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Abstract—In this work, we discuss our successful efforts for
industry deployment of a cryptographic secure computation
protocol. The problem we consider is privately comput-
ing aggregate conversion rate of advertising campaigns.
This underlying functionality can be abstracted as Private
Intersection-Sum (PI-Sum) with Cardinality. In this setting
two parties hold datasets containing user identifiers, and one
of the parties additionally has an integer value associated
with each of its user identifiers. The parties want to learn
the number of identifiers they have in common and the sum
of the integer values associated with these users without
revealing any more information about their private inputs.

We identify the major properties and enabling factors
which make the deployment of a cryptographic protocol
possible, practical, and uniquely positioned as a solution for
the task at hand. We describe our deployment setting and
the most relevant efficiency measure, which in our setting is
communication overhead rather than computation. We also
present a monetary cost model that can be used as a unifying
cost measure and the computation model which reflect out
use-case: a low-priority batch computing.

We present three PI-Sum with cardinality protocols: our
currently deployed protocol, which relies on a Diffie-Hellman
style double masking, and two new protocols which leverage
more recent techniques for private set intersection (PSI) that
use Random Oblivious Transfer and encrypted Bloom filters.
We compare the later two protocol with our original solution
when instantiated with different additively homomorphic
encryption schemes. We implement our constructions and
compare their costs. We also compare with recent generic
approaches for computing on the intersection of two datasets
and show that our best protocol has monetary cost that is
20× less than the best known generic approach.

1. Introduction

Secure multiparty computation (MPC) has long held
the promise of enabling joint analysis on data coming
from multiple sources, while maintaining the privacy of
each input source. Recent developments in the field over
the past decade have demonstrated impressive efficiency
improvements, showing that that this promise stretches
beyond feasibility results and into real implementations.
Yet, the adoption of this technology in real industry set-
tings has been very limited.
In this paper we present our work on using cryptographic
MPC techniques for a particular business application:
attributing aggregate ad conversions. Our solution has

been used in practice for several years and in this paper we
discuss the full spectrum of constraints we encountered for
the deployment and use of an MPC solution for this prob-
lem and how these influenced the cryptographic protocol
that we chose to implement. Our application problem has
similarities to the problem of Private Set Intersection (PSI)
but the exact functionality that we need is an extension
of the PSI problem, which we call private set intersection
sum with cardinality. However, since there has been a
tremendous progress in the state of the art in PSI [11],
[31], [37], [47], [49], [51], [55], often motivated with our
business scenario as a practical application example, in
this work we consider recent efficient PSI construction
approaches and how they can be extended to solutions
for our setting. We compare the efficiency cost of these
constructions to that of our original solution in the context
of the monetary cost of resources when executing in a
low-priority “batch-computing” setting, where the results
are not needed in real-time. We model monetary costs by
using the prices charged by cloud providers for compute
and network resources, which we found to be a good
approximation of costs in our deployment environment.
This constraint is different from that considered by most
works in secure-computing space, which are generally
focused on minimizing end-to-end runtime. 1

Ad Conversion. An ad conversion occurs when a user
sees an online ad for a particular company on some
website, and later makes a purchase in the company’s
store. The company placing the ads would like to know
how much of its revenue it can attribute to its online ad
campaign. However, the data needed to compute these
attribution statistics is split across two parties: the ad
supplier, which knows the users who have seen a particular
ad, and the company, which knows who made a purchase
and what they spent. The two parties may be unwilling
or unable to expose the underlying data, but both parties
would still like to compute an aggregate population-level
measurement: how many users both saw an ad and made a
corresponding purchase, and how much those users spent
in total. They wish to do this while making sure that
nothing beyond these aggregate values is revealed about
individual users in the input data sets.
Private Intersection-Sum with Cardinality. Abstractly,
the above problem can be viewed as a variant of the
Private Set Intersection problem, which we call the Private
Intersection-Sum with Cardinality problem. In this setting,

1. A recent exception is the work of [48], which explicitly considers
the related problem of PSI, using monetary cost as an efficiency measure.



there are two parties that have private input sets consisting
of identifiers and one of the parties has additionally an
integer value associated with each identifier. The parties
want to learn the sum of the associated integer values for
all identifiers in the intersection of the two input sets as
well as the cardinality (or size) of the intersection, but
nothing beyond that. In particular, neither party should
learn the actual identifiers in the intersection, nor should
they learn any additional information about the other
party’s data (beyond the size of their input set) such as
associated values at finer granularity than the aggregate
over the intersection. Additionally the parties could choose
to reveal the intersection-sum conditioned on minimal
threshold size of the intersection.
For the ad conversions measurement use case, the iden-
tifiers held by one party correspond to users who have
seen the advertising campaign, while the identifiers and
integer values held by the other party correspond to the
users who bought the related item and how much they
spent, respectively. While the ad conversion problem is
one example scenario that can be solved using a Private
Intersection Sum protocol, this functionality is applicable
much more broadly. It could be easily extended to other
statistics such as average and variance. More generally,
a PSI-Sum protocol provides a secure solution for any
setting where one party holds a private statistic about
users, and another party holds private knowledge about the
membership of users in a particular population, and both
parties want to learn the aggregate statistic for that partic-
ular population. For example, one could answer questions
like ”What is the average blood pressure of patients taking
a particular medication?” or ”What is the home-ownership
rate of people living in a particular zip code?”.

Contributions. Our contributions are two-fold. First, we
give a detailed description of our deployment, including
constraints and limiting factors for our choice of solution.
This includes discussion of the features of the secure
aggregate ad conversion business problem, that made it a
good candidate for a cryptographic MPC-based solution.
These factors include the privacy needs and the strong
business benefit, but also the tractability of the problem
using efficient techniques. Key constraints for the solu-
tion are simplicity and explainability, along with ease of
implementation, ease of maintenance, and extensibility.

We discuss the details of our protocol deployed,
which is based on the classic set-intersection protocol
of [41], which uses the Pohlig–Hellman cipher (based
on the hardness of Decisional Diffie–Hellman (DDH))
– this functionality can be also viewed as an oblivious
PRF with shared key [34]. The aggregation property is
achieved through the use of additively homomorphic en-
cryption. We describe typical daily workloads, and the
costs for running those workloads, including monetary
costs. We observe that our application is not real-time
and can use cheap low-priority, pre-emptible computation.
In this “batch-computing” setting bandwidth remains a
scarce shared resource for which multiple applications
compete (see Table 1 for resource prices of various cloud
providers). Thus, communication complexity becomes the
most relevant efficiency measure for our protocols. We
believe that our insights will be useful to those trying to
bring secure computing techniques to use in practice.

As our second main contribution, we revisit the ques-
tion of Private Intersection-Sum with Cardinality through
the lenses of the large number of recent papers improving
the state of the art in efficient PSI protocols [11], [31],
[37], [47], [49], [51], [55], in order to compare the effi-
ciency costs of potential new solutions against the DDH-
style protocol used in our deployed implementation Our
goal is to see whether more modern techniques can lead
to significant savings at the cost of increased complexity.
To this end we compare costs against a suite of recent
works based on garbled circuit-style techniques [11], [31],
[32], [51], which explicitly consider privately computing
functions on an intersection, and can be directly extended
to compute our functionality. We also examine recent
approaches for computing Private Set Intersection [17],
[20], [22], [37], [47], [49], and try to adapt them to
compute private intersection-sum-with-cardinality.

