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Abstract. Embedded microprocessors are an important component of reconfigu-

rable architectures. Fine-grain (e.g., cycle-accurate) power analysis of such pro-

cessors has been used to improve power and energy efficiency, and detect imple-

mentation vulnerabilities, in embedded applications.  However, such analysis is 

difficult to conduct; it requires either specialized and often expensive equipment, 

or construction of test architectures using disparate acquisition and analysis tools. 

In this research, we expand the Flexible Open-source workBench fOr Side-chan-

nel analysis (FOBOS) to facilitate exact time-domain correlation of clock cycle 

and device state to power measurements, and to perform power analysis on a soft 

core processor. We first validate the fine-grain power analysis capabilities of 

FOBOS through cycle-accurate analysis of power consumption of AES encryp-

tion running on a soft core processor in the Spartan-6 FPGA.   We then analyze 

the results in the context of Simple Power Analysis side-channel attacks, and 

confirm power correlation of certain instructions with Hamming Weight or Ham-

ming Distance of secret key bytes. Finally, we show that an assumption of a pure 

Hamming Distance power model for load-to-register instructions is not sufficient 

for this embedded processor architecture, and that power models using both 

Hamming Distance and Hamming Weight should be considered for Differential 

Power Analysis. 
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1 Introduction 

Embedded processors facilitate powerful combinations of hardware and software co-

design in lightweight applications, while preserving the ability for rapid prototyping, 

incremental development, and flexible reconfiguration. They are especially relevant in 

architectures consisting of sensors and actuators in the Internet of Things (IoT), includ-

ing automotive, home smart-appliance, energy smart-grid, logistics, and medical appli-

cations.   

The focus of this research is on one particular configuration of embedded processors 

– the so-called "soft core" processor –  which is often specified in a hardware descrip-

tion language (HDL), and is downloaded to an FPGA in a bitstream file. Soft core pro-
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cessors allow inclusions of features that require flexibility in architecture, such as in-

struction set extensions (ISE) and hardware accelerators.  Popular examples include 

Xilinx MicroBlaze, Intel Nios II, and RISC-V. 

Since embedded processors typically operate under severe resource constraints with 

tight power and energy budgets, designers must investigate novel methods to achieve 

low power and energy consumption.  Additionally, embedded systems with soft core 

processors often handle sensitive data which require cryptographic protections, such as 

those specified in Federal Information Processing Standards (FIPS).  However, embed-

ded processors often operate in physically insecure locations and are vulnerable to side 

channel attacks, where an attacker is able to observe physical phenomena associated 

with device operation (such as power fluctuations or radio frequency emissions), and 

deduce the contents of sensitive variables. 

In the above cases, it is important to be able to analyze processor power consumption 

during operation.  In particular, we seek fine-grain power analysis at short time inter-

vals, e.g., cycle-accurate analysis.  Cycle-accurate power analysis facilitates optimizing 

algorithms, programs, and architectures for power and energy consumption, and helps 

to identify security vulnerabilities in certain instructions or conditions, which could re-

sult in leakage of information through power analysis side channel attacks.  However, 

cycle-accurate analysis is not trivial; it is either performed on expensive commercial 

equipment outside the reach of most academic institutions, is performed using complex 

customized installations that are not easily replicated, or is not performed to the level 

of fidelity necessary to comprehend the data. 

In this research, we apply an extension of the Flexible Open-source workBench fOr 

Side-channel analysis (FOBOS), called the FOBOS Profiler, to analyze power analysis 

vulnerabilities of a cryptographic application running on a soft core processor.  FOBOS 

Profiler enables fine-grain power analysis by correlating time-domain power acquisi-

tion (i.e., samples) to exact corresponding clock cycle and device state.   The Profiler 

is part of the single "acquisition to analysis" FOBOS model, with flexible open-source 

software and firmware available to entry-level power analysis investigators [1]. 

We first validate the ability of FOBOS Profiler to analyze a large group of native 

soft core instructions in an iterative routine, and then analyze vulnerabilities to power 

analysis side channel attacks due to Hamming Weight and Hamming Distance depend-

encies of certain instructions.  We target an AES (Advanced Encryption Standard) en-

cryption application running on a custom-designed very lightweight 8-bit soft core pro-

cessor in the Spartan-6 FPGA.   

