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Linear Complexity of A Family of Binary

pq2-periodic Sequences From Euler Quotients

Jingwei Zhang, Shuhong Gao and Chang-An Zhao∗

Abstract

We first introduce a family of binary pq2-periodic sequences based on the Euler quotients modulo

pq, where p and q are two distinct odd primes and p divides q−1. The minimal polynomials and linear

complexities are determined for the proposed sequences provided that 2q−1 6≡ 1 mod q2. The results

show that the proposed sequences have high linear complexities.
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I. INTRODUCTION

We will begin by the following definition of the Euler quotient modulo a product of two

distinct odd primes. Let p and q be two distinct odd primes. For a nonnegative integer t that is

relatively prime to pq, the Euler quotient ψ(t) (mod pq) is defined as a unique integer in Zpq
with

ψ(t) =
tϕ(pq) − 1

pq
(mod pq), (1)

where ϕ(·) is the well-known Euler-phi function. We also define ψ(t) = 0 if t and pq are not

relatively prime.
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It can be seen easily that the Euler quotient has the following property:

ψ(t+ kpq) ≡ ψ(t)+kt−1(p− 1)(q − 1) (mod pq). (2)

where t, k ∈ Z and t is relatively prime to pq.

In 2010, Chen, Ostafe and Winterhof [11] introduced families of binary sequences using

Fermat/Euler quotients. Since then several nice cryptographic properties of these sequences were

proved in [3]–[8]. Based on the distribution and algebraic structure of the Fermat quotients,

the linear complexity was determined for a binary threshold sequence defined from Fermat

quotients [8]. Naturally, the definition of the Euler quotient can be generalized by the Euler’s

Theorem [1]. Chen and Winterhof extended the distribution of pseudorandom numbers and

vectors derived from Fermat quotients to Euler quotients [6]. Moreover, linear complexities

were calculated for binary sequences derived from Euler quotients with prime-power modulus.

Trace representations and linear complexities were investigated for binary sequences derived

from the Fermat quotient [3]. Subsequently, a trace representation was given for a family of

binary sequences derived from Euler quotients modulo a fixed power of a prime [4]. Chen and

Winterhof generalized the Fermat quotient to the polynomial quotient in [7]. Then the k-error

linear complexity was determined for binary sequences derived from the polynomial quotient

modulo a prime [5] or its power [22], respectively. In [23], a series of optimal families of

perfect polyphase sequences were derived from the array structure of Fermat-quotient sequences.

All of the above results show that pseudorandom sequences derived from Fermat quotients,

Euler quotients or their variants can be regarded as an important class of sequences from a

cryptographic point of view.

In this paper, we study binary sequences derived from the Euler quotient modulo pq. Using

the same notation as above, a binary threshold sequence s = {st|t ∈ Z, t ≥ 0} from the Euler

quotient modulo pq can be defined as

st =

 0, if 0 ≤ ψ(t)
pq

< 1
2
,

1, if 1
2
≤ ψ(t)

pq
< 1.

(3)

For our purpose, we introduce the concept of the linear complexity of binary sequences now.

The linear complexity of an N -periodic sequence a = {ai|i ∈ Z, i ≥ 0} over the binary field

F2 is the smallest nonnegative integer L for which there exist elements c1, c2, · · · , cL ∈ F2 such
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that

ai + c1 · ai−1 + · · ·+ cL · ai−L = 0, for all i ≥ L.

Let A(x) =
N−1∑
i=0

aix
i ∈ F2[x] be the generating polynomial of a. By [12], the minimal

polynomial of a is defined as

Ma(x) =
xN − 1

gcd(xN − 1, A(x))
,

where gcd(·, ·) denotes the greatest common divisor of two polynomials over F2 and the linear

complexity of a is

L(a) = N − deg(gcd(xN − 1, A(x))).

Note that the linear complexity is of fundamental importance as a complexity measure for binary

sequences in sequences designs [12], [15], [16]. Besides the measure of the linear complexity for

sequences, other measures are also required according to different specific requirements from

applications, for example, low autocorrelation or cross-correlation [24], [25], good nonlinear

properties [18], [26], [27], and k-error complexities [9], [10]. For a binary sequence to be

cryptographically strong, the linear complexity of the sequence should be at least a half of the

least period of the sequence in order to resist the attack of Berlekamp-Massey algorithm [12],

[20].

