1, d1), . . . , (pdnv , dnv)};
(bb,nc)← A(M);
(v, pf)← Tally(sk , bb,nc, L, κ);
return Verify(pk , bb,nc, L, v, pf , κ) 6= 1 ∧ |bb| ≤ mb ∧ nc ≤ mc;

We say Γ satisfies Completeness, if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl, such that for all security param-
eters κ, we have Succ(Completeness(Γ,A, κ)) ≤ negl(κ).

D.2 Unforgeability

We formalise unforgeability (Definition 12) as a game that tasks the adversary
to compute a ballot containing a private credential.

Definition 12 (Unforgeability). Let Γ = (Setup,Register,Vote,Tally,Verify)
be an election scheme, A be an adversary, κ be a security parameter, and
Unforgeability(Γ,A, κ) be the following game.

Unforgeability(Γ,A, κ) =

(pk ,nv)← A(κ);
for 1 ≤ i ≤ nv do (pd i, di)← Register(pk , κ);
L← {pd1, . . . , pdnv};
Crpt ← ∅; Rvld ← ∅;
b← AC,R(L);
return ∃i ∈ {1, . . . ,nv}, v, cnt ,nc, r : b = Vote(di, pk , v, cnt ,nc, κ; r)

∧ b 6= ⊥ ∧ b 6∈ Rvld ∧ di 6∈ Crpt ;

Oracles C and R are defined such that:

• C(i) computes Crpt ← Crpt ∪{di} and outputs di, where 1 ≤ i ≤ nv, and

• R(i, v, cnt ,nc) computes b← Vote(di, pk , v, cnt ,nc, κ); Rvld ← Rvld ∪ {b}
and outputs b.

25

We say Γ satisfies Unforgeability, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Unforgeability(Γ,A, κ)) ≤ negl(κ).

D.3 Individual verifiability

We formalise individual verifiability (Definition 13) as a game that tasks the
adversary to compute inputs to algorithm Vote that cause the algorithm to
output ballots that collide.8

Definition 13 (Individual verifiability). Let Γ = (Setup,Register,Vote,Tally,
Verify) be an election scheme, A be an adversary, κ be a security parameter,
and Individual-Verifiability(Γ,A, κ) be the following game.

Individual-Verifiability(Γ,A, κ) =

(pk ,nc, d1, v1, cnt1, d2, v2, cnt2)← A(κ);
b1 ← Vote(d1, pk , v1, cnt1,nc, κ);
b2 ← Vote(d2, pk , v2, cnt2,nc, κ);
return b1 = b2 ∧ b1 6= ⊥ ∧ b2 6= ⊥;

We say Γ satisfies Individual-Verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Individual-Verifiability(Γ,A, κ)) ≤ negl(κ).

E Proof of Propositions 2–4 (verifiability)

E.1 Proof of Proposition 2 (Soundness)

Let Π = (Gen,Enc,Dec), FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) =
(ProveCiph,VerCiph), FS(Σ3,H) = (ProveDec,VerDec), FS(Σ4,H) =
(ProveComb,VerComb), and Athena(Π,M,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Register,
Vote,Tally,Verify).

Suppose A is a probabilistic polynomial-time adversary, κ is a security pa-
rameter, (~pk ,nv) is an output ofA(κ), and (pd1,d1), . . . , (pdnv ,dnv) are outputs
of Register(pk , κ). Let L = {pd1, . . . , pdnv} andM = {(pd1,d1), . . . , (pdnv ,dnv)}.
Suppose (bb,nc, v, pf) is an output of A(M) such that Verify(~pk , bb,nc, L, v, pf ,

κ) = 1. By definition of algorithm Verify, public key ~pk parses as a vector
(pk ,m, ρ) and outcome v parses as a vector of length nc such that VerKey((κ,
pk ,m), ρ, κ) ∧ nc ≤ mc, where mc is computed as per algorithm Setup. More-
over, by simulation sound extractability, public key pk is an output of algo-
rithm Gen. Furthermore, by definition of algorithm Register, we have for each
i ∈ {1, . . . ,nv} that public credential pd i = Enc(pk , gdi ; ri) and private creden-
tial di = (pd i, di), for some nonce di and coins ri chosen uniformly at random.

