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Abstract. The Minrank (MR) problem is a computational problem
closely related to attacks on code- and multivariate-based schemes. In
this paper we revisit the so-called Kipnis-Shamir (KS) approach to this
problem. We extend previous complexity analysis by exposing non-trivial
syzygies through the analysis of the Jacobian of the resulting system,
with respect to a group of variables. We focus on a particular set of
instances that yield a very overdetermined system which we refer to as
“superdetermined”. We provide a tighter complexity estimate for such
instances and discuss its implications for the key recovery attack on
some multivariate schemes. For example, in HFE the speedup is roughly
a square root.
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1 Introduction

The post-quantum cryptography initiative emerges in response to Shor’s factor-
ing algorithm [25], to identify quantum hard problems to support cryptographic
constructions. This major endeavor has come to a climax in recent years with
NIST’s ongoing post-quantum “competition.”

One central problem is the Minrank problem (MR). Its decisional version is,
given m matrices M1,M2, . . . ,Mm ∈ Mn×n(F), and a target rank r, to deter-
mine whether there exists a linear combination of these matrices with rank at
most r. It is important both in multivariate public key cryptography [4, 21, 23,
26], and in code-based cryptography [19]. Buss et al. first introduced the MR
problem and proved it NP-complete [3]. In the context of cryptography, MR
first appeared as part of an attack against the HFE cryptosystem by Kipnis
and Shamir [21]. There are three well known approaches to solve the Minrank
problem, namely, Kipnis-Shamir (KS), minors [16], and linear algebra search
[20].
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The complexity of the minors approach and of the linear algebra search are
well understood. However, the complexity of the KS approach is not so clear. In
[16], the authors assume that a generic instance of KS yields a “generic enough”
bilinear system (see Section 2.2), and under this assumption, using the results
in [17], they estimate the solving degree at d = min(m, r(n − r)) + 1 and so

the complexity of KS as O
((
m+r(n−r)+d−1

d

)ω)
, with 2 ≤ ω ≤ 3. Experimental

evidence shows that this estimate wildly overestimates the true solving degree
[4].

An important technical contribution of this paper is to show that the assump-
tion that the KS system is generic bilinear is unrealistic. The system is indeed
bilinear in two sets of variables that we call the linear variables and the kernel
variables. However, we expose the structure in the system beyond bilinearity.
It can be seen as having a sequence of generic bilinear blocks. Such a structure
implies that the Jacobians with respect to the linear and kernel variables have
particular forms. This is important because left kernel vectors of the Jacobian
are syzygies. Thus, through the Jacobian with respect to the linear variables,
we show how to construct some non-trivial syzygies, yielding non-trivial degree
falls.

The degree of these syzygies suggests a crucial distinction between two cases
of the MR problem. If m > nr, these syzygies typically have degree r + 2.
However, if m < nr, we can construct a number of lower degree syzygies. We
refer to instances where m < nr as “superdetermined.” This property applies
to several multivariate schemes and it is in contrast to instances of the minrank
problem that occur in other contexts, like rank-based cryptography.

The exposed structure of the KS system leads to tighter complexity estimates
for the superdetermined MR instances. Using the XL algorithm and multiplying
only by monomials from kernel variables, the complexity of solving uniformly
random instances of KS systems is O

(
(rκ)(dKS+2)ω

)
, where 2 < ω ≤ 3,

dKS = min

{
d |
[(
r

d

)
n >

(
r

d+ 1

)
m

]
, 1 ≤ d ≤ r − 1

}
,

and κ can be chosen so that max
{

m
n−r , dKS + 1

}
≤ κ ≤ n−r. This is much lower

than previous estimates. For example, if m = n and r <
√
n, then dKS ≤ r/2+1,

and we can choose κ =
√
n, so that, rκ < n, and hence, our complexity estimate

is O(n(r/2)ω), compared to O(nrω) from previous estimates, c.f. [1].
Since a key recovery attack based on the MR problem can be performed on

several multivariate schemes, we revise the complexity of the KS method for
some multivariate schemes such as HFE, ZHFE, and HFEv-. The speedup in
each case depends on the ratio of m to n and on the relation between n and r.
For example, in HFE the speedup is roughly a square root.

The paper is organized as follows. In Section 2 we present background ma-
terial. In Section 3 we describe the structure of the KS system. In Section 4 we
provide the main results of the paper, including the construction of the syzygies.
In Section 5 we revise the complexity of the KS method based on the new find-
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ings. In Section 6 we provide some experimental data supporting the theoretical
results. Finally, in Section 7 we discuss the implications of our findings for some
multivariate schemes.

2 Preliminaries

2.1 Solving Multivariate Systems of Equations

Let F be a finite field, and consider the polynomial system F = a, where a is
an element in the image of F = (f1, . . . , fm) : Fn → Fm, and the fi’s are multi-
variate polynomials in the unknowns x1, . . . , xn, with coefficients in F. The first
effective algorithm for solving nonlinear multivariate systems did so by comput-
ing a Gröbner basis for the ideal generated by the equations [2]. Since the late
90s, however, far superior algorithms have been developed such as Faugère’s F4
and F5 [14, 15], and the XL family of algorithms inspired by [22] and popularized
in [6, 21].

The XL algorithm simply computes an echelon form of the Macaulay matrix
in degree d of F for high enough d. This is the matrix whose columns represent
the monomials of degree at most d with rows representing each polynomial of
degree less than or equal to d of the tfi, where t is a monomial. It can be shown
that there exists some degree d such that this echelon form is a Gröbner basis of
the ideal. The algorithms F4 and F5 are similar but more efficient in removing
redundant rows a priori. The first fall degree dff is the smallest degree such
that some polynomial drops in degree after echelonizing the Macaulay matrix.
It is widely accepted that dff is a good parameter to measure the complexity of
solving polynomial systems [10–13]. The reason is that often the solving degree
is not much larger than the first fall degree. Our experiments confirm this is the
case for KS systems, as shown below in Section 6.

2.2 Bilinear Systems

Consider two tuples of unknows x = (x1, x2, . . . , xn1) and y = (y1, y2, . . . , yn2).
Let F[x,y] denote the ring of multivariate polynomials with coefficients in F
and variables x1, x2, . . . , xn1

, y1, y2, . . . , yn2
. A bilinear polynomial f(x,y) is a

quadratic polynomial in F[x,y] which is affine in each set of variables. If we can
write f(x,y) = x>Ay for some A ∈ Mn1×n2(F), we say f is a homogeneous
bilinear polynomial.