Our contributions in this work are twofold: 1) We validate a methodology based on 

an open-source test bench for analyzing vulnerabilities of microprocessor instructions 

to power analysis side channel attacks, and 2) We confirm correlation of certain side 

channel attack vectors on Hamming Weight or Hamming Distance, and show that some 

power models should incorporate both Hamming Weight and Hamming Distance in 

order to better reflect dependencies on sensitive data. 
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2 Background 

For many decades, researchers have sought fine-grain (e.g., instruction- or cycle-level) 

granularity for measurement of power consumption, to optimize for power and energy 

consumption, to design better hardware and instruction set architectures (ISA), and to 

analyze potential security vulnerabilities. Given the wide-spread use of soft core pro-

cessors in reconfigurable applications, there have been many attempts to determine 

their cycle-accurate power consumption in order to improve efficiency.  For example, 

in [2], the authors studied the effects of including instruction set extensions (ISE) in an 

FPGA implementation of a MicroBlaze soft core processor, and in [3], the authors in-

vestigated power consumption in soft core multiprocessor applications through the use 

of a simulation tool using power models described in SystemC. In these cases, proces-

sor power measurements were performed in simulation, but not in actual hardware. 

Cycle-accurate power analysis can also be used to determine security vulnerabilities 

in physical cryptographic implementations, which can leak information through power 

analysis side channel attacks. Examples of these attacks include Simple Power Analysis 

(SPA) and Differential Power Analysis (DPA). In SPA, the attacker observes the am-

plitude of power spikes associated with operations or sensitive variables, and draws 

conclusions on the type of operation or value of sensitive operands.  For example, in 

[4], the authors attack smart card implementations of microprocessors by noting two 

types of correlations: 1) Hamming Weight (HW), based on the number of bits set to 1 

in a given operation, and 2) Hamming Distance (HD) (or “transition counts”), based on 

the number of bits which change during an operation.  The authors note that knowing 

all HW of key bytes reduces key search space, e.g., from 256 to 240 for DES. 

In the above attacks, identification of sensitive values requires directly associating 

HW or HD to the amplitude of a sensitive operand.  In fact, the requirements for such 

an attack are 1) access to the power consumption of the device in operation; 2) the 

ability to identify individual clock cycles; and 3) a direct relation between power and 

HW or HD [5]. While theoretically this requires only a few power traces, in practice 

SPA is difficult, because the differences in dynamic power corresponding to different 

HW or HD are small, and getting smaller with reduction of technology feature size and 

VCC.  Therefore, the trend for power analysis attacks over the last decade has been to-

ward Differential Power Analysis (DPA). 

In DPA, described in [6], the attacker measures small power changes that take place 

at a targeted attack point based on changes in known and unknown variables.  A power 

model is used to hypothesize the contents of the sensitive variable, and multiple power 

observations (e.g., traces) are collected during cipher operation to statistically correlate 

secret key bytes.  DPA is more powerful than SPA, because an attacker 1) does not 

need to know as much about architecture, and 2) using statistical properties, can over-

come reduced signal-to-noise ratio (SNR) [4].  However, developing a correct power 

model is not trivial, and often requires extended trial-and-error to develop the correct 

model. 

In fact, fine-grain power analysis can assist in conducting more efficient DPA at-

tacks, by 1) extracting feature points on which to focus DPA attacks, and 2) determining 

or verifying the dependence of a particular attack point on a particular power model, 
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e.g., HW or HD [7].  One example of this type of analysis is [8], where the authors 

attempt to automatically insert DPA countermeasures into microcontroller software im-

plementations of cryptographic algorithms.  Their procedure begins with reconnais-

sance of assembly instructions most vulnerable to DPA by analyzing cycle-level power 

and computing measures of information leakage. However, their vulnerability metrics 

are based on mutual information analysis, and are not designed to demonstrate HW or 

HD dependencies. 

Additionally, in [9], the authors measure instruction-level power differences in Intel 

x86 architecture processors with the goal of discovering the instructions with the great-

est side channel vulnerabilities.  However, their methods are designed to detect vulner-

abilities due to non-constant time execution; they are not suitable for identifying HW 

or HD power analysis side-channel vulnerabilities. 

In summary, given the large variety of embedded processors, the ability to conduct 

fine-grain power analysis during design and prototyping is paramount to the achieve-

ment of secure and efficient reconfigurable implementations. 