Let set {b1, . . . , b`} be computed as per Step 1 of algorithm Verify. It follows
that there exists an function λ : {1, . . . , `} → {1, . . . ,nv} such that bi[1] = pdλ(i)

8Correctness, individual verifiability and injectivity all require that ballots do not collide,
albeit under different assumptions.

26

for each i ∈ {1, . . . , `}. Moreover, for all credentials (pd ,d) ∈ M , counters cnt ,

votes v ∈ {1, . . . ,nc}, and outputs b of algorithm Vote(~d , ~pk , v, cnt ,nc, κ), we
have b 6∈ {b1, . . . , b`}, since such an occurrence would imply a contradiction:
{b1, . . . , b`} is not the largest subset of bb satisfying the conditions in Step 1
of algorithm Tally, because b parses as a senary vector (pd , c1, c2, σ1, σ2, cnt)
such that pd ∈ L∧VerCiph((pk , g, c1,m), σ1,m, κ)∧VerCiph((pk , c2, {1, . . . ,nc}),
σ2,m, κ), where m = (pd , c1, c2, cnt), yet b 6∈ {b1, . . . , b`}. Thus,

correct-outcome(pk ,nc, bb,M, κ)

= correct-outcome(pk ,nc, {b1, . . . , b`},M, κ) (1)

A proof of (1) follows from the definition of correct-outcome. If {b1, . . . , b`} = ∅,
then outcome v and correct-outcome(pk ,nc, {b1, . . . , b`},M, κ) are zero-filled
vectors of length nc, hence, Soundness is satisfied. Otherwise, we proceed as
follows.

By simulation sound extractability, we have for each i ∈ {1, . . . , `} that there
exists messages d ′i ∈ m and vi ∈ {1, . . . ,nc} and coins si and ti such that

bi[2] = Enc(pk , gd
′
i ; si),

bi[3] = Enc(pk , vi; ti),

bi[4] is an output of ProveCiph((pk , g, bi[2],m), (d ′i , si),m, κ), and bi[5] is an out-
put of ProveCiph((pk , bi[3], {1, . . . ,nc}), (vi, ti),m, κ), where m = (b1[1], bi[2],
bi[3], bi[6]). It follows by inspection of algorithm Vote that ∀i ∈ {1, . . . , `},∃r :

bi = Vote(−d ′i ,
~pk , vi, bi[6],nc, κ), hence, {b1, . . . , b`} is a set of ballots.

By Step 2 of algorithm Verify, we have that pf parses as a vector (pfr,B,pfd)
and pfr parses as a vector ((c′1, N1, ς1), (c′2, N2, ς2, ω2), . . . , (c′`, N`, ς`, ω`)) such
that

∧
1≤i≤` VerDec((pk , c′i, Ni), ςi, κ) and

∧
1<i≤` VerComb((pk , (c′i−1, c

′
i), (bi−1[2],

bi[2])), ωi, κ). By simulation sound extractability, there exists a nonce n such
that for all i ∈ {1, . . . , `} we have

c′i =

n⊗
1

bi[2] = Enc(pk ,�n1 gd
′
i ;⊕n1 si) ≡ Enc(pk , gd

′
i·n;⊕n1 si)

and Dec(sk , c′i) = Ni, moreover, by (perfect) correctness, we have

Ni ≡ gd
′
i·n.

Let map A be computed as per Step 2 of algorithm Verify. It follows for each
i ∈ {1, . . . , `} that

A[(bi[1], Ni)] = (bi[6], bi[1]⊗ bi[2], bi[3])⇔
¬∃j{1, . . . , `} \ {i} : bi[1] = bj [1] ∧Ni = Nj ∧ bi[6] ≤ bj [6]

i.e., public credential bi[1] and anonymised credential Ni are mapped to a triple
derived from ballot bi iff there is no other ballot bj with the same public cre-
dential and the same anonymised credential that has a greater-than or equal-to