While initially the Private Intersection-Sum-with-
Cardinality functionality looks very close to the PSI func-
tionality, which securely computes the intersection of two
input sets, it turns out that achieving the additional aggre-
gation while hiding the intersection comes with efficiency
costs. At the same time the PSI capability is an implicit
required building block in the secure protocols for the ex-
tended functionality. As such, recent PSI approaches [17],
[20], [22], [37], [47], [49] require significantly different
techniques in order to be adapted to the setting of PSI-
Sum with cardinality. We focus our adapting efforts on
two major approaches from these works. The first one
is based on Random Oblivious Transfer, and builds on
techniques developed by [49] and [37]. This approach
leverages oblivious PRF techniques (OPRF), which we
extended in a two step oblivious evaluation that allows se-
cret permutation of the evaluated inputs. This enables us to
hide the identity of the elements in the intersection. In or-
der to facilitate the aggregation functionality we leverage
additive homomorphic encryption, as in our deployed pro-
tocol. The second protocol is based on Encrypted Bloom
Filters and is inspired by several recent PSI solutions [17],
[20], [22]. We construct an oblivious protocol for eval-
uating membership in an encrypted Bloom filter under
additive homomorphic encryption. We also use additive
homomorphic encryption for the aggregation functionality.
In addition to these two new constructions, we give a
recipe for transforming a common form of PSI protocol
into one for computing PSI-Sum-with-Cardinality. We call
this recipe “Tag, Shuffle, Aggregate”, and believe that it
applies to a broad class of newer approaches.

Furthermore, in the two new Private Intersection-Sum
with Cardinality protocols that we summarize above, as
well as our deployed protocol, the output recipient is the
party who has input set of pairs of identifiers and values.
We also construct “reverse” variants of the protocols,
which change the output recipient to be the party that has
input set only with identifiers. All our constructions im-
plement secure computation functionalities with security
against semi-honest adversaries.

All three protocols use additively homomorphic en-
cryption (HE) as a building block. While our deployed
implementation used Paillier [46] encryption with opti-
mizations due to Damgard-Jurik [16], which offered best
efficiency guarantees at the time, there has been significant
improvement in the efficiency of lattice-based construc-



tions [8], [9], [24], [29] recently. We consider these two
schemes together with the third existing additively homo-
morphic encryption scheme, ElGamal [23], to conduct a
comprehensive comparison and to analyze the trade-offs
for the efficiency of our protocols when instantiated with
each of the additive HE options.

We implement and benchmark each of the protocols
we describe, and compare their performance in com-
putation, communication and monetary cost with each
other, and also with the recent protocols using garbled-
circuit-style techniques for computing generically on the
intersection of two datasets [11], [31], [50]. We find that
the deployed DDH-style protocol with Paillier as homo-
morphic encryption achieves lowest monetary cost among
the protocols, requiring 0.084 cents(USD) on input sets of
100,000 elements. We also found that our variant of DDH-
style protocol for PI-Sum with cardinality using RLWE
homomorphic encryption for the associated values takes
about 40% less time (47.4 seconds versus 74.4 seconds)
on sets of size 100,000, with a 11% smaller monetary
cost of 0.075 cents. Additionally, all of our protocols
(DDH, ROT and Bloom Filter) outperform the generic
approaches of [11], [31] in terms of monetary cost. The
approach of [50] outperforms our solution based on Bloom
Filters, but is more expensive monetarily than the solutions
based on ROT and DDH. Overall, the deployed DDH
protocol remains the best option for our setting under
the constraints that we have identified. Specifically, the
monetary cost of the deployed DDH-based protocol is
20× cheaper than any of the novel generic approaches
based on garbled circuits.

Roadmap. In Section 2 we discuss in detail the practical
setting for our problem. In Section 3, we give details of the
protocol we deployed.In Section 4 we revisit the problem
of Private Intersection-Sum-with-Cardinality in light of
recent progress in PSI. We give an overview of recent PSI
approaches and propose a recipe for transforming PSI pro-
tocols into Private Intersection-Sum-With-Cardinality in
Section 4.2. In Section 4.3 we present two new construc-
tions using novel techniques. All our constructions use
several cryptographic primitives defined in Appendix A.
In Section 5 we present measurements from our protocol
implementations, including comparisons based on mone-
tary costs with works based on garbled-circuit techniques.
In Appendix A we give various useful notation and defi-
nitions. In Appendix B we discuss the tradeoffs of using
different encryption schemes to instantiate our protocols.

2. Problem Setting

We now describe details of the problem and of our
deployment environment including the formal problem
statement and its characteristics, our execution environ-
ment and estimates of daily workloads, as well as the
monetary cost model we use for our protocols.

2.1. Formal Problem Statement

In Figure 1 we give a formal description of the func-
tionality we are aiming to compute securely. It captures
that we want Party P2 to learn the intersection-sum S, and
that we allow both parties to learn the intersection size C.

In Appendix G, we also describe a Reverse variant, where
P1 learns the intersection-sum S instead of P2.

Our deployment also assumes that the parties already
have data with the same identifier space. Finding an ap-
propriate common identifier space is an important problem
that is orthogonal to this current work.

Private Intersection Sum with Cardinality

Inputs:
P1 : Set V = {vi}m1

i=1 P2 : Set of pairs W = {(wi, ti)}m2
i=1

Outputs:

P1 : C = |{i : wi ∈ V }| P2 : C = |{i : wi ∈ V }|, S =
∑

i:wi∈V
ti

Figure 1: FPIS−C : The Private Intersection-Sum with
Cardinality functionality.

Protection of Individual Values. The PSI-Sum function-
ality reveals aggregates of values for the records in the
intersection. If there are no outlier values, then this ag-
gregates provides a high level of privacy protection of the
individual values that were added. One approach to protect
outliers that may be revealed by the sum is to remove
outliers from the input dataset. A similar issue occurs
with lower-order digits for which we can use rounding.
For many application scenarios, these protections may
provide sufficient privacy guarantees. For setting where
these do not suffice, the parties can add differential privacy
noise [21] to the output of the computation.

2.2. Problem Characteristics and Constraints

In this section, we discuss various features of the
business problem our deployment addresses, namely com-
puting ad-conversion metrics. We first consider the char-
acteristics that make the problem a good fit for a secure-
computing solution.
Strong business benefit: Given that cryptographic solutions
add significant complexity and efficiency costs, a clear
business benefit is a prerequisite to exploring such solu-
tions. The measurement of ad campaign conversions is of
central importance to advertisers, enabling them to deploy
their marketing budget more efficiently.
Strong privacy need: For our application, the data needed
to compute analytics is split across different parties, each
of which have a strong desire to keep their data private.
This is a powerful motivation to find solutions with strong
privacy properties.
Alternatives pose undesirable risks: The parties may have
constraints related to the underlying data that make al-
ternatives, like using a trusted third party or developing
isolated execution environments, less palatable or not ac-
ceptable. When no other solution is acceptable, a relatively
expensive cryptographic solution becomes more attractive,
since it provides the desired end-to-end privacy.
Tractable: The underlying problem must be amenable
to efficient solutions. Existing efficient private set in-
tersection solutions were a good sign that the private
intersection-sum problem underlying our application will
be tractable.



Not Real-Time: An application whose output is not needed
in real-time (like analytics, learning, etc.) can much more
easily tolerate the overhead costs associated with a cryp-
tographic solution.

Design Constraints: Next we turn to the various design
constraints for our problem. We note that our context is
secure computation across multiple businesses (over Wide
Area Network–WAN). The characteristics for secure com-
puting within a single business, or between a server and
a mobile application both owned by the same company
may be different. With this caveat, we made our solution
decision based on the following characteristics:
Communication Efficiency: Perhaps surprisingly, for the
offline ‘batch computing’ scenarios we consider, commu-
nication costs are far more important than computation.
This is especially the case for a secure protocol involving
multiple businesses, where servers cannot be co-located
(WAN solutions). Network cost is an order of magnitude
more expensive than computation, and this is reflected in
the costs charged by cloud providers (see Table 1).
Well-understood tools and assumptions: Companies tend
to be highly risk-averse when it comes to deploying novel
cryptography, so it is very helpful to have protocols that
use well-understood underlying assumptions and widely
distributed implementations.
Simplicity: It is difficult to overstate the importance of
simplicity in a practical deployment, especially one in-
volving multiple businesses. A simple protocol is easier to
explain to the multiple stakeholders involved, and greatly
eases the decision to use a new technology. It is also
easier to implement without errors, test, audit for cor-
rectness, and modify. It is also often easier to optimize
by parallelizing or performing in a distributed manner.
Simplicity further helps long-term maintenance, since,
as time passes, a constantly increasing group of people
needs to understand the details of how a solution works.
Conversely, the more complex a solution gets, the more
barriers appear in each context mentioned above.
Flexibility: Any successful deployment may drive the de-
mand for solutions to related problems. A modular design
relying on APIs that can be reused in solutions to a whole
class of problems, is always desirable.