Throughout this work, sequences of polynomials are considered as column
vectors of polynomials. Suppose fi ∈ F[x,y] is a bilinear polynomial for i =
1, 2, . . . ,m. The sequence F = (f1, f2, . . . , fm) is called a bilinear sequence on
F[x,y]. In the particular case when each fi is also homogeneous, we say F is a
homogeneous bilinear sequence on F[x,y].

Definition 1. Given a sequence F = (f1, f2, . . . , fm) on F[x,y], the Jacobian of

F with respect to the set x, is given by jacx(F) =
[
∂fi
∂xj

]
1≤i≤m,1≤j≤n1

. Likewise

we define jacy(F), the Jacobian of F with respect to the set y.
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When F is a bilinear sequence, each entry of jacx(F) (resp. jacy(F)) is a
linear form in the y (resp. x) variables. A syzygy of F is a sequence G =
(g1, g2, . . . , gm) ∈ F[x,y]m such that

∑m
i=1 gifi = 0.

Proposition 1. Let F = (f1, f2, . . . , fm) be a homogeneous bilinear sequence
on F[x,y]. Suppose G = (g1, g2, . . . , gm) is a sequence on F[y], then

m∑
i=1

gifi = 0 (1)

if and only if G> belongs to the left-kernel of jacx(F).

Proposition 2. Suppose that F is a homogeneous bilinear sequence on F[x,y].
If a sequence G on F [x] is a syzygy of F , then G is not a trivial syzygy 4.

2.3 Minrank Problem

One complexity theoretic problem related to the hardness of solving certain
multivariate systems is the MinRank (MR) problem. The computational MR
problem can be stated as follows.

Problem 1 (MinRank (Search Version)) Given a positive integer r, and
m matrices M1,M2, . . . ,Mm ∈ Ms×t(F), find x1, x2, . . . , xm ∈ F such that
Rank (

∑m
`=1 x`M`) ≤ r.

The decisional version of the MR problem is known to be NP -complete even
if we insist that s = t = n, see [3], and seems difficult in practice. There are
three main methods in the literature for solving the MR problem, Kipnis-Shamir
modeling, minors modeling [1] and linear algebra search [20].

Introduced by Kipnis and Shamir in [21], the KS method stands on the
following fact: if p < n, M ∈Mn×n(F), K ′ ∈Mn×p(F) has rank p and MK ′ =
0, then Rank(M) ≤ n − p. Thus, the MR problem can be solved by finding
x1, . . . , xm, k1, . . . , kr(n−r) ∈ F such that(

m∑
`=1

x`M`

)[
In−r
K>

]
= 0, (2)

where

K =

 k1 k2 · · · kr
...

...
. . .

...
kr(n−r−1)+1 kr(n−r−1)+2 · · · kr(n−r)

 (3)

and In−r is the identity matrix of size n − r. If there exists a matrix in the
span of the Mi’s such that its column space is generated by its r rightmost
columns, then the system (2) has a solution. This system is bilinear in the

4 For a formal definition of a trivial syzygy see [13].
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variables x = (x1, . . . , xm) and the unknown entries k = (k1, k2, . . . , kr(n−r)) of
K. Throughout this work we will refer to the first group as the linear variables,
and to the second one as the kernel variables. Therefore, (2) can be seen as a
bilinear system of n(n− r) equations in m+ r(n− r) variables. The complexity
of solving this kind of system has been studied by Faugère et al. in [16, 17]. They
upper bound the complexity of KS modeling by that of solving a generic bilinear
system with n(n − r) equations, where one group of variables has m elements
and the other has r(n− r) elements. In that case, the given bound is

O

((
m+ r(n− r) + min(m, r(n− r)) + 1

min(m, r(n− r)) + 1

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant.

3 The Structure of the KS System

In this section we describe the basic structure of the system given in (2). First,
in Section 3.1, we show that such a matrix equation can be seen as a set of n− r
chained bilinear subsystems, where each subsystem has generic quadratic part
and linear part involving only the x varibles. Then, in Section 3.2, we describe
the Jacobian of the system with respect to the kernel variables. We show that
if a KS instance F is chosen uniformly at random, then, with high probability,
the syzygies of F that only involve linear variables have degree at least r.

3.1 KS and Bilinear System

Set M =
∑m
`=1 x`M`, where each M` ∈Mn×n(F). Let M(i,j) and M`,(i,j) denote

the (i, j) entry of the matrices M and M`, respectively. Under this setting, the

(i, j) entry of M ·
[
In−r K

]>
is given by the polynomial

f
(i)
j =

r∑
t=1

M(i,n−r+t) · k(j−1)r+t +M(i,j) ∈ F[x,k], (4)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n − r, and k(t−1)r+j is located at the (t, j) entry of
K. The sequence F formed by the n(n− r) polynomials given in (4) is called a
KS sequence with parameters n,m, r. The sequence F is bilinear in the sets of
unknowns x = (x1, . . . , xm) and k = (k1, k2, . . . , kr(n−r)). Recall that we refer
to x and k as the linear and kernel variables, respectively. We also denote as
KS(n,m, r) the set of KS sequences with parameters n,m, r. A KS system is a
system of the form F = 0, where F is a KS sequence.

Even though a sequence F ∈ KS(n,m, r) is bilinear, it is not a generic one.

Notice that each polynomial f
(i)
j only involves r variables of the set k and its

linear part only contains variables from x. For t = 1, 2, . . . , n−r, let Ft denote the

subsequence of F given by Ft = (f
(1)
t , f

(2)
t , . . . , f

(n)
t ). This sequence is bilinear in

the set of variables x and k(t) = (k(t−1)r+1, k(t−1)r+2, . . . , ktr). Notice that the
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coefficient of every quadratic monomial in F can be any element in F. On the
contrary, the linear part of the polynomials in F only contains linear variables,
so the coefficients of the kernel variables in the linear part of the polynomials
in F are forced to be zero. Thus, a sequence F ∈ KS(n,m, r) can be seen as
F = (F1,F2, . . . ,Fn−r), where the quadratic part of Ft is generic (no restrictions
at all) and the linear part is a generic linear form in the linear variables.

3.2 Jacobian with Respect to Kernel Variables

Let us begin by showing the structure of the Jacobian with respect to the kernel

variables for KS sequences. Here we set Ft = (f
(1)
t , f

(2)
t , . . . , f

(n)
t ), f

(i)
t , M as in

Section 3.1 and ⊗ will denote the Kronecker product.