27

counter value. Hence, for each anonymised credential, map A contains the en-
crypted vote associated with the highest counter, that is, the last vote related
to the credential. Since (pairwise) mixnet M is verifiable and since Step 2 of
algorithm Verify checks that B was output by the mixnet, there exists an injec-
tive function χ : {1, . . . , |B|} → {1, . . . , `} such that for each i ∈ {1, . . . , |B|} we
have B[i] is a pair (c1, c2),

c1 = Enc(pk , gdχ(λ(i)) � gd
′
χ(i) ; rχ(λ(i)) ⊕ sχ(i) ⊕ wi), and

c2 = Enc(pk , vχ(i); tχ(i) ⊕ xi),

where coins wi and xi were introduced during mixing. It follows that

authorised(pk ,nc, {b1, . . . , b`},M, κ)

= authorised(pk ,nc, {bχ(i) | 1 ≤ i ≤ |B|},M, κ) (2)

because any ballot that shares a public credential (and a anonymised credential)
with another ballot, whilst being associated with a (strictly) lower counter value
can be discarded, as can any pair of ballots that share a public credential (and
a anonymised credential) and a counter.

By Step 3 of algorithm Verify, we have for each i ∈ {1, . . . , |B|} that B[i]
parses as a vector (c1, c2) and pfd[i] parses a vector (c′,m, ω, ς1) or (c′, v, ω, ς1, ς2),
such that VerComb((pk , c′, c1), ω, κ), hence, by simulation sound extractability,
there exists a nonce n such that c′ =

⊗n
1 c1, moreover, we have VerDec((pk , c′, 1),

ς1, κ) when |pfd[i]| = 5 and VerDec((pk , c′,m), ς1, κ)∧m 6= 1 when |pfd[i]| = 4,
hence, by simulation sound extractability, (perfect) correctness, and multiplicatively-
homomorphic properties, we have

|pfd[i]| = 5⇔ Dec(sk , c′) = 1⇔ 1 ≡ gdχ(λ(i)) � gd
′
χ(i) ⇔ d ′χ(i) ≡ −dχ(λ(i)).

It follows that bχ(i) is constructed from (pdχ(λ(i)),dχ(λ(i))) ∈M iff |pfd[i]| = 5,
where i ∈ {1, . . . , |B|}, hence,

authorised(pk ,nc, {bχ(i) | 1 ≤ i ≤ |B|},M, κ)

= authorised(pk ,nc, {bχ(i) | 1 ≤ i ≤ |B| ∧ |pfd[i]| = 5},M, κ)

= {bχ(i) | 1 ≤ i ≤ |B| ∧ |pfd[i]| = 5} (3)

because any ballot not constructed from (pd ,d) ∈ M can be discarded and no
further ballots can. Moreover, it follows from the remainder of Step 3 that
for each v ∈ {1, . . . ,nc} we have ∃=v[v]i ∈ {1, . . . , |B|} : ∃c1, c2, c′, ω, ς1, ς2 :
(c1, c2) = B[i] ∧ (c′, v, ω, ς1, ς2) = pfd[i] ∧ VerDec((pk , c2, v), ς2, κ), hence, by
simulation sound extractability, we have

∃=v[v]i ∈ {1, . . . , |B| ∧ |pfd[i]| = 5} : ∃c1, c2 : (c1, c2) = B[i] ∧ Dec(sk , c2) = v,

furthermore, by (perfect) correctness, we have

∃=v[v]i ∈ {1, . . . , |B| ∧ |pfd[i]| = 5} : v = vχ(i).

28

If follows for each v ∈ {1, . . . ,nc} that

∃=v[v]b ∈ {bχ(i) | 1 ≤ i ≤ |B| ∧ |pfd[i]| = 5} :

∃d , cnt , r : b = Vote(d , pk , v, cnt ,nc, κ; r).

Finally, by (1)–(3) and since error symbol ⊥ is not a vector, we have v =
correct-outcome(pk ,nc, bb,M, κ), concluding our proof.

E.2 Proof of Proposition 3 (Completeness)

Let Π = (Gen,Enc,Dec), FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) =
(ProveCiph,VerCiph), FS(Σ3,H) = (ProveDec,VerDec), FS(Σ4,H) =
(ProveComb,VerComb), and Athena(Π,M,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Register,
Vote,Tally,Verify).