2.3. Adversarial Model

Another important design axis is the class of misbe-
havior the secure computation should protect against.

There are various different models in which we can
design our protocol, where the two extremes are the fully-
trusted and the malicious adversary models. Full-trust
implies that parties trust each other to compute correctly
on data in the clear, and to delete the data after the end
of the protocol. On the other hand, malicious adversaries
are allowed to deviate arbitrarily from any prescribed
protocol. Intermediate notions exist between these two
extremes, an important one being security against honest-
but-curious adversaries. Protocols that provide “honest-
but-curious” (or semi-honest) security, (modeled in [58])
assume that the participants will follow the protocol steps
honestly, but may try to learn as much as possible from
transcript and logs of the various protocol messages.

While protection against stronger adversaries is natu-
rally more appealing, it does come with substantial effi-
ciency cost (especially communication). Furthermore, the
security model for a cryptographic protocol is one piece
of a comprehensive risk analysis which would include in-
centives of parties to deviate, the nature of the underlying
data, the size and level of trust among interacting parties,
and the availability of external enforcement mechanisms
such as contracts or code audits. Compared to protocols
in the malicious security model, the semi-honest model
has relatively efficient solutions available, especially in
terms of communication cost and monetary cost. It is also
a significant improvement over the fully-trusted model
which relies on external non-cryptographic mechanisms to
ensure privacy. In particular, the semi-honest model gives
strong privacy protections against data breaches in either
party, since, since semi-honest protocol logs leak nothing
beyond the prescribed protocol output.

In our deployment, with all factors considered, we
chose to target “semi-honest” security.

2.4. Workloads and Execution environment

A typical daily workload for our deployment involved
around 1000 protocol executions between each pair of
parties, with each execution involving on the order of
100, 000 items in each party’s input.

Our application is not real-time, and therefore our
deployment environment is representative of a latency-
insensitive batch-computation. Each party controls its own
set of computational and storage resources, and in addi-
tion, both parties have access to shared storage resources
that are used transferring data from the intermediate steps
of the protocol execution. Each of the 1000 protocol
executions is assigned a separate directory in the shared
storage. Whenever a party finishes a round for a partic-
ular execution, it writes the round result into the shared
directory for that execution. Each party continuously polls
these directories in the shared storage with a relatively
long delay (on the order of minutes) to check if a new
file has been written, and if so, performs the next round
of the corresponding protocol execution. The executions
continue in this way until all executions have completed.

The parties execute their portions of the protocol in
their own datacenters. The intermediate protocol data is
transferred between these datacenters using a standard
SSL connection over the internet.

2.5. Monetary Cost Model

We use the total monetary cost of a protocol execution
as our primary cost measure.

Why monetary cost: Our business use-case is not latency
sensitive: the output statistics are only needed for gen-
erating periodic reports. Therefore, the traditionally used
end-to-end running time of executions is not the most
important measure of cost (as long as all executions can
finish within a day). Rather, the cost of resources (CPU,
RAM and especially network) are most relevant. Monetary
cost gives a convenient measure to unify the cost of these
various resources in a practically relevant way.



CPU ($/hr) Network ($/GB)
Google Cloud Platform (GCP) $0.01 $0.08
Amazon Web Services (AWS) $0.005 $0.08
Microsoft Azure $0.005 $0.083

TABLE 1: Computation and Network Costs, as charged
by different cloud providers. Computational costs are for
a single pre-ordered pre-emptible CPU and 2-4 GB of
RAM. Network costs are the cost for the 10-50TB tier of
Cloud-to-Internet egress traffic for each provider. This ta-
ble is representative of pre-planned, low-priority resource
costs.

Specific costs used: For our concrete monetary costs of
resources, we used the costs charged by Google Plat-
form for pre-emptible virtual machines (including CPU
and RAM), and the cheapest cost for ”Internet Egress”
network usage (representing data flowing to an external
datacenter or cloud provider).

These costs are in a similar range to the bulk costs
charged by the other cloud providers, as shown in Table 1
2. The prices shown are for single-CPU machines with
2GB RAM in AWS and Azure, and 3.75 GB RAM
in Google Cloud. The network bandwidth costs are for
internet egress in the 10-50TB data transfer tier.

A key feature of monetary cost as a metric compared
to end-to-end running time is that it gives a large weight
to communication cost. A gigabyte of communication
would add only minutes to end-to-end running time, but
its monetary cost is equivalent to 8 hours of computation.

Justification: Even though our execution environment
involves parties running the protocol in their own datacen-
ters, the cloud pricing model closely reflects the relative
costs of resources for our environment as well. In fact,
communication was even more lopsidedly constrained in
our deployment scenario. This reflects the fact that net-
work bandwidth is a highly constrained resource, and that
it is much cheaper to add more processors to a datacenter
than to increase the total bandwidth leaving a datacenter.

Alternative cost models: In our experience, the cost
model we use closely represents the costs of executing
protocols datacenter-to-datacenter, and also between par-
ties that are hosted in different cloud providers. While we
are not aware of business-to-business secure computation
deployments beyond our own, we expect the datacenter-
to-datacenter and cloud-to-different-cloud to be the most
common deployment scenarios, and therefore using cloud
costs would be a good fit there as well.

Network costs become cheaper if the two participants
use the same cloud provider and are colocated in the same
cloud region, which is not the case for our deployment.
For example, network transfer in the same region costs
0.01 per GB within GCP, which is 8× cheaper than the
internet egress rates. In this setting protocols with different
efficiency tradeoffs may have better monetary cost.

2. Google Cloud Platform Costs are from https://cloud.google.
com/compute/all-pricing and https://cloud.google.com/compute/
network-pricing respectively. AWS costs are for ”spot” instance
CPUs from https://aws.amazon.com/ec2/spot/pricing/ and network
costs are from https://aws.amazon.com/cloudfront/pricing/. Azure
CPU costs are from https://azure.microsoft.com/en-us/pricing/
details/virtual-machines/linux/ and network costs are from
https://azure.microsoft.com/en-us/pricing/details/bandwidth/.

2.6. Related Works

Deploying secure computation in practice is challeng-
ing, but there are some real-world applications leveraging
MPC. These include the Danish Sugar Beet Auction [6],
a financial application in Estonia [5], a secure survey of
faculty salaries at universities in Massachusetts [39], and
a platform for reporting harassment [54]. More recently,
Lindell et al. [2], [28] deploy secure computation for cryp-
tographic operations running between machines owned by
a single organization. Google also reports using a secure
computation protocol to aggregate locally trained machine
learning models from mobile devices [7]. However, rou-
tine use by organizations of secure computing between
multiple entities or businesses remains rare.

3. Deployed Protocol

In this section, we describe our deployed protocol,
namely the protocol based on DDH.

3.1. Protocol details

Here we present our DDH-based intersection-sum pro-
tocol which we designed in response to the above con-
straints. Our protocol was, in our understanding, the sim-
plest protocol that solves the intersection-sum problem.
It uses well-understood cryptographic primitives that are
based on classical assumptions, and can be built from
widely-deployed libraries (e.g. OpenSSL). It targets semi-
honest security, and aims to minimize communication
cost. Furthermore, it is flexible enough to allow several
important variants.

Our protocol extends an existing PSI protocol [41].
It uses the following primitives defined in Ap-
pendix A: a group G in which the DDH assumption
holds, an additively homomorphic encryption scheme
(AGen,AEnc,ADec) and a hash function H modeled as
a random oracle for the security proofs. We present our
construction in Figure 2.

