
Vulnerability Analysis of a Soft Core Processor through

Fine-grain Power Profiling

William Diehl1, Abubakr Abdulgadir2 and Jens-Peter Kaps2

1 Virginia Tech, Blacksburg VA 24061, USA
2 George Mason University, Fairfax VA 22030, USA

wdiehl@vt.edu, {aabdulga, jkaps}@gmu.edu

Abstract. Embedded microprocessors are an important component of reconfigu-

rable architectures. Fine-grain (e.g., cycle-accurate) power analysis of such pro-

cessors has been used to improve power and energy efficiency, and detect imple-

mentation vulnerabilities, in embedded applications. However, such analysis is

difficult to conduct; it requires either specialized and often expensive equipment,

or construction of test architectures using disparate acquisition and analysis tools.

In this research, we expand the Flexible Open-source workBench fOr Side-chan-

nel analysis (FOBOS) to facilitate exact time-domain correlation of clock cycle

and device state to power measurements, and to perform power analysis on a soft

core processor. We first validate the fine-grain power analysis capabilities of

FOBOS through cycle-accurate analysis of power consumption of AES encryp-

tion running on a soft core processor in the Spartan-6 FPGA. We then analyze

the results in the context of Simple Power Analysis side-channel attacks, and

confirm power correlation of certain instructions with Hamming Weight or Ham-

ming Distance of secret key bytes. Finally, we show that an assumption of a pure

Hamming Distance power model for load-to-register instructions is not sufficient

for this embedded processor architecture, and that power models using both

Hamming Distance and Hamming Weight should be considered for Differential

Power Analysis.

Keywords: Cryptography, FPGA, microprocessor, side channel, DPA, SPA

1 Introduction

Embedded processors facilitate powerful combinations of hardware and software co-

design in lightweight applications, while preserving the ability for rapid prototyping,

incremental development, and flexible reconfiguration. They are especially relevant in

architectures consisting of sensors and actuators in the Internet of Things (IoT), includ-

ing automotive, home smart-appliance, energy smart-grid, logistics, and medical appli-

cations.

The focus of this research is on one particular configuration of embedded processors

– the so-called "soft core" processor – which is often specified in a hardware descrip-

tion language (HDL), and is downloaded to an FPGA in a bitstream file. Soft core pro-

mailto:wdiehl@vt.edu

2

cessors allow inclusions of features that require flexibility in architecture, such as in-

struction set extensions (ISE) and hardware accelerators. Popular examples include

Xilinx MicroBlaze, Intel Nios II, and RISC-V.

Since embedded processors typically operate under severe resource constraints with

tight power and energy budgets, designers must investigate novel methods to achieve

low power and energy consumption. Additionally, embedded systems with soft core

processors often handle sensitive data which require cryptographic protections, such as

those specified in Federal Information Processing Standards (FIPS). However, embed-

ded processors often operate in physically insecure locations and are vulnerable to side

channel attacks, where an attacker is able to observe physical phenomena associated

with device operation (such as power fluctuations or radio frequency emissions), and

deduce the contents of sensitive variables.

In the above cases, it is important to be able to analyze processor power consumption

during operation. In particular, we seek fine-grain power analysis at short time inter-

vals, e.g., cycle-accurate analysis. Cycle-accurate power analysis facilitates optimizing

algorithms, programs, and architectures for power and energy consumption, and helps

to identify security vulnerabilities in certain instructions or conditions, which could re-

sult in leakage of information through power analysis side channel attacks. However,

cycle-accurate analysis is not trivial; it is either performed on expensive commercial

equipment outside the reach of most academic institutions, is performed using complex

customized installations that are not easily replicated, or is not performed to the level

of fidelity necessary to comprehend the data.

In this research, we apply an extension of the Flexible Open-source workBench fOr

Side-channel analysis (FOBOS), called the FOBOS Profiler, to analyze power analysis

vulnerabilities of a cryptographic application running on a soft core processor. FOBOS

Profiler enables fine-grain power analysis by correlating time-domain power acquisi-

tion (i.e., samples) to exact corresponding clock cycle and device state. The Profiler

is part of the single "acquisition to analysis" FOBOS model, with flexible open-source

software and firmware available to entry-level power analysis investigators [1].