Suppose κ is a security parameter and A is a probabilistic polynomial-time
adversary. Further suppose (~pk , ~sk ,mb,mc) is an output of Setup(κ), nv is an
output of A(pk , κ), and (pd1,d1), . . . , (pdnv ,dnv) are outputs of Register(pk , κ).
Let L = {pd1, . . . , pdnv} andM = {(pd1,d1), . . . , (pdnv ,dnv)}. Suppose (bb,nc)
is an output of A(M) and (v, pf) is an output of Tally(sk , bb,nc, L, κ). If
|bb| 6≤ mb ∨ nc 6≤ mc, then we conclude immediately, otherwise (|bb| ≤ mb ∧
nc ≤ mc), we proceed as follows. By definition of algorithm Setup, we have
~pk parses as (pk ,m, ρ) and ~sk parses as (pk , sk), where (pk , sk ,m) = Gen(κ; r)
and ρ is an output of ProveKey((κ, pk ,m), (sk , r), κ), for some coins r chosen
uniformly at random. Moreover, by definition of algorithm Tally, we have v is a
vector of length nc. It follows that algorithm Verify can parse inputs correctly.
Moreover, by completeness, we have VerKey((κ, pk ,m), ρ, κ) = 1.

Suppose subset {b1, . . . , b`} is computed as per Step 1 of algorithm Tally. If
that set is empty, then v is a zero-filled vector, because v is initialised as a zero-
filled vector by algorithm Tally. Thus, the check holds in Step 1 of algorithm
Verify.

By Step 1 of algorithm Tally, we have for each i ∈ {1, . . . , `} that bi parses
as (pd , c1, c2, σ1, σ2, cnt) such that pd ∈ L ∧ VerCiph((pk , g, c1,m), σ1,m, κ) ∧
VerCiph((pk , c2, {1, . . . ,nc}), σ2,m, κ), where m = (pd , c1, c2, cnt). Hence, there
exists an integer j ∈ {1, . . . ,nv} such that pd = pd j . It follows by defi-

nition of algorithm Register that bi[1] = Enc(pk , gdj ; rj), for some coins rj
chosen uniformly at random and nonce dj such that private credential dj =
(pd j , dj). Moreover, since Σ2 satisfies special soundness and special honest ver-
ifier zero-knowledge, we have by simulation sound extractability that bi[2] =

Enc(pk , gdj ; sj) and bi[3] = Enc(pk , vj ; tj), for some coins sj and tj , plaintext
dj ∈ m, and vote vj ∈ {1, . . . ,nc}. It follows that the map (A) computed in
Step 2 of algorithm Tally is populated with pairs of ciphertexts. Thus, vector
B – derived by application of (pairwise) mixnet M to map A in Step 2 of al-
gorithm Tally – passes the check in Step 2 of algorithm Verify, because M is
verifiable. The preceding checks also pass. Indeed, by definition of algorithm
Tally, it is trivial to see that pf parses as a vector (pfr,B,pfd). Moreover, the
vector (pfr) computed in Step 2 of algorithm Tally parses as ((c′1, N1, ς1), (c′2,

29

N2, ς2, ω2), . . . , (c′`, N`, ς`, ω`)) and, by completeness, the proofs in that vector
pass the checks in Step 2 of algorithm Verify. Thus, checks hold in Step 2 of
algorithm Verify.

By Step 3 of algorithm Tally, we have pfd parses as a vector of length |B|,
hence, Step 3 of algorithm Verify successfully parses that vector. Since v is ini-
tialised as a zero-filled vector of length nc and v[v] is incremented by one for each
i ∈ {1, . . . , |B|} such that Dec(sk , c′) = 1, where c′ =

⊗ni
1 c1, v = Dec(sk , c2),

B[i] = (c1, c2), and ni is a nonce, and since pfd[i] = (c′, v, ω, ς1, ς2), where ω is
an output of ProveComb((pk , c′, c1), ni, κ), ς1 is an output of ProveDec((pk , c′,
1), sk , κ), and ς2 is an output of ProveDec((pk , c2, v), sk , κ), we have for each
v ∈ {1, . . . ,nc} that ∃=v[v]i ∈ {1, . . . , |B|} : ∃c1, c2, c′, ω, ς1, ς2 : (c1, c2) =
B[i] ∧ (c′, v, ω, ς1, ς2) = pfd[i] ∧ VerComb((pk , c′, c1), ω, κ) ∧ VerDec((pk , c′, 1),
ς1, κ) ∧ VerDec((pk , c2, v), ς2, κ) by completeness, moreover, for each remaining
integer i ∈ {1, . . . , |B|} we have pfd[i] parses as (c′,m, ω, ς1), and VerComb((pk ,
c′, c1), ω, κ) ∧ VerDec((pk , c′,m), ς1, κ) ∧m 6= 1. Thus, checks hold in Step 3 of
algorithm Verify.