The main contribution of this paper is to determine the minimal polynomial and the linear

complexity of the sequence defined in (3). We state our main result as follows.

Theorem 1: Let p and q be two distinct odd primes with p dividing q − 1. Assume that

2q−1 6≡ 1 (mod q2). Then the binary threshold sequence s defined in (3) has period at least pq2.

The minimal polynomial of s is

Ms(x) =

 Φpq2(x), if q ≡ 1 (mod 4),

Φpq2(x)Φpq(x), if q ≡ 3 (mod 4),

where Φn(x) denotes the n-th cyclotomic polynomial for any positive integer n and the linear

complexity of s is

L(s) =

 (p− 1)(q2 − q), if q ≡ 1 (mod 4),

(p− 1)(q2 − 1), if q ≡ 3 (mod 4).

To the best of our knowledge, this is the first time to introduce this kind of sequences on

basis of the Euler quotient modulo a product of two distinct odd primes. Under the condition
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that p divides q− 1, we will show that the binary sequence has period at least pq2. Furthermore,

minimal polynomials and linear complexities of this class of binary sequences are determined.

It turns out that the proposed sequences have high linear complexities and may be useful in

cryptography and digital communications.

By using the generalized cyclotomic techniques, one can also construct other binary sequences

with period pq2. We refer the reader to see [2], [13], [17] for more details. We emphasize that our

results are new. In particular, we point out that our results are not one special case of Theorem

4.2 of [17] although both may give a sequence with period pq2. In fact, this can be seen easily

by comparing linear complexities of the two families of binary sequences.

In the rest of the paper, we give a proof of the above theorem in Section II, and conclude

with a few remarks in Section III.

II. PROOF OF MAIN RESULTS

In this section, we are devoting to the proof of the main results.

We first show that pq2 is one of the periods of sequence s under the condition that p is a

divisor of q − 1. Setting k = q in (2), we see that

ψ(t+ pq2) = ψ(t) (mod pq)

which implies st+pq2 = st for all t ≥ 0. Thus the sequence s is periodic with period pq2. We

will demonstrate that pq2 is the least period of the sequence s in the following lemma.

Lemma 1: With the notation above, the sequence s has period at least pq2.

Proof: We first prove that pq is not a period of the sequence s. By (2), we have

ψ(pq + 1) ≡ ψ(1) + (p− 1)(q − 1) ≡ (p− 1)(q − 1) (mod pq).

It follows from 2(p − 1)(q − 1) − pq = (p − 2)(q − 1) − p > 0 that the (pq + 1)-th term of

the sequence s is equal to 1, i.e., spq+1 = 1. Note that s1 = 0 6= 1 = spq+1 according to the

definition of the sequence s. Hence pq is not a period of the sequence s.

Now we prove that q2 is not a period of the sequence s. We can assume that q2 is a period of the

sequence s. Let k = d pq
2(p+q−1)e. It follows from (2) that ψ(−1+kpq) = k(p+q−1) (mod pq) and

thus s−1+kpq = 1. This means that the sequence s satisfies s−1+kpq+q2 = s−1+kpq = 1. However,

we have s−1+kpq+q2 = 0 according to the definition of the sequence s and gcd(kpq−1+q2, pq) =

gcd(kpq + (q − 1)(q + 1), pq) = p. It follows that skpq−1+q2 6= skpq−1, a contradiction.
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Hence the least period of the sequence s is pq2, which completes the proof of the lemma.

For any integer n ≥ 2, we denote by Zn = {0, 1, · · · , n−1} all representatives for the residue

classes of integers modulo n and by Z∗n all representatives that are relatively prime to n in Zn,

respectively. Since the least period of s is pq2, we restrict the action of ψ on Zpq2 sometimes.

With a slight abuse of notation, we shall still use the same symbol ψ to denote this restriction

of the Euler quotient on Zpq2 .