Lemma 1. Suppose F = (F1,F2, . . . ,Fn−r) ∈ KS(n,m, r). Let In−r be the
identity matrix of size n − r. Then for j ∈ {1, 2, . . . , n − r}, we have that
jack(1) (F1) = jack(j) (Fj), and jack(F) = In−r ⊗ jack(1) (F1) .

Remark 1. Assume F denotes the quadratic part of a sequence in KS(n,m, r).
By Proposition 1 and Lemma 1, F has a degree d syzygy G ∈ F[x]n(n−r) if and
only if F1 has a degree d syzygy G1 ∈ F[x]n. Explicitly, each syzygy G of F can
be written as (G1,G2, . . . ,Gn−r), where each Gj is a syzygy of F1.

Now suppose that the matrices M1,M2, . . . ,Mm ∈Mn×n(F) are chosen uni-
formly at random. Each entry of the matrix M =

∑m
i=1 xiMi is a uniformly

chosen linear form in the linear variables. In particular, its r rightmost columns
are the Jacobian of a uniformly chosen homogeneous bilinear sequence. This is
a bilinear sequence with m+ r variables and n equations. Assume F1 is under-
determined (n < m+ r) and that r < n. If Conjecture 1 in Section 4.2 of [17] is
true, with high probability the left kernel of jack(1)(F1) is generated by

Ker :=
{(

minor(M̃T , 1),−minor(M̃T , 2), . . . , (−1)nminor(M̃T , n)
)
| T ∈ T

}
,

where M̃T =
[
M̃ T

]
with M̃ = jack(1)(F1), minor(M̃T , j) denotes the determi-

nant of M̃T after removing its j-th row, and T is the set of n × (n − r − 1)
matrices such that

– each column of T has exactly a 1 and the rest of its entries are 0,
– each row of T has at most a 1 and the remaining entries 0,
– if ij denotes the number of the row containing the only 1 of the j−th column

and if j < t, then ij < it.

Notice that Ker has
(
n
r+1

)
elements. Each of them has exactly r+ 1 nonzero

components and every nonzero component is a different minor of M̃ of size r.
Since each entry of M̃ is a homogeneous linear polynomial in the x variables,
Ker ⊂ F[x]nr

5. Consequently, if Conjecture 1 in [17] is true, then we do not
expect to find an element in Ker having degree less than r.

5 F[x]r denotes the vector space formed by the degree d homogeneous polynomials in
F[x].
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The following theorem summarizes these results. We include a proof for com-
pleteness.

Theorem 1. Suppose Conjecture 1 in [17] is true, F ∈ KS(n,m, r) is chosen
uniformly at random. Then, using only monomials in the linear variables in the
XL algorithm, with high probability the first fall degree is r + 2.

Proof. By Proposition 1 and Lemma 1, we only need to prove that with high
probability there is not G1 ∈ F[x]n having degree less than r and G>1 jack(1)(F1) =
0. Assuming that Conjecture 1 in [17] is true, if F ∈ KS(n,m, r) is chosen
uniformly at random, then with high probability Ker generates the left kernel of
jack(1)(F1). Therefore, with high probability, each syzygy of F1, only involving
x variables, has degree at least r + 2.

4 Jacobian with Respect to the Linear Variables

The Jacobian of a KS system with respect to the linear variables deserves a
section of its own. We provide a detailed description here and describe non-
trivial syzygies that arise from this structure. We show that if m < nr non-trivial
syzygies of the quadratic part of F can be explicitly built, having degree less
than r. In Section 4.1 we use a small example to motivate the notation thereafter.
We then provide a general construction in Section 4.2 for square matrices, and
further generalize in Section 4.3 to non-square matrices and fewer kernel vectors.

Let us consider an MR instance with m matrices M1, . . . ,Mm ∈ Mn×n(F)
and target rank r. Recall that the KS system is given by (

∑m
i=1 xiMi)K

′ = 0,

where the kernel matrix is K ′ =
[
In−r K

]>
with K as in (3). The Jacobian with

respect to the linear variables of the corresponding sequence F ∈ KS(n,m, r)
can be written as jacx(F) = (In ⊗K)L + C, where C ∈ Mn(n−r)×m(F), L
is an nr × m matrix whose rows L1, L2, . . . , Lrn are given by the expression
Lr(i−1)+j =

[
M1,(i,n−r+j) M2,(i,n−r+j) . . . Mm,(i,n−r+j)

]
for i = 1, 2, . . . , n and

j = 1, 2, . . . , r.
The approach we follow here to find syzygies of a KS sequence F is the

same used in Section 3.2, i.e., we find elements in the left-kernel of the Jacobian
of the quadratic part of F , but now with respect to the linear variables. By
Proposition 1, those kernel elements correspond to syzygies of the quadratic
part of F . In order to simplify the notation, throughout this section, we assume
that the sequence F ∈ KS(n,m, r) only contains its quadratic part. Under such
assumption, the Jacobian with respect to the x variables of the sequence F is
given by jacx(F) = (In ⊗K)L.

From now on kerl(B) will denote the left-kernel of a matrix B. A näıve
way to find elements in kerl(jacx(F)) is by finding elements in kerl(In ⊗ K).
Those kernel elements have degree r and can be built analogously as we did
in Section 3.2 for jack(F). A natural question is whether it is possible to get
degree falls at a smaller degree from jacx(F). The answer to this question is
affirmative under certain conditions. In Section 4.2 we show how it can be done
for general sequences in KS(n,m, r), with m < nr. We now show a small example
to introduce the general process.
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4.1 A Small Example n = 4,m = 4 and r = 2

Here we show how to build degree one syzygies of a sequence F ∈ KS(4, 4, 2),
which involve only the kernel variables. In this particular case, the Jacobian
jacx(F) is given by

jacx(F) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ [k1 k2

k3 k4

] · L.
Suppose (a1, a2, . . . , a8) ∈ kerl(L), v0 = (a2, a4, a6, a8) ⊗ (−k3, k1) and v1 =
(a1, a3, a5, a7) ⊗ (k4,−k2). Then v0 (I4 ⊗K) = det(K) [(0, 1)⊗ (a2, a4, a6, a8)]
and v1 (I4 ⊗K) = det(K) [(1, 0)⊗ (a1, a3, a5, a7)]. Thus

(v0 + v1)jacx(F) = det(K)(a1, a2, . . . , a8) · L = 0,

and v0 + v1 is a syzygy of F of degree one.
We just saw how to build a syzygy of degree one, namely v0 + v1. If we

consider b ∈ kerl(L), linearly independent with a = (a1, . . . , a8), and repeat
the process described above, then we end up with a degree one syzygy ṽ0 + ṽ1

linearly independent with v0 + v1.Indeed, notice that v0 and v1 do not share
monomials componentwise, and similarly neither do ṽ0 and ṽ1. Thus, we have
that

x(v0 + v1) + y(ṽ0 + ṽ1) = 0 if and only if xv0 + yṽ0 = 0 and xv1 + yṽ1 = 0,

and the right-hand implication happens if and only if xa+yb = 0. Consequently,
v1 + v2 and ṽ1 + ṽ2 are linearly independent if and only if a and b are.