Since all the above checks succeed, algorithm Verify outputs 1, concluding
our proof.

E.3 Proof of Proposition 4 (Individual-Verifiability & Injectivity)

Let Athena(Π,M,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Register,Vote,Tally,Verify). Sup-
pose A is a probabilistic polynomial-time adversary and κ is a security. Further
suppose (~pk ,nc, ~d1, v1, cnt1, ~d2, v2, cnt2) is an output of A(κ), b1 is an output of

Vote(~d1, ~pk , v1, cnt1,nc, κ), and b2 is an output of Vote(~d2, ~pk , v2, cnt2,nc, κ),
such that b1 6= ⊥ and b2 6= ⊥. By definition of algorithm Vote, public key
~pk is a vector (pk ,m, ρ) such that VerKey((κ, pk ,m), ρ, κ) = 1 and v1, v2 ∈
{1, . . . ,nc} ⊆ m. Moreover, b1 and b2 are vectors such that b1[2] is an output
of Enc(pk , v1) and b2[2] is an output of Enc(pk , v2). Thus, b1 6= b2 by our
precondition, with overwhelming probability, therefore, Individual-Verifiability is
satisfied. For Injectivity, we further suppose v1 6= v2, hence, b1 6= b2 by our
precondition, which concludes our proof.

References

[1] Acquisti, A.: Receipt-Free Homomorphic Elections and Write-in Ballots.
Cryptology ePrint Archive, Report 2004/105 (2004), https://eprint.

iacr.org/2004/105

[2] Araújo, R., Barki, A., Brunet, S., Traoré, J.: Remote electronic voting can
be efficient, verifiable and coercion-resistant. In: FC’16: 20th International
Conference on Financial Cryptography and Data Security. LNCS, vol. 9604,
pp. 224–232. Springer (2016)

30

[3] Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant
scheme for remote elections. Tech. Rep. 07311, Schloss Dagstuhl, Germany
(2008)

[4] Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant
scheme for remote elections. In: Towards Trustworthy Elections: New
Directions in Electronic Voting, LNCS, vol. 6000, pp. 330–342. Springer
(2010)

[5] Araújo, R., Rajeb, N.B., Robbana, R., Traoré, J., Youssfi, S.: To-
wards Practical and Secure Coercion-Resistant Electronic Elections. In:
CANS’10: International Conference on Cryptology and Network Security.
pp. 278–297. No. 6467 in LNCS, Springer (2010)

[6] Araújo, R., Traoré, J.: A Practical Coercion Resistant Voting Scheme Re-
visited. In: VoteID’13: International Conference on E-Voting and Identity.
LNCS, vol. 7985, pp. 193–209. Springer (2013)

[7] Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among
Notions of Security for Public-Key Encryption Schemes. In: CRYPTO’98:
18th International Cryptology Conference. LNCS, vol. 1462, pp. 26–45.
Springer (1998)

[8] Benaloh, J.: Verifiable Secret-Ballot Elections. Ph.D. thesis, Department
of Computer Science, Yale University (1996)

[9] Benaloh, J., Yung, M.: Distributing the Power of a Government to En-
hance the Privacy of Voters. In: PODC’86: 5th Principles of Distributed
Computing Symposium. pp. 52–62. ACM Press (1986)

[10] Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections. In:
STOC’94: 26th Theory of computing Symposium. pp. 544–553. ACM Press
(1994)

[11] Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK:
A comprehensive analysis of game-based ballot privacy definitions. In:
S&P’15: 36th Security and Privacy Symposium. pp. 499–516. IEEE Com-
puter Society (2015)