We first validate the ability of FOBOS Profiler to analyze a large group of native

soft core instructions in an iterative routine, and then analyze vulnerabilities to power

analysis side channel attacks due to Hamming Weight and Hamming Distance depend-

encies of certain instructions. We target an AES (Advanced Encryption Standard) en-

cryption application running on a custom-designed very lightweight 8-bit soft core pro-

cessor in the Spartan-6 FPGA.

Our contributions in this work are twofold: 1) We validate a methodology based on

an open-source test bench for analyzing vulnerabilities of microprocessor instructions

to power analysis side channel attacks, and 2) We confirm correlation of certain side

channel attack vectors on Hamming Weight or Hamming Distance, and show that some

power models should incorporate both Hamming Weight and Hamming Distance in

order to better reflect dependencies on sensitive data.

3

2 Background

For many decades, researchers have sought fine-grain (e.g., instruction- or cycle-level)

granularity for measurement of power consumption, to optimize for power and energy

consumption, to design better hardware and instruction set architectures (ISA), and to

analyze potential security vulnerabilities. Given the wide-spread use of soft core pro-

cessors in reconfigurable applications, there have been many attempts to determine

their cycle-accurate power consumption in order to improve efficiency. For example,

in [2], the authors studied the effects of including instruction set extensions (ISE) in an

FPGA implementation of a MicroBlaze soft core processor, and in [3], the authors in-

vestigated power consumption in soft core multiprocessor applications through the use

of a simulation tool using power models described in SystemC. In these cases, proces-

sor power measurements were performed in simulation, but not in actual hardware.

Cycle-accurate power analysis can also be used to determine security vulnerabilities

in physical cryptographic implementations, which can leak information through power

analysis side channel attacks. Examples of these attacks include Simple Power Analysis

(SPA) and Differential Power Analysis (DPA). In SPA, the attacker observes the am-

plitude of power spikes associated with operations or sensitive variables, and draws

conclusions on the type of operation or value of sensitive operands. For example, in

[4], the authors attack smart card implementations of microprocessors by noting two

types of correlations: 1) Hamming Weight (HW), based on the number of bits set to 1

in a given operation, and 2) Hamming Distance (HD) (or “transition counts”), based on

the number of bits which change during an operation. The authors note that knowing

all HW of key bytes reduces key search space, e.g., from 256 to 240 for DES.

In the above attacks, identification of sensitive values requires directly associating

HW or HD to the amplitude of a sensitive operand. In fact, the requirements for such

an attack are 1) access to the power consumption of the device in operation; 2) the

ability to identify individual clock cycles; and 3) a direct relation between power and

HW or HD [5]. While theoretically this requires only a few power traces, in practice

SPA is difficult, because the differences in dynamic power corresponding to different

HW or HD are small, and getting smaller with reduction of technology feature size and

VCC. Therefore, the trend for power analysis attacks over the last decade has been to-

ward Differential Power Analysis (DPA).

In DPA, described in [6], the attacker measures small power changes that take place

at a targeted attack point based on changes in known and unknown variables. A power

model is used to hypothesize the contents of the sensitive variable, and multiple power

observations (e.g., traces) are collected during cipher operation to statistically correlate

secret key bytes. DPA is more powerful than SPA, because an attacker 1) does not

need to know as much about architecture, and 2) using statistical properties, can over-

come reduced signal-to-noise ratio (SNR) [4]. However, developing a correct power

model is not trivial, and often requires extended trial-and-error to develop the correct

model.

In fact, fine-grain power analysis can assist in conducting more efficient DPA at-

tacks, by 1) extracting feature points on which to focus DPA attacks, and 2) determining

or verifying the dependence of a particular attack point on a particular power model,

4

e.g., HW or HD [7]. One example of this type of analysis is [8], where the authors

attempt to automatically insert DPA countermeasures into microcontroller software im-

plementations of cryptographic algorithms. Their procedure begins with reconnais-

sance of assembly instructions most vulnerable to DPA by analyzing cycle-level power

and computing measures of information leakage. However, their vulnerability metrics

are based on mutual information analysis, and are not designed to demonstrate HW or

HD dependencies.

Additionally, in [9], the authors measure instruction-level power differences in Intel

x86 architecture processors with the goal of discovering the instructions with the great-

est side channel vulnerabilities. However, their methods are designed to detect vulner-

abilities due to non-constant time execution; they are not suitable for identifying HW

or HD power analysis side-channel vulnerabilities.