Let g ∈ Z∗pq2 be a fixed common primitive root of both p and q2. The Chinese Reminder

Theorem(CRT) [14] guarantees that there exists an element h of Z∗pq2 such that h ≡ g (mod p),

h ≡ 1 (mod q2).

Put d = gcd(p− 1, q − 1) and e = lcm(p− 1, q − 1) = (p− 1)(q − 1)/d where lcm denotes

least common multiple. Then the unit group Z∗pq2 of the ring Zpq2 [13] can be written as follows

Z∗pq2 = {gihj : 0 ≤ i < qe, 0 ≤ j < d}. (4)

The following lemma shows that the map ψ is a group homomorphism when we restrict the

action of the map ψ to the unit group Z∗pq2 .

Lemma 2: Let ψ : t→ ψ(t) be the map from 〈Z∗pq2 , ·〉 to 〈pZpq,+〉, where pZpq = {lp | 0 ≤

l ≤ q − 1} contains exactly all of the residue classes which are divisible by p in the addition

group Zpq. Then ψ is a surjective group homomorphism.

Let g and h be defined as above. Then the image and kernel of ψ is given as

Img(ψ) = pZpq

and

Ker(ψ) = 〈gq, h〉 = {gqihj} | 0 ≤ i < e, 0 ≤ j < d},

respectively.

Proof: Note that tp−1 ≡ 1 (mod p) for t ∈ Z∗pq2 . We can write tp−1 = 1 + t′p for some

integer t′. Substituting it into (1), we have

ψ(t) = ψ(t) =
(1 + t′p)q−1 − 1

pq
≡ t′(q − 1)q−1 ≡ 0 (mod p)

as p divides q − 1. This means that ψ(t) is divisible by p and thus the map ψ is well defined.
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For u, v ∈ Z∗pq2 it follows from the Euler’s Theorem that

ψ(uv) =
(uv)ϕ(pq) − 1

pq

=
(uv)ϕ(pq) − uϕ(pq) + uϕ(pq) − 1

pq

=uϕ(pq)ψ(v) + ψ(u)

≡ψ(u) + ψ(v) (mod pq)

which yields the map ψ is a group homomorphism.

Now we show that the map ψ is surjective. There exists some integer t1 such that gq−1 = 1+t1q

with t1 6≡ 0 (mod q) since g is a primitive root in Z∗q2 . This implies that

ψ(g) =
gϕ(pq) − 1

pq
≡ (1 + t1q)

p−1 − 1

pq
≡ t1(p− 1)p−1 6≡ 0 (mod q).

Note that ψ(g) ≡ 0 (mod p). It follows from the CRT that there exists some positive integer

a with a ∈ Z∗q such that

ψ(g) ≡ pa 6≡ 0 (mod pq).

It follows that pa is one generator of the addition group pZpq. Consequently, the map ψ is

surjective and Img(ψ) = pZpq.

It is known that both ψ(g) and ψ(h) are divisible by p. Also,

ψ(gq) = qψ(g) = 0 (mod q).

On the basis of the CRT, we have ψ(gq) = 0 (mod pq). Hence gq ∈ Ker(ψ). Observe that h ≡ 1

(mod q2). We can write h = 1 + q2h1. Hence

ψ(h) =
hϕ(pq) − 1

pq
≡ p−1

(1 + q2h1)
ϕ(pq) − 1

q
≡ 0 (mod q).

Combining the above equation with ψ(h) = 0 (mod p), we get h ∈ Ker(ψ). Therefore, we have

{(gq)ihj (mod pq2) | 0 ≤ i < e, 0 ≤ j < d} = 〈gq, h〉 ⊆ Ker(ψ).

Now we need to show that the kernal Ker(ψ) and the subgroup 〈gq, h〉 have the same

cardinality. By the Third Isomorphism Theorem [21], we have

Z∗pq2/〈gq, h〉 ' (〈g, h〉/〈h〉)/(〈gq, h〉/〈h〉) ' 〈g〉/〈gq〉.
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This yields that g0〈gq, h〉, g1〈gq, h〉, · · · , gq−1〈gq, h〉 are all cosets of the subgroup 〈gq, h〉 of

Z∗pq2 . It follows that |〈gq, h〉| = (p− 1)(q− 1). On the other hand, according to the Fundamental

Homomorphism Theorem [21], we see that

|Ker(ψ)| = |
Z∗pq2

Img(ψ)
| = (p− 1)(q − 1)q

q
= (p− 1)(q − 1)

and so 〈gq, h〉 = Ker(ψ). This completes the whole proof of the lemma.

