
Lattice-Based Remote User Authentication from

Reusable Fuzzy Signature

1Yangguang Tian, 1Yingjiu Li, 1Robert. H Deng, 1Binanda Sengupta and
2Guomin Yang

1School of Information Systems, Singapore Management University, Singapore.
2School of Computing and Information Technology

University of Wollongong, Australia
1{ygtian,yjli,robertdeng,binandas}@smu.edu.sg

2
gyang@uow.edu.au

Abstract. In this paper, we introduce a new construction of lattice-
based reusable fuzzy signature for remote user authentication that is
secure against quantum computers. We define formal security models for
the proposed construction, and we prove that it can achieve user authen-
ticity, biometrics reusability and user privacy. In particular, the proposed
new construction ensures that: 1) biometrics reusability is achieved such
that fuzzy signatures remain secure even when the same biometrics is
reused multiple times; 2) a third party having access to the communica-
tion channel between an authorized user and the authentication server
cannot identify the authorized user.

Keywords: Lattice-Based Cryptography, Fuzzy Signatures, Biometrics
Reusability, User Privacy

1 Introduction

Fuzzy signature (FS), also known as signature with a fuzzy secret key [32, 26],
is a new type of digital signature that allows a signature to be generated using
secret biometrics as a signing key, without relying on any additional data (e.g.,
the helper data as used in fuzzy extractors [12]). FS can further be explored in
a reusable setting: reusable fuzzy signature (RFS), which deals with biometrics
reuse. Specifically, a user may use the same biometrics to derive different sign-
ing/verification key pairs for user authentications. That is, the RFS may run
many times on various messages under different signing keys, but with noisy
versions of the same biometrics. Reusability allows the security of generated
signature in a user authentication to remain secure even when the generated sig-
natures in all other authentications are compromised (e.g., the signing keys may
be leaked to attackers). Therefore, biometrics reusability is an essential security
property required in RFS, but there is no such security guarantee in [32, 26].

The RFS is significantly useful in many real-world applications, such as
biometric-based remote user authentication [9, 10, 4, 24]. Let us consider a setting
where user Alice wishes to remotely authenticate herself to server Bob using her

biometrics. A traditional method is to use digital signatures with fuzzy extrac-
tors [9, 10, 24]. That is, Alice relies on her enrolled helper data stored somewhere
(e.g., server, smart card and USB token) to derive a signing key for generating
a signature on a message (e.g., nonce), then Bob verifies the message-signature
pair under Alice’s enrolled verification key. In RFS, Alice’s signature addition-
ally includes a new verification key (her signature is generated by a new signing
key) and a new helper data, where the new helper data is derived from the new
signing key and her noisy biometrics. Bob verifies the message-signature pair un-
der Alice’s new verification key and checks whether the new verification key is
related to Alice’s enrolled verification key. This checking process relies on Alice’s
new as well as enrolled helper data, so a valid message-signature pair requires
that Alice’s noisy biometrics and her enrolled biometrics are close enough. A
crucial point to stress is that, Alice’s signature generation does not depend on
her enrolled helper data, this is the key difference between digital signatures
with fuzzy extractors [9, 10, 24] and RFS.

The security and privacy of RFS used in a remote user authentication are also
essential. First, lattice-based cryptography resistance to quantum computers has
been extensively studied in the literature [17, 29, 27, 28]. We note that a remote
user authentication that exploits prior RFS [32, 26] is not secure since a quantum
computer can efficiently solve some hard mathematical problems such as discrete
logarithm (DL) problem [31]. So the DL-based fuzzy signature schemes proposed
in [32, 26] are not desired in the post-quantum era. Second, user’s privacy is
compromised if we use fuzzy signatures [32, 26] to design a remote user authen-
tication. Specifically, multiple message-signature pairs from the same user Alice
can be easily linked by a third party eavesdropping the communication channel,
since the fuzzy signatures [32, 26] are publicly verifiable (i.e., anyone with Alice’s
enrolled verification key can verify Alice’s message-signature pairs). Therefore,
the main goal of this work is to design a reusable fuzzy signature based remote
user authentication (RFS-RUA) that satisfies resistance to quantum computers,
biometrics reusability and privacy guarantee against eavesdroppers.

Technical Challenges. It is a non-trivial task to design a lattice-based RFS
for RUA that is secure against quantum computers. We consider to use the
lattice-based digital signatures without trapdoors [25, 14, 3], because this line of
research supports a simple and efficient signing process [25] compared to lattice-
based trapdoor signatures [17]. However, in the design of lattice-based signatures
without trapdoors, the signature generation is independent of the signing key.
This mechanism obviously contradicts to the homomorphic property required in
RFS, which means that the difference (“shift”) between two signatures is iden-
tical to the difference between two signing/verification keys [32, 26]. Such homo-
morphic property allows Bob to find the correct difference between Alice’s new
verification key and her enrolled verification key, so Alice’s message-signature
pair can be confirmed as valid, because she is the only party who can produce
the correct difference between her new signing key and her enrolled signing key.

Our Contributions. The main contributions of this work are summarized as
follows.

2

– New Construction. We propose a new construction of remote user authentica-
tion that is built on top of lattice-based digital signatures [25, 14, 3], reusable
fuzzy extractors from learning with errors (LWE) [2, 35], a family of universal
hash functions and lattice-based public key encryptions. The new construc-
tion in this work covers any lattice-based cryptographic primitives that include
digital signatures and public key encryptions.

– Quantum Resistant. The proposed construction can withstand quantum com-
puters due to the lattice-based cryptographic primitives we used. Its provable
security relies on the worst-case intractability of standard lattice problems.

– Biometrics Reusability. We formulate the security definition of RFS. We prove
that the lattice-based RFS can achieve biometrics reusability since the under-
lying LWE-based fuzzy extractors are reusable. In particular, the construction
of RFS is the first cryptographic primitive with Hamming distance.

– Privacy Protection. We show a user privacy model to prevent the eavesdrop-
pers from identifying any authorized user or linking any authorized user’s
multiple sessions. We prove that the proposed construction can achieve user
privacy under standard assumptions.

Overview of Techniques. We now explain our key technical insights. First,
we characterize the homomorphic property of lattice signatures without trap-
doors [25, 14, 3] in order to ensure the correctness of RFS. We discover that the
resulting lattice signatures depend on their chosen randomness whose (discrete
Gaussian) distributions are always centered at zero. As a result, the “shift”
between signing keys has no effect on lattice signatures, because the lattice sig-
natures obtained using “shifted” signing keys are actually identical when their
randomness come from the same distribution. Meanwhile, the distributions of
randomness are also related to the distributions of signing keys, so the lattice
signatures can be successfully verified under the corresponding “shifted” verifi-
cation keys. Second, putting all building blocks together, which include lattice
signatures [25, 14, 3], reusable fuzzy signatures [2, 35] and a family of universal
hash functions, we can construct a lattice-based RFS that achieves biometrics
reusability. Third, we use the lattice-based public key encryptions to ensure
privacy guarantee, where the validity of lattice-based RFS is verified by authen-
tication server only. Specifically, Alice’s identity is encrypted under the public
key of Bob. After extracting Alice’s encrypted identity, Bob can identify her
enrolled verification key and helper data. Then he verifies Alice’s lattice-based
RFS under a new verification key which is derived from enrolled verification key,
enrolled and new helper data.

1.1 Related Work

Fuzzy Signatures. The concept of fuzzy signature was first introduced by
Takahashi et al. [32], which is a signature scheme that inputs fuzzy data such
as biometrics as a signing key. Specifically, the generation of a signature does
not rely on auxiliary data such as helper data (or sketch). The proposed generic
construction is built on top of a signature scheme with homomorphic (see Section

3

3.4) properties regarding keys and signatures, and a linear sketch. It is proven
secure in the standard model. To relax some requirements on the building blocks
used in the generic construction of [26], Matsuda et al. have proposed a new
generic construction using some relaxed building blocks. For example, Waters
signature scheme [34] is replaced by Schnorr signature scheme [30].

The input biometrics of linear sketch in [32] is assumed to be uniformly
distributed over metric space. To relax such strong assumption on fuzzy data,
Matsuda et al. [26] require only high min-entropy on the distribution of bio-
metrics. Specifically, they consider linear sketches as real numbers that include
integer and decimal (i.e., secret key and biometrics) parts. That is, if the noise
between two linear sketches is less than a threshold t (a positive real number),
then a difference algorithm (i.e., DiffRec) can extract the correct difference (may
include noise) between two linear sketches.

Yasuda et al. [37] introduced the “recovering attacks” to recover both the
secret key and the biometrics from linear sketch. They claim that the “integer
plus decimal” format is vulnerable to such attacks. In addition, they provided
a trivial countermeasure (add small noisy data to the sketch) with informal
security analysis. Meanwhile, Takahashi et al. [33] (merged version of [32, 26])
also provided the treatment to avoid the “recovering attacks”. The remedy is
to add a “rounding-down” operation (or truncation) on the decimal part of the
real numbers. However, such extra truncation would bring a correctness loss to
the proposed constructions in [32, 26].

Instead of using real numbers (with “integer plus decimal” format) to repre-
sent and process fuzzy data, in this work, we take binary strings over Hamming
distance as fuzzy data input such as Iriscode [20]. We notice that construct-
ing fuzzy signatures from Hamming distacne was an open problem, which was
pointed out by prior works [26, 33].

Lattice Signatures. A lattice-based signature scheme with provable security
was first constructed by Gentry et al [17]. Their construction is based on “hash-
and-sign” paradigm, and its security relies on the worst-case hardness of stan-
dard lattice problems such as small integer solution (SIS). To achieve more prac-
tical and efficient constructions, another line of research on lattice-based digital
signatures relies on the Fiat-Shamir heuristic [15] such as [25, 14, 3]. Their con-
structions are Schnorr-like identification protocols whose security is based on SIS
or LWE, and the efficiency relies on a rejection sampling (see Section 3.4) rather
than the pre-image sampling used in [17]. In this work, we use lattice-based
signature schemes [25, 14, 3] as our building blocks.