As a consequence of the previous analysis, we can build a set of linearly
independent degree one syzygies in F [k] with as many elements as the dimension
of kerl(L). Thus, if F ∈ KS(4, 4, 2) is chosen uniformly at random, so are the
matrices M1,M2,M3,M4 used to build F . In particular, L is a uniformly random
matrix of size 8× 4, so with high probability, the left kernel of L has dimension
4, which is the maximum number of linearly independent syzygies of degree one
that we can construct as above.

4.2 First Degree Fall for Any n,m, r, with m < rn.

We now describe a general method to find syzygies of degree dKS of a sequence
F ∈ KS(n,m, r), where dKS is some particular integer less than r.

Let us begin by introducing the notation using throughout this section. Here
k1, k2, . . . , kr(n−r) are the entries of the matrix K, as shown in (3). Given two
vectors of integers l = (l1 + 1, . . . , l` + 1) and c = (c1, . . . , c`), where 1 ≤ ci ≤ r
and 1 ≤ li + 1 ≤ n− r for i = 1, . . . , r, we define Kl,c as

Kl,c =

∣∣∣∣∣∣∣∣∣
krl1+c1 krl1+c2 · · · krl1+c`

krl2+c1 krl2+c2 · · · krl2+c`
...

...
. . .

...
krl`+c1 krl`+c2 · · · krl`+c`

∣∣∣∣∣∣∣∣∣ .



9

Let d be an integer such that 0 < d + 1 ≤ min{n − r, r}. We set Cd =
{(t1, . . . , td) | tk ∈ N, 1 ≤ tk < tk+1 ≤ r} and Rd = {(j1 + 1, . . . , jd+1 + 1) | jk ∈
N, 0 ≤ jk < jk+1 ≤ n − r − 1}. The sets Cd, Rd represent, respectively, all
possible sets of d columns and sets of d + 1 rows of K in ascending order. For
any t = (t1, . . . , td) ∈ Cd and j = (j1 + 1, . . . , jd+1 + 1) ∈ Rd, let js denote the
vector resulting from removing the s-th entry from j, and V t

j denote the column

vector in F[k]n−r which has values (−1)1Kj1,t, . . . , (−1)d+1Kjd+1,t in positions
numbered by j1 + 1, . . . , jd+1 + 1, respectively, and zeros elsewhere. More pre-

cisely, V t
j =

∑d+1
i=1 (−1)iKji,t eji+1, where ei denotes the i-th standard basis

vector of Fn−r. Notice that if ê1, ê2, . . . , êr are the canonical vectors in Fr, then
it can be shown that (

V t
j

)>
K =

∑
s∈St

Kj,(t,s) ê>s , (5)

where St := {s ∈ N | 1 ≤ s ≤ r, s is not an entry of t}. For t ∈ Cd and j ∈ Rd,
let Ej,t be the subspace of F[k]

n(n−r)
d spanned by

{
ẽ1 ⊗ V t

j , . . . , ẽn ⊗ V t
j

}
, where

ẽi denotes the i-th standard vector basis of Fn. It can be shown that if j 6= j′ or
t 6= t′ then Ej,t ∩ Ej′,t′ = {0}.

Lemma 2. Suppose j, j′ ∈ Rd, and t, t′ ∈ Cd. If j 6= j′ or t 6= t′ then Ej,t ∩
Ej′,t′ = {0}.

Proof. First of all, note that if e′` denotes the `-th vector in the standard basis

of Fn(n−r), then the following set is a basis for the F-vector space F[k]
n(n−r)
d

B = {m e′` | m ∈ F[k]d a monomial and ` = 1, . . . , n(n− r)} .

In particular, any basis element ẽs ⊗ V t
j of Ej,t can be seen as an F-linear

combination of elements in B. Notice that if j = (j1 + 1, j2 + 2, . . . , jd+1 + 2), by

definition we have V t
j =

∑d+1
i=1 (−1)iKji,t eji+1, hence

ẽs ⊗ V t
j =

d+1∑
i=1

(−1)iKji,t (ẽs ⊗ eji+1)

=

d+1∑
i=1

(−1)iKji,t e′(s−1)(n−r)+ji+1.

Let us set

Bsj,t := {m e′(s−1)(n−r)+ji+1 | m is a monomial of Kji,t and i = 1, . . . , d+ 1},

i.e., Bsj,t contains the basis vectors from B whose F-linear combination produces

ẽs ⊗ V t
j . For this reason

Ej,t ⊂ SpanF

{
n⋃
s=1

Bsj,t

}
.
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Finally we show that in any case, t 6= t′ or j 6= j′, we have{
n⋃
s=1

Bsj,t

}
∩

{
n⋃
s=1

Bsj′,t′

}
= ∅. (6)

In the first case, there is some integer t which is a component of t, but not a
component of t′. Because of the structure of K, it is clear that each monomial
in the polynomial Kji,t has a factor of the form k2j+t. Since t does not appear
as a component in t′, no monomial in Kj′i,t

′has a factor of the form k2j′+t.
Consequently, equation (6) holds.

In the other case, j 6= j’, there is at least one index i for which ji + 1 is a
component of j and it is not a component of j′. So each element in

⋃n
s=1 Bsj,t

has as a factor either a monomial of the form mk2ji+t, for some t, or the vec-
tor e′(s−1)(n−r)+ji+1 for some s, and no element with such factors belongs to⋃n
s=1 Bsj′,t′ . Consequently, equation (6) holds.