Note that Lemma 2 gives that ψ(g) = pa (mod pq) with some a ∈ Z∗q . This means that ψ(g) =

pa (mod q) by the CRT. Let b be the inverse of a in Z∗q , i.e., ab ≡ 1 (mod q). Define ĝ = gb

in Z∗pq2 . Then

ψ(ĝ) = b · ψ(g) (mod pq)

by the homomorphism property of the map ψ. It follows from ψ(g) ≡ pa (mod q) that

ψ(ĝ) ≡ pab ≡ p (mod q).

Combining the above equality with ψ(ĝ) = 0 (mod p), we get ψ(ĝ) = p (mod pq). The

following lemma describes a partition of Z∗pq2 which will give a new explanation of the definition

of the sequence s.

Lemma 3: Let ĝ be an element in Z∗pq2 with ψ(ĝ) = p (mod pq). Define

D` = {t : ψ(t) = ψ(t) = p` (mod pq), t ∈ Z∗pq2}

and

D̂` = ĝ`D0 = {ĝ` · t (mod pq) : t ∈ D0}

for ` = 0, 1, · · · , q − 1. Then Z∗pq2 =
q−1⋃
`=0

D` and D` = D̂` for all ` ∈ Zq.

Proof: We first prove that D̂` = D` for all ` ∈ Zq. Note that Lemma 2 gives that D0 =

Ker(ψ). It is easy to see that for ĝ`t0 ∈ D̂` with t0 ∈ D0 = Ker(ψ) we have

ψ(ĝ`t0) = l · ψ(ĝ) + ψ(t0) = `p (mod pq).

This implies that D̂` ⊆ D`. Conversely, for t ∈ D`, we have

ψ(t) = pl = lψ(ĝ) = ψ(ĝ`) (mod pq)

and thus

ψ(
t

ĝ`
) = 0 (mod pq)
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by the homomorphism property of ψ. This means that

t

ĝ`
∈ Ker(ψ) = D0.

Therefore, there exists some element t0 ∈ D0 such that

t

ĝ`
≡ t0 (mod pq).

Hence we have t = ĝ` · t0 ∈ ĝ`D0 = D̂` and so D` = D̂`. This completes the whole proof of

the lemma.

By the definition of D` and D̂` , Lemma 3 gives that |D`| = |D̂`| = (p − 1)(q − 1) for

` = 0, 1, · · · , q − 1. Let P = {t : t ∈ Zpq2 , gcd(t, pq) 6= 1}. The sequence s can be rewritten as

st =

 0, if t ∈ D0 · · · ∪D(q−1)/2 ∪ P,

1, if t ∈ D(q+1)/2 ∪ · · ·Dq−1.

The new explanation of the sequence s will be helpful to determine linear complexities. We will

make extensive use of the following lemmas for completing the proof of Theorem 1.

Lemma 4: For any 0 ≤ i < q, if u (mod pq2) ∈ Dj for some 0 ≤ j < q, we have

uDi = {uv (mod pq2) : v ∈ Di} = Di+j.

where all the subscripts are certainly understood modulo q. In particular, Dri = ĝrDi for

0 ≤ r ≤ q − 1.

Proof: If u ∈ Dj and v ∈ Di, then u = ĝju0 and v = ĝiv0 with u0, v0 ∈ D0. Hence

uv = ĝi+ju0v0 ∈ ĝi+jD0 = Di+j. This implies that uDi ⊆ Di+j . Conversely, it can be seen

easily that Di+j ⊆ uDi. This finishes the proof of the lemma.

The study of the behavior of the coset D` under modulo various divisors of pq2 leads to a

number of useful lemmas.