In summary, given the large variety of embedded processors, the ability to conduct

fine-grain power analysis during design and prototyping is paramount to the achieve-

ment of secure and efficient reconfigurable implementations.

3 Methodology

3.1 FOBOS

In this research, we employ the Flexible Open-source Board fOr Side-channel analysis

(FOBOS) to conduct fine-grain power measurements. FOBOS is a side-channel analy-

sis (SCA) platform which provides a comprehensive SCA toolset from trace acquisition

to analysis [1]. It uses commercial off-the-shelf FPGA boards (e.g., Digilent Nexys-3)

to lower cost which is crucial for educational uses. The software is released as open-

source and written in Python to facilitate portability to different operating systems.

3.2 FOBOS Hardware

As shown in Fig. 1, FOBOS is composed of two FPGA boards. The control board re-

ceives test vectors from the control PC, stores them temporarily in FIFOs, and forwards

data to the DUT (device under test) board, on which the victim implementation is in-

stantiated. It also triggers an oscilloscope to start capturing the power consumption of

the DUT.

The DUT board includes a wrapper to handle communication with the control board.

This wrapper stores received data into different FIFOs depending on the data type. The

DUT wrapper in this research is customized to interface with the soft core processor

(described below).

Randomly-generated test vectors are stored in dinFile.txt (in the host PC), and

fed through the dinFIFO to soft core data RAM through the soft core extdin inter-

face. The user program, pre-stored in the FOBOS wrapper, is loaded on cue into pro-

gram RAM through the extprogin interface. Upon completion of processor opera-

tions, data RAM contents are dumped through the extdout interface, through dout-

FIFO and are collected in doutFile.txt in the host PC.

5

Fig. 1. FOBOS Hardware Architecture

3.3 FOBOS Software

FOBOS software is composed of two major modules – the acquisition module and the

analysis module. The PC-based acquisition module reads test vectors from a file and

sends one vector at a time to the control board, which forwards it to the DUT. The DUT

runs the cryptographic operation and returns the result to the control board which re-

turns it the PC-based acquisition module. The power traces are collected from the os-

cilloscope and saved in a file. Software scripts in the analysis module can be used to

mount SCA on the traces collected by the acquisition module (e.g., Correlation Power

Analysis), or to conduct fine-grain power analysis using FOBOS Profiler.

3.4 FOBOS Power Measurement

FOBOS measures device power consumed by the Spartan-6 1.2V bus, e.g., VCCINT, by

measuring voltage across a 1Ω shunt resistor. Voltage is amplified by a TI INA225

amplifier, recorded in an oscilloscope, and offloaded to the attached PC for post-run

power computation. Power measurements are recorded at discrete time intervals cor-

responding to sample rate. Our current FOBOS installation uses the Agilent (Keysight)

Technologies DSO6054A Oscilloscope, with a 4 Gsa/s sampling rate, and computes

about 20,000 samples per trace. 100 test vectors, consisting of random input data gen-

erated in software, are used to generate power traces

6

3.5 FOBOS Profiler

We require the ability to map power trace samples to the exact clock cycles, in order to

know state of the DUT at any specific sample. "FOBOS Profiler" is a set of scripts that

map specific time domain events (e.g., clock cycle) to the power samples in traces col-

lected from the oscilloscope. This enables the ability to: 1) Determine the exact clock

cycle for information leakage (e.g., t-test); 2) Relate power consumption spikes to DUT

state, executed instruction, or data being processed; and 3) Cycle-accurate power pro-

filing.

Once the DUT starts a cryptographic operation, it deasserts a specific signal

di_ready which the control board detects. The control board triggers the oscilloscope

immediately when receiving this signal, or after this event by any number of clock cy-

cles. The trigger signal is kept high for a user-specified number of clock cycles, or until

the DUT finishes its operation. These trigger features are necessary to provide the ref-

erence point for mapping the clock number to time (sample number) in the trace. The

acquisition module truncates the trace and aligns it in the time domain using the trigger

signal as a reference.

Users generate a file that maps the internal state of the DUT to clock cycles. This

"state file" can be generated by modifying an HDL test bench to write a value corre-

sponding to each state to a file, or by an external simulation utility. The profiler script

uses the state file and the power traces, and reports (in graphic or textual format) clock

transitions and device states at any clock cycle.