3 Methodology 

3.1 FOBOS  

In this research, we employ the Flexible Open-source Board fOr Side-channel analysis 

(FOBOS) to conduct fine-grain power measurements. FOBOS is a side-channel analy-

sis (SCA) platform which provides a comprehensive SCA toolset from trace acquisition 

to analysis [1].  It uses commercial off-the-shelf FPGA boards (e.g., Digilent Nexys-3) 

to lower cost which is crucial for educational uses. The software is released as open-

source and written in Python to facilitate portability to different operating systems. 

3.2 FOBOS Hardware 

As shown in Fig. 1, FOBOS is composed of two FPGA boards. The control board re-

ceives test vectors from the control PC, stores them temporarily in FIFOs, and forwards 

data to the DUT (device under test) board, on which the victim implementation is in-

stantiated. It also triggers an oscilloscope to start capturing the power consumption of 

the DUT. 

The DUT board includes a wrapper to handle communication with the control board. 

This wrapper stores received data into different FIFOs depending on the data type.  The 

DUT wrapper in this research is customized to interface with the soft core processor 

(described below).  

Randomly-generated test vectors are stored in dinFile.txt (in the host PC), and 

fed through the dinFIFO to soft core data RAM through the soft core extdin inter-

face.  The user program, pre-stored in the FOBOS wrapper, is loaded on cue into pro-

gram RAM through the extprogin interface.  Upon completion of processor opera-

tions, data RAM contents are dumped through the extdout interface, through dout-

FIFO and are collected in doutFile.txt in the host PC. 
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Fig. 1. FOBOS Hardware Architecture 

3.3 FOBOS Software 

FOBOS software is composed of two major modules – the acquisition module and the 

analysis module. The PC-based acquisition module reads test vectors from a file and 

sends one vector at a time to the control board, which forwards it to the DUT. The DUT 

runs the cryptographic operation and returns the result to the control board which re-

turns it the PC-based acquisition module. The power traces are collected from the os-

cilloscope and saved in a file. Software scripts in the analysis module can be used to 

mount SCA on the traces collected by the acquisition module (e.g., Correlation Power 

Analysis), or to conduct fine-grain power analysis using FOBOS Profiler. 

3.4 FOBOS Power Measurement 

FOBOS measures device power consumed by the Spartan-6 1.2V bus, e.g., VCCINT, by 

measuring voltage across a 1Ω shunt resistor.  Voltage is amplified by a TI INA225 

amplifier, recorded in an oscilloscope, and offloaded to the attached PC for post-run 

power computation.   Power measurements are recorded at discrete time intervals cor-

responding to sample rate.   Our current FOBOS installation uses the Agilent (Keysight) 

Technologies DSO6054A Oscilloscope, with a 4 Gsa/s sampling rate, and computes 

about 20,000 samples per trace.   100 test vectors, consisting of random input data gen-

erated in software, are used to generate power traces 
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3.5 FOBOS Profiler 

We require the ability to map power trace samples to the exact clock cycles, in order to 

know state of the DUT at any specific sample. "FOBOS Profiler" is a set of scripts that 

map specific time domain events (e.g., clock cycle) to the power samples in traces col-

lected from the oscilloscope. This enables the ability to: 1) Determine the exact clock 

cycle for information leakage (e.g., t-test); 2) Relate power consumption spikes to DUT 

state, executed instruction, or data being processed; and 3) Cycle-accurate power pro-

filing. 

Once the DUT starts a cryptographic operation, it deasserts a specific signal 

di_ready which the control board detects. The control board triggers the oscilloscope 

immediately when receiving this signal, or after this event by any number of clock cy-

cles. The trigger signal is kept high for a user-specified number of clock cycles, or until 

the DUT finishes its operation. These trigger features are necessary to provide the ref-

erence point for mapping the clock number to time (sample number) in the trace. The 

acquisition module truncates the trace and aligns it in the time domain using the trigger 

signal as a reference. 

Users generate a file that maps the internal state of the DUT to clock cycles. This 

"state file" can be generated by modifying an HDL test bench to write a value corre-

sponding to each state to a file, or by an external simulation utility. The profiler script 

uses the state file and the power traces, and reports (in graphic or textual format) clock 

transitions and device states at any clock cycle. 

FOBOS Profiler has been used to pin-point sources of remaining information leak-

age in an FPGA implementation of an authenticated cipher protected with DPA coun-

termeasures [10], and publicly demonstrated in [11].  In this research, we adapt this tool 

to perform cycle-accurate power analysis of a soft core processor. 