Fix t = (t1, . . . , td) ∈ Cd and s ∈ St. Let i be the only integer satisfying
ti < s < ti+1 and σ the permutation that sends (t1, . . . , ti, s, ti+1, . . . , td) to
(t1, . . . , td, s). For each s ∈ {1, 2, . . . , r} define sgn(t, s) to be sgn(σ) if s ∈ St
and zero otherwise6. Notice that, if t̃ := (t1, . . . , ti, s, ti+1, . . . , td), then Kj,t̃ is a
minor of K of size d+ 1. Moreover, for any j ∈ Rd it holds that sgn(t, s) ·Kj,(t,s)

is equal to Kj,t̃ if s ∈ St, or equal to 0 otherwise.
We now address the main theorem of this section. For some fixed j ∈ Rd

we establish a one-to-one correspondence between elements in the left-kernel of
certain matrix B̃j and certain elements in the left-kernel of (In⊗K)L, where K
is as in (3) and L ∈Mrn×m(F), see Theorem 2 below.

Before stating the mentioned theorem, let us describe the matrix B̃j for
a given j ∈ Rd. This is a column block matrix of size

(
r
d

)
n ×

(
r
d+1

)
m, with

blocks Bt1 , Bt2 , . . . , Bt` , where ` =
(
r
d

)
and each Bti is an n ×

(
r
d+1

)
m ma-

trix over F. To define each block Bti , we introduce one more notation. We de-
note by MINORSd+1(K(j)) the set of minors of size d + 1 of the matrix K(j),
which is simply the matrix whose rows are the rows of K with indexes in j.
Let us fix an enumeration on that set of minors, say MINORSd+1(K(j)) =
{m1,m2, . . . ,m`′}, with `′ =

(
r
d+1

)
. For each ti ∈ Cd, the block Bti is also a

block matrix of the form Bti =
[
Bti,1 Bti,2 · · · Bti,`′

]
, where Bti,k is a ma-

trix of size n × m, for k = 1, 2, . . . , `′. A particular Bti,k is given by Bti,k :=

sgn(ti, s)
(
L>s L>r+s · · · L>r(n−1)+s

)>
, where L1, L2, . . . , Lrn are the rows of L,

if s is the unique integer such that sgn(ti, s)Kj,(ti,s) = mk. Otherwise, Bti,k is
the n×m zero matrix.

From now on we set Cd = {t1, t2, . . . , t`}.

Theorem 2. Let F be a field, L ∈ Mrn×m(F), d be an integer such that 0 <
d + 1 ≤ min{n − r, r}, j ∈ Rd, and a ∈ F`n. If at1 ,at2 , . . . ,at` ∈ Fn are

6 sgn(σ) denotes the sign of the permutation σ.



11

such that a = (at1 ,at2 , . . . ,at`), then a ∈ kerl(B̃j) if and only if
∑`
k=1 atk ⊗

V tk
j ∈ kerl [(In ⊗K)L]. Moreover, assume A = {a1, . . . ,ah} for some 1 ≤ h ≤
n|Cd| and ai := (ait1 , . . . ,a

i
t`

), with aitk ∈ Fn for i = 1, . . . , h. Then, S̃j :={∑`
k=1 a

i
tk
⊗ V tk

j | i = 1, . . . , h
}

is F-linearly independent if and only if A is F-

linearly independent.

Proof. For each t ∈ Cd, we set at = (a1,t, . . . , an,t) ∈ Fn. So that at =∑n
i=1 ai,t ẽi, where ẽi denotes the i-th element in the standard basis of Fn.

By equation (5) we have∑
t∈Cd

(
at ⊗ V t

j

)>
(In ⊗K)L =

∑
t∈Cd

(
a>t ⊗ (V t

j )>K
)
L

=
∑
t∈Cd

(
a>t ⊗

[∑
s∈St

Kj,(t,s) ê>s

])
L

=
∑
t∈Cd

[∑
s∈St

Kj,(t,s)

n∑
i=1

ait (ẽi ⊗ ês)
>
L

]

=
∑
t∈Cd
s∈St

sgn(t, s)

a>t


Ls
Lr+s

...
Lr(n−1)+s


 sgn(t, s)Kj,(t,s),

where L1, . . . , Lrn are the rows of L. For each mk ∈ MINORSd+1(K(j)) let
(t̃1, s1), (t̃2, s2), . . . , (t̃e, se) be the sequence of (d + 1)-tuples with t̃i ∈ Cd and
si ∈ St̃i such that sgn(t̃j , sj)K(t̃j ,sj) = mk for j = 1, 2, . . . , e. Thus

∑
t∈Cd

(
at ⊗ V t

j

)>
(In ⊗K)L =

`′∑
k=1


e∑
j=1

sgn(t̃j , sj)a
>
t̃j


Lsj
Lr+sj

...
Lr(n−1)+sj


mk

=
`′∑
k=1

(∑
t∈Cd

atBt,k

)
mk.

The last equality holds because any t ∈ Cd−{t̃1, t̃2, . . . , t̃e} leads to a Bt,k = 0.
Since the minors of K do not have monomials in common, a = (at1 , . . . ,at`) is

a vector such that
∑`
i=1

(
ati ⊗ V

ti
j

)>
∈ kerl [(In ⊗K)L] if and only if we have

that
∑`
i=1 atiBti,k = 0 for each minor mk. Equivalently, if and only if

∑̀
i=1

ati

[
Bti,1 Bti,2 · · · Bti,`′

]
= 0,

∑̀
i=1

atiBti = 0,

(at1 ,at2 , . . . ,at`)
[
B>t1 B>t2 · · · B>t`

]>
= 0, and aB̃j = 0.
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Now we prove the last statement of the theorem. Suppose a1,a2, . . . ,ah ∈ F`n
are linearly independent and ai = (ait1 ,a

i
t2 , . . . ,a

i
t`

), for each i = 1, 2, . . . , h.

Assume x1, x2, . . . , xh ∈ F are such that
∑h
i=1 xi

(∑`
j=1 aitj ⊗ V

tj
j

)
= 0. Since

each aitj ⊗ V
tj
j ∈ Ej,tj , so does every

∑h
i=1 xi

(
aitj ⊗ V

tj
j

)
. By Lemma 2 the

previous equation holds if and only if
∑h
i=1 xi

(
aitj ⊗ V

tj
j

)
= 0, for each j =

1, 2, . . . , `. Equivalently,
∑h
i=1 xia

i
tj = 0 for each j. That is,

∑h
i=1 xia

i = 0.