[12] Bernhard, D., Pereira, O., Warinschi, B.: How Not to Prove Yourself:
Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In: ASI-
ACRYPT’12: 18th International Conference on the Theory and Applica-
tion of Cryptology and Information Security. LNCS, vol. 7658, pp. 626–643.
Springer (2012)

[13] Bernhard, D., Smyth, B.: Ballot secrecy with malicious bulletin boards.
Cryptology ePrint Archive, Report 2014/822 (version 20150413:170300)
(2015)

31

[14] Chaidos, P., Cortier, V., Fuschbauer, G., Galindo, D.: BeleniosRF: A Non-
interactive Receipt-Free Electronic Voting Scheme. In: CCS’16: 23rd ACM
Conference on Computer and Communications Security. pp. 1614–1625.
ACM Press (2016)

[15] Chaum, D., Evertse, J., van de Graaf, J., Peralta, R.: Demonstrating
Possession of a Discrete Logarithm Without Revealing It. In: CRYPTO’86:
6th International Cryptology Conference. LNCS, vol. 263, pp. 200–212.
Springer (1987)

[16] Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In:
CRYPTO’92: 12th International Cryptology Conference. LNCS, vol. 740,
pp. 89–105. Springer (1993)

[17] Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24, 84–90 (1981)

[18] Clark, J.: Democracy Enhancing Technologies: Toward deployable and
incoercible E2E elections. Ph.D. thesis, University of Waterloo (2011)

[19] Clark, J., Hengartner, U.: Selections: Internet voting with over-the-
shoulder coercion-resistance. In: FC’11: 15th International Conference on
Financial Cryptography. LNCS, vol. 7035, pp. 47–61. Springer (2011)

[20] Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Vot-
ing System. Tech. Rep. 2007-2081, Cornell University (May 2007), revised
March 2008

[21] Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting
System. In: S&P’08: 29th Security and Privacy Symposium. pp. 354–368.
IEEE Computer Society (2008)

[22] Cohen, J.D., Fischer, M.J.: A Robust and Verifiable Cryptographically
Secure Election Scheme. In: FOCS’85: 26th Symposium on Foundations of
Computer Science. pp. 372–382. IEEE Computer Society (1985)

[23] Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election Verifiability
for Helios under Weaker Trust Assumptions. In: ESORICS’14: 19th Euro-
pean Symposium on Research in Computer Security. LNCS, vol. 8713, pp.
327–344. Springer (2014)

[24] Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK:
Verifiability Notions for E-Voting Protocols. In: S&P’16: 37th IEEE Sym-
posium on Security and Privacy. pp. 779–798. IEEE Computer Society
(2016)

[25] Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot
secrecy. Journal of Computer Security 21(1), 89–148 (2013)

32

[26] Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-Autority
Secret-Ballot Elections with Linear Work. In: EUROCRYPT’96: 15th In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. LNCS, vol. 1070, pp. 72–83. Springer (1996)

[27] Delaune, S., Kremer, S., Ryan, M.: Coercion-Resistance and Receipt-
Freeness in Electronic Voting. In: CSFW’06: 19th Computer Security
Foundations Workshop. pp. 28–42. IEEE Computer Society (2006)

[28] ElGamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory 31(4),
469–472 (1985)

[29] Essex, A., Clark, J., Hengartner, U.: Cobra: Toward Concurrent Ballot
Authorization for Internet Voting. In: EVT/WOTE’12: Electronic Vot-
ing Technology Workshop/Workshop on Trustworthy Elections. USENIX
Association (2012)

[30] Fiat, A., Shamir, A.: How To Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In: CRYPTO’86: 6th International Cryp-
tology Conference. LNCS, vol. 263, pp. 186–194. Springer (1987)

[31] Fraser, A., Quaglia, E.A., Smyth, B.: A critique of game-based definitions
of receipt-freeness for voting. In: ProveSec’19: 13th International Confer-
ence on Provable and Practical Security. LNCS, Springer (2019)

[32] Gardner, R.W., Garera, S., Rubin, A.D.: Coercion Resistant End-to-end
Voting. In: FC’09: 13th International Conference on Financial Cryptogra-
phy and Data Security. LNCS, vol. 5628, pp. 344–361. Springer (2009)