Reusable Fuzzy Extractor. Fuzzy extractor (FE) is one of the promising
approaches to construct a biometric-based remote user authentication [9, 10, 24].
Juels and Wattenberg [22] introduced a cryptography primitive called “fuzzy
commitment”. It is particularly useful for biometric-based remote authentication
systems, because its error-correcting technique can correct certain errors within
a suitable metric (Hamming distance). Dodis et al. [12] formally introduced the
notions of “secure sketches” and “fuzzy extractors”. In particular, they provided
concrete constructions of secure sketches and fuzzy extractors in three metrics

4

(Hamming distance, set difference and edit distance), and the constructions are
information-theoretically secure.

Boyen [9] introduced an important notion: reusable fuzzy extractor. It states
that a user can produce multiple key and sketch pairs using the same biometrics
w, i.e., {(Ri, Pi)} ← Gen(w). Later, Canetti et al. [11] proposed the first reusable
FE from some low-entropy distributions. In particular, they have refined the
security of strongly reusable FE such that each Ri remains secure even if all
other secret keys Rj (j 6= i) are revealed.

Computational FE was first introduced by Fuller et al. [16]. The proposed
scheme is based on LWE [29], and the derived secret key equals to the entropy
of the fuzzy biometrics. However, their computational FE is not reusable. To
achieve reusable FE from LWE, Apon et al. [2] provided a generic transformation
to convert non-reusable (resp. weak reusable) fuzzy extractors to weak reusable
(resp. strong reusable) ones. In addition, based on the definitions of reusability
[9, 11], Apon et al. formalized both weak and strong reusability. Recently, Wen
and Liu [35] proposed a new reusable (and robust [10]) FE. Its reusability also
follows the strong reusability defined in [2]. In this work, we follow the strong
reusability defined in [2, 35], where the “shifts” between different readings are
controlled by the adversary (i.e., the perturbation attacks defined in [9]).

To highlight our distinction, we show the function (feature) difference be-
tween our proposed new construction and some existing works in Table 1: it
shows that our proposed construction has quantum resistance, user authenticity,
biometrics reusability and user privacy. The new construction is proven secure
in the random oracle model. We stress that the proposed RFS can be regarded
as a step forward from fuzzy signatures [32, 26] and fuzzy extractors [2, 35] in
the lattice-based setting.

Table 1. The comparison between different functionalities of lattice-based signa-
ture (Sig), fuzzy extractor (FE) and fuzzy signature (FS) schemes. Reusability shows
whether the biometrics reuse is formally addressed or not. User privacy means user’s
privacy concern with respect to the eavesdroppers (see Appendix A). N/A means that
the scheme did not consider this functionality.

Functionality/Scheme [25] [16] [32] [26] [2] [35] Ours

Sig/FS/FE Sig FE FS FS FE FE FS
Reusability N/A × N/A N/A X X X

User Privacy × N/A × × N/A N/A X

Lattice Based X X × × X X X

Standard Model × X X × X X ×

1.2 Paper Organization

In the next section, we present the formal security models to capture the security
requirements of a RFS based remote user authentication. In Section 3, we present

5

some preliminaries which will be used in our proposed construction. In Section 4,
we present the notion of RFS and prove its reusability. We present our detailed
construction in Section 5 and formally prove its security. The paper is concluded
in Section 6.

2 Security Model

In this section, we present the security models (user authenticity and user pri-
vacy) for our proposed remote user authentication construction based on RFS
(RFS-RUA).

States. We define a system entity set U with N users and M servers. We say
an instance oracle Π l

ID (e.g., session l of user ID) may be used or unused,
and a user ID has unlimited number of instances called oracles. The oracle is
considered as unused if it has never been initialized. Each unused oracleΠ l

ID can
be initialized with a secret key sk. The oracle is initialized as soon as it becomes
part of a protocol execution. After the initialization the oracle is marked as used
and turns into the stand-by state where it waits for an invocation to execute
a protocol operation. Upon receiving such invocation the oracle Π l

ID learns its

partner id pidlID and turns into a processing state where it sends, receives and
processes messages according to the description of the protocol. During that
stage, the internal state information statelID is maintained by the oracle. The
oracle Π l

ID remains in the processing state until it collects enough information
to finalize the user authentication procedure. As soon as the user authentication
is accomplished, Π l

ID accepts and terminates the protocol execution in the sense
that it would not send or receive further messages. If the protocol execution fails,
then Π l

ID terminates without having accepted.
We denote the l-th session established by a server as Π l

IDS
and identities of

all the users recognized by Π l
IDS

during the execution of that session by partner

identifier pidlIDS
. We define sidlIDS

as the unique session identifier belonging to the

session l established by a server IDS. Specifically, we have sidlIDS
= {msgi}ni=1,

where msgi ∈ {0, 1}∗ is the message transcript transmitted between users and
servers.

2.1 Definition

A RFS-RUA consists of the following algorithms:

– Setup: The algorithm takes security parameter λ as input, outputs a public
parameter pp.

– KeyGen: The algorithm takes public parameter pp as input, outputs secret/public
key pairs {(sk, pk)} for users, and secret/public key pairs {(ssk, spk)} for au-
thentication servers.

– Enrollment. This is a non-interactive protocol between a user and an authen-
tication server over a secure channel. The user enrolls her identity ID, public
key pk and sketch SS(w, sk) to the authentication server. The enrolled users

6

become authorized ones after enrollment, and the sketch SS(w, sk) means that
it derives from a biometrics w and a secret key sk. We assume a uniform1

biometrics sourceM and w ∈ M.
– Authentication. This is an interactive protocol between an authorized user

and an authentication server over a public channel. The protocol takes public
parameter pp, an authorized user’s identity ID and biometrics w′, and an au-
thentication server’s public key spk as input, outputs a new secret/public key
pair (sk′, pk′), a new sketch SS(w′, sk′) and a message-signature pair (msg, σ).
The authentication server accepts the user if: 1) the message-signature pair
(msg, σ) is verified as valid under her new public key pk′; and 2) the new pub-
lic key pk′ is linked to new sketch SS(w′, sk′), and her enrolled public key pk

and sketch SS(w, sk). The message msg denotes the transmitted ephemeral
data, and the biometrics satisfies dist(w′, w) ≤ t.

2.2 User Authenticity

We define ∆ as the set of functions f :M→M satisfies: for any w ∈M, f(w) is
“close” to w (i.e., dist(w, f(w)) ≤ t). The perturbations δ ∈ ∆ are specified by the
adversary and applied by the simulator (i.e., challenger). Let dist(w) = dist(w, 0)
denote the Hamming weight of distribution w ∈M. Furthermore, the simulator
specifies a class of functions Φ = {φ}|sk| whose domain and range are the secret
key space of RFS-RUA. In the user authenticity game, an adversary attempts
to impersonate an authorized user and authenticate herself to an authentication
server. We define a formal authenticity game between a probabilistic polynomial-
time (PPT) adversary A and a simulator S as follows.

– Setup. S first generates identities {IDSj} and secret/public key pair (sskj , sspkj)
(j ∈ [1,M]) for M servers, and identities {IDi} (i ∈ [1, N]) for N users in the
system. S also generates user’s biometrics information {wi} (wi ∈ M), gen-
erates a set of public/secret key pairs {pkji , sk

j
i}Mj=1 and their corresponding

sketches SS(wi, sk
j
i) for each user i with respect to M servers. Eventually, S

sends all identities, public keys and sketches to A. Let KG be a key genera-
tion algorithm which takes public parameter pp and a secret key sk as input,
outputs a public key pk.

– Training. A can make the following queries in an arbitrary sequence to S.
• Send: If A issues a send query in the form of (ID, l,msg) to simulate a
network message for the l-th session of user ID, then S would simulate the
reaction of instance oracle Π l

ID upon receiving message msg, and return
to A the response that Π l

ID would generate; If A issues a send query in
the form of (ID′, ‘start’), then S creates a new instance oracle Π l

ID′ and
returns to A the first protocol message.

1 One may question a uniform source is not practical, we stress that the uniform source
can be replaced by a non-uniform source (e.g., symbol-fixing source [23]) while the
security of FE is held. We use a uniform source here just for simplicity, and the case
of non-uniform source was explicitly discussed in [16, 36, 35].

7

• Biometrics Reveal: If A issues a biometrics reveal query to user i, then S
returns user i’s biometric information wi to A.
• Secret Key Reveal: If A issues a secret key reveal query to user i with respect
to server Sj , then S returns the enrolled secret key sk

j
i to A.

• Biometrics Shift: If A issues a biometrics shift query with δ to user i, then
S returns user i’s shifted biometric information SS(wi + δ, skji) to A.
• Secret Key Shift: If A issues a secret key shift query with φ to user i, then
S returns user i’s shifted public key pk′i ← KG(pp, φ(skji)) to A.
• Server Secret Key Reveal: If A issues a server secret key reveal query to
server IDSj , then S will return server Sj ’s secret key sskj to A.

– Challenge. A outputs a message msg and wins the game if all of the following
conditions hold.

1. IDSj accepts user i. It implies pids
Sj

and sids
Sj

exist.
2. A did not issue Biometrics Reveal query to user i.
3. A did not issue Secret Key Reveal query to user i with respect to Sj .
4. msg ∈ sidsSj , but there exists no instance oracle Πs

IDi
which has sent msg

(msg denotes the message transcript from user i).

A is allowed to reveal user i’s secret keys associate with M -1 servers. We also
allow A to adaptively issue Biometrics Shift queries to challenge user i. We
define the advantage of an adversary A in the above game as

AdvRFS-RUA
A (λ) = |Pr[A wins]|.

Definition 1. We say that a RFS-RUA has user authenticity if for any PPT
A, AdvRFS-RUA

A (λ) is a negligible function of the security parameter λ.

Design Rationale. The perturbation δ ∈ ∆ from an adversary is to capture
the adaptive chosen perturbation attacks [9]. For example, an adversary may
query an oracle to perform extractions and re-generations based on the chosen
perturbations of the secret biometrics. The function Φ = {φ}|sk| from simulator
is to capture the related key attacks such that an adversary may “modify” the
secret (or signing) keys [7]. In particular, the simulator should “update” the
simulated signatures under the new public (or verification) keys [26].