Remember that we are only considering the quadratic part of sequences F ∈
KS(n,m, r), so that jacx(F) = (In ⊗K)L, whereK is given in (3). Consequently,
the previous theorem shows a way to build syzygies of F (see Proposition 1).
For a fixed j ∈ Rd, Theorem 2 also says that we can build as many syzygies as
the dimension of the left-kernel of the matrix B̃j. For a matrix L ∈ Mrn×m(F)

chosen uniformly at random, we conjecture that the probability that B̃j is full
rank is very high and it depends on the size of F.

Conjecture 1. Suppose
(
r
d

)
n >

(
r
d+1

)
m, d+ 1 ≤ min{n− r, r}, m ≤ rn, and j ∈

Rd. If L ∈ Mrn×m(F) is chosen uniformly at random, then with overwhelming
probability in the size of F, the rank of B̃j is

(
r
d+1

)
m.

We experimentally tested this conjecture for values of 20 ≤ n ≤ 25, n− 3 ≤
m ≤ 2n, 6 ≤ r ≤ 10 and |F| = 13; and for 8 ≤ n ≤ 16, 2 ≤ r ≤ 8, n−4 ≤ m ≤ rn
and |F| = 2. Assuming that Conjecture 1 is true, we have the following corollary.

Corollary 1. Suppose
(
r
d

)
n >

(
r
d+1

)
m, d+ 1 ≤ min{n− r, r}, m < rn, and j ∈

Rd. If F ∈ KS(n,m, r) is chosen uniformly at random, and assuming Conjecture
1 holds, then with overwhelming probability, there is a set S̃j of

(
r
d

)
n −

(
r
d+1

)
m

syzygies of F of degree d. Moreover, S̃j is F-linearly independent.

Proof. Suppose F ∈ KS(n,m, r) is chosen uniformly at random. Recall that
jacx(F) = (In ⊗ K)L, so L ∈ Mrn×m(F) can be seen as chosen uniformly at
random as well. Let us set A = {a1,a2, . . . ,ah} and define S̃j and B̃j as in

Theorem 2. By this theorem, A ⊂ kerl(B̃j) is F-linearly independent if and

only if S̃j ⊂ kerl [(In ⊗K)L] is linearly independent. By Conjecture 1, with

overwhelming probability the dimension of kerl(B̃j) is
(
r
d

)
n −

(
r
d+1

)
m. Finally,

by Proposition 1, each element in S̃j is a syzygy of F .

It can be shown that for different j, j′ ∈ Rd, S̃j ∪ S̃ ′j is a linearly independent
set of syzygies of F .

Proposition 3. Suppose j, j’ ∈ Rd are distinct and that L ∈ Mrn×m(F). Let
A = {a1, . . . ,a`1} and B = {b1, . . . , b`2} be two sets not necessarily different,
with ai = (ait1 ,a

i
t2 , . . . ,a

i
t`′

) and bi = (bit1 , b
i
t2 , . . . , b

i
t`

) as described in Theorem
2. If we set

S̃j =

∑̀
j=1

aitj ⊗ V
tj
j | i = 1, . . . , `1

 , S̃j ′ =

∑̀
j=1

bitj ⊗ V
tj
j ′ | i = 1, . . . , `2

 ,
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then Sj ∪ Sj′ is a set of linearly independent vectors in kerl [(In ⊗K)L] if and
only if A and B are both linearly independent in kerl(L).

Proof. By Theorem 2 we have that A,B ⊂ kerl(B̃j) and are F-linearly indepen-
dent if and only if Sj,Sj ′ ⊂ kerl [(In ⊗K)L] and are both F-linearly independent.
Suppose there are x1, x2, . . . , x`1 , y1, y2, . . . , y`2 ∈ F such that

`1∑
i=1

xi

∑̀
j=1

aitj ⊗ V
tj
j

+

`2∑
i=1

yi

∑̀
j=1

bitj ⊗ V
tj
j′

 = 0, i.e.,

∑̀
j=1

[
`1∑
i=1

xi

(
aitj ⊗ V

tj
j

)
+

`2∑
i=1

yi

(
bitj ⊗ V

tj
j′

)]
= 0.

Notice that each of the 2` sums in the previous equation belongs to a different
Ej,t subspace. By Lemma 2, those subspaces have trivial intersection pairwise.
Consequently, last equation holds if and only if each of those sums is zero, that
is, for j = 1, 2, . . . , `,

`1∑
i=1

xi

(
aitj ⊗ V

tj
j

)
= 0 and

`2∑
i=1

yi

(
bitj ⊗ V

tj
j′

)
= 0,

which is true if and only if

`1∑
i=1

xia
i = 0 and

`2∑
i=1

yib
i = 0.

As a consequence and assuming that Conjecture 1 is true, we can calculate
a number of degree falls that we know for sure will happen at degree d+ 2, for
a particular d < r.

Corollary 2. Suppose Conjecture 1 is true,
(
r
d

)
n >

(
r
d+1

)
m, d + 1 ≤ min{n −

r, r} and m < rn. If F ∈ KS(n,m, r) is chosen uniformly at random, then with
overwhelming probability there is a set of(

n− r
d+ 1

)[(
r

d

)
n−

(
r

d+ 1

)
m

]
linearly independent syzygies of F of degree d.

4.3 Analysis for Non-Square MR and κ Kernel Vectors

In this part we adapt the analysis performed in Section 4.2 to MR instances with
non-square matrices. We also see how the results of that section are affected if
we consider a KS system with only κ kernel vectors.

Suppose p, q,m, r, κ are integers such that m < rp and m
p−r < κ ≤ q − r. We

can consider an MR instance with matrices M1,M2, . . . ,Mm ∈ Mp×q(F) and
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target rank r. When we say that we are considering κ kernel vectors in the KS
modeling, what we mean is that we are dealing with the system(

m∑
i=1

xiMi

)
K ′κ = 0p×κ, (7)

where K ′κ is the matrix consisting of the first κ columns of K ′, that is, K ′κ =[
Ĩκ Kκ

]>
, Ĩκ is formed by the first κ rows of the identity matrix Iq−r and

Kκ =


k1 k2 · · · kr
kr+1 kr+2 · · · k2r

...
...