[33] Groth, J.: Efficient maximal privacy in boardroom voting and anonymous
broadcast. In: FC’04: 8th International Conference on Financial Cryptog-
raphy. LNCS, vol. 3110, pp. 90–104. Springer (2004)

[34] Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and
Constant Size Group Signatures. In: ASIACRYPT’02: 12th International
Conference on the Theory and Application of Cryptology and Information
Security. LNCS, vol. 4284, pp. 444–459. Springer (2006)

[35] Haghighat, A.T., Dousti, M.S., Jalili, R.: An Efficient and Provably-Secure
Coercion-Resistant E-Voting Protocol. In: PST’13: 11th International
Conference on Privacy, Security and Trust. pp. 161–168. IEEE Computer
Society (2013)

[36] Hao, F., Ryan, P.Y.A., Zieliński, P.: Anonymous voting by two-round
public discussion. Journal of Information Security 4(2), 62 – 67 (2010)

[37] Heather, J., Schneider, S.: A formal framework for modelling coercion
resistanc and receipt freeness. In: FM’12: 18th International Symposium
on Formal Methods. pp. 217–231. No. 7436 in LNCS, Springer (2012)

33

[38] Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evaluation
via Ciphertexts. In: ASIACRYPT’00: 6th International Conference on the
Theory and Application of Cryptology and Information Security. LNCS,
vol. 1976, pp. 162–177. Springer (2000)

[39] Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elec-
tions. Cryptology ePrint Archive, Report 2002/165 (2002)

[40] Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elec-
tions. In: WPES’05: 4th Workshop on Privacy in the Electronic Society.
pp. 61–70. ACM Press (2005)

[41] Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elec-
tions. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y. (eds.) To-
wards Trustworthy Elections: New Directions in Electronic Voting, LNCS,
vol. 6000, pp. 37–63. Springer (2010)

[42] Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC (2007)

[43] Khader, D., Smyth, B., Ryan, P.Y.A., Hao, F.: A Fair and Robust Voting
System by Broadcast. In: EVOTE’12: 5th International Conference on
Electronic Voting. Lecture Notes in Informatics, vol. 205, pp. 285–299.
Gesellschaft für Informatik (2012)

[44] Khazaei, S., Rezaei-Aliabadi, M.: A rigorous security analysis of a decen-
tralized electronic voting protocol in the universal composability frame-
work. Journal of Information Security and Applications 43, 99–109 (2018)

[45] Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In:
PKC’01: 3rd International Workshop on Practice and Theory in Public
Key Cryptography. LNCS, vol. 2274, pp. 141–158. Springer (2002)

[46] Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in
the standard model. In: EUROCRYPT’15: 34th International Conference
on the Theory and Applications of Cryptographic Techniques. LNCS, vol.
9057, pp. 468–498. Springer (2015)

[47] Kremer, S., Ryan, M.D., Smyth, B.: Election verifiability in electronic
voting protocols. In: ESORICS’10: 15th European Symposium on Research
in Computer Security. LNCS, vol. 6345, pp. 389–404. Springer (2010)

[48] Küsters, R., Truderung, T., Vogt, A.: A Game-Based Definition of
Coercion-Resistance and its Applications. In: CSF’10: 23rd IEEE Com-
puter Security Foundations Symposium. pp. 122–136. IEEE Computer So-
ciety (2010)

[49] Küsters, R., Truderung, T., Vogt, A.: Accountability: Definition and rela-
tionship to verifiability. In: CCS’10: 17th ACM Conference on Computer
and Communications Security. pp. 526–535. ACM Press (2010)

34

[50] Küsters, R., Truderung, T., Vogt, A.: Verifiability, Privacy, and Coercion-
Resistance: New Insights from a Case Study. In: S&P’11: 32nd IEEE
Symposium on Security and Privacy. pp. 538–553. IEEE Computer Society
(2011)

[51] Küsters, R., Truderung, T., Vogt, A.: A Game-Based Definition of
Coercion-Resistance and its Applications. Journal of Computer Security
20(6), 709–764 (2012)

[52] Küsters, R., Truderung, T., Vogt, A.: Clash Attacks on the Verifiability
of E-Voting Systems. In: S&P’12: 33rd IEEE Symposium on Security and
Privacy. pp. 395–409. IEEE Computer Society (2012)