2.3 User Privacy

Informally, an adversary (i.e., outsiders) attempts to identify the authenticated
users involved in a RFS-RUA. We define a formal user privacy game between an
adversary A and a simulator S as follows:

– Setup: S first generates identities {IDSj} and secret/public key pair (sskj , spkj)
(j ∈ [1,M]) for M servers, and identities {IDi} (i ∈ [1, N]) for N users in the
system. S also generates biometrics information {wi} for N users, generates a
set of public/secret key pairs {pkji , sk

j
i}Mj=1 and their corresponding sketches

SS(wi, sk
j
i) with respect to M servers. Eventually, S sends all identities, pub-

lic keys and sketches to A. S also tosses a random coin b which will be used
later in the game.

8

– Training: A is allowed to issue Execute queries to S. In addition, A can issue
at most N -2 Biometrics Reveal, N -2 Secret Key Reveal queries, and M -1 Server

Secret Key Reveal queries to S. We denote the honest (i.e., uncorrupted) user
and server set as (U ′0,U ′1), respectively. The honest user requires that her
biometrics as well as secret key are not corrupted.
The Execute query [8] allows A to invoke an honest execution of the protocol
and returns a transcript of exchanged messages to A.

– Challenge: S randomly selects two users IDi, IDj ∈ U ′0 as challenge candidates.
S removes them from U ′0 and simulates ID∗b by either ID∗b = IDi if b = 1
or ID∗b = IDj if b = 0. S also selects a server IDS ∈ U ′1 at random, and let
IDS interact with the challenge user ID∗b . A can access all the communication
transcripts among them.

IDS ↔ ID∗b =

{

IDi b = 1
IDj b = 0

A is allowed to issue Secret Key Shift queries to challenge candidates. Finally,
A outputs b′ as its guess for b. If b′ = b, then S outputs 1; Otherwise, S
outputs 0. We define the advantage of an adversary A in the above game as

AdvRFS-RUA
A (λ) = |Pr[S → 1]− 1/2|.

Definition 2. We say that a RFS-RUA has user privacy if for any PPT A,
AdvRFS-RUA
A (λ) is a negligible function of the security parameter λ.

3 Preliminaries

3.1 Complexity Assumptions

Definition 3 (SISq,n,m,d Distribution). Choose a random matrix A ∈ Zn×m
q

and a vector X ∈ {−d, · · · , 0, · · · , d}m and output (A,A·X). Note that d denotes
the absolute value of random integers.

Definition 4 (Decisional SIS [25]). Given a pair (A, t) such that t = A ·X,
with non-negligible probability, an PPT adversary is to decide whether the pair
is from SISq,n,m,d distribution (A, t) or whether it is uniformly generated from a
random distribution Zn×m

q × Zn
q .

If d≫ qn/m (high-density), then the SISq,n,m,d distribution is statistically close
to a uniform distribution over Zn×m

q ×Zn
q and there are many solutions X such

that A ·X = t. If d≪ qn/m (low-density), then there is only one solution X .

Definition 5 (Decisional LWE [29]). Given a random matrix A ∈ Z
m×n
q ,

X ∈ Zn
q and χ be an arbitrary distribution on Zm

q , the decisional LWE
(D-LWEq,n,m,χ) problem is to distinguish the distribution (A,A · X + χ) from
a random distribution over (Zm×n

q ,Zm
q). We say that D-LWEq,n,m,χ is (ǫ, ssec)

secure if no PPT distinguisher Dssec of size ssec can distinguish the LWE in-
stances from uniform except with probability ǫ, where ssec = poly(λ) and ǫ is a
negligible function of the security parameter λ.

9

Dottling and Muller-Quade [13] showed that one can encode biometrics w as
the error term in a LWE problem by splitting it into m blocks. Furthermore, to
extract the pseudorandom bits, we rely on the result from Akavia et al. [1] such
that X ∈ Zn

q has simultaneously many hardcore bits.

Lemma 1. If D-LWEq,n−k,m,χ is (ǫ, ssec) secure, then

δDs′sec ((X1,··· ,k,A,A ·X + χ), (U,A,A ·X + χ)) ≤ ǫ,

where U ∈ Zk
q andX1,··· ,k denotes the first k coordinates of x and s′sec ≈ ssec−n3.

3.2 Universal Hash Function

Let H be a universal hash function family whose domain is Zqm and whose range
is Zqn . Let Zqn be a vector space, which consists of n dimensional of finite field
with prime order q. We define an isomorphism ψ : (Zq)

m → Zqm (ψ−1 is its
inverse), and n,m ∈ N. Note that (Zq)

m = Zm
q .

A family of universal hash functions is defined as H = {H(A1,A2) : Zn
q →

Zm×k
q |A1 ∈ Zqmk ,A2 ∈ Zmk×n

q }, where k is a positive constant. Specifically,
for each vector A1 (resp. matrix A2) in the seed space Z1 ∈ Zqmk (resp. Z2 ∈
Zmk×n
q), define the hash function H(A1,A2) as follows: on input x ∈ Zn

q , H(A1,A2)(x)
computes y ← A1 ·ψ(A2 ·x), where “·” denotes the multiplication in the extension
vector Zqmk . Notice that we can interpret a vector in Zmk

q as a matrix in Zm×k
q .

That is, A2 ·x = Zmk×n
q ·Zn

q = Zmk
q , which shows that a vector in Zmk

q is a matrix

in Z
m×k
q . The output of H(A1,A2)(x) is y ∈ Z

m×k
q . The universal hash function

family H consists of the hash functions {H(A1,A2)}A1∈Z1,A2∈Z2 . Furthermore, the
universal hash function family H has linearity, i.e.,

∀x, x′ ∈ Z
n
q : H(A1,A2)(x) + H(A1,A2)(x

′) = H(A1,A2)(x + x′).

Leftover Hash Lemma (LHL). The LHL [19] states that universal hash
functions are good randomness extractors. Below we recall the generalized LHL
(Lemma 2.4 [12]), which is defined in terms of conditional min-entropy.

Lemma 2. Assume a family of functions {Hz : Zn
q → Zm×k

q }z∈Z is universal,
for any random variable W taking values in Z

n
q and any random variable Y ,

SD((UZ , Hz(W), Y), (UZ , U, Y)) ≤ 1

2

√

2−H̃∞(W |Y) · qm×k,

where UZ and U are uniformly distributed over Z
mk
q (i.e., Z) and Z

m×k
q respec-

tively. In particular, such universal hash functions are (average-case, strong)
extractors with ǫ-statistically close to uniform.

Remark. If a family of functions H = {H(z1,z2) : Zn
q → Zm×k

q } has two indepen-
dent seed spaces z1 ∈ Z1 and z2 ∈ Z2, then the statistical distance between two
distributions is shown as

SD((UZ1 , UZ2 , Hz(W), Y), (UZ1 , UZ2 , U, Y)) ≤ 1

2

√

2−H̃∞(W |Y) · qm×k,

10

where UZ1 and UZ2 are uniformly distributed over Zmk
q and Zmk×n

q respectively.
Observe that the statistical distance between two distributions is not affected by
the two public seeds, so a family of functions H with two seeds is also (average-
case, strong) extractors with ǫ-statistically close to uniform.

3.3 Computational Fuzzy Extractors

Let m ≥ n and q be a prime number, define two algorithms Gen, Rep of compu-
tational FE [16] below.

1. Input: w ←M. ⊲ supposeM is a uniform distribution over Zm
q .

2. Sample A ∈ Zm×n
q , x ∈ Zn

q uniformly.
3. Compute p = (A,A · x+ w), r = x1,··· ,n/2.
4. Output: (r, p).

1. Input: w′, p. ⊲ where Hamming distance between w′ and w is at most t.
2. Parse p as (A, c); let b = c− w′.
3. Let x = Decodet(A, b).
4. Output: r = x1,··· ,n/2.

Note that p denotes the public helper string, while r denotes the secret string.
The correctness of computational FE relies on the Decodet(A, b) algorithm [16],
which is explicitly shown as follows.

1. Input: (A, b = A · x+ w − w′).
2. Select 2n distinct indices i1, · · · , i2n ← [1, · · · ,m].
3. Restrict A, b to rows i1, · · · , i2n; Denote these by Ai1 , · · · ,Ai2n , b1, · · · , bi2n .
4. Find n linearly independent rows of Ai1 , · · · ,Ai2n (if no such rows exist,

output abort and stop), and restrict Ai1 , · · · ,Ai2n , bi1 , · · · , bi2n to n rows.
Denote the result by A′, b′.

5. Compute x′ = A
′−1 · b′.

6. If b − A · x′ has at most t non-zero coordinates, then outputs x′; Otherwise,
it returns to step 2.

Recall that A ∈ Zm×n
q , b ∈ Zm

q , and Decodet algorithm can correct at most
t = O(logn) errors (of Hamming distance) in a random linear code. Also note
that with probability at least 1/poly(λ), none of the 2n rows selected in step 2
have errors (i.e., noisy biometrics w and w′ agree on these rows), thus x′ is a
solution to the linear system. Furthermore, we notice that the sketch from LWE
satisfies the linearity defined in [32, 26]. That is,

SS(wi, sk+∆(sk)) = SS(wi, sk) + A ·∆(sk).

The computational fuzzy extractors (FE) from LWE has an inherent prop-
erty: “key privacy”, which is introduced by Bellare et al. [5]. Informally, it means
that an adversary in possession of a ciphertext cannot tell which specific key,
out of a set of known public keys, is the one under which the ciphtertext was

11

created. In particular, they have formalized a new model: “indistinguishability
of keys” (IK). We formally prove that the computational FE is secure in the
IK-CPA model. In addition, we discover that both computational FE [16] and
its variant reusable FEs [2, 35] have such inherent property.

Lemma 3. The computational fuzzy extractors from LWE achieves the IK-CPA
security if the D-LWEq,n,m,χ assumption is (ǫ, ssec) secure.