FOBOS Profiler has been used to pin-point sources of remaining information leak-

age in an FPGA implementation of an authenticated cipher protected with DPA coun-

termeasures [10], and publicly demonstrated in [11]. In this research, we adapt this tool

to perform cycle-accurate power analysis of a soft core processor.

3.6 Custom soft core microprocessor

We demonstrate cycle-accurate power analysis on a custom-designed 8-bit reconfigu-

rable microprocessor. This lightweight Reduced Instruction Set Computer (RISC) has

only 30 native instructions, has separate 8-bit instruction and data buses in a Harvard

Architecture, and is a pure load-store architecture. Most instructions execute in one

clock cycle, however, some ALU instructions execute in two cycles. The ALU is de-

signed for the easy insertion of user-defined ALU instructions that require no modifi-

cation of the finite state machine logic. This feature is used to implement the instruction

set extensions necessary for single-cycle Galois Field (GF) multipliers gf2 and gf3

instructions) used by the AES block cipher in this research.

The processor has optimizations for cryptographic block ciphers, such as single-cy-

cle increment (inc), decrement (dec), exclusive or (xor), and table substitutions

(trf, e.g., for an S-Box substitution). The user can instantiate up to 4K of program

RAM, 64K of data RAM, and 1K of table ROM (i.e., four 256-byte look up tables).

Memory is implemented as distributed RAM, and is instantiated at synthesis time. The

amount of memory instantiated, based on the required number of bytes (req_bytes), is

computed as 2⌈𝑙𝑜𝑔2𝑟𝑒𝑞_𝑏𝑦𝑡𝑒𝑠⌉.

7

This processor is evaluated in [12] and documented at [13].

3.7 AES implementation

AES (Advanced Encryption Standard) is the U.S. federal and defacto worldwide stand-

ard for symmetric block ciphers as defined in [14]. AES-128 uses a 128-bit key, en-

crypts (or decrypts) 128-bit blocks of plaintext (or ciphertext), and consists of 10

rounds. There are four transformations which occur on a state defined as a 4×4 matrix

of bytes.

The SubBytes transformation introduces non-linearity through a one-to-one byte

substitution. SubBytes is often rendered as 16 8-bit S-Boxes which can be implemented

in look-up tables. The ShiftRows transformation performs a permutation on the state

word, where the 𝑖𝑡ℎ row is rotated left by 𝑖 bytes for rows 0 through 3. The MixCol-

umns transformation is equivalent to multiplication of each column of the state by a

4×4 matrix of constants in GF(28). The MixColumns transformation is skipped in the

final round. In the AddRoundKey transformation, a 128-bit round key is added to the

state by a bitwise xor operation.

We use the AES encryption application as described in [12] and available at [13],

which is written in native assembly code for this custom processor, and computes round

keys on-the-fly. It uses only 396 program bytes, 56 data bytes, and 256 table bytes, and

therefore fits into a soft core instantiated with 512 bytes of Program RAM, 64 bytes of

Data RAM, and 256 bytes of Table ROM. The soft core processor using the above

resources, when implemented in the Spartan-6 (xc6slx16csg324-3) FPGA, requires 100

combinational logic block (CLB) slices, 337 look up tables (LUTs), 75 flip flops, and

has a maximum frequency of 103.6 MHz.

The iterative design of this AES implementation is shown in Fig. 2. Cycle-accurate

power analysis (discussed in "Results") is performed on rounds one through nine, and

Hamming Weight and Distance analysis is performed on the prewhitening stage.

Fig. 2. AES Encryption with Iterative Round Structure

8

4 Results

4.1 Cycle-accurate analysis of AES rounds

This implementation of AES requires 14,329 clock cycles. Power analysis is conducted

on nine rounds consisting of 1452 clock cycles each. The first nine rounds of this im-

plementation are identical; the 10th round lacks a MixColumns transformation, and is

omitted. Power samples are gathered at 20 MHz externally generated clock frequency

at an ambient temperature of 22.5 °C. Analysis is conducted on 100 traces using ran-

domly-generated key and plaintext, with 18,151 samples per trace, for an average of

12.5 samples per clock cycle.

Results for all instructions used in rounds 1 - 9 are shown in Table 1, where "(2)"

denotes the second cycle of a two-cycle instruction. The average intra-round and inter-

round variations are 1.4% and 0.13% of average mean power, respectively. This shows

that power fluctuations due to changing conditions are very small, but that conditions

are remarkably stable from round-to-round, confirming minimal error and excellent

trace-to-trace sample alignment.