3.6 Custom soft core microprocessor 

We demonstrate cycle-accurate power analysis on a custom-designed 8-bit reconfigu-

rable microprocessor.  This lightweight Reduced Instruction Set Computer (RISC) has 

only 30 native instructions, has separate 8-bit instruction and data buses in a Harvard 

Architecture, and is a pure load-store architecture.  Most instructions execute in one 

clock cycle, however, some ALU instructions execute in two cycles.  The ALU is de-

signed for the easy insertion of user-defined ALU instructions that require no modifi-

cation of the finite state machine logic.  This feature is used to implement the instruction 

set extensions necessary for single-cycle Galois Field (GF) multipliers gf2 and gf3 

instructions) used by the AES block cipher in this research. 

The processor has optimizations for cryptographic block ciphers, such as single-cy-

cle increment (inc), decrement (dec), exclusive or (xor), and table substitutions 

(trf, e.g., for an S-Box substitution).  The user can instantiate up to 4K of program 

RAM, 64K of data RAM, and 1K of table ROM (i.e., four 256-byte look up tables).  

Memory is implemented as distributed RAM, and is instantiated at synthesis time.  The 

amount of memory instantiated, based on the required number of bytes (req_bytes), is 

computed as 2⌈𝑙𝑜𝑔2𝑟𝑒𝑞_𝑏𝑦𝑡𝑒𝑠⌉. 
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This processor is evaluated in [12] and documented at [13]. 

3.7 AES implementation 

AES (Advanced Encryption Standard) is the U.S. federal and defacto worldwide stand-

ard for symmetric block ciphers as defined in [14]. AES-128 uses a 128-bit key, en-

crypts (or decrypts) 128-bit blocks of plaintext (or ciphertext), and consists of 10 

rounds. There are four transformations which occur on a state defined as a 4×4 matrix 

of bytes.  

The SubBytes transformation introduces non-linearity through a one-to-one byte 

substitution.  SubBytes is often rendered as 16 8-bit S-Boxes which can be implemented 

in look-up tables.  The ShiftRows transformation performs a permutation on the state 

word, where the 𝑖𝑡ℎ row is rotated left by 𝑖 bytes for rows 0 through 3.  The MixCol-

umns transformation is equivalent to multiplication of each column of the state by a  

4×4 matrix of constants in GF(28). The MixColumns transformation is skipped in the 

final round. In the AddRoundKey transformation, a 128-bit round key is added to the 

state by a bitwise xor operation.  

We use the AES encryption application as described in [12] and available at [13], 

which is written in native assembly code for this custom processor, and computes round 

keys on-the-fly.  It uses only 396 program bytes, 56 data bytes, and 256 table bytes, and 

therefore fits into a soft core instantiated with 512 bytes of Program RAM, 64 bytes of 

Data RAM, and 256 bytes of Table ROM.  The soft core processor using the above 

resources, when implemented in the Spartan-6 (xc6slx16csg324-3) FPGA, requires 100 

combinational logic block (CLB) slices, 337 look up tables (LUTs), 75 flip flops, and 

has a maximum frequency of 103.6 MHz.     

The iterative design of this AES implementation is shown in Fig. 2.  Cycle-accurate 

power analysis (discussed in "Results") is performed on rounds one through nine, and 

Hamming Weight and Distance analysis is performed on the prewhitening stage. 

 

 
Fig. 2. AES Encryption with Iterative Round Structure 
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4 Results 

4.1 Cycle-accurate analysis of AES rounds 

This implementation of AES requires 14,329 clock cycles.  Power analysis is conducted 

on nine rounds consisting of 1452 clock cycles each.  The first nine rounds of this im-

plementation are identical; the 10th round lacks a MixColumns transformation, and is 

omitted.  Power samples are gathered at 20 MHz externally generated clock frequency 

at an ambient temperature of 22.5 °C.  Analysis is conducted on 100 traces using ran-

domly-generated key and plaintext, with 18,151 samples per trace, for an average of 

12.5 samples per clock cycle.   

Results for all instructions used in rounds 1 -  9 are shown in Table 1, where "(2)" 

denotes the second cycle of a two-cycle instruction.  The average intra-round and inter-

round variations are 1.4% and 0.13% of average mean power, respectively.   This shows 

that power fluctuations due to changing conditions are very small, but that conditions 

are remarkably stable from round-to-round, confirming minimal error and excellent 

trace-to-trace sample alignment. 