Informally, we can essentially think of the sketch A ·x+w as an “encryption” of
x that where decryption works from any close w′ (i.e., decryption key). Further-
more, we can also think of any two “encryptions” A0 · x0 +w0 and A1 · x1 +w1

(in a multi-user setting, we set A0 = A1 which is shared among all users) are
indistinguishable by any third parties without having decryption keys (w′0, w

′
1).

Definition 6. The IK-CPA experiment between an adversary A and a simulator
S is defined below [5].

Experiment ExpIK-CPA

PKE (λ)
(pk0, sk0), (pk1, sk1)← KG(1λ)
(msg∗, st)← A(find, pk0, pk1)
c∗ ← Encpkb(msg

∗)
b′ = A(guess, st, c∗)
If b′ = b, return 1; else, return 0.

Note that st denotes some state information. We define the advantage of A as

AdvIK-CPA

A (λ) = |Pr[S → 1]− 1/2|.

Definition 7. A public key encryption scheme PKE = (KG,Enc,Dec) is said to
be IK-CPA secure if AdvIK-CPA

A (λ) is negligible in λ for any PPT A.

Proof of Lemma 3.

Adversary S(A,A ·X + χ)

b ∈ {0, 1}, u
R
←− Z

n
q

pk
0
← A ·X + χ; pk

1
← A · (X + u) + χ

(m∗, st)← A(find, pk
0
, pk

1
)

b′ = A(guess, st, c∗)
If b′ = b, return 1; else, return 0.

Fig. 1. Description of adversary S for the proof

Proof. Assume that there exists a PPT A breaking the IK-CPA security of the
computational fuzzy extractors from LWE, then we can construct an algorithm
S to break the decisional LWE (D-LWEq,n,m,χ) assumption. The algorithm S

12

has almost the same time complexity with A. For simplicity, we first consider
the shared public parameter by all users such that A0 = A1.

The algorithm S uses A as a subroutine (see Fig. 3.3). S first generates
another distribution which has the same property and distribution as its own
challenge distribution (A,A · X + χ) using self-reducibility technique [6]. That
means if its challenge is a real distribution, then it is the computed distribution;
Otherwise, it is a random distribution over (Zm×n

q ,Zm
q). Then using its chal-

lenge and computed distributions, S outputs two challenge public keys for A (in
the find stage). At the end of find stage, A submits a challenge message msg∗

and some state information st to S. S takes challenge message msg∗ and st as
input, outputs a challenge ciphertext which is an encryption of msg∗ under pkb
according to the bit b.

We then analyze the behaviour of S on ExpLWE-REAL
S and ExpLWE-RAND

S
respectively. In the ExpLWE-REAL

S , the input (A,A ·X + χ) to S satisfy the Rep

algorithm of FE described in Section 3.3. Notice that the computed distribution
(A,A · (X + u) + χ) is also valid and they are uniformly and independently
distributed over (Zm×n

q ,Zm
q), because A · (X + u) + χ = A ·X + χ + A · u and

u is a randomly element in Zn
q . Thus, S can simulate the proper distribution of

two challenge public keys (i.e., pk0 ← A · X + χ and pk1 ← A · (X + u) + χ),
and the challenge ciphertext c∗ is distributed exactly like a real encryption of
message on msg∗ under public key pkb.

c0 ← A · (X +msg∗) + χ.⊲ if b = 0

c1 ← A · (X + u+msg∗) + χ.⊲ otherwise

Therefore, we have

Pr[ExpLWE-REAL
S (λ) = 1] = 1/2 · Pr[ExpIK-CPA-1

A (λ) = 1]

+ 1/2 · (1− Pr[ExpIK-CPA-0
A (λ) = 1])

= 1/2 + 1/2 · AdvIK-CPA
A (λ).

As for ExpLWE-RAND
S , the input distributions to S in Fig. 3.3 are all uniformly

distributed over (Zm×n
q ,Zm

q). Therefore, the corresponding computed distribu-
tion above are also uniformly and independently distributed over (Zm×n

q ,Zm
q).

In particular, the challenge ciphertext is a random distribution over (Zm×n
q ,Zm

q),
and independent of bit b. Hence we have

Pr[ExpLWE-RAND
S (λ) = 1] ≤ 1/2 + 1/2λ−1.

The last term indicates that the random distribution to S happen to have
the distribution of a real distribution, which is bounded by 1/2λ−1 since 2λ−1 <
q < 2λ. By combing all equations above, we have

AdvLWE
S (λ) = Pr[ExpLWE-REAL

S (λ) = 1] + Pr[ExpLWE-RAND
S (λ) = 1]

≥ 1/2 · Pr[ExpIK-CPA
A (λ) − 1/2λ−1.

13

We can also show that A0 6= A1 when public parameter is chosen at random
over Zm×n

q , while S will slightly change to pk0 ← (A0 = A,A0 ·X + χ); pk1 ←
(A1 = A0 · A∗,A1 · (X + u) + χ), where A∗

R←− Zm×n
q .

3.4 Lattice-based Signatures

Definition 8. The continuous Gaussian distribution over Rm centered at v with

standard deviation σ is defined by the function ρm
v,σ(x) = (1√

2πσ2
)me

−||x−v||2

2σ2 .

When the center v = 0 we write ρmσ (x), and the || · || denotes the Euclidean
norm. The discrete Gaussian distribution over Zm is defined as follows.

Definition 9. The discrete Gaussian distribution over Zm centered at some v ∈
Zm with standard deviation σ is defined as Dm

v,σ(x) = ρm
v,σ(x)/ρ

m
σ (Zm).

We say that a lattice-based digital signature scheme Σ = (Setup,KG, Sign,Verify)
is homomorphic, if the following conditions are held.

1. Simple Key Generation. pp ← Σ.Setup(λ) and (sk, pk) ← Σ.KG(pp), where
pk derives from sk via a deterministic algorithm pk← KG′(pp, sk).

2. Linearity of Keys. pk′ ← KG′(pp, sk+∆(sk)) =Mpk(pp,KG
′(pp, sk), ∆(sk)),

where Mpk denotes a deterministic algorithm which takes pp, a public key pk

and a “shifted” value ∆(sk), outputs a new public key pk′.
3. Linearity of Signatures. Two distributions are identical: {σ′ ← Σ.Sign(pp, sk+
∆(sk),msg)} and {σ′ ←MΣ(pp, pk,msg, σ,∆(sk))}, where σ ← Σ.Sign(pp, sk,msg)
and MΣ denotes a deterministic algorithm which takes pp, a public key pk, a
message-signature pair (msg, σ) and a “shifted” value ∆(sk), outputs a new
signature σ′.

4. Linearity of Verifications.We require thatΣ.Verify(pp,Mpk(pp, pk, ∆(sk)),msg,
MΣ(pp, pk,msg, σ,∆(sk))) = “1”, and Σ.Verify(pp, pk,msg, σ) = “1”.

We show that the lattice-based Schnorr-like signature schemes [25, 14, 3] have
the homomorphic properties regarding keys and signatures. We first present the
simplest version of the lattice-based signature scheme based on SIS [25], then we
show Lemma 4 afterwards.

– the user’s signing key is sk ← Zm×k
q , and its verification key is pk ← A · sk

mod q. These exists a hash function H : {0, 1}∗ → {−d, 0, d}k and A ∈ Zn×m
q .

– the signer generates a potential message-signature pair (msg, σ) = (msg, c, z),
where σ includes c← H(A · y mod q,msg) and z ← sk · c+ y (for y ∈ Dm

σ).
– the verifier accepts the signature iff ||z|| ≤ 2σ

√
m and c = H(A · z − pk · c

mod q,msg).

Lemma 4. The lattice-based Schnorr-like signature schemes satisfy the homo-
morphic property.

14

Fig. 2. Rejection Sampling with “Shifted” Gaussian Distribution. In blue is the distri-
bution of z, with v = sk · c (left figure) and “shifted” v′ = (sk + ∆(sk)) · c (middle
and right figures) over the spaces of all y before rejection sampling. In dashed red is
the common target distribution Dm

σ .

Proof. The secret/public key is a pair of integer matrixes such that (sk, pk) =
(sk,A · sk mod q), where sk ∈ Zm×k

q and A ∈ Zn×m
q is a public parameter

generated by a trusted party. The “shifted” pk′ = pk+A ·∆(sk) = KG′(A, sk+
∆(sk)). Therefore, the condition 1 and 2 are immediate held. As for the condition
3, by definition, σ = (c, z) = (c ← H(A · y mod q,msg), z ← sk · c + y). If
σ′ = (c′, z′) is output by MΣ(pp, pk,msg, σ,∆(sk)), then it holds that

z′ ← sk · c+ y +∆(sk) · c, c′ = c← H(A · y mod q,msg).

The output of z (resp. z′) depends on the vector v = sk · c (resp. v′ =
(sk + ∆(sk)) · c′) as well as the secret key sk (resp. sk + ∆(sk)). To ensure
that the signatures do not leak the secret key, the rejection sampling (Theorem
3.4 [25]) aims to remove such dependence. Informally, rejection sampling is to
“re-center” the distribution of z to be a discrete Gaussian distribution centered
at “zero” rather than at v = sk ·c. To show the condition 3 is held such that two
distributions are identical in the case of “shifted” Gaussian distributions (i.e.,
Dm

v′,σ where v′ = (sk + ∆(sk)) · c), we present Figure 2 in a two-dimensional
space for correctness check.

When applying the rejection sampling (with same parameters pp, message
msg and randomness y ∈ Dm

σ), we have z = z′ ← Σ.Sign(pp, sk+∆(sk),msg; y) ∈
Dm

σ . That is, the target distribution Dm
σ is independent of the “shifted” Gaus-

sian distributions. It is easy to check that the two distributions we considered are
identical, which shows that the condition 3 holds. Furthermore, the randomness
y ∈ Dm

σ ensures that the discrete Gaussian distributions centered at “zero” and
v/v′ have sufficient common overlap, hence the condition 4 regarding Σ.Verify
is also held. Combing the above conditions together, the lemma is complete.