At a high-level, the two parties interact to hash and
then exponentiate each entry in their datasets, using a
multiplicatively shared secret exponent. During this in-
teraction the values that are hashed and exponentiated
are also shuffled. Thus, at the end, the output receiver
is comparing pseudorandom representation of the input
sets to compute the intersection without being able to
relate it to the original input values. Our construction
can be viewed as computing obliviously a ROM PRF
H(x)k [34] where the key is multiplicatively shared, or
evaluating deterministic Pohlig–Hellman cipher [30] with
shared key. The group G in which we apply the Pohlig–
Hellman cipher can be any group in which the DDH
assumption holds, and that allows hashing to a random
generator. We assume for simplicity in Figure 2 that G
has prime order.

Our protocol extends ideas from the work of of Mead-
ows [41] on private matching and Huberman [33] on
intersection cardinality to also support intersection-sum.
To achieve this, the party holding associated values sends
along additive-homomorphic encryptions of the values un-
der AEnc, and the other party homomorphically computes
the sum of values in the shuffled-intersection. The sum is

https://cloud.google.com/compute/all-pricing
https://cloud.google.com/compute/all-pricing
https://cloud.google.com/compute/network-pricing
https://cloud.google.com/compute/network-pricing
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/cloudfront/pricing/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/


DDH-based Private Intersection-Sum Protocol
• Inputs:

– Both parties: A group G of prime order, and an identifier space U . A hash function H : U → G, modeled as a random oracle, that
maps identifiers to random elements of G.

– P1 : Set V = {vi}m1
i=1, where vi ∈ U .

– P2: Set of pairs W = {(wi, ti)}m2
i=1, with wi ∈ U , ti ∈ Z+.

• Setup:

– Each Pi chooses a random private exponent ki in the group G.
– P2 generates a fresh key-pair (pk , sk)← AGen(λ) for the additive homomorphic encryption scheme and sends the public key pk

with P1.

• Round 1 (P1):

1) For each element vi in its set, P1 applies the hash function and then exponentiates it using its key k1, thus computing H(vi)
k1 .

2) P1 sends {H(vi)
k1}m1

i=1 to Party 2 in shuffled order.

• Round 2 (P2):

1) For each element H(vi)
k1 received from P1 in the previous step, P2 exponentiates it using its key k2, computing H(vi)

k1k2 .
2) P2 sends Z = {H(vi)

k1k2}m1
i=1 to P1 in shuffled order.

3) For each item (wj , tj) in its input set, P2 applies the hash function to the first element of the pair and exponentiates it using key
k2. It encrypts the second element of the pair using the key pk for the additive homomorphic encryption key. It thus computes
the pair. H(wj)

k2 and AEnc (tj).
4) P2 sends the set {(H(wj)

k2 ,AEnc(tj))}m2
j=1 to P1 in shuffled order.

• Round 3 (P1):

1) For each item (H(wj)
k2 ,AEnc(tj)) received from P2 in Round 2 Step 4, P1 exponentiates the first member of the pair using

k1, thus computing (H(wj)
k1k2 ,AEnc(tj)).

2) P1 computes the intersection set J :
J = {j : H(wj)

k1k2 ∈ Z}

where Z is the set received from P1 in Round 1.
3) For all items in the intersection, P1 homomorphically adds the associated ciphertexts, and computes a ciphertext encrypting the

intersection-sum SJ :

AEnc(pk , SJ ) = ASum
(
{AEnc(tj)}j∈J

)
= AEnc

∑
j∈J

tj


P1 then randomizes the ciphertext using ARefresh and sends it to P2.

• Output (P2): P2 decrypts the ciphertext received in Round 3 using the secret key sk to recover the intersection-sum SJ .

Figure 2: ΠDDH: Our deployed DDH-based Private Intersection-Sum protocol.

sent back to the first party, who then decrypts to recover
the intersection-sum.

Correctness of the protocol follows immediately from
inspection, namely that P2 learns the intersection-sum and
cardinality.

We state the theorems for security below. The formal
security proof in the honest-but-curious model appears in
Appendix D. They show that each party learns nothing
more than the intersection size and intersection-sum. The
proofs use a standard hybrid argument to show that the
view of each party can be simulated by replacing “real”
protocol values with dummy values while maintaining the
same intersection size and sum, and that the dummy values
are indistinguishable from the real values by the assumed
hardness of DDH and the security of the homomorphic
encryption scheme.

Theorem 1 (HBC-Security against P1 in ΠDDH). There
exists a PPT simulator SIM1 such that for all security
parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL1,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM1(1

λ, {vi}m1
i=1,m2, |J |)

Where m2 is the size of P2’s input, J = {j : wj ∈
{vi}m1

i=1} is the intersection set, and |J | is its cardinality.

Theorem 2 (HBC-Security against P2 in ΠDDH). There
exists a PPT simulator SIM2 such that for all security
parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL2,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM2(1

λ, {(wj , tj)}m2
j=1,m1, SJ)

Where m1 is the size of P1’s input, J = {j : wj ∈
({vi}m1

i=1} is the intersection set, and SJ =
∑

j∈J tj is
the intersection-sum.

3.2. Parameter Choices

For our deployment, we use OpenSSL’s implemen-
tation “prime256v1”, a NIST elliptic curve with 256-bit
group elements, as the group G. For the random oracle,
we use SHA-256 applied to the input, and re-applied until



the resulting output lies on the elliptic curve 3. In order
to simulate a new random oracle for each execution, the
parties choose a common random seed and prepend it to
each input before hashing.

For the additive homomorphic encryption scheme, we
use Paillier encryption with 768 bit primes, with the
Damgard-Jurik optimization [16] with s = 3. Thus each
ciphertext is 6144 bits, with 4608 bits of plaintext space.
We assume that each of the associated integer values is
at most 32 bits, including after summation, and therefore
we can pack many values into a single ciphertext. Details
of slotting can be seen in Appendix B.1. Allowing 40 bits
between slots for masking, and leaving half the plaintext
space empty to allow slots to be shifted-and-added, we
can pack 65 integer values into a single ciphertext. Our
Paillier implementation was built on top of OpenSSL’s
BigNum libraries.

3.3. Deployment Costs

In Table 2, we give the communication and computa-
tion costs for both a single session, with 100,000 entries
in each party’s database, and also for 1000 such sessions,
which corresponds roughly to a days workload. In addition
we give the dollar cost using resource valuations for GCP
given in Table 1. The runtimes are the total for both
parties, and are measured on a single core of a desktop
workstation with an Intel Xeon CPU E5-1650 v3 (3.50
GHz), which is representative of a typical machine in our
deployment, and also representative of a virtual CPU in
Google Cloud Platform.

We see that even though the raw computation time ap-
pears to be quite large, and the communication relatively
modest, communication is a factor of 3× more expensive
in dollar cost, and constitutes 75% of the monetary cost
of the protocol.

3.4. Variants

We considered variants of this protocol in different
contexts. These variants give modifications of the func-
tionality that offer important flexibility.

Threshold variant: One variant is a simple threshold-
variant, which allowed P1 to abort the protocol in Round
3 if the intersection size was too small, before the inter-
section sum was computed.

Reverse variants: The protocol in Figure 2 has P1 per-
form the intersection and homomorphic intersection sum
in Round 3. The protocol can be reversed so that P2

instead performs the intersection and intersection sum, and
P1 receives the output. To achieve this, P1 in Round 3
additionally additively masks each of the encrypted asso-
ciated values and shuffles and sends them to P2 together
with the shuffled set {H(wj)

k1k2}. P2 then decrypts and
adds together the values corresponding to the masked
shuffled-intersection. P1 can then unmask the intersection

3. We note that this method of hashing to the curve is susceptible to
timing attacks, however these attacks don’t apply in our scenario since
items are hashed to the curve before protocol execution. Methods of
hashing to a curve that are free from timing attacks can be found at
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve

using it’s knowledge of the masks. Note that this vari-
ant is not compatible with packed additive homomorphic
encryption.