Lemma 5: For 0 ≤ ` < q, we have the following two multiset equalities

{u (mod p) : u ∈ D`} = (q − 1) ∗ Z∗p,

where (q − 1) ∗ Z∗p is the multiset in which each element of Z∗p appears with multiplicity q − 1,

and

{u (mod q) : u ∈ D`} = (p− 1) ∗ Z∗q,

where (p− 1) ∗ Z∗q is the multiset in which each element of Z∗q appears with multiplicity p− 1.
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Proof: For u ∈ D` with some fixed ` ∈ Zq it can be written as u = ĝ`gqihj for 0 ≤ i < e

and 0 ≤ j < d. Recall that ĝ = gb with some fixed b ∈ Z∗q in Lemma 3. Then u = gqi+b`hj in

Zpq2 and so

u = ĝ`gqihj ≡ gqi+b`+j ≡ gb`+j · (gq)i (mod p).

According to gcd (p− 1, q) = 1, we see that gq is also a primitive root of Z∗p. If we fix some

j0 ∈ Zd, then (u ≡ gqi+b`+j0 (mod p)) runs through Z∗p when i run throughs Ze. Now we count

the multiplicity of each element in Z∗p when i and j run through Ze and Zd respectively. Assume

that

u ≡ gqi+b`+j0 ≡ ga0 (mod p)

where 0 ≤ a0 ≤ p− 2. This means that

qi = a0 − j0 − b` (mod p− 1)

for i ∈ Ze. According to gcd (p− 1, q) = 1, it is equivalent to

i ≡ q−1(a0 − j0 − b`) (mod p− 1).

There exists q−1
d

many solutions in the form of i0, i0 + (p− 1), · · · , i0 + ( q−1
d
− 1)(p− 1). Note

that j0 has d choices. This implies that there are (q− 1) many elements of D` mapping into one

element in Z∗p. In a similar manner, we can prove the second multiset equality in the lemma.

This completes the whole proof of the lemma.

Lemma 6: For 0 ≤ ` < q, we have

{u (mod pq) : u ∈ D`} = Z∗pq.

Proof: It is obvious that the map from D` to Z∗pq with u → u (mod pq) is well-defined.

Thus it is sufficient to prove that the map is one-to-one since both D` and Z∗pq have the same

cardinality.

For u1, u2 ∈ D`, we write u1 = ĝ`gqi1hj1 and u2 = ĝ`gqi2hj2 with i1, i2 ∈ Ze and j1, j2 ∈ Zd
respectively. Assume that

ĝ`gqi1hj1 = u1 ≡ u2 = ĝ`gqi2hj2 (mod pq).

We will illustrate that i1 = i2 and j1 = j2.
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Note that

gqi1hj1 = gqi2hj2 (mod pq)

as gcd(ĝ, pq) = 1. It follows from the CRT that gqi1+j1 = gqi2+j2 (mod p),

gqi1 = gqi2 (mod q).

This implies that  qi1 + j1 ≡ qi2 + j2 (mod p− 1),

qi1 ≡ qi2 (mod q − 1).

Note that d = gcd(p− 1, q − 1). It follows from the above equality that qi1 + j1 ≡ qi2 + j2 (mod d),

qi1 ≡ qi2 (mod d).

This gives that

j1 ≡ j2 (mod d).

Since j1 and j2 belong to Zd, we have j1 = j2. In the following, we will show that i1 = i2 on

the basis of the fact that j1 = j2. Now we have qi1 ≡ qi2 (mod p− 1),

qi1 ≡ qi2 (mod q − 1).

Since gcd(q, p− 1) = gcd(q, q − 1) = 1, it follows that i1 ≡ i2 (mod p− 1),

i1 ≡ i2 (mod q − 1).

Recall e = (p− 1)(q − 1)/d = lcm(p− 1, q − 1). It follows from the above equations that

i1 = i2 (mod e).

Since i1 and i2 belong to Ze, we have i1 = i2. This completes the whole proof of the lemma.