4 Reusable Fuzzy Signature

In this section, we introduce the formal definition and security model of RFS,
and show the reusability of RFS. Essentially, the RFS is built on top of a family
of universal hash functions H, digital signatures Σ and fuzzy extractors FE (both
Σ and FE have homomorphic properties as described in Section 3).

15

4.1 Definition

A RFS consists of the following algorithms:

– Setup: The algorithm takes security parameter λ as input, outputs a public
parameter pp.

– Fuz-KeyGen: The user takes public parameter pp and biometrics w as in-
put, outputs a secret/public key pair (sk, pk) ← Σ.KG, and a sketch P ←
FE.Gen(sk, w). We denote the sketch as P = SS(w, sk), and let the value pair
(pk, P) be a reference.

– Fuz-Sign: The randomized algorithm takes public parameter pp, a message
msg and a new biometrics w′ as inputs, outputs a tuple (pk′,msg, σ, P ′),
where (sk′, pk′)← Σ.KG, σ ← Σ.Sign(sk′,msg), P ′ ← FE.Gen(sk′, w′).

– Fuz-Verify: The deterministic algorithm takes public parameter pp, a message-
signature pair (msg, σ), a new sketch P ′ and a reference (pk, P) as input,
outputs “1” if 1 = Σ.Verify(pk′, σ,msg) and pk′ ←Mpk(pp, pk, ∆(sk)), where
∆(sk)← H(∆(P)) and ∆(P) = P ′ − P ; Otherwise, it outputs “0”.

Correctness. The correctness of pk′ ←Mpk(pp, pk, ∆(sk)) holds if public keys
have the homomorphic property and dist(w,w′) ≤ t. Recall that Mpk is a deter-
ministic algorithm, and H is a universal function which links digital signatures
to fuzzy extractors.

4.2 Reusability

Informally, an adversary attempts to learn whether the reference pair is real or
not. The formal reusability game between an adversary A and a simulator S is
defined as follows.

– Setup: S samples a biometrics w∗ ∈ M, generates a secret/public key pair
(sk, pk), a secret string and public sketch pair (R,P) by running key gener-
ation algorithm Fuz− KeyGen(pp, w∗). Then S sends a reference pair (pk, P)
to A. Let N(λ) be the total number of executions of Fuz− KeyGen(pp, w∗).

– Training A may adaptively make Fuz-Sign queries of the following form: a
message msgi and a shift δ ∈ ∆, while S performs the following

• sample a new secret/public key pair (ski, pki).
• obtain (Ri, Pi) by running Fuz− KeyGen(pp, w∗ + δ), where Ri ← H(ski).
• generate a message-signature pair (msgi, σi) using secret key ski (i.e., σi ←
Sign(ski,msgi)).
• Return a tuple (pki,msgi, σi, Pi) to A.
A is allowed to reveal at most N(λ)-2 secret keys ski (including sk), and
denote the uncorrupted pair set as U ′.

– Challenge: S tosses a random coin b first. Then, S randomly selects two pairs
(pk0, P0), (pk1, P1) ∈ U ′ as the challenge references, and S removes them from
U ′. Eventually, S sends a challenge reference to A. That is

A ← (pkb, Pb) where (Rb, Pb)← Fuz− KeyGen(pp, w∗) and Rb ← H(skb) .

16

A is not allowed to reveal the secret key skb, but A can continue to issue the
Fuz-Sign queries with respect to the challenge reference (pkb, Pb). Eventually,
A outputs a bit b′, A wins if b′ = b. We define the advantage of an adversary
A in the above game as

AdvRFS
A (λ) = |Pr[S → 1]− 1/2|.

4.3 Reusability Analysis

We first review the strongly reusability of fuzzy extractors (FE). In the strongly
reusability [2, 35], an adversary, who is given the pair (Ri, Pi) generated by
several independent executions of Gen(w∗ + δ) on a series of inputs related to
the biometrics w∗, attempts to distinguish an extracted secret string R∗ from a
uniform string. The biometrics reusability game between an adversary A and a
simulator S is defined as follows.

1. S samples w∗ ∈M, and obtains (R∗, P ∗) by running algorithm Gen(w∗). The
value P ∗ is given to A.

2. A may adaptively make queries of the following form:

– A outputs a shift δ ∈ ∆.
– S obtains (R,P) by running Gen(w∗ + δ), and returns them to A.

3. S tosses a random coin b. If b = 0, S gives R∗ to A; Otherwise, S chooses

U
R←− {0, 1}|R∗| and gives U to A.

4. A outputs a bit b′, A wins if b′ = b.

Below, we reduce the reusability of RFS to the strongly reusability of FE.

Theorem 1. The fuzzy signature schemes achieve the reusability if the under-
lying fuzzy extractor is strongly reusable.

Proof. Let S denote an adversary against the reusability as defined above, who
is given a public sketch P ∗ and a Gen(w∗) oracle O, aims to distinguish a real
secret string R∗ from a random string U . S simulates the reusability game for
A as follows.

– S obtains the value pair (R,P) by invoking his oracle O, and A is given a
reference pair (pk, P), where pk← KG(pp, sk), sk← H(R).

– If A issues a Fuz-Sign query in the form of (msgi, δi) (δi ∈ ∆) to S, then S
performs the following

• obtain the values (Ri, Pi) by invoking his oracleO on input δi (i.e., Gen(w
∗+

δi));
• compute a secret key ski ← H(Ri), and generates its corresponding public
key pki ← KG(pp, ski);
• generate a message-signature pair (msgi, σi) using the secret key ski (i.e.,
σi ← Sign(ski,msgi));
• return (pki,msgi, σi, Pi) to A.

17

Note that S can return at most N(λ)-2 secret keys to A.
– S follows the reusability game to select a challenge reference pair (pkb, Pb).

After that, S obtains a pair (R∗, P ∗) from his challenger oracle; Finally, S
replaces the challenge reference pair (pkb, Pb) by (pk∗, P ∗) and sends it to A.
Note that the corresponding secret key sk∗ = sk∗

′

+ skb + ∆(sk∗), where
∆(sk∗)← H[∆(Pb, P

∗)] and sk∗
′

derives from either real secret string R∗ or a
random string U . In particular, upon receiving further Fuz-Sign queries w.r.t.
challenge reference pair (pk∗, P ∗), S performs the following.

• invoke his oracle O to obtain the values (Ri, Pi);
• compute a “shift” ∆(ski)← H[∆(Pi, P

∗)] and computes a key sk′i ← H(Ri);
• generate a secret key ski = sk′i + sk∗ +∆(ski) (as well as public key pki);
• generate a message-signature pair (msgi, σi) using the secret key ski (i.e.,
σi ← Sign(ski,msgi));
• return (pki,msgi, σi, Pi) to A.

Finally, S outputs whatever A outputs. If A guesses the random bit correctly,
then S can break the strongly reusability of FE.

5 Proposed Construction

The proposed construction consists of the following building blocks.

– A LWE-based computational fuzzy extractor scheme FE = (Gen,Rep).
– An EUF-CMA secure digital signature scheme Σ = (KG, Sign,Verify).
– An IND-CPA secure public key encryption scheme PKE = (KG,Enc,Dec).

We use user i and server j to illustrate our construction below.

– Setup. Let λ be the security parameter, and we generate a universal hash
function family H : {y = HA(x)}, which includes a public matrix A.

– KeyGen. User i obtains a secret/public key pair (ski, pki)← Σ.KG by running
the key generation algorithm of Σ. The server j obtains a secret/public key
pair (sskj , spkj)← PKE.KG by running the key generation algorithm of PKE.

– Enrollment. A user i wants to enroll herself to an authentication server j,
performs the following steps

• compute a secret si
R←− H−1

A
(ski) from the secret key ski, and derive a sketch

SS(wi, ski)← FE.Gen(A, wi, si).
• send a reference tuple (IDi, V Ki) to server j (note that server j maintains a
database DB of all enrolled users which includes verification keys {V Ki} =
{(pki, SS(wi, ski))}).

– Authentication. User i and server j perform the following steps.

• User i generates a ciphertext Ci ← PKE.Enc(spkj , IDi) on her identity IDi

under the public key spkj of server j, and sends it to server j.
• Server j obtains the identity IDi ← PKE.Dec(sskj , Ci) by running the de-
cryption algorithm of PKE, and sends a challenge nonce nj to user i.

18

User i Server j

DB = {(IDi, V Ki)}
Ci ← PKE.Enc(spkj , IDi)

Ci−−−−−−−−−−−−−−−−→ IDi ← PKE.Dec(sskj , Ci)
nj←−−−−−−−−−−−−−−−− Challenge : nj

Response : ni

(sk′i, pk
′
i)← Σ.KG

msg(i,j) = (ni, nj)
σi ← Σ.Sign(sk′i,msg(i,j))

Sketch : SS(w′
i, sk

′
i)

msg(i,j) , σi, SS(w
′
i, sk

′
i)−−−−−−−−−−−−−−−−−−−→

V K′
i ← (VKi, SS(w

′
i, sk

′
i))

Σ.Verify(VK′
i,msg(i,j) , σi)

?
=1

Fig. 3. Description of Authentication.

• User i performs the following steps

∗ obtain a new secret/public key pair (sk′i, pk
′
i)← Σ.KG and derive a new

secret s′i
R←− H−1

A
(sk′i) from the new secret key sk′i.

∗ choose a response nonce ni and generate a message-signature pair (msg(i,j), σi)
← Σ.Sign(sk′i,msg(i,j)), where msg(i,j) = (ni, nj).
∗ derive a new sketch SS(w′i, sk

′
i)← FE.Gen(A, w′i, s

′
i), and send (msg(i,j), σi, SS(w

′
i, sk

′
i))

to server j.

• Server j performs the following steps

∗ compute a “shift” secret between enrolled sketch and new sketch, where
∆(s)← SS(wi, ski)− SS(w′i, sk

′
i) (see correctness below).

∗ compute a “shift” secret key ∆(sk) = HA(∆(s)), and derive a new public
key pk′i from the enrolled public key pki and the “shift” secret key ∆(sk).
∗ verify the message-signature pair (msg(i,j), σi) under the new public key
pk′i. If the signature passes the verification, it accepts ; Otherwise, it aborts.