Segmented input: In some settings, it is desirable to split
P1’s input into several disjoint segments, and for P1 to
learn the intersection sum for each of these segments.
For example, in the advertising conversion measurement
use-case, the segment could correspond to different age
groups, or different geographical regions. One way to
achieve this is to run a separate protocol execution for
each segment held by P1. However, this adds significantly
to the cost. A simple alternative is for P1 to send its values
in Round 1 separated by segment, and for P2 to shuffle
values only within a segment, but not across different
segments. This enables P1 to compute the intersection
size and encrypted sum for each segment, with roughly
the same cost as a single unsegmented execution.

Multiple integer values: The protocol generalizes easily
to cases where each item in P2’s data has multiple integer
values associated, and parties wish to learn the sum of all
such values. This is handled by simply packing all such
values into different slots of the homomorphic encryption,
and creating one sum for each type of value.

Multiple values also enable computing the variance of
the intersection-sum, by additionally sending the square
of the original associated value. The parties will learn the
intersection size, intersection sum, and intersection-sum-
of-squares, from which they can compute the variance.

4. Revisiting the Problem: New Protocols

In this section, we move to the second main con-
tribution of this work, namely revisiting the problem
of securely computing Private Intersection-Sum-with-
Cardinality, in light of the vast recent progress in PSI
protocols. We give two new protocols based on new
approaches. In addition, we describe a simple recipe for
turning a particularly common flavor of PSI protocols into
an intersection-sum-with-cardinality protocol.

4.1. Private Set Intersection: an Overview

Private set intersection has been studied extensively
in a long sequence of works [14], [15], [17], [20], [22],
[26], [32], [33], [37], [38], [49], [52], [55], [56]. Several
works limit the parties to learning only the cardinality of
the intersection [1], [13], [26], [33], [36], [44], [57].

The most prevalent technique among recent special-
ized protocols for set intersection, which also underlies
the most efficient PSI constructions currently [37], [48], is
based on the concept of oblivious pseudorandom functions
(OPRF) [25]. The high level idea in this approach is to
replace the items in the two input sets with corresponding
PRF evaluations where one party has the OPRF key and
can obtain locally its pseudorandom evaluations, and the
oblivious evaluation property of the PRF is used to enable
the other party to obtain its PRF values. Now any of the
two parties can use the pseudorandom representations of
the input sets to compute the intersection and it will also
have the mapping of the intersection PRF values to the
original input set values. Different papers have proposed

https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve


Comp. time (hrs). Total Comm. (MB) Comp. cost (cents) Comm. cost(cents) Total Cost (cents)
Single execution 0.2068 8.105 0.0206 0.06332 0.08400
(100,000 entries)

Daily total 20.68 8105 20.68 63.32 84.00
(1,000 executions)

TABLE 2: Concrete deployments costs, for both a single protocol execution over 100,000 entries for each party, and
for a day which has 1,000 such executions. Monetary costs are in cents (USD) use the values for GCP from Table 1
to value communication and computation.

different approaches for instantiation of the OPRF where
currently the most efficient approach has been using ran-
dom oblivious transfer (ROT), which is a modification
of the oblivious transfer OT extension protocol [52],
as an OPRF that allows a single oblivious evaluation.
Additionally the set intersection protocol is reduced to
many smaller set intersection protocols in which one of
the parties always has a single element input set, these
can be implemented using the limited functionality of the
ROT-based OPRF. This is achieved by leveraging Cuckoo
hashing [18] at one of the parties, which distributes its
items in bins of size at most one, and simple hashing at the
other party using all Cuckoo hash functions for each input
element. At this point the parties run a mini-PSI protocol
for the items sent to each bin in the parties’ inputs.

Another approach for computing set intersection,
which was introduced in the work of Dong et al. [20],
and was later strengthened by Rindal et al. [55] in the
context of malicious set intersection leverages the notion
of Bloom filters (BF) [4]. The two parties agree on the
hash functions parameters for a Bloom filter. The first
party computes a garbled Bloom filter which contains
random values in its locations with the constraint that if an
element is present in the set the values in the Bloom filter
corresponding to its hash locations are additive shares of
the element. The second party constructs a regular Bloom
filter with binary values for its input set. Then, the two
parties run oblivious transfer protocols where the second
party retrieves the elements from the garbled BF of the
first party only for locations where the value in its own
BF is one. The second party can now check which of its
input elements is in the intersection represented by the
partial garbled BF that it has obtained through the OTs.

Similar to our deployed approach, there are also
works based on the Decisional Diffie–Hellman (DDH)
computational assumption, which comes from some older
works [14], [33], [34], [38], [56]. The general ideas are as
follows: The two parties hash their values in a group where
DDH holds. Each party has a secret exponentiation key.
The parties use their keys to exponentiate their hashed
input elements and exchange the results. They further
exponentiate the elements in each of the received sets
and send back the results. Now each party can compute
the intersection locally. Technically this approach can
be considered as an instantiation of the OPRF approach
where the OPRF key is shared [34].

The PSI problem has also been solved using directly
general two party computation techniques. Works using
garbled circuit techniques allow computing the cardinality
of the intersection, as well as more general functions
of associated values of items in the intersection associ-
ated values. Huang et al.’s work [32] leverage the Sort-
Compare-Shuffle approach which uses a O(n log n)- depth

circuit to perform set intersection. The Phasing technique
of Pinkas et al. [49] hashes items to bins and uses garbled
circuits to perform intersection bin-wise. More recently,
several partly concurrent works [11], [31], [51] com-
bine modern PSI tools such as phasing and sort-shuffle-
compare garbled-circuits to create novel protocols that
allow parties to output shares of the items in the intersec-
tion. This allows arbitrary two-party computations over
associated values of items in the intersection, including
learning sums of associated values. These works offer
very competitive computational efficiency, at the cost of
increased communication due to the use of techniques (in-
cluding garbled circuits) that require bit-wise encryption
and secure comparison of inputs. However, these works
have the powerful advantage that they allow computing
arbitrary functions over the intersection.

There are also works that target specialized settings
to gain additional efficiency. In the setting of unbalanced
input sets, Chen et al. [10] leverage fully-homomorphic
encryption to create PSI protocols which offer improved
communication efficiency, while at the same time allowing
retrieval of associated data for items in the intersection.
[35] explore offline precomputation to maximize online
efficiency for PSI. Several works also rely on additional
parties or multiple non-colluding servers in order to com-
pute aggregate statistics, for example [12], [27], [40].

4.2. Transforming PSI into Private Intersection
Sum: Tag, Shuffle and Aggregate

As discussed in the introduction the problem of private
intersection-sum can be viewed as an extension of the
functionality of private set intersection, and moreover the
PSI functionality is an implicit component of our function-
ality. Thus a natural starting point for our constructions
are existing PSI protocols (this is the case for both our
deployed protocol and our new constructions). Our high
level recipe for going from PSI to Private Intersection Sum
is as follows:

1) Each of our protocols takes an existing PSI ap-
proach, and incorporates a shuffle step. This idea,
first seen in [33], has the effect of turning the PSI
protocol into a Private Intersection Cardinality
protocol: shuffling lets the participants count how
many items are in the intersection, but not learn
which specific items were in common.

2) Together with the identifiers, we insert homomor-
phic encryptions of associated values as “tags”.
These tags accompany the identifiers through the
PSI protocol and the shuffle step. When one party
is eventually computing the shuffled-intersection,
that party can also homomorphically add together



all “tags” to compute an encrypted intersection-
sum of the associated values, which can subse-
quently be decrypted.