Table 1. Mean power and standard deviation of AES instructions.

Mean Power Standard Deviation

Instr mW Instr mW Instr mW Instr mW

gf2 10.015 jmp(2) 9.874 jsr(2) 0.230 jmp 0.126

gf2(2) 10.008 lds 9.873 jsr 0.212 jmp(2) 0.120

gf3 9.949 mvi(2) 9.864 mvi(2) 0.190 bzi 0.114

gf3(2) 9.932 inc 9.861 mvi 0.187 ret 0.110

dec 9.894 mvi 9.861 ret(2) 0.186 bzi(2) 0.110

bzi 9.885 ret(2) 9.848 lds 0.176 trf 0.102

jmp 9.882 ret 9.835 inc 0.167 gf3(2) 0.090

xor 9.880 trf 9.795 sts 0.157 gf3 0.072

sts 9.880 jsr 9.744 xor 0.141 gf2 0.071

bzi(2) 9.879 jsr(2) 9.736 dec 0.136 gf2(2) 0.061

Results show that the ALU instructions for Galois Field multiplication, gf2 and

gf3, use the highest power. This confirms previous results (e.g., [15]) that ALU in-

structions tend to use higher power, with multiplication in particular being a high power

consumer. The dec instruction uses more power than inc, and loads (i.e., lds) use

less power than stores (i.e., sts) which also mirrors results in [15]. The bzi (branch

on zero immediate) instruction uses higher power than jmp, despite similar construc-

tion, due to additional decision logic (in this architecture, comparisons occur and con-

dition flags are set during arithmetic operations).

One unexpected result is that jsr (jump to subroutine) uses, on average, less power

than jmp (branch unconditional). Intuitively, we expect jsr to use more power, since

this instruction requires storing a return address on the stack, decrementing the stack

pointer sp), and updating the program counter (pc), whereas jmp only requires updat-

9

ing pc. However, jsr has the highest intra-round standard deviation among instruc-

tions, and there is a 700 μW difference (7% of the average power of jsr – 9.744 mW)

among the 12 occurrences of jsr in each round. Seven of the jsr instances have

higher power than the mean power of jmp, so it remains to explain why some jsr

instances have much lower power. An analysis of HW of the target pc shows that the

higher the HW, the higher the power. Within groups of the same HW, there are also

differences of sp, where sp=0xFF appears to draw more power than sp=0xFD. Ad-

ditionally, within groups of the same HW of target pc, a preceding instruction of

ret(2) (return from subroutine – 2nd cycle) appears to draw more power than a pre-

ceding sts instruction. An analysis of control signals in the finite state machine (FSM)

controller shows that 12 control bits toggle from ret(2) to jsr, while only ten con-

trol bits flip from sts to jsr. In summary, multiple influences combine to determine

instruction power, and one must examine the exact architecture of control logic in order

to determine the influence of each component; not just register and memory writes in

the datapath.

In terms of intra-round standard deviation, average powers of data loads and stores

(i.e., lds and sts) vary more widely than average powers of arithmetic instructions.

In particular, gf2 and gf3 have the lowest standard deviations. This supports the

conclusions of [8], that loads and stores have higher vulnerabilities to side channel at-

tack than ALU instructions. However, where as many sources in literature target

substitution boxes (S-Boxes) of block ciphers as attack points, we note that the trf

(transformation) instruction, which computes a one-to-one eight-bit mapping (such as

an AES S-Box), has one of the lowest average powers and lowest intra-round standard

deviations. This infers a higher difficulty of using the S-Box as DPA attack point in

this FPGA architecture and implementation.

4.2 Analysis of SPA based on Hamming Weight (HW)

We next determine the feasibility of using cycle-accurate power analysis to conduct a

side channel attack using SPA. In this research, we analyze the xor instruction, which

occurs during the AddRoundKey transformation in the first round. This is often called

a "prewhitening" transformation, and uses the original secret key bytes 𝑘𝑖 prior to gen-

eration of round keys. By selecting a chosen plaintext of 0128, we can analyze the in-

struction xor r2, r3, which translates to 𝑟3 = 𝑟2⨁𝑟3, where 𝑟2 = 0 and 𝑟3 =
𝑘𝑖∈{0,1,…,15}. Our motivation for conducting an SPA attack based on HW of secret key

bytes is discussed in [4,5], where recovery of HW can reduce key search space from

2128 to 290.