Instantiations and Correctness. We hereby try to instantiate the underlying
cryptographic building blocks which are able to resist with quantum computers.
First, to instantiate the computational fuzzy extractors from LWE, we rely on
the reusable fuzzy extractors proposed by Apon et al. [2] (or the one called
robustly reusable fuzzy extractor [35] with a non-uniform source). Second, we can
implement the lattice-based digital signatures [25, 14, 3] as described in Section
3.4. Third, we could use the passively secure (i.e., IND-CPA) encryptions such
as Regev’s LWE-based cryptosystem [29] to instantiate the underlying public
key encryptions. We notice that the passively secure encryptions will suffice for
our defined user privacy model, and we refer to [28] for passively and actively
secure cryptosystems which might be alternatively applicable to instantiate our
proposed construction.

The public matrix includes A = (A1 ∈ Zqmk ,A2 ∈ Zmk×n
q ,A3 ∈ Zm×n

q) (the

transpose of A3 is A⊤3 ∈ Zn×m
q). We set m ≥ c ·n, where c is a positive constant,

n = n(λ) and q = q(λ) ≥ 2 are two integers. Let the universal hash function
be {H(A1,A2) : Z

n
q → Zm×k

q }A1∈Z1,A2∈Z2 . For each seed pair (A1,A2) ∈ (Zqmk ,∈

19

Zmk×n
q) and y ∈ Zm×k

q , we define “H−1(A1,A2)
(y)” as the set of pre-images of y

under H(A1,A2). That is, H−1(A1,A2)
(y) = {x ∈ Zn

q : HA1,A2(x) = y}. In particular,

x
R←− H

−1
(A1,A2)

(y) means that we choose a vector x uniformly at random from set

H
−1
(A1,A2)

(y), and its size is c · k.
The sketch SS(wi, ski) is instantiated with a random linear code over a finite

field Zq. That is, SS(wi, ski) ← A3 · si + wi, where biometrics wi ∈ Zm
q and

secret si ∈ Zn
q . The correctness of ∆(s) relies on an algorithm Decodet(A3, b)

[16]. According to the Decodet algorithm, we have the following equation with
respect to the “shift” secret ∆(s) = si − s′i.

SS(wi, ski)− SS(w′i, sk
′
i) = A3 · si + wi − (A3 · s′i + w′i)

= A3 · (si − s′i) + (wi − w′i)
= A3 ·∆(s) + δ.

We assume that δ has at most t non-zero coordinates (i.e., at most t of non-
zero coordinates can be zeroed out by wi−w′i), and notice that A3·∆(s) is a linear
system with m equations and 2n unknowns. Ifm ≥ 6n (we set c = 6 as suggested
by [2] in order to ensure the Decodet works with expected running time), then
one can recover∆(s) using the Decodet algorithm with high probability (we refer
to [16] for success probability and time complexity of Decodet). Furthermore, we
emphasize that the biometrics wi, w

′
i are computationally secure, because the

server j is allowed to learn the “shift” secret ∆(s) = si − s′i only.

5.1 Security Analysis

The security result of our proposed construction is shown by the following the-
orems.

Theorem 2. The proposed RFS-RUA achieves user authenticity in the random
oracle model if the family of universal hash functions H = {H(z1,z2) : Zn

q →
Z
m×k
q }z1∈Z1,z2∈Z2 is ǫ-statistically secure, the D-LWEq,n−k,m,χ assumption is

(ǫ, s′sec) secure and the digital signature scheme Σ is EUF-CMA secure.

Proof. We define a sequence of games {Gi} and let AdvRFS-RUA
i denote the ad-

vantage of the adversary A in game Gi. Assume that A activates at most m(λ)
sessions in each game. We highlight the differences between adjacent games by
underline.

– G0: This is the original game for user authenticity security.
– G1: This game is identical to game G0 except that the simulator S will output

a random bit if server j accepts user i, but sidi 6= sidj . Since N users involved
in this game, we have:

∣

∣AdvRFS-RUA
0 − AdvRFS-RUA

1

∣

∣ ≤ N ·m(λ)2/2λ. (1)

20

– G2: This game is identical to game G1 except the following difference: S
randomly chooses g ∈ [1,m(λ)] as a guess for the index of the Challenge

session. S will output a random bit if A’s challenge query does not occur in
the g-th session. Therefore we have

AdvRFS-RUA
1 = m(λ) · AdvRFS-RUA

2 . (2)

– G3: This game is identical to game G2 except that in the g-th session, the
k-size pseudorandom bit of encrypted secret in the sketch SS(wi, sk

′
i) of user i

w.r.t. server j is replaced by a random value. Below we show that the difference
between G2 and G3 is negligible under the D-LWEq,n−k,m,χ assumption.

Let S denote a distinguisher against the D-LWEq,n−k,m,χ assumption, who is
given a tuple (X1,··· ,k,A,A ·X + χ), aims to distinguish the real LWE tuple

from a random tuple (U,A,A ·X + χ) where U ∈R Zk
q . S simulates the game

for A as follows.

• Setup. S sets up the game for A by creating N users and M servers with
the corresponding identities. S randomly selects indexes (i, j) and guesses
that the g-th session will happen with regard to user i at server j. S sets
the sketch of user i w.r.t. server j as SS(wi, skb) such that SS(wi, skb) =
A ·Xb +χ, where skb = H(A1,A2)(Xb) and Xb = X1,··· ,k. S generates user i’s

enrolled public/secret key pair (pkli, sk
l
i) w.r.t. l servers (l 6= j), and their

corresponding sketches {SS(wi, skb+skl)}. In addition, S honestly generates
biometrics for N -1 users, and generates enrolled public/secret key pairs and
sketches as Enrollment specified for N -1 users w.r.t. M servers. Eventually,
S sends all enrolled public keys and references to A. S sets A3 = A, and
generates rest public parameters (including matrixes A1,A2) for the system.
S also chooses a random vector from Zn−k

q to construct Xb ∈ Zn
q , we omit

it in the following proof for simplicity.

• Training. S answers A’s queries as follows.
∗ If A issues a Send query in the form of nj to S, S chooses a response
nonce ni first, then S honestly generates the protocol transcript Ti using
user i’s enrolled secret key skb and sketch SS(wi, skb). Specifically, Ti =
(msg(i,j), σi, SS(wi, sk

′
i)), where σi ←MΣ(pp, pkb, Sign(skb,msg(i,j)), ∆(si)),

SS(wi, sk
′
i)← A·Xb+χ+A·∆(si), where sk

′
i ← H(A1,A2)(sb+∆(si)), sb

R←−
H−1(A1,A2)

(skb) and ∆(si) ∈R Zn
q is chosen by S.

As for user i’s g-th session w.r.t. server j, S first generates SS(wi, sk
′
b)←

A·Xb+χ+A·∆(s), and denotesX ′b = Xb+∆(s) andXb = U ; S then gener-
ates a secret/public key pair (sk′b, pk

′
b) from X ′b, where sk

′
b = H(A1,A2)(X

′
b)

and pk′b = A⊤·sk′b; eventually, S honestly generates the message-signature
pair according to the protocol specification, and returns the protocol tran-
script to A.
∗ If A issues a Biometrics Reveal query to user i, then S aborts.
∗ If A issues a Secret Key Reveal query to an instance oracle Πg

IDi
(g-th

session of user i w.r.t. server j), then S returns new secret key sk′b to A.

21

∗ If A issues Biometrics Shift query in the form of δ to S, then S returns
SS(wi + δ, sk) = A ·Xb + χ + δ by the linearity of the sketch, where sk

can be either enrolled secret key skb or new secret key sk′b that involves
at g-th session.
∗ If A issues Secret Key Shift query in the form of φ to S, then S returns
new public key pk′b ← KG(pp, φ(skb)). Notice that A is not allowed to
obtain user i’s enrolled secret key skb.

Note that in the Challenge session of user i w.r.t. server j, if the challenge of S
is X1,··· ,k, then the simulation is consistent with G2; Otherwise, the simulation
is consistent with G3. If the advantage of A is significantly different in G2 and
G3, then S can break the D-LWEq,n−k,m,χ. Since at most N users involved in
the system, hence we have

∣

∣AdvRFS-RUA
2 − AdvRFS-RUA

3

∣

∣ ≤ N · AdvD-LWEq,n−k,m,χ

S (λ). (3)

– G4: This game is identical to game G3 except that in the g-th session, the
enrolled secret key sk

j
i w.r.t., server j is replaced by a random value. Below

we show that the difference between G3 and G4 is bounded by a negligible
probability.
Let S simulate the whole environment honestly according to the protocol
specification, and it is easy to see that all the queries made to a user can be
simulated perfectly using the user’s secret keys and biometrics. In particular,
the enrolled secret key of user i w.r.t. server j is skji . In the g-th session of user
i w.r.t server j, to answer the Send query from A, S will simulate the protocol
transcript T ′i as follows. S first simulates the sketch as SS(wi, sk

′
i)← A3 ·(si+

∆(s)) + wi, where sk′i ← H(A1,A2)(si + ∆(s)), si
R←− H−1(A1,A2)

(u), u ∈R Zm×k
q ,

and ∆(s) is randomly chosen by S; S then generates a secret/public key
pair (sk′i, pk

′
i) from si +∆(s); eventually, S honestly generates the message-

signature pair using the same method described in previous game G3.
We then analyze the statistical distance between two distributions T ′i =
(msg(i,j), σi, SS(wi, sk

′
i)) and Ti (of previous game G4). We notice that the

only difference is the simulated value si
R←− H

−1
(A1,A2)

(u) instead of taking the

real enrolled secret key sk
j
i as input, and according to Lemma 2, we have

the statistically distance between sk
j
i ← H(A1,A2)(si) and u ∈R Zm×k

q with
probability no greater than ǫ. Since at mostM servers involved in the system,
hence we have

∣

∣AdvRFS-RUA
3 − AdvRFS-RUA

4

∣

∣ ≤M · AdvHS(λ). (4)