Lemma 7: Let ĝ, g ∈ Z∗pq2 be the same notations as above. For 0 ≤ ` < q, we have the

following multiset equality

{u (mod q2) : u ∈ D`} = (p− 1) ∗ ĝ`〈gq〉,
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where ĝ and g denote (ĝ (mod q2)) and (g (mod q2)), respectively. The set ĝ`〈gq〉 is contained

in Z∗q2 and (p−1)∗ĝ`〈gq〉 is the multiset in which each element of ĝ`〈gq〉 appears with multiplicity

p− 1.

Proof: Note that

u = ĝ`gqihj ≡ ĝ`gqi · 1 ≡ ĝ`(gq)i (mod q2).

This means that (u (mod q2)) belongs to ĝ`〈gq〉 indeed. So the map from D` to ĝ`〈gq〉 with

u → u (mod q2) is well-defined. Now we count the multiplicity when u runs through the set

D`. Assume that

ĝ`(gq)i ≡ ĝ`(gq)a0 (mod q2)

for some fixed a0 ∈ Zq−1. It follows that

qi ≡ qa0 (mod q − 1),

i.e.,

i ≡ a0 (mod q − 1).

There exists p−1
d

many solutions for i ∈ Ze in the form of a0, a0+(q−1), · · · , a0+(p−1
d
−1)(q−1).

Note that j ∈ Zd has d choices. Altogether, there are (p − 1) many elements of D` mapping

into one element in ĝ`〈gq〉. This finishes the proof of the lemma.

Define D`(x) =
∑
u∈D`

xu ∈ F2[x]. There exists an important connection between the polyno-

mial D`(x) and the cyclotomic polynomial Φn(x) that will allow us to determine the minimal

polynomial of sequences s.

Lemma 8: Let γ be a fixed pq2-th primitive root of unity and v an element in Zpq2 . Then

D`(γ
v) =

 1, if gcd(v, pq2) = q,

0, if gcd(v, pq2) ∈ {p, pq, q2}

and

D`(x) ≡

 1 (mod Φpq(x)),

0 (mod (Φp(x)Φq(x)Φq2(x))).

Proof: We distinguish two cases according to the distinct value of the greatest common

divisor of v and pq2.
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1) For v ∈ Zpq2 with gcd(v, pq2) = q, it follows that γv is a pq-th primitive root of unity. On

the basis of Lemma 6, we have

D`(γ
v) =

∑
u∈D`

γuv =
∑
u∈Z∗

pq

(γv)u.

Note that
∑

u∈Z∗
pq
γuv is equal to the sum of all pq-th primitive roots of unity that is also

the coefficient of the second highest term of the cyclotomic polynomial Φpq(x). According

to Exercise 2.57 of [19], we see that

Φpq(x) =
Φq(x

p)

Φq(x)
=
xp(q−1) + xp(q−2) + · · ·+ 1

xq−1 + xq−2 + · · ·+ 1
= x(p−1)(q−1) + 1 · x(p−1)(q−1)−1 + · · · .

This indicates that

D`(γ
v) =

∑
u∈D`

γuv =
∑
u∈Z∗

pq

γuv = 1

for v ∈ Zpq2 with gcd(v, pq2) = q.

2) For v ∈ Zpq2 with gcd(v, pq2) = q2, it follows that γv is a p-th primitive root of unity. It

follows from Lemma 5 and the even parity of (q − 1) that∑
u∈D`

γuv = (q − 1)
∑
u∈Z∗

p

(γv)u = (q − 1)
∑
u∈Z∗

p

γuv ≡ 0 (mod 2).

For v ∈ Zpq2 with gcd(v, pq2) = pq or p, then γv is a q-th or q2-th primitive root of unity

respectively. Using the similar argument, it follows from Lemmas 5 and 7 and the even

parity of (p− 1) that
∑

u∈D`
γuv = 0 in this case.

It follows from the definition of cyclotomic polynomials that

D`(x) ≡

 1 (mod Φpq(x)),

0 (mod Φn(x)) if n = p, q or q2.

Therefore, we get the desired result since the cyclotomic polynomials Φp(x),Φq(x) and Φq2(x)

over F2 are relatively prime.

Lemma 9: For v ∈ Zpq2 , we have

q−1∑
`=0

D`(γ
v) =

∑
u∈Z∗

pq2

γuv =

 1, if gcd(v, pq2) = q,

0, otherwise.