Table 1. Mean power and standard deviation of AES instructions. 

Mean Power Standard Deviation 

Instr mW Instr mW Instr mW Instr mW 

gf2 10.015 jmp(2) 9.874 jsr(2) 0.230 jmp 0.126 

gf2(2) 10.008 lds 9.873 jsr 0.212 jmp(2) 0.120 

gf3 9.949 mvi(2) 9.864 mvi(2) 0.190 bzi 0.114 

gf3(2) 9.932 inc 9.861 mvi 0.187 ret 0.110 

dec 9.894 mvi 9.861 ret(2) 0.186 bzi(2) 0.110 

bzi 9.885 ret(2) 9.848 lds 0.176 trf 0.102 

jmp 9.882 ret 9.835 inc 0.167 gf3(2) 0.090 

xor 9.880 trf 9.795 sts 0.157 gf3 0.072 

sts 9.880 jsr 9.744 xor 0.141 gf2 0.071 

bzi(2) 9.879 jsr(2) 9.736 dec 0.136 gf2(2) 0.061 

 

Results show that the ALU instructions for Galois Field multiplication, gf2 and 

gf3, use the highest power.  This confirms previous results (e.g., [15]) that ALU in-

structions tend to use higher power, with multiplication in particular being a high power 

consumer.  The dec instruction uses more power than inc, and loads (i.e., lds) use 

less power than stores (i.e., sts) which also mirrors results in [15].  The bzi (branch 

on zero immediate) instruction uses higher power than jmp, despite similar construc-

tion, due to additional decision logic (in this architecture, comparisons occur and con-

dition flags are set during arithmetic operations). 

One unexpected result is that jsr (jump to subroutine) uses, on average, less power 

than jmp (branch unconditional).  Intuitively, we expect jsr to use more power, since 

this instruction requires storing a return address on the stack, decrementing the stack 

pointer sp), and updating the program counter (pc), whereas jmp only requires updat-
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ing pc.  However, jsr has the highest intra-round standard deviation among instruc-

tions, and there is a 700 μW difference (7% of the average power of jsr – 9.744 mW) 

among the 12 occurrences of jsr in each round.  Seven of the jsr instances have 

higher power than the mean power of jmp, so it remains to explain why some jsr 

instances have much lower power.  An analysis of HW of the target pc shows that the 

higher the HW, the higher the power.  Within groups of the same HW, there are also 

differences of sp, where  sp=0xFF appears to draw more power than sp=0xFD.  Ad-

ditionally, within groups of the same HW of target pc, a preceding instruction of 

ret(2) (return from subroutine – 2nd cycle) appears to draw more power than a pre-

ceding sts instruction.  An analysis of control signals in the finite state machine (FSM) 

controller shows that 12 control bits toggle from ret(2) to jsr, while only ten con-

trol bits flip from sts to jsr.  In summary, multiple influences combine to determine 

instruction power, and one must examine the exact architecture of control logic in order 

to determine the influence of each component; not just register and memory writes in 

the datapath. 

In terms of intra-round standard deviation, average powers of data loads and stores 

(i.e., lds and sts) vary more widely than average powers of arithmetic instructions. 

In particular, gf2 and gf3 have the lowest standard deviations.  This supports the 

conclusions of [8], that loads and stores have higher vulnerabilities to side channel at-

tack than ALU instructions.    However, where as many sources in literature target 

substitution boxes (S-Boxes) of block ciphers as attack points, we note that the trf 

(transformation) instruction, which computes a one-to-one eight-bit mapping (such as 

an AES S-Box), has one of the lowest average powers and lowest intra-round standard 

deviations.  This infers a higher difficulty of using the S-Box as DPA attack point in 

this FPGA architecture and implementation. 

4.2 Analysis of SPA based on Hamming Weight (HW) 

We next determine the feasibility of using cycle-accurate power analysis to conduct a 

side channel attack using SPA.  In this research, we analyze the xor instruction, which 

occurs during the AddRoundKey transformation in the first round. This is often called 

a "prewhitening" transformation, and uses the original secret key bytes 𝑘𝑖 prior to gen-

eration of round keys.  By selecting a chosen plaintext of 0128, we can analyze the in-

struction xor r2, r3, which translates to 𝑟3 = 𝑟2⨁𝑟3, where 𝑟2 = 0 and 𝑟3 =
𝑘𝑖∈{0,1,…,15}.  Our motivation for conducting an SPA attack based on HW of secret key 

bytes is discussed in [4,5], where recovery of HW can reduce key search space from 

2128 to 290. 