This recipe, which we refer to as “Tag, Shuffle, Ag-
gregate”, is conceptually straightforward and immediately
appealing. However, it turns out the detailed application to
each protocol can differ significantly, and a naive applica-
tion of the recipe can lead to significant impact to protocol
communication and computation costs. As an example,
each of our protocols make use of an underlying additively
homomorphic encryption scheme in various ways. It turns
out the specific choice of additively homomorphic encryp-
tion chosen has a huge impact on efficiency, especially
the availability of features like slotting. These tradeoffs
are discussed in more detail in Appendix B. Indeed, we
view the careful optimizations and comparison of different
approaches as a key contribution of our work.

A positive feature of the tag-shuffle-aggregate ap-
proach is that each protocol we obtain naturally degrades
into a protocol for computing intersection-size, by simply
skipping the “tag” and “aggregate” steps.

Given this recipe, our approach was to take the
most promising main techniques underlying existing PSI
approaches and modify them to the setting of private
intersection-sum, comparing the resulting protocols in
terms of efficiency.

The Random-OT set intersection technique is the basis
of our first new private intersection-sum protocol de-
scribed in Section 4.3.1, which extends it using homomor-
phic encryption and shuffling to hide the exact intersection
while aggregating over it.

Our second construction for private intersection-sum
presented in Section 4.3.2 is inspired by the techniques
using encrypted Bloom Filters.

Revealing the Intersection Size: An important side effect
of applying the recipe above is that all our protocols
additionally reveal the size of the intersection, in addi-
tion to the intersection sum. In the business applications
we consider, this is actually a desirable feature: parties
actually want to learn how many items were in common.
However, it is possible that in other settings, revealing the
intersection size is undesirable leakage. In those settings,
this additional leakage would be a drawback of our recipe
and our protocols.

4.3. New Protocols for PSI-Sum with Cardinality

In this section we present our new cryptographic
protocols for secure private set intersection-sum-with-
cardinality which leverage recent ROT and BF techniques
for set intersection.

4.3.1. Random-OT-based Protocol. In this section, we
describe a protocol for intersection-sum based on Ran-
dom Oblivious Transfer, which is used in existing PSI
solutions [20], [49], [52], [55]. We believe this is the
first construction of the Private Intersection-Sum-with-
Cardinality functionality from Random OT. Note that our
construction can be naturally modified to a protocol for
privately computing PSI-cardinality.

We use the following primitives defined in Section A:

• Random OT with the following functionality: P1

has no input and obtains a PRF key k that can be
evaluated on some known domain. P2 has input
x and receives fk(x), the evaluation of the PRF
on the point x. Additionally, any evaluations of
fk on a polynomial subset of inputs (including or
excluding on x) appears pseudorandom to P2.

• An additively homomorphic encryption scheme
(AGen, AEnc, ADec).

We present our protocol ΠROT in Fig. 3. At a high
level, the protocol ΠROT is similar to the Batched-OPRF
based PSI of [37]. However, since we additionally want
the intersection to be hidden, we introduce another step
where we shuffle and re-mask the outputs of the batched-
OPRFs. This shuffling is executed by the OPRF receiver
encrypting the batched-OPRF outputs, and sending the
encryptions to the OPRF sender. The sender then homo-
morphically adds a random value ri to each ciphertext, and
shuffles the ciphertexts among each other before sending
them back. This implicitly changes the OPRF output
fki(xi) to fki(xi) + ri, which is also pseudorandom,
and can be viewed as a “new” OPRF. When the receiver
decrypts, it therefore learns the “new” OPRFs evaluated
on each of its inputs, but in shuffled order. Once we have
this type of shuffled OPRF, it is natural to build a protocol
for both intersection-sum and intersection-cardinality.

We note that [31] and [11] have some high-level
similarities with our protocol, in that they adapt [37]-
style bucketing with additional techniques to hide which
specific items were in the intersection. While we hide the
intersection by shuffling the buckets amongst each other,
[31] and [11] achieve it by performing a tailored MPC-
subprotocol for each bucket.

Correctness of the protocol follows immediately from
inspection, assuming cuckoo hashing fails with negligible
probability and that the Random OT outputs collide with
negligible probability.

The security of our protocol follows from the security
of the encryption scheme and the security properties of the
Random-OT protocol. Security is proved using a standard
hybrid argument, where the encryptions are replaced with
encryptions of zero, and the outputs of the Random OT
are replaced with unrelated uniformly random values, in
such a way that the intersection size and intersection-
sum remain the same. We state the theorems here. These
theorems prove that the view of an honest party interacting
in a real execution can be simulated by a simulator who
only knows the intersection sum and intersection size.

Theorem 3 (HBC-Security against P1 in ΠROT). There
exists a PPT simulator SIM1 such that for all security
parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL1,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM1(1

λ, {vi}m1
i=1,m2, |J |)

Where m2 is the size of Party 2’s input, J = {j : wj ∈
{vi}m1

i=1} is the intersection set, and |J | is its cardinality.

Theorem 4 (HBC-Security against Party 2 in ΠROT).
There exists a PPT simulator SIM2 such that for all



Randomized-OT based Private Intersection-Sum protocol
• Inputs:

P1 : Set V = {vi}m1
i=1 P2 : Set of pairs W = {(wi, ti)}m2

i=1

• Setup: P1 and P2 each generate an additively homomorphic encryption key-pair (pk1, sk1) and (pk2, sk2) and exchange public keys pk1
and pk2.

• Protocol Steps:

1) P1 and P2 choose Cuckoo hash table size n, stash size s, and l hash functions: h1, ..., hl mapping inputs to bins [1, ..., n].
2) P1 hashes its items using Cuckoo hashing with h1, ..., hl into n bins and a stash of size s, where each bin contains at most one

item. P1 fills in all empty bins and the empty positions in the stash with a dummy item. We refer to P1’s items (including both
dummy and real values) as v1, ..., vn+s, where the items vn+1, ..., vn+s are the items in the stash. P1 aborts if the hashing fails.

3) For each 1 ≤ i ≤ n+ s the parties run a random OT where P2 obtains a PRF key ki and P1 obtains the evaluation fki
(vi).

4) P1 encrypts and sends to P2: {cti = AEnc(pk1, fki
(vi))}n+s

i=1
5) P2 chooses random values {ri}n+s

i=1 , and, for each i ∈ [1, n+ s], computes: ct′i = ARefresh(cti + AEnc(pk1, ri)).
P2 sends P1 the set of ct′i in shuffled order.

6) For each (wj , tj) ∈W , P2 computes:

Ij = {hi(wj)}li=1 ∪ {n+ 1, ..., n+ s} Wj = {fki
(wj) + ri}i∈Ij cttj = AEnc(pk2, tj)

If any Wj has size < l+s, P2 pads Wj with dummy random elements until it has size l+s. P2 sends P1 the set {(Wj , cttj)}
m2
j=1,

with the order of the tuples randomly permuted, in order to hide which elements of each Wj correspond to which hash function
or stash index.

7) P1 decrypts all values ct′i. Let V ∗ be the set of decrypted values. P1 computes

CT =
∑

j : |Wj∩V ∗|>0

cttj

P1 rerandomizes CT into CT′ := ARefresh(CT) and sends it to P2.

• Output: P2 decrypts CT′ to recover d, and outputs d, equal to
∑

i:wi∈V ti, the intersection-sum.

Figure 3: ΠROT : Randomized-OT based Private Intersection-Sum protocol.

security parameters λ and inputs {vi}m1
i=1, {(wj , tj)}m2

j=1,

REAL2,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM2(1

λ, {(wj , tj)}m2
j=1,m1, SJ)

Where m1 is the size of Party 1’s input, J = {j : vj ∈
{vi}m1

i=1} is the intersection set, and SJ =
∑

j∈J tj is the
intersection-sum.

The formal security proof appears in Appendix E.

4.3.2. Bloom-Filter-based Protocol. In this section, we
describe a Private Intersection-Sum protocol based on
the use of encrypted Bloom Filters, extending PSI ap-
proaches [17], [20], [22].