– G5: This game is identical to game G4 except that in the g-th session, S
outputs a random bit if Forge event happens where A’s Send query includes
a valid forgery σ∗ while user i’s secret key w.r.t server j is not corrupted.
Then we have

∣

∣AdvRFS-RUA
4 − AdvRFS-RUA

5

∣

∣ ≤ Pr[Forge]. (5)

22

Let F denote a forger against a (lattice-based) signature scheme Σ with EUF-
CMA security, who is given a verification key pk∗ and a signing oracle O, and
aims to find a forgery σ∗. S simulates the game for A as follows.
• Setup. F sets up the game for A by creating N users and M servers with
the corresponding identities and biometrics. F sets up the verification key
of user i w.r.t. server j as V Kj

i = (pk∗, SS(wi, sk
j
i)), where SS(wi, sk

j
i) =

A3 ·si+wi, si ∈R Zn
q . F also honestly generates public/secret key pairs and

sketches as Enrollment specified for N -1 users and M servers. Eventually,
F sends all enrolled public keys and references to A. Note that F honestly
generates all the public parameters (including matrixes A1,A2,A3) in the
system. Also note that A cannot link the simulated sketch SS(wi, sk

j
i) and

public key pk∗ since A is not allowed to access biometrics wi.
• Training. F answers A’s queries as follows.
∗ IfA issues a Send query in the form of nj to F , F chooses a response nonce
ni first, then F simulates the protocol transcript Ti = (σ′i, SS(wi, sk

′
i)) as

follows.
1. invoke the signing oracleO to obtain a message-signature pair (msg(i,j), σi),

where msg(i,j) = (ni, nj);

2. generate a sketch SS(wi, sk
′
i)← SS(wi, sk

j
i) +A3 ·∆(si), where ∆(si)

is randomly chosen by F ;
3. generate a signature σ′i ← MΣ(pp, pk

∗, σi, ∆(si)) by using the deter-
ministic algorithm MΣ described in Section 4;

4. returen (m(i,j), σ
′
i, SS(wi, sk

′
i)) to A.

∗ If A issues a Secret Key Reveal query to an instance oracle Πi
IDi

, then

F returns new secret key sk′i ∈R Zm×k
q to A. Since A is not allowed to

reveal the enrolled secret key Dlog(pk∗) (of user i w.r.t. server j), the
simulation is perfect.
∗ If A issues Biometrics Shift query in the form of δ to F , then F returns
SS(wi + δ, sk′i) to A. Notice that A is not allowed to obtain user i’s
biometrics wi.
∗ IfA issues Secret Key Shift query in the form of φ to F , then F returns new
public key pk∗

′ ← KG(pp,Dlog(pk∗), φ(∆(sk))), where ∆(sk) is chosen
by A.

• When Forge event occurs (i.e., A outputs (msg∗, σ∗
′

, SS(wi, sk
∗′))), F

checks whether:
∗ the Forge event happens at g-th session;
∗ the message-signature pair (msg∗, σ∗

′

) is not previously simulated by S;
∗ verifies Σ.Verify(pk∗

′

,msg∗, σ∗
′

)
?
=1, where pk∗

′ ← pk∗ + A⊤3 · ∆(sk∗),

∆(sk∗) = H(A1,A2)(∆(s∗)), ∆(s∗)← SS(wi, sk
∗′)− SS(wi, sk

j
i). Note that

∆(sk∗) is the correct “shift” between Dlog(pk∗
′

) and sk
j
i .

If all the above conditions hold, F confirms that it as a successful forgery
from A, then F extracts the forgery via σ∗ ←MΣ(pp, pk

∗, σ∗
′

, ∆(sk∗)) by
using the homomorphic property of Σ (Lemma 3). To this end, F outputs
σ∗ as its own forgery; Otherwise, F aborts the game. Therefore, we have

|Pr[Forge]| ≤ AdvEUF-CMA
F (λ). (6)

23

It is easy to see that in game G5, A has no advantage, i.e.,

AdvRFS-RUA
5 = 0. (7)

Combining the above results together, we have

AdvRFS-RUA
A (λ) ≤ N ·m(λ)2/2λ +m(λ)[N · AdvD-LWEq,n−k,m,χ

S (λ)

+M · AdvHS(λ) + AdvEUF-CMA
F (λ)].

Theorem 3. The proposed RFS-RUA achieves user privacy in the random ora-
cle model if the decisional SISq,n,m,d assumption is (ǫ, ssec) secure, the public key
encryption is IND-CPA secure and the computational fuzzy extractor is IK-CPA
secure.

Proof. We define a sequence of games {Gi} and let AdvRFS-RUA
i denote the ad-

vantage of the adversaryA in game Gi. We also highlight the differences between
adjacent games by underline.

– G0 This is the original game for user privacy.
– G1 This game is identical to gameG0 except that at challenge stage, S replaces

the real identity (message of ciphertext Ci) by random string R. Below we
show that the difference between G0 and G1 is negligible under the assumption
that the public key encryption scheme is IND-CPA secure.
Let S denote an attacker who is given a public key pk∗, aims to break the
IND-CPA security of the public key encryption scheme. S simulates the game
for A as follows.

• Setup. S sets up the game for A by creating N users and M servers. S
honestly generates biometrics for N users, generates secret/public key pairs
with respect toM servers and their corresponding sketches. S randomly se-
lects index j and guesses the challenge will happen with regard to server j.
S sets the public key of server j as pk∗, and honestly generates secret/public
key pairs forM -1 servers. It is obvious that S can easily simulate the proto-
col execution of N users and M -1 servers except server j. Below we mainly
focus on the simulation of server j.
• Training. If A issues an Execute query between user i and server j, then S
randomly chooses nonces (ni, nj) and new secret/public key pairs, and per-
forms the session execution honestly according to the protocol specification.
• Challenge. Upon receiving challenge candidates (ID0, ID1) ∈ U ′0 from A,
S follows the security game to select ID∗b . Then S executes the RFS-RUA
protocol to generate the protocol transcript. After that, S generates an-
other random string R and sends IDb and R as the challenge messages to
its own oracle. After receiving the challenge ciphertext C∗ from his own
challenger, S replaces the ciphertext generated by IDb in the first message
of the transcript by C∗. Eventually, S sends the complete transcript to A.

Finally, S outputs whatever A outputs. If A guesses the random bit correctly,
then S can break the IND-CPA security of public key encryption scheme. Since
at most M servers in the system, and at most K = {0, 1}|ID| encryptions are

24

executed (because each ciphertext encrypts a single bit of real identity), we
have

∣

∣AdvRFS-RUA
0 − AdvRFS-RUA

1

∣

∣ ≤M ·K · AdvIND-CPA
S (λ). (8)

– G2 This game is identical to game G1 except that at challenge stage, S re-
places the sketch SS(w′i, sk

′
i) by a random string over Zm

q . Below we show
that the difference between G1 and G2 is negligible under the assumption
that computational fuzzy extractor is IK-CPA secure.
Let S denote an attacker who is given two sketches (pk0, pk1) (assuming a
common public matrix A here, and pk ← A ·X + χ), aims to break the IK-
CPA security of the computational fuzzy extractor. S simulates the game for
A as follows.

• Setup. S sets up the game for A by creating N users and M servers. S hon-
estly generates secret/public key pairs for M servers. S randomly selects
indexes (i, j) and guesses the challenge will happen with regard to user i
and server j. S sets the enrolled sketch of user i with respect to server j
as pk0, and generates the enrolled secret/public key pair at random (which
is a matrix pair over distribution (Zm×k

q ,Zn×k
q)). Additionally, S honestly

generates biometrics, secret/public key pairs (w.r.t.M servers) and sketches
for N -1 users. It is obvious that S can easily simulate all protocol execu-
tions except user i w.r.t server j. Below we mainly focus on the simulation
between user i and server j. Note that A⊤3 = A⊤.
• Training. IfA issues an Execute query, then S simulates the session execution
as follows
1. generate a ciphertext Ci on the identity of user i;
2. choose nonces ni, nj and form a message msgi = (ni, nj);
3. choose secret/public key pair (sk′i, pk

′
i) and generate message-signature

pair using secret key sk′i;
4. compute “shift” ∆(ski) from (enrolled public key) pkji and pk′i;
5. simulate a new sketch SS(wi, sk

′
i) = pk0 + A⊤ ·∆(ski);

6. sends the complete transcript to A.
• Challenge. Upon receiving challenge candidates (ID0, ID1) ∈ U ′0 from A, S
follows the security game to select ID∗b and server j (from honest set U ′1).
Then S executes the RFS-RUA protocol to generate the protocol transcript.
After that, S generates the challenge message msg∗ (msg∗ derives from the
“shift” between enrolled sketch and new sketch generated by ID∗b) and sends
it as the challenge message to its own oracle. After receiving the challenge
ciphertext C∗ from his own challenger, S replaces the sketch generated by
IDb in the third message of the transcript by C∗. Eventually, S sends the
complete transcript to A.

Finally, S outputs whatever A outputs. If A guesses the random bit correctly,
then S can break the IK-CPA security of the computational fuzzy extractors.
Since at most N users and M servers in the system, we have

∣

∣AdvRFS-RUA
1 − AdvRFS-RUA

2

∣

∣ ≤ N ·M · AdvIK-CPA
S (λ). (9)

25

– G3 This game is identical to game G2 except that at challenge stage, S replace
the real verification key of digital signature σi by a random key over Zn×k

q .
Below we show that the difference between G2 and G3 is negligible under the
assumption that the decisional SISq,n,m,d is hard.
Let S denote a decisional SIS problem distinguisher, who is given a pair
(A∗, t∗), aims to decide it whether from a SISq,n,m,d distribution or from a
random distribution over Zn×m

q × Zn
q . S simulates the game for A as follows.

• Setup: S sets up the game for A by creating N users andM servers with the
corresponding identities and biometrics. S generates enrolled public/secret
key pairs (pkji , sk

j
i) and sketches SS(wi, sk

j
i) for N users and M servers.