Results in Table 1 show that xor has a relatively high average power and intra-

round variation.  Additionally, analysis in [16] showed that xor power consumption 

has a near linear variation with HW.  In order to conduct a 1st round SPA attack on 

AES using the relation 𝐻𝑊(0⨁𝑘𝑖) = 𝐻𝑊(𝑘𝑖), we first determine if an xor depend-

ence on HW holds for this implementation on this FPGA.  We construct a loop to cycle 

through all 28 = 256 possible values of a key byte ki accessed by xor, and measure 

resulting power consumption over 100 averaged traces with identical operands.  Results 
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of HW analysis of the last 64 bytes 0xC0 to 0xFF, shown in Fig. 3, indicate a 94% 

correlation of measured average power with theoretical HW. 

 

 
Fig. 3. Correlation of measured power at 1 MHz clock frequency (solid) to Hamming Weight 

(HW) of operand (dashed) for xor instruction.  Mean power depicted on left (in Watts); HW of 

operand is on right. 

However, attempts to recover actual HW of unknown key bytes are complicated by 

non-constant variables and noise sources.  For example, during each execution of xor, 

pc is updated as  𝑝𝑐 =  𝑝𝑐 +  1.  The differences of power due to addition and register 

storage create conditions which are difficult to analyze.  Additional sources of noise 

include fluctuations of temperature and air flow over the FPGA, radio frequency noise, 

amplifier distortion in the FOBOS architecture (at low frequencies), and attenuation of 

high frequency signals by the RCL network in the victim FPGA itself (at high frequen-

cies).  

Attempts to recover two key strings, Test Vector (TV) TV1: {0xEB, 0x97, 0xC4, 

0xA0, 0x92, 0xB5, 0xA7, 0xF1}, and TV2: {0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 

0x7F, 0xFF}, are shown in Fig. 4 left and right, respectively. TV1 is arbitrarily chosen, 

and TV2 is in order of increasing HW. To compensate for the variance in power due to 

pc update, we first measure reference test vectors with minimum HW (0128) (i.e., the 

bottom lines), and maximum HW (1128) (i.e., the top lines), and then compare to the test 

vector (TV) consisting of secret key bytes (i.e., the middle lines).  Results show close 

correlation of HW to corrected average power levels for each instance of xor, however, 

differences in HW amplitude levels are only about 10 μW (measured at 1 MHz with 

200 V/V amplification).  In these two test vectors, results are often off by one or more 

HW levels.  As such, reliably identifying HW of secret key bytes on this architecture at 

this frequency remains challenging. 
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Fig. 4. Measured power of minimum HW reference (bottom), maximum HW reference (top), 

and test vector (TV) with actual HW of each byte (middle); TV1 shown at left, and TV2 shown 

at right.  Power in mW is shown on y-axis. 

4.3 Analysis of SPA based on Hamming Distance (HD) 

There are other instructions on which an SPA attack could be conducted.  One example 

is lds r1, r3 (load to register) which occurs immediately before xor r2, r3.  

Here, r1 is the index to consecutive memory addresses in which key bytes are stored, 

and r3 is the register into which successive key bytes are loaded.   As discussed in 

[4,7,17], power consumption of data loads from memory to registers typically varies 

with HD.  If we could combine a power correlation based on 𝐻𝐷(𝑟3′ , 𝑟3), where 𝑟3′  is 

the previous register contents, and 𝑟3= 𝑘𝑖 ∈{0,1,…,15}, with a correlation based on 

𝐻𝑊(𝑘𝑖∈{0,1,…,15}), we could further reduce key search space for a brute-force attack.  In 

fact, we perform Monte Carlo simulations to show that key search space is reduced 

from 290 to 270.  While a search space of 270 is still computationally intensive, it is far 

less than the minimum attack resistance strength of 2112 recommended in [18].  As be-

fore, our first task is to demonstrate a HD correlation for register loads. 