We use the following primitives defined in Ap-
pendix A: a Bloom filter BF, an additively homomorphic
encryption scheme (AGen, AEnc, ADec). We refer the
reader to Appendix A and specifically Definition 6 for
definitions and notation for Bloom Filters.

We present the protocol in Figure 4. At a high level,
one party inserts its input database into a Bloom Filter, and
encrypts each bit of the Bloom Filter using an additively
homomorphic encryption scheme under its key pk1. That
party then sends the encrypted Bloom Filter to the other
party, who homomorphically computes membership of
its elements in the Bloom Filter. If an item is in the
Bloom Filter, that party will homomorphically compute an
encryption of zero, and if it is not in the Bloom Filter, the
party will compute an encryption of a uniformly random
value. It sends these “membership” ciphertexts to the first
party in shuffled order, who can then decrypt to learn how

many items were in the intersection. The second party
also sends homomorphically encrypted associated values
with the membership ciphertexts under its own key pk2,
allowing the first party to compute the intersection-sum.
The first party can additively mask the final intersection
sum and then unmask the value decrypted by the second
party.

The correctness of the above protocol can be seen
directly, except in the case when:

• There are collisions in the Bloom Filter, and
• In step 4b, rj · (

∑
j bINDj

− k) = 0 but∑
j bINDj

6= k.

The probability of Bloom Filter collisions can be made
negligible by appropriate choice of Bloom Filter size
and number of hash function. The probability that rj ·
(
∑

j bINDj
− k) = 0 but

∑
j bINDj

6= k can be made
negligible by making the message space of the encryption
scheme exponentially large.

The security of this protocol follows from the secu-
rity properties of the additive homomorphic encryption
scheme, as well as the negligible probability of collisions
in a Bloom-Filter. The proof proceeds using a standard
hybrid argument, which replaces the encrypted associ-
ated values with encryptions of 0, while keeping the
intersection-sum the same.

The formal security proof appears in Appendix F. It
shows that the view of each party can be simulated using
only the intersection size and sum.



Encrypted-Bloom-Filter-based Intersection-Sum Protocol
• Inputs:

P1 : Set V = {vi}m1
i=1 P2 : Set of pairs W = {(wi, ti)}m2

i=1

• Setup: P1 and P2 each generate an additively homomorphic encryption key-pair (pk1, sk1) and (pk2, sk2) and exchange public keys pk1
and pk2.

• Protocol Steps:

1) P1 and P2 choose a size N for a Bloom filter, and k hash functions: h1, ..., hk mapping identifiers to [1, ..., N ].
2) P1 computes a Bloom filter for its items, which we refer to as BF1.
3) P1 sends to P2 its Bloom filter entries encrypted under key pk1: {ct1i = AEnc(pk1,BF1[i])}i.
4) For each of its elements wi, P2 computes the following:

a) INDj = hj(wi) for 1 ≤ j ≤ k;
b) Define ct2i , which encrypts 0 for a match or a random value for non-match, as follows (where rj is random):

ct2i = rj .(
∑
j

ct1INDj
− AEnc(pk1, k)) = AEnc(pk1, rj(

∑
j

bINDj
− k))

5) P2 sends to P1 the following values in a permuted order: {ARefresh(ct2i ), ctti = AEnc(pk2, ti)}i.
6) P1 decrypts all values ARefresh(ct2i ) and computes: CT =

∑
j:ADec(sk1,ct2j )=0 cttj P1 rerandomizes CT into CT′ :=

ARefresh(CT), and sends it to P2.

• Output: P2 decrypts CT′ to recover d, and outputs d =
∑

i:wi∈V ti.

Figure 4: ΠBF: Encrypted-Bloom-Filter-based Private Intersection-Sum protocol.

5. Measurements

In this section, we present the measurements for
our implementations of our two new protocols for pri-
vate intersection-sum-and-cardinality presented in Sec-
tions 4.3.1 and 4.3.2, along with additional measurements
for our deployed protocol described in Section 3.1, both as
deployed, and a variant using a different homomorphic en-
cryption scheme. We also compare the concrete costs with
numbers that have been reported previously for schemes
based on Garbled Circuits, specifically the works [31],
[49], [50], [52], which are the best known works for com-
puting function on a private intersection. Our comparisons
include monetary costs based on a “batch-computing”
scenario, using GCP cloud pricing for resource costs from
Table 1.

In Tables 3 and 4, we present the asymptotic costs of
each protocol, in terms of counts of different types of op-
erations and different types of elements transferred. Based
on these numbers we expect that the DDH protocol will
have best communication while the most efficient protocol
in terms of computation will depend on the relative costs
of exponentiation and homomorphic operations, which we
investigate through our experiments.

5.1. Parameters and Encryption Schemes

All computational cost measurements for our protocols
are in terms of total wall-clock runtime for both parties,
running on a single-thread of a desktop workstation with
an Intel Xeon CPU E5-1650 v3 (3.50 GHz) and 32GB of
RAM, which is similar to the machines in our deployment
environment. Computational cost excludes the time spent
transferring files between parties over the network.

For all schemes and database sizes, we assume the
input domain is the set of 128-bit strings, with associated
values being at most 32 bits long. We also that the sum
of associated values is bounded by 32 bits. All compu-
tation costs are presented assuming that each entry in

each party’s input is in the set intersection (which, in all
protocols, maximizes computation).

We now describe the choice of encryption schemes
and parameters for each of the protocols.

Random-OT based protocol. We use Paillier encryption
to encrypt the fki(vi) values. We implement Paillier en-
cryption with 768 bit primes, so that each ciphertext is
3072 bits, with 1536 bits of plaintext space. For the Ran-
dom Oblivious Transfer variant, we choose the following
parameters:
Cuckoo Hash. We use the heuristics provided in Ap-
pendix B of Demmler et al. [18] for the Cuckoo hash
parameters. For the input sizes that we consider, these
heuristics require k = 3 hash functions, no stash, with a
Cuckoo hash table that can hold n elements with ≤ 1.5n
bins.
Random-OT. We use the Batched Random OT protocol
of Kolesnikov et al. [37], with 128 base public-key OTs
and pseudorandom code output length 448 bits. For the
actual pseudorandom code, we use a PRG based on SHA-
256, sped up by native instructions. We also use SHA-256
as the hash function for the [37] protocol.

Bloom Filter-based protocol. We use Exponential El-
Gamal in order to encrypt the bits of the Bloom Filter.
We implement Exponential ElGamal over an elliptic curve
with 256-bit group elements. As noted in Appendix B Ex-
ponential ElGamal is a good fit for encrypting the Bloom
Filter because it has relatively small ciphertexts compared
to Paillier or Ring-LWE. The only cost is decryption,
which requires computing a discrete logarithm, however
in the Bloom-Filter based protocol, we only need to check
if the decrypted value is 0, which can be done very effi-
ciently. We also dynamically choose the number of hash
functions and the Bloom Filter size based on the number
of items held by each party, based on a 2−40 probability
of incorrect Bloom Filter collision over all items. That is,
we set the parameters so that the intersection is guaranteed
to be correct, except with probability 2−40.



Exponentiations Homomorphic Ops. (including Enc and Dec) Misc.
DDH-based Protocol 4M 2M + 1 –
Random-OT-based Protocol – 5.9M + 1 ROT(1.3M) + Cuckoo(M)
Bloom-filter-based Protocol – M(104 + 2.44 log2(M)) + 1 2BF(M)

TABLE 3: Computational operations in each protocol. Numbers are totals across both parties, each having M inputs. “Exponenti-
ations” is the number of group exponentiations (or “public-key” operations). Homomorphic Ops. are the number of homomorphic
encryptions, decryptions and additions. We assume homomorphic operations have the same cost. ROT(x) refers to the computation
cost of x Random OTs. Cuckoo(x) is the cost of cuckoo-hashing x items. BF(x) is the cost of inserting x items into a Bloom Filter.