Eventually, S sends all identities, public keys and sketches to A. In particu-
lar, S sets A⊤3 = A∗⊤ and honestly generates other public parameters (such
as matrixes A1,A2) for the system. Note that pkji = A∗⊤ · skji .
• Training: S honestly simulates the session execution (using user’s secret keys
and biometrics) according to the protocol specification.
• Challenge: Upon receiving challenge candidates (ID0, ID1) ∈ U ′0 from the
A, S follows the security game to select ID∗b and server j. S simulates the
the transcript as follows.
1. generate a ciphertext Ci on the identity of user i;
2. choose s′ ∈R Zn

q and compute a new sketch SS(wb, sk
′
b)← A∗ · s′ + wb;

3. choose nonces ni, nj and form a message msg(i,j) = (ni, nj);
4. generate a message-signature pair (msg(i,j), σ

∗
b) (by design, σ∗b = (z∗b , c

∗
b))

using the same method described in the security proof of [25]; Note that
the corresponding public (verification) key is pk∗

′

b = U∗ + A⊤3 · ∆(sk),
where ∆(sk) derives from public sketches.

5. return (Ci,msg(i,j), σ
∗
b , SS(wb, sk

′
b)) as the complete transcript.

Finally, S outputs whatever A outputs. Notice that the enrolled public key
pkb is replaced by the given instance U∗ in the Challenge stage. Moreover,
the simulated message-signature pair (msg(i,j), σ

∗
b) can be successfully ver-

ified under verification key pk∗
′

b (by programming random oracle such that

H(A∗ · z∗b − pk∗
′

b · c∗b ,msg(i,j)) = c∗b). As for the matrix pair (A∗, U∗), ac-
cording to the hybrid argument, distinguishing the real public key from a
uniform distribution (A∗, U∗) ∈ Zn×m

q × Zn×k
q is as hard as the SISq,n,m,d

decisional problem (with a loss of factor k in the advantage). Therefore, the
two verification keys pk∗

′

b (b = [0, 1]) are statistically indistinguishable w.r.t.
high-density SIS or computational indistinguishable w.r.t. low-density SIS.
Since at most N users and M servers in the system, we have

∣

∣AdvRFS-RUA
2 − AdvRFS-RUA

3

∣

∣ ≤ N ·M · k · AdvSISq,n,m,d

S (λ). (10)

It is easy to see that in game G3, A has no advantage, i.e.,

AdvRFS-RUA
3 = 0. (11)

Combining the above results together, we have

AdvRFS-RUA
A (λ) ≤M ·K · AdvIND-CPA

S (λ) +N ·M · (AdvIK-CPA
S (λ) +

k · AdvSISq,n,m,d

S (λ)).

26

6 Conclusion

In this work, we have proposed a lattice-based construction for remote user
authentication from RFS. We have introduced a reusability model that allows
fuzzy signatures to be reusable, and provided the reusability proof of RFS. In
addition, the RFS based remote user authentication had the privacy guarantee
with respect to the eavesdroppers. Eventually, we have proved the security of
the proposed construction in the random oracle model under our defined security
models (user authenticity and user privacy). As our future work, we leave the
construction of RFS based on efficient ring-SIS or ring-LWE [18, 28].

References

1. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In TCC, pages 474–495, 2009.

2. D. Apon, C. Cho, K. Eldefrawy, and J. Katz. Efficient, reusable fuzzy extrac-
tors from LWE. In International Conference on Cyber Security Cryptography and

Machine Learning, pages 1–18, 2017.
3. S. Bai and S. D. Galbraith. An improved compression technique for signatures

based on learning with errors. In CT-RSA, pages 28–47, 2014.
4. M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla,

D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti, et al. Privacy-preserving fingercode
authentication. In Proceedings of the 12th ACM workshop on Multimedia and

security, pages 231–240, 2010.
5. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key

encryption. In ASIACRYPT, pages 566–582, 2001.
6. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user

setting: Security proofs and improvements. In EUROCRYPT, pages 259–274, 2000.
7. M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key at-

tacks and tampering. In ASIACRYPT, pages 486–503, 2011.
8. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure

against dictionary attacks. In EUROCRYPT, pages 139–155, 2000.
9. X. Boyen. Reusable cryptographic fuzzy extractors. In ACM CCS, pages 82–91,

2004.
10. X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. D. Smith. Secure remote

authentication using biometric data. In EUROCRYPT, volume 3494, pages 147–
163, 2005.

11. R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. D. Smith. Reusable fuzzy
extractors for low-entropy distributions. In EUROCRYPT, pages 117–146, 2016.

12. Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In EUROCRYPT, pages 523–540, 2004.

13. N. Döttling and J. Müller-Quade. Lossy codes and a new variant of the learning-
with-errors problem. In EUROCRYPT, pages 18–34, 2013.

14. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In CRYPTO, pages 40–56. 2013.

15. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194, 1986.

16. B. Fuller, X. Meng, and L. Reyzin. Computational fuzzy extractors. In ASI-

ACRYPT, pages 174–193, 2013.

27

17. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, pages 197–206, 2008.

18. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based cryp-
tography: A signature scheme for embedded systems. In CHES, pages 530–547,
2012.

19. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of a pseudo-
random generator from any one-way function. In SIAM, 1993.

20. A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti. Fingercode: a filterbank
for fingerprint representation and matching. In Computer Vision and Pattern

Recognition, 1999. IEEE Computer Society Conference on., volume 2, pages 187–
193, 1999.

21. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In EUROCRYPT, pages 143–154, 1996.

22. A. Juels and M. Wattenberg. A fuzzy commitment scheme. In ACM CCS, pages
28–36, 1999.

23. J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM, 36(5):1231–1247, 2006.

24. N. Li, F. Guo, Y. Mu, W. Susilo, and S. Nepal. Fuzzy extractors for biometric
identification. In ICDCS, pages 667–677, 2017.

25. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages
738–755, 2012.

26. T. Matsuda, K. Takahashi, T. Murakami, and G. Hanaoka. Fuzzy signatures:
relaxing requirements and a new construction. In ACNS, pages 97–116, 2016.

27. D. Micciancio. Lattice-based cryptography. In Encyclopedia of Cryptography and

Security, pages 713–715. 2011.

28. C. Peikert. A decade of lattice cryptography. Foundations and Trends R© in Theo-

retical Computer Science, 10(4):283–424, 2016.

29. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
JACM, 56(6):34, 2009.

30. C.-P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO,
pages 239–252, 1989.

31. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

32. K. Takahashi, T. Matsuda, T. Murakami, G. Hanaoka, and M. Nishigaki. A sig-
nature scheme with a fuzzy private key. In ACNS, pages 105–126, 2015.

33. K. Takahashi, T. Matsuda, T. Murakami, G. Hanaoka, and M. Nishigaki. Signature
schemes with a fuzzy private key. IACR Cryptology ePrint Archive, 2017:1188,
2017.

34. B. Waters. Efficient identity-based encryption without random oracles. In EURO-

CRYPT, pages 114–127, 2005.

35. Y. Wen and S. Liu. Robustly reusable fuzzy extractor from standard assumptions.
In ASIACRYPT, pages 459–489, 2018.

36. Y. Wen, S. Liu, and S. Han. Reusable fuzzy extractor from the decisional diffie–
hellman assumption. Designs, Codes and Cryptography, 86(11):2495–2512, 2018.

37. M. Yasuda, T. Shimoyama, M. Takenaka, N. Abe, S. Yamada, and J. Yamaguchi.
Recovering attacks against linear sketch in fuzzy signature schemes of ACNS 2015
and 2016. In ISPEC, pages 409–421, 2017.

28

A Privacy Concerns on [32, 26, 33]

We assume the Enrollment stage is also executed in a secure channel, which
means the attackers cannot access user’s enrolled public keys. According to the
generic construction in [26] (also applicable to [32]), we assume an authorized
user Alice wants to authenticate herself to an authentication server, and pro-
duces a transcript (pk′A, SS(w

′
A, sk

′
A), σ

′
A) in one session, where the new public

key is pk′A = gsk
′
A . In another session, suppose a challenge identity ID∗b gen-

erates a transcript (pk∗IDb
, SS(w∗IDb

, sk∗IDb
), σ∗IDb

), where the new public key is

pk∗IDb
= gsk

∗
IDb . Then attacker can link the challenge identity ID∗b to user Al-

ice. Specifically, an attacker will verify the signature σ∗IDb
using the new public

key pk∗IDb
first; then compute the “difference” ∆(sk∗IDb

) ← SS(w∗IDb
, sk∗IDb

) −
SS(w′A, sk

′
A); eventually, attachers can verify the relationship between new pub-

lic keys pk∗IDb
and pk′A via a “difference reconstruction” algorithm Mpk′

A
(pk′A,

∆(sk∗IDb
))

?
=pk∗IDb

. Notice that if algorithm Mpk′
A
outputs 1, then attacker can

conclude that the challenge user IDb is user Alice. The key point here is that the
new public key of user Alice pk′A in one session actually acts as an enrolled public
key, and can be easily linked with the new public key pk′IDb

in another session of
the same user, assuming user Alice (with biometrics w′A and dist(w′A, w

∗
IDb

) ≤ t)
is successfully authenticated by an authentication server.

Our Treatment. We modify the verification process, in which the verification
of signature requires the enrolled public key of user Alice pkA. We follow the
example above, user Alice first generates her new secret key sk′A for signing a
message, then computes a new sketch SS(w′A, sk

′
A). The user Alice sends the

transcript (SS(w′A, sk
′
A), σ

′
A) to an authentication server. The authentication

server first obtains the “difference” value∆(skA) from enrolled and new sketches,
then computes her new public key pk′A ← MpkA

(pkA, ∆(skA)) and verifies the
message-signature pair (m,σ′A) using the corresponding new public key pk′A.
Notice that the major difference between two transcripts (underline parts) is:
our treatment does not transmit new public key in the public channel. In fact,
the verification of message-signature pair is based on the designated verifier
concept [21] such that the authentication server who holds the enrolled public
key can verify it. We stress that the publicly verifiable of message-signature pair
is the main privacy concern in [32, 26, 33].

29