Results in Table 1 show that xor has a relatively high average power and intra-

round variation. Additionally, analysis in [16] showed that xor power consumption

has a near linear variation with HW. In order to conduct a 1st round SPA attack on

AES using the relation 𝐻𝑊(0⨁𝑘𝑖) = 𝐻𝑊(𝑘𝑖), we first determine if an xor depend-

ence on HW holds for this implementation on this FPGA. We construct a loop to cycle

through all 28 = 256 possible values of a key byte ki accessed by xor, and measure

resulting power consumption over 100 averaged traces with identical operands. Results

10

of HW analysis of the last 64 bytes 0xC0 to 0xFF, shown in Fig. 3, indicate a 94%

correlation of measured average power with theoretical HW.

Fig. 3. Correlation of measured power at 1 MHz clock frequency (solid) to Hamming Weight

(HW) of operand (dashed) for xor instruction. Mean power depicted on left (in Watts); HW of

operand is on right.

However, attempts to recover actual HW of unknown key bytes are complicated by

non-constant variables and noise sources. For example, during each execution of xor,

pc is updated as 𝑝𝑐 = 𝑝𝑐 + 1. The differences of power due to addition and register

storage create conditions which are difficult to analyze. Additional sources of noise

include fluctuations of temperature and air flow over the FPGA, radio frequency noise,

amplifier distortion in the FOBOS architecture (at low frequencies), and attenuation of

high frequency signals by the RCL network in the victim FPGA itself (at high frequen-

cies).

Attempts to recover two key strings, Test Vector (TV) TV1: {0xEB, 0x97, 0xC4,

0xA0, 0x92, 0xB5, 0xA7, 0xF1}, and TV2: {0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F,

0x7F, 0xFF}, are shown in Fig. 4 left and right, respectively. TV1 is arbitrarily chosen,

and TV2 is in order of increasing HW. To compensate for the variance in power due to

pc update, we first measure reference test vectors with minimum HW (0128) (i.e., the

bottom lines), and maximum HW (1128) (i.e., the top lines), and then compare to the test

vector (TV) consisting of secret key bytes (i.e., the middle lines). Results show close

correlation of HW to corrected average power levels for each instance of xor, however,

differences in HW amplitude levels are only about 10 μW (measured at 1 MHz with

200 V/V amplification). In these two test vectors, results are often off by one or more

HW levels. As such, reliably identifying HW of secret key bytes on this architecture at

this frequency remains challenging.

11

Fig. 4. Measured power of minimum HW reference (bottom), maximum HW reference (top),

and test vector (TV) with actual HW of each byte (middle); TV1 shown at left, and TV2 shown

at right. Power in mW is shown on y-axis.

4.3 Analysis of SPA based on Hamming Distance (HD)

There are other instructions on which an SPA attack could be conducted. One example

is lds r1, r3 (load to register) which occurs immediately before xor r2, r3.

Here, r1 is the index to consecutive memory addresses in which key bytes are stored,

and r3 is the register into which successive key bytes are loaded. As discussed in

[4,7,17], power consumption of data loads from memory to registers typically varies

with HD. If we could combine a power correlation based on 𝐻𝐷(𝑟3′ , 𝑟3), where 𝑟3′ is

the previous register contents, and 𝑟3= 𝑘𝑖 ∈{0,1,…,15}, with a correlation based on

𝐻𝑊(𝑘𝑖∈{0,1,…,15}), we could further reduce key search space for a brute-force attack. In

fact, we perform Monte Carlo simulations to show that key search space is reduced

from 290 to 270. While a search space of 270 is still computationally intensive, it is far

less than the minimum attack resistance strength of 2112 recommended in [18]. As be-

fore, our first task is to demonstrate a HD correlation for register loads.