Proof: For v ∈ Zpq2 with gcd(v, pq2) = 1, we see that
∑

u∈Z∗
pq2
γuv equals exactly the

coefficient of the second highest term of the pq2-th cyclotomic polynomial Φpq2(x). It follows
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from the properties of cyclotomic polynomials (see Exercise 2.57 of [19]) that Φpq2(x) = Φpq(x
q).

This gives the second highest term of the pq2-th cyclotomic polynomial Φpq2(x) is equal to zero

and so
∑

u∈Z∗
pq2
γuv = 0 for v ∈ Zpq2 with gcd(v, pq2) = 1.

Recall that Z∗pq2 =
q−1⋃
`=0

D`. For v ∈ Zpq2 with gcd(v, pq2) ∈ {pq, p, q2}, it follows from

Lemma 8 that ∑
u∈Z∗

pq2

γuv =

q−1∑
`=0

∑
u∈D`

γuv = (q − 1) · 0 ≡ 0 (mod 2).

For v ∈ Zpq2 with gcd(v, pq2) = q, it follows that γv is a pq-th primitive root of unity. On

the basis of Lemma 6, we have∑
u∈Z∗

pq2

γuv =

q−1∑
`=0

∑
u∈D`

γuv =

q−1∑
`=0

∑
u∈Z∗

pq

γuv = q
∑
u∈Z∗

pq

γuv =
∑
u∈Z∗

pq

γuv = 1 (mod 2).

This concludes the whole proof of this lemma.

We are now in a position to give a proof of Theorem 1.

Proof of Theorem 1: For j ∈ Zq, we denote Λj(x) =
q−1∑
`= q+1

2

D`+j(x), where all the subscripts

are understood modulo q here. Note that Λ0(x) =
q−1∑
`= q+1

2

D`(x) is the generating polynomial of

the sequence s exactly. Now we claim that Λj(γ) 6= 0 for all j ∈ Zq.

we first prove 2 6∈ D0 under the condition that 2q−1 6≡ 1 (mod q2). Suppose that 2 ∈ D0, i.e.,

ψ(2) = 2ϕ(pq)−1
pq

= 0 (mod pq) according to the definition of Euler quotients. This implies that

2ϕ(pq) − 1

pq
≡ 0 (mod q)

and thus

2ϕ(pq) = (2q−1)p−1 ≡ 1 (mod q2).

This means that the order of 2q−1 (mod q2) is a factor of p − 1. However, it follows from

2q−1 6≡ 1 (mod q2) that the order of 2q−1 (mod q2) is exactly equal to q. This implies that q

divides p−1, which contradicts the condition that p < q. Hence, there exists some fixed nonzero

σ ∈ Zq such that 2 ∈ Dσ.

In the following we argue by contradiction. Assume that there exists some j0 ∈ Zq such that

Λj0(γ) = 0. By Lemma 4 we get

0 = Λj0(γ)2
i

= Λj0(γ
2i) = Λj0+iσ(γ)
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for any i ∈ Zq. According to σ 6= 0 in Zq, the number j0 + iσ runs through Zq when i runs

through Zq. This means that Λj(γ) = 0 for all j ∈ Zq. In particular, we can choose Λ0(γ) = 0.

For any v ∈ Dj with j ∈ Zq, it follows from Lemma 4 that

Λ0(γ
v) =

q−1∑
`= q+1

2

D`(γ
v) =

q−1∑
`= q+1

2

D`+j(γ) = Λj(γ) = 0.

Note that Z∗pq2 =
q−1⋃
j=0

Dj. It is immediate that Λ0(γ
v) = 0 for any v ∈ Z∗pq2 . Thus the

cyclotomic polynomial Φpq2(x) divides Λ0(x). By Lemma 8, we see that Φq2(x) divides Λ0(x).

Then Φpq2(x)Φq2(x) divides Λ0(x) since gcd(Φpq2(x),Φq2(x)) = 1. On the basis of Exercise

2.57 of [19], we have

Φpq2(x)Φq2(x) = Φq2(x
p) = Φq(x

pq) =

q−1∑
j=0

xjpq.