To show an lds dependence on HD, we loop through all 256 possible operands and 

measure resulting power.  While we note a distinct HD correlation, power measure-

ments are biased in a linearly increasing trajectory; the amplitudes of differences be-

tween maximum HD and minimum HD are clearly distinguishable, but increase line-

arly with each instruction occurrence.  We hypothesize that the bias is proportional to 

a HW of at least one operand, and generate a corrected set of power results by subtract-

ing the differential bias equal to (𝑃𝑚𝑎𝑥𝐻𝑊 − 𝑃𝑚𝑖𝑛𝐻𝑊)/8 ∗ 𝐻𝑊(𝑖𝑛𝑑𝑒𝑥), where "index" 

is the memory address index in r1.  The results for 64 indices 0xC0 to 0xFF shown in 

Fig. 5 confirm a 94% correlation between measured average power and 𝐻𝐷(𝑟3′ , 𝑟3). 
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Fig. 5. Correlation of corrected power measurements of lds instruction (solid) to Hamming 

Distances 𝐻𝐷(𝑟3′ , 𝑟3) (dashed) at 1 MHz clock frequency. Values of 𝑘𝑖 written to 𝑟3 by lds 

r1, r3 are shown on the x-axis, where previous contents of 𝑟3 (𝑟3′) are computed as 𝑟3′ =
𝑟3 − 1. 

It remains to confirm the source of the HW bias.  One might assume that the HW 

bias is proportional to the value being loaded from memory to the register r3.  To test 

this hypothesis, we measure power on test vectors where memory contains all zeroes.  

The results, shown in Fig. 6, refute this hypothesis, since the HW bias clearly remains.  

In fact, the bias is proportional to the value in the index register r1, which is incre-

mented at each iteration.  This supports the observations of [4], where relatively large 

power fluctuations are observed depending on values asserted on memory address 

buses.  Our attempts to remove the HW bias are likewise depicted in Fig. 6, and show 

that, even after applying a linear bias correction, a significant source of noise remains 

in corrected power measurements that hampers our ability to form HD correlations 

based on secret key bytes.  The removal of HW bias could be improved through exact 

modeling of this bias (including high-order polynomial or non-linear fittings), filtering 

using signal processing techniques, and experimentation with different frequency and 

amplification settings. 
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Fig. 6. Power measurements for lds r1, r3 for r3 operands with zero Hamming Distance.  

Hamming Weight (HW) bias due to memory index in r1 shown in top line, and attempted removal 

of HW bias shown in bottom line. 

Thus the power consumed by the load-to-register instruction depends on both HD 

and HW. This has important implications for development of power models used in 

DPA attacks.  Many documented DPA attacks (a recent example is [19]) assume a 

purely HD power model for attacks targeting registers.  However, our analysis hypoth-

esizes that a model employing both HW and HD, e.g., 𝑓(𝐻𝑊(𝑟1), 𝐻𝐷(𝑟3′ , 𝑟3)), could 

recover a secret key using fewer traces in a DPA attack; this hypothesis will be evalu-

ated in future work. 

5 Conclusion 

In this research we demonstrated the fine-grain power analysis capabilities of the Flex-

ible Open-source workBench fOr Side-channel analysis (FOBOS) Profiler through 

analysis of AES encryption software running on a custom soft core processor in a Spar-

tan-6 FPGA.  Through cycle-accurate power analysis of AES rounds, we demonstrated 

excellent round-to-round power measurement stability and trace-to-trace sample align-

ment.  We also confirmed the relatively high intra-round power variations of loads and 

stores, likely due to data dependence, which suggests the construction of power analysis 

attacks targeted at these instructions. We showed that arithmetic instructions (particu-

larly multiplications) use the most power, and that loads from memory to register use 

less power than stores from register to memory. In terms of intra-round variation, we 

confirmed that loads and stores have greater power variation than arithmetic operations. 

Unexpectedly, we observed that unconditional branches used more power than 

jump-to-subroutines, and presented hypotheses to explain this behavior.  

In the context of planning for SPA side-channel attacks on AES, we showed that an 

xor instruction in the prewhitening AddRoundKey subroutine has a 94% correlation 

with the Hamming Weight of the corresponding secret key byte, but that low signal-to-

noise ratio makes a direct key recovery difficult.   We additionally showed that the load-
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to-register instruction has a 94% correlation to Hamming Distance, but that it is also 

dependent on the Hamming Weight of the addressed memory location.    This impacts 

planning for DPA attacks on similar architectures, in that attackers should consider both 

Hamming Weight and Hamming Distance in power models targeting register writes, in 

order to reduce the number of traces required to recover a secret key. 
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