To show an lds dependence on HD, we loop through all 256 possible operands and

measure resulting power. While we note a distinct HD correlation, power measure-

ments are biased in a linearly increasing trajectory; the amplitudes of differences be-

tween maximum HD and minimum HD are clearly distinguishable, but increase line-

arly with each instruction occurrence. We hypothesize that the bias is proportional to

a HW of at least one operand, and generate a corrected set of power results by subtract-

ing the differential bias equal to (𝑃𝑚𝑎𝑥𝐻𝑊 − 𝑃𝑚𝑖𝑛𝐻𝑊)/8 ∗ 𝐻𝑊(𝑖𝑛𝑑𝑒𝑥), where "index"

is the memory address index in r1. The results for 64 indices 0xC0 to 0xFF shown in

Fig. 5 confirm a 94% correlation between measured average power and 𝐻𝐷(𝑟3′ , 𝑟3).

12

Fig. 5. Correlation of corrected power measurements of lds instruction (solid) to Hamming

Distances 𝐻𝐷(𝑟3′ , 𝑟3) (dashed) at 1 MHz clock frequency. Values of 𝑘𝑖 written to 𝑟3 by lds

r1, r3 are shown on the x-axis, where previous contents of 𝑟3 (𝑟3′) are computed as 𝑟3′ =
𝑟3 − 1.

It remains to confirm the source of the HW bias. One might assume that the HW

bias is proportional to the value being loaded from memory to the register r3. To test

this hypothesis, we measure power on test vectors where memory contains all zeroes.

The results, shown in Fig. 6, refute this hypothesis, since the HW bias clearly remains.

In fact, the bias is proportional to the value in the index register r1, which is incre-

mented at each iteration. This supports the observations of [4], where relatively large

power fluctuations are observed depending on values asserted on memory address

buses. Our attempts to remove the HW bias are likewise depicted in Fig. 6, and show

that, even after applying a linear bias correction, a significant source of noise remains

in corrected power measurements that hampers our ability to form HD correlations

based on secret key bytes. The removal of HW bias could be improved through exact

modeling of this bias (including high-order polynomial or non-linear fittings), filtering

using signal processing techniques, and experimentation with different frequency and

amplification settings.

13

Fig. 6. Power measurements for lds r1, r3 for r3 operands with zero Hamming Distance.

Hamming Weight (HW) bias due to memory index in r1 shown in top line, and attempted removal

of HW bias shown in bottom line.

Thus the power consumed by the load-to-register instruction depends on both HD

and HW. This has important implications for development of power models used in

DPA attacks. Many documented DPA attacks (a recent example is [19]) assume a

purely HD power model for attacks targeting registers. However, our analysis hypoth-

esizes that a model employing both HW and HD, e.g., 𝑓(𝐻𝑊(𝑟1), 𝐻𝐷(𝑟3′ , 𝑟3)), could

recover a secret key using fewer traces in a DPA attack; this hypothesis will be evalu-

ated in future work.

5 Conclusion

In this research we demonstrated the fine-grain power analysis capabilities of the Flex-

ible Open-source workBench fOr Side-channel analysis (FOBOS) Profiler through

analysis of AES encryption software running on a custom soft core processor in a Spar-

tan-6 FPGA. Through cycle-accurate power analysis of AES rounds, we demonstrated

excellent round-to-round power measurement stability and trace-to-trace sample align-

ment. We also confirmed the relatively high intra-round power variations of loads and

stores, likely due to data dependence, which suggests the construction of power analysis

attacks targeted at these instructions. We showed that arithmetic instructions (particu-

larly multiplications) use the most power, and that loads from memory to register use

less power than stores from register to memory. In terms of intra-round variation, we

confirmed that loads and stores have greater power variation than arithmetic operations.

Unexpectedly, we observed that unconditional branches used more power than

jump-to-subroutines, and presented hypotheses to explain this behavior.

In the context of planning for SPA side-channel attacks on AES, we showed that an

xor instruction in the prewhitening AddRoundKey subroutine has a 94% correlation

with the Hamming Weight of the corresponding secret key byte, but that low signal-to-

noise ratio makes a direct key recovery difficult. We additionally showed that the load-

14

to-register instruction has a 94% correlation to Hamming Distance, but that it is also

dependent on the Hamming Weight of the addressed memory location. This impacts

planning for DPA attacks on similar architectures, in that attackers should consider both

Hamming Weight and Hamming Distance in power models targeting register writes, in

order to reduce the number of traces required to recover a secret key.

References

1. CERG, "Flexible Open-source workBench fOr Side-channel analysis (FOBOS)", Oct. 2016,

Internet: https://cryptography.gmu.edu/fobos/ [Accessed on Feb. 9, 2019].