We write

Λ0(x) ≡ Φq2(x
p)π(x) (mod xpq

2 − 1).

Note that

xpqΦq(x
pq) = xpq

q−1∑
j=0

xjpq ≡
q−1∑
j=0

xjpq ≡ Φq(x
pq) (mod xpq

2 − 1).

We can restrict deg π(x) < pq and thus π(x) can be written as π(x) =
t−1∑
i=0

xνi , where 0 ≤ ν0 <

ν1 < · · · < νt−1 < pq. Then

Λ0(x) ≡ π(x)Φq(x
pq) ≡

t−1∑
i=0

xνi
q−1∑
j=0

xjpq ≡
t−1∑
i=0

q−1∑
j=0

xνi+jpq (mod xpq
2 − 1).

However Λ0(x) has 1
2
(p−1)(q−1)2 terms and

t−1∑
i=0

q−1∑
j=0

xνi+jpq has qt terms, which is a contradiction

since the prime q does not divide 1
2
(p− 1)(q − 1)2. It follows that Λj(γ) 6= 0 for any j ∈ Zq.

This implies that Λj(γ
ν) 6= 0 for all ν ∈ Z∗pq2 and 0 ≤ j < q. In particular, we have Λ0(γ

ν) 6= 0

for all ν ∈ Z∗pq2 . By Lemma 8, for ν ∈ Zpq2 and 0 ≤ j < q we get

Λ0(γ
ν) =

 0, if gcd (ν, pq2) ∈ {p, pq, q2, pq2},
q−1
2
, if gcd (ν, pq2) = q.
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This implies that (x−1)(Φp(x)Φq(x)Φq2(x)) divides Λ0(x) if q ≡ 3 (mod 4). Hence the minimal

polynomial for the case of q ≡ 3 (mod 4) is

Ms(x) =
xpq

2 − 1

(x− 1)Φp(x)Φq(x)Φq2(x)
= Φpq2(x)Φpq(x)

by using the basic properties of cyclotomic polynomials. In a similar manner, if q ≡ 1 (mod 4),

then Φpq(x) divides Λ0(x). This yields that the minimal polynomial for the case of q ≡ 1

(mod 4) is

Ms(x) =
xpq

2 − 1

(x− 1)(Φp(x)Φq(x)Φpq(x))Φq2(x))
= Φpq2(x).

Note that the linear complexity of s is equal to the degree of the minimal polynomial of the

sequence and so the third assertion in Theorem 1 follows. This completes the whole proof of

Theorem 1.

In the following, we will give a small example for confirming our main results.

Example 1: Let p = 3 and q = 7. The least period of the binary threshold sequence s derived

from modulo pq is 147. The sequence s in one period is

{0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1,

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0}.

The minimal polynomial of the sequence s over F2 is

x96 + x95 + x93 + x92 + x90 + x89 + x87 + x86 + x84 + x83 + x81 + x80 + x78 + x77 + x75

+x74 + x72 + x71 + x69 + x68 + x66 + x65 + x63 + x62 + x60 + x59 + x57 + x56 + x54

+x53 + x51 + x50 + x48 + x46 + x45 + x43 + x42 + x40 + x39 + x37 + x36 + x34 + x33

+x31 + x30 + x28 + x27 + x25 + x24 + x22 + x21 + x19 + x18 + x16 + x15 + x13 + x12

+x10 + x9 + x7 + x6 + x4 + x3 + x+ 1

and the linear complexity of this sequence is (p− 1) · (q2 − 1) = 2 · 48 = 96.
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III. CONCLUSION REMARKS

In this paper, we determined the linear complexities of a class of binary sequences with period

pq2 on basis of the Euler quotients modulo pq. In addition, the proposed sequences have a good

balance asymptotically if the prime p tends to infinity, i.e., the number of 1’s is asymptotically

equal to the number of 0’s in one period if p tends to infinity. Finally, there are several unsolved

problems about the proposed sequences. For example, it is not known whether this family of

sequences derived from the Euler quotient modulo pq can induce more optimal families of

perfect polyphase sequences similar to [23]. Another interesting problem is to study k-error

linear complexities of the proposed sequences.
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