. . .
...

kr(κ−1)+1 kr(κ−1)+2 · · · krκ

 .
Let us set k = (k1, k2, . . . , krκ), and let KSκ(p × q,m, r) be the set of all

sequences in F[x,k] that are formed by the entries of any matrix that has the
shape of the one on the left-hand side of (7). For each F ∈ KSκ(p× q,m, r) its
Jacobian is given by

jacx(F) = (Ip ⊗Kκ)L+ C, (8)

where C ∈ Mpκ×m(F), L is an rp × m matrix with rows L1, L2, . . . , Lrp and
Lr(i−1)+j =

[
M1,(i,p−r+j) M2,(i,p−r+j) . . . Mm,(i,p−r+j)

]
for i = 1, 2, . . . , p and

j = 1, 2, . . . , r.
Let Cd be like in Section 4.2 and Rκ,d := {(j1 + 1, . . . , jd+1 + 1) | jk ∈ N, 0 ≤

jk < jk+1 ≤ κ − 1}. Provided an integer d, with 0 ≤ d ≤ min{κ − 1, r − 1},
and j ∈ Rκ,d, the matrix B̃j is now of size

(
r
d

)
p ×

(
r
d+1

)
m. Such a matrix is

constructed as in the square MR case, but setting n = p. The polynomial vector
V t
j is defined like in the full kernel vector case, with the only difference that now

it has length κ instead of q− r. The proof of the following theorem is analogous
to the proof of Theorem 2.

Theorem 3. Let F be a field, L ∈ Mrp×m(F), d be an integer such that 0 <
d + 1 ≤ min{κ, r}, j ∈ Rκ,d, and a ∈ F`p. If at1 ,at2 , . . . ,at` ∈ Fp are such

that a = (at1 ,at2 , . . . ,at`), then a ∈ kerl(B̃j) if and only if
∑`
k=1 a

i
tk
⊗ V tk

j ∈
kerl [(Ip ⊗K)L]. Moreover, if A = {a1, . . . ,ah} for some 1 ≤ h ≤ n|Cd| and
ai := (ait1 ,a

i
t2 , . . . ,a

i
t`

), with aitk ∈ Fp for i = 1, . . . , h, then

S̃j :=

{∑̀
k=1

aitk ⊗ V
tk
j | i = 1, . . . , h

}
is F- linearly independent if and only if A is F- linearly independent.

If Conjecture 1 is true, we have the following two corollaries.

Corollary 3. Suppose Conjecture 1 is true,
(
r
d

)
p >

(
r
d+1

)
m, d+ 1 ≤ min{κ, r},

m < rp, and j ∈ Rκ,d. If F ∈ KSκ(p × q,m, r) is chosen uniformly at random,

then with overwhelming probability the rank of B̃j is
(
r
d+1

)
m.
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Proof. Given j ∈ Rκ,d ⊂ Rd, if Conjecture 1 is true, with high probability the

rank of B̃j is
(
r
d+1

)
m.

Corollary 4. Suppose Conjecture 1 is true,
(
r
d

)
p >

(
r
d+1

)
m, d+ 1 ≤ min{κ, r},

m < rp, and j ∈ Rκ,d. If F ∈ KSκ(p × q,m, r) is chosen uniformly at random,

then with high probability there is a set S̃j of
(
r
d

)
p −

(
r
d+1

)
m syzygies of F of

degree d. Moreover, S̃j is F-linearly independent.

Proposition 4. Let j, j’ be two different elements in Rκ,d and L ∈Mrp×m(F).

Let A = {a1, . . . ,a`1}, B = {b1, . . . , b`2}, S̃j and S̃j ′ be as in Proposition 3.

Then, S̃j ∪ S̃j′ is a set of linearly independent vectors in kerl [(Ip ⊗K)L] if and
only if A and B are both linearly independent in kerl(L).

Similarly to the square case and full kernel case, we expect to have the
following result.

Corollary 5. Suppose Conjecture 1 is true,
(
r
d

)
p >

(
r
d+1

)
m, d + 1 ≤ min{κ, r}

and m < rp. If F ∈ KSκ(p × q,m, r) is chosen uniformly at random, then with
high probability there is a set with(

κ

d+ 1

)[(
r

d

)
p−

(
r

d+ 1

)
m

]
linearly independent syzygies of F of degree d.

5 Complexity of the KS Modeling Revisited

Proposition 4 and Corollary 5 (Corollary 2 for square matrices) naturally lead
to a new algorithm to solve systems of the form F = 0, where F is randomly
chosen in KSκ(p × q,m, r), and m < rp. Let p, q,m, r be positive integers. The
following number

dKS = min

{
d |
[(
r

d

)
p >

(
r

d+ 1

)
m

]
, 1 ≤ d ≤ r − 1

}
(9)

is well defined if m < rp. Assuming dKS + 1 ≤ κ, by Corollary 5, with high
probability we can build degree drops from dKS + 2 to dKS + 1, for a randomly
given F ∈ KSκ(p× q,m, r). By Proposition 2, such degree falls are not produced
by trivial syzygies. Thus DKS := dKS + 2 is an upper bound for the first fall
degree Dff. Then, we construct the Macaulay matrix at degree dKS + 1, append
the degree falls, and row reduce this augmented matrix. If there are not enough
polynomials to solve, we continue the XL algorithm up to degree dKS + 2, dKS +
3, . . . until we solve the system.

Based on these observations, we now estimate the complexity of solving such
a system, by means of the first fall degree Dff of the system, which is the smallest
degree needed so that the Macaulay matrix of the system of that degree exhibits
a degree fall when reduced [9].
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We can further improve the complexity by multiplying only by monomials
from kernel variables k in the XL algorithm. It can be proved that for this par-
ticular kind of equations, the XL algorithm restricted in this manner, still finds
a solution. This follows from the facts that the ideal generated by F is radical
[18], that the system F = 0 has a unique solution, and that each polynomial in
F has only linear variables in its linear part.

Consequently, using the XL algorithm and multiplying only by monomials
from kernel variables, the complexity of solving instances of KS that are chosen
uniformly at random is

O

((
rκ+ dKS + 1

dKS + 2

)w)
= O

((
rκ+DKS − 1

DKS

)w)
= O

(
(rκ)DKSw

)
,

where 2 < ω ≤ 3 and κ is the number of kernel vectors that we choose in order
to keep the system overdetermined, that is, κ ≥ m

p−r .
This is much lower than previous estimates. For example, if m = p = q = n

and r <
√
n, then dKS ≤ r/2 + 1, and we can choose κ =

√
n, so that, rκ < n,

and hence, our complexity estimate is O(n(r/2)ω), compared to O(nrω) from
previous estimates, c.f. [1].