[53] Küsters, R., Truderung, T., Vogt, A.: Accountability: Definition and rela-
tionship to verifiability. Cryptology ePrint Archive, Report 2010/236 (ver-
sion 20150202:163211) (2015)

[54] Meyer, M., Smyth, B.: Exploiting re-voting in the helios election system.
Information Processing Letters (143), 14–19 (2019)

[55] Michels, M., Horster, P.: Some Remarks on a Receipt-Free and Universally
Verifiable Mix-Type Voting Scheme. In: ASIACRYPT’96: International
Conference on the Theory and Application of Cryptology and Information
Security. LNCS, vol. 1163, pp. 125–132. Springer (1996)

[56] Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting with Ev-
erlasting Privacy. In: CRYPTO’06: 26th International Cryptology Confer-
ence. LNCS, vol. 4117, pp. 373–392. Springer (2006)

[57] Organization for Security and Co-operation in Europe: Document of the
Copenhagen Meeting of the Conference on the Human Dimension of the
CSCE (1990)

[58] Organization of American States: American Convention on Human Rights,
“Pact of San Jose, Costa Rica” (1969)

[59] Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme: A practical
solution to the implementation of a voting booth. In: EUROCRYPT’95:
12th International Conference on the Theory and Applications of Crypto-
graphic Techniques. LNCS, vol. 921, pp. 393–403. Springer (1995)

[60] Schläpfer, M., Haenni, R., Koenig, R., Spycher, O.: Efficient Vote Au-
thorization in Coercion-Resistant Internet Voting. In: VoteID’11: Interna-
tional Conference on E-Voting and Identity. LNCS, vol. 7187, pp. 71–88.
Springer (2011)

[61] Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In: CRYPTO’99: 19th International
Cryptology Conference. LNCS, vol. 1666, pp. 148–164. Springer (1999)

35

[62] Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers.
ACM Transactions on Computational Logic 6(3), 634–671 (Jul 2005)

[63] Schweisgut, J.: Coercion-Resistant Electronic Elections with Observer.
In: Electronic Voting. Lecture Notes in Informatics, vol. 86, pp. 171–177.
Gesellschaft für Informatik (2006)

[64] Smith, W.D.: New cryptographic election protocol with best-known theo-
retical properties. In: Workshop on Frontiers in Electronic Elections. pp.
1–14 (2005)

[65] Smyth, B.: Ballot secrecy: Security definition, sufficient conditions, and
analysis of Helios. Cryptology ePrint Archive, Report 2015/942 (2018)

[66] Smyth, B.: A foundation for secret, verifiable elections. Cryptology ePrint
Archive, Report 2018/225 (version 20180301:164045) (2018)

[67] Smyth, B.: Verifiability of Helios Mixnet. In: Voting’18: 3rd Workshop on
Advances in Secure Electronic Voting. LNCS, Springer (2018)

[68] Smyth, B.: Surveying definitions of coercion resistance. Cryptology ePrint
Archive, Report 2019/822 (2019)

[69] Smyth, B., Frink, S., Clarkson, M.R.: Election Verifiability: Cryptographic
Definitions and an Analysis of Helios and JCJ. Cryptology ePrint Archive,
Report 2015/233 (version 20170213:132559) (2017)

[70] Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A New Approach
Towards Coercion-Resistant Remote E-Voting in Linear Time. In: FC’11:
15th International Conference on Financial Cryptography. LNCS, vol. 7035,
pp. 182–189. Springer (2011)

[71] United Nations: Universal Declaration of Human Rights (1948)

[72] Unruh, D., Müller-Quade, J.: Universally Composable Incoercibility. In:
CRYPTO’10: 30th International Cryptology Conference. LNCS, vol. 6223,
pp. 411–428. Springer (2010)

[73] Weber, S.G., Araújo, R., Buchmann, J.: On Coercion-Resistant Electronic
Elections with Linear Work. In: ARES’07: 2nd Internation Conference on
Availability, Reliability and Security. pp. 908–916. IEEE (2007)

[74] Wikström, D.: Simplified Submission of Inputs to Protocols. In: SCN’08:
6th International Conference on Security and Cryptography for Networks.
LNCS, vol. 5229, pp. 293–308. Springer (2008)

36