2. P. Biswas, S. Banerjee, N. Dutt, P. Ienne and L. Pozzi, "Performance and Energy Benefits

of Instruction Set Extensions in an FPGA Soft Core", VLSID'06, Jan. 2006.

3. Z. El Hariti, A. Alali and M. Sadik, "Virtual Platform for Modeling the Power Consumption

of a Soft-core Processor by the SystemC/TLM", 2018 4th International Conference on Op-

timization and Applications (ICOA), Apr. 2018, pp 1 – 4.

4. T. Messerges, E. Dabbish and R. Sloan, "Examining Smart-card Security Under the Threat

of Power Analysis Attacks", IEEE TCOM, vol. 51, May, 2002, pp. 541 – 552.

5. L. Xiao and H. Heys, "A Simple Power Analysis Attack against the Key Schedule of the

Camellia Block Cipher", Information Processing Letters, vol. 95, 2005, pp. 409 – 412.

6. P. Kocher, J. Jaffe, B. Jun and P. Rohatgi, "Introduction to Differential Power Analysis",

Journal of Cryptographic Engineering, vol. 1, Apr. 2011, pp. 5 –27.

7. D. Roy and D. Mukhopadhyay, "Security of Crypto IP Core: Issues and Countermeasures",

Fundamentals of IP and SoC Security: Design, Verification, and Debug, 2017, pp. 67 –114.

8. A. Bayrak, F. Regazzoni, P. Brisk, F. X. Standaert and P. Ienne, "A First Step Towards

Automatic Application of Power Analysis Countermeasures", IEEE DAC, Jun. 2011, pp.

230 – 235.

9. R. Callan, A. Zajic and M. Prvulovic, "A Practical Methodology for Measuring the Side-

Channel Signal Available to the Attacker for Instruction-Level Events", 47th Annual

IEEE/ACM International Symposium on Microarchitecture, Dec. 2014, pp. 242 – 254.

10. W. Diehl, F. Farahmand, A. Abdulgadir, J.P. Kaps and K. gaj, "Fixing the CLOC with Fine-

grain Leakage Analysis", ASHES 2018, Oct. 2018, pp. 75 – 80.

11. A. Abdulgadir, W. Diehl, R. Velegalati and J.P. Kaps, "Flexible, Opensource workBench

fOr Side-channel analysis (FOBOS)," IEEE HOST 2018 Hardware Demo, May 2018, Inter-

net: http://www.hostsymposium.org/host2018/hwdemo/HOST_2017_hwdemo_5.pdf [Ac-

cessed on Feb. 9, 2019].

12. W. Diehl, F. Farahmand, P. Yalla, J. P. Kaps and K. Gaj, "Comparison of Hardware and

Software Implementations of Selected Lightweight Block Ciphers", 27th International Con-

ference on Field Programmable Logic and Applications (FPL), Sep. 2017, pp. 1 – 4.

13. W. Diehl, "SoftCore", Dec. 2016, Internet: https://github.com/willja001/SoftCore [Ac-

cessed Feb. 9, 2019].

14. Federal Information Processing Standards Publication 197, "Advanced Encryption Standard

(AES)", 2001.

15. C. Cernazanu-Glavan, M. Marcu, A. Amaricai, S. Fedeac, M. Ghenea, Z. Wang, A. Chatto-

padhyay, J. Weinstock and R. Leupers, "Direct FPGA-based Power Profiling for a RISC

Processor", IEEE I2MTC, May. 2015, pp. 1578 – 1583.

16. J. Park, H. Lee, J. Ha, Y. Choi, H. Kim and S. Moon, "A Differential Power Analysis Attack

of Block Cipher based on the Hamming Weight of Internal Operation Unit", International

Conference on Computational Intelligence and Security, vol. 2, Nov. 2006, pp. 1375 – 1380.

15

17. A. Heuser, S. Picek, S. Guilley and N. Mentens, "Lightweight Ciphers and their Side-chan-

nel Resilience", IEEE Transactions on Computers, 2017.

18. National Institute of Standards and Technology, "Submission Requirements and Evaluation

Criteria for the Lightweight Cryptography Standardization Process", Aug. 2018.

19. L. Mazur and M. Novotny, "Differential power analysis on FPGA board: Boundaries of

Success", 6th Mediterranean Conference on Embedded Computing (MECO), Jun. 2017, pp.

1 – 4.