6 Experimental Results

In this section we present some experimental data to confront our theoretical
findings. The results are summarized in Tables 1 and 2.

Table 1 shows that for F ∈ KS(n×n,m, r), and different values of r, DKS =
dKS +2 is a tight bound on the first fall degree. It also shows that DKS is not far
from the solving degree, which the maximum degree reached during the Gröbner
basis computation. The solving degree was exactly DKS in most cases, and it
was DKS + 1 in the worst case. Also, in Table 1 we can see that the KS system
can be solved by using the XL algorithm multiplying only by kernel variables.
This leads to much smaller matrices.

Table 2 addresses the question of how to choose κ. In Section 4.3, we showed
that as long as dKS + 1 ≤ κ, we would find nontrivial relations for a sequence
F ∈ KSκ(n×n,m, r) at degree dKS +2. We also saw that if κ ≥ m

n−r , the system
is overdetermined, so we do not expect spurious solutions. In all the experiments
presented in Table 2, we indeed obtained only true solutions. However, choosing
the smallest possible κ is not necessarily the best choice, because for very small
κ the solving degree increases. The experiments suggest there is an optimal κ
around dKS + 2. In Table 2, dKS + 2 = 5 for r = 6 or r = 5, and dKS + 2 = 4
when r = 4.

7 Implications in Multivariate Cryptography

A key recovery attack can be performed on several multivariate schemes by
solving some MR problem instances [4, 7, 21, 23, 26]. In this section, we review
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Table 1. Experimental result for KS method on uniformly chosen MR instances over
GF (13). For different values of r, a sequence F ∈ KS(10×10, 10, r) is chosen considering
n − r kernel vectors. In each case F4 and a version of the XL algorithm, in which we
only multiply by kernel variables, are run over F . Measures of the first fall degree Dff,
the solving degree Dslv and size of the largest matrix L.matrix. For each r in the first
column shows the F4 data and in the second one the XL data.

r 2 3 4 5 6
DKS 3 4 4 5 5

F4 XL F4 XL F4 XL F4 XL F4 XL

Dff 3 3 4 4 4 4 5 5

Dslv 3 3 4 4 4 5

L.matrix 2217 1530 24582 20240 38586 341495 > 2035458

Table 2. Experimental results for the KS method on uniformly chosen MR instances
over GF (13). A sequence F ∈ KS(12×12, 12, r) is chosen considering κ kernel vectors.
The variable x1 is set to 1 in F . F4 is used to find the variety of the resulting system.
Measures of the first fall degree Dff, the solving degree Dslv, time and memory are
presented.

r κ Dff Dslv Time [s] Mem [MB] r κ Dff Dslv Time [s] Mem [MB]

6
6 4 5 20079 25547

4

8 4 4 58 194
5 4 5 42858 20928 7 4 4 38 128
4 4 5 95768 34573 6 4 4 21 107
7 4 4 756 1984 5 4 4 13 104

5
6 4 4 367 1199 4 4 4 11 64
5 4 4 377 758 3 4 4 6 64
4 4 4 108 352 2 4 5 14 160
3 5 5 795 1648

the complexity of the KS method for some of the most common multivariate
schemes. We are not including Rainbow in this analysis, since the improvement
that we are proposing for KS is still way slower than the linear algebra techniques
used to perform the MR attack against this particular signature scheme [8].

HFE: A key recovery attack on the HFE encryption scheme with parameters
(n,D, |F|) can be performed by solving a KS system F = 0, where F ∈ KS(n×
n, n, r) and r = dlog|F|De. In this case, dKS =

⌈
r−1

2

⌉
or dKS = r−1

2 +1, depending
on whether r−1 is odd or even. The complexity of solving an MR instance with
parameters n× n, n, r, using κ kernel vectors is

O

((
rκ+ dKS + 1

dKS + 2

)w)
,

where dKS =
⌈
r−1

2

⌉
or r−1

2 + 1.
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For example, for the parameters n = 128, D = 192, |F| = 2 analyzed in [1],
we have r = 8, and dKS = 4. Using κ = 10 kernel vectors, we need to deal with a
KS system of nκ = 1280 equations in n+ rκ = 208 variables. Assuming ω = 2.4,
the complexity of solving such a system is 269, which is way better than the 2108

complexity of the minors method approach estimated in [1] .

ZHFE: To perform a key recovery attack on the ZHFE encryption scheme
with parameters (n,D, |F|), we need to solve a KS instance F = 0, where F ∈
KS(n× n, 2n, r) and r = dlog|F|De +1, see [4]. In this case dKS is either

⌈
2r−1

3

⌉
or 2r−1

3 + 1.
For the proposed parameters n = 55, D = 105, |F| = 7 [24], we have that

r = 4 and dKS = 3. Thus, by considering κ = 14 kernel vectors, the estimated
complexity is then 263, with ω = 2.8. This is better than the estimated 276 with
ω = 2.8 provided in [4] based on the minors method.

HFEv-: In HFEv- with parameters (|F|, n,D, a, v) the system to solve is F =
0, where F ∈ KS((n + v) × (n + v), n − a, r + a + v) 7 and r = dlog|F|De
[23]. The parameter for complexity dKS is given by

⌈
(r+a+v)(n−a)−(n+v)

2n+v−a

⌉
or

(r+a+v)(n−a)−(n+v)
2n+v−a + 1, depending if the value inside d·e is even or odd.

GeMMS and Gui: GeMMS and Gui are HFEv- based multivariate signa-
ture schemes proposed in the NIST’s ongoing post-quantum “competition” [5,
23]. A key recovery attack to GeMMS or Gui with parameters (|F|, n,D, a, v, k)
reduces to a key recovery attack to the underlying HFEv- instances with pa-
rameters (|F|, n,D, a, v). We use the sets of parameters proposed for the NIST’s
competition to analyze the complexity of such an attack and set ω = 2.3, which
is the one used in the Gui submission. The main improvement in the key re-
covery attack is derived from reducing the number of kernel vectors. For the
parameter sets Gui-184(2,184,33,16,16,2), Gui-312(2,312,129,24,20,2) and Gui-
448(2,448,513,32,28,2) we may set κ = 18, κ = 25 and κ = 34, respectively,
producing key recovery complexities of 2281, 2429 and 2598 steps, respectively.
For comparison, the estimates provided in [23] via minors modeling were 2323,
2480 and 2665, respectively. A similar effect applies to the GeMMS security esti-
mates as well.
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