Group Elts. HE Ciphertexts Misc.
DDH-based Protocol 3M M + 1 –
Random-OT-based Protocol – 3.6M + 1 ROT(1.3M) + 96MBytes
Bloom-filter-based Protocol - M(61 + 1.44 log2(M)) + 1 -

TABLE 4: Communication in each Private Intersection-Sum protocol. Numbers presented are totals across both parties, each having
M inputs. Group Elements is the number of EC curve elements transferred. HE Ciphertexts is the number of homomorphic encryptions
transferred, not including optimizations like slotting. ROT(x) refers to the communication cost of x Random OTs.

For our DDH-protocol, we use we use “prime256v1”
as the curve, and SHA-256 as the Random Oracle, as
described in Section 3.2.

Finally, to encrypt the associated values, we present
measurements using “Slotted” Ring-LWE encryption –
each associated value is encrypted into a different slot.
We use RLWE with an 80 bit ciphertext modulus and
a 32 bit plaintext modulus, with 2048 coefficients per
ciphertext, and 3 bits of error per coefficient. We mask the
error in the sum ciphertext with 47 bits of randomness,
which leads to at least 2−27 statistical-hiding of the error
(even with our largest input size of 220 entries). Each
ciphertext is 20 KB and can hold up to 2048 values of
32 bits each. See Appendix B for more details. We found
experimentally that slotted RLWE encryption has roughly
the same communication cost as slotted Paillier-encryption
with Damgard-Jurik optimizations, while needing signif-
icantly less computation. We present additional compar-
isons of the different homomorphic encryption schemes
in Appendix H.

5.2. Discussion of Measurements

We present our measurements in Table 5, and mone-
tary costs in Table 6. We show the costs for the deployed
protocol based on DDH, as well as the 2 new protocols
based on ROT and BF, using RLWE as the homomorphic
encryption scheme for the associated values, and also
compare our deployed protocol, which uses the DDH-
protocol with Slotted Paillier as the encryption scheme
(see Section 3.2).

We see that the monetary costs closely track communi-
cation costs. The DDH protocol with Paillier has most suc-
cinct communication, and also the most efficient monetary
cost, whereas the ROT-protocol has 15× more monetary
cost and communication, and the BF-based protocol has
over 100× more of each. The DDH protocol, specifically
with RLWE as the homomorphic encryption, turns out to
be our most computationally efficient protocol, about 25
× and 40× faster than the ROT and the BF protocols
respectively. Finally, the DDH protocol with RLWE has
11% smaller monetary costs as the DDH protocol with
Paillier, with about 40% less computation.

5.3. Comparison with Garbled Circuits Works

In this section, we compare concrete costs (computa-
tion, communication and monetary) with those presented

in existing works based on Garbled Circuits, specifically
[31], [49], [50], [52]. For these costs, we rely heavily
on the excellent exposition of [50], drawing heavily from
Tables 3 and 5 of [50]. 4

For all Garbled Circuit protocols, we assume that the
identifiers in each party’s inputs are hashed to be 40 +
log(n) bits long where n is the input size: this prevents
hash-collisions except with probability 2−40.

The comparisons of communication, computation and
monetary costs are presented in Table 7.

We note that the comparisons are imperfect for several
reasons. One important point is that the running times
presented in [50] include time for communication transfer
over a LAN, whereas for our protocols, we ignore time
for communication and includes only running time for
computation. This means we somewhat over-estimate the
computation costs of the garbled-circuit-style solutions.
Furthermore the measurements use slightly different ex-
ecution environments. Another point is that the commu-
nication costs for the Garbled Circuit solutions in [50]
are only for the PSI functionality, and not for Private
Intersection-Sum. We ignore the additional cost associ-
ated with computing the intersection-sum, and therefore
somewhat underestimate the communication costs of the
Garbled-Circuit-style solutions.

Even with these caveats, we believe the comparison
is informative, and bears out expectations, namely that
Garbled Circuit solutions are faster computationally than
the solutions we present, but also incur significantly more
communication cost. Because of the dramatic difference
in communication costs, these protocols also turn out to
be much more expensive in terms of monetary cost in our
cost model.

Table 7 shows that the ROT-based protocol and both
variants of the DDH-based protocol, including the de-
ployed protocol, are cheaper in monetary terms than any
of the protocols based on garbled circuits. In particular, the
deployed protocol is 20− 30× cheaper than the cheapest
protocol based on garbled-circuits [50] for the data sizes
considered. Our new protocol based on Bloom FIlters
is also cheaper than all of the Garbled Circuit-based
solutions except [50].

Within the protocols newly presented in this paper,
the DH-based protocols are still the cheapest in terms of

4. One important omission from the comparison is the work of [11],
which doesn’t have an existing implementation. We refer readers to Table
8 for an asymptotic comparison.



DDH + Paillier (Deployed) DDH + RLWE Random-OT + RLWE Bloom Filter + RLWE
Input Size Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB)

1000 0.81 0.08 0.49 0.14 9.89 1.33 18.24 8.25
2000 1.55 0.16 0.96 0.21 19.61 2.52 36.60 16.76
3000 2.29 0.24 1.42 0.30 29.66 3.74 56.22 25.41
4000 3.04 0.33 1.88 0.37 39.33 4.94 74.28 34.11
5000 3.79 0.41 2.34 0.47 48.72 6.16 93.29 42.90
10000 7.47 0.81 4.72 0.87 97.67 12.22 191.34 87.33
20000 14.81 1.62 9.61 1.71 196.86 24.55 383.75 177.82
30000 22.15 2.43 14.16 2.54 294.95 36.73 582.56 269.51
40000 29.63 3.24 18.73 3.37 399.50 49.02 782.62 361.98
50000 37.08 4.05 23.26 4.20 492.17 61.34 987.30 455.04
100000 74.46 8.11 47.40 8.34 989.88 123.21 1988.47 925.98

TABLE 5: Comparison of Computation time and Network costs for Private Intersection-Sum protocol. We include the
deployed protocol (which uses Paillier encryption), together with the variants using slotted Ring-LWE-encryption to
encrypt the associated values.

Input DDH + Paillier (Deployed) DDH + RLWE Random-OT + RLWE Bloom Filter + RLWE
1000 0.0008 0.0011 0.0131 0.0695
2000 0.0017 0.0018 0.0251 0.1410
3000 0.0025 0.0026 0.0374 0.2140
4000 0.0033 0.0033 0.0494 0.2871
5000 0.0042 0.0041 0.0616 0.3610
10000 0.0084 0.0078 0.1245 0.7354
20000 0.0167 0.0153 0.2456 1.4958
30000 0.0251 0.0228 0.3689 2.2673
40000 0.0335 0.0303 0.4939 3.0453
50000 0.0419 0.0377 0.6159 3.8293
100000 0.0840 0.0753 1.237 7.7865

TABLE 6: Comparison of Monetary costs in cents (USD) for our Private-Intersection-Sum protocol variants. We include
the deployed protocol (which uses Paillier encryption), together with the variants using slotted Ring-LWE-encryption
to encrypt the associated values. Resource valuations use the costs for GCP from Table 1.

Input size 212 Input size 216 Input size 220

Garbled-Circuit Protocols Comm. Time Cost Comm. Time Cost Comm. Time Cost
Phasing + OPPRF + GC [50] 9 1199 0.070 149 8486 1.16 2540 120731 19.8

2D-Cuckoo-Hashing [49] 115 5031 0.89 1751 25960 13.68 25532 336134 199.5
Hashing + SCS [31] - - - 3998 - - 72140 - -
Circuit-Phasing [52] 320 7825 2.50 552 67292 43.3 99708 1126848 763.6

Our Protocols Comm. Time Cost Comm. Time Cost Comm. Time Cost
DH-Protocol + RLWE 0.38 1949 0.003 5.5 30977 0.05 87 499468 0.81
ROT-Protocol + RLWE 5 40052 0.05 84 64413 0.83 1380 10601582 13.7

BF-Protocol + ElGamal + RLWE 37 76133 0.307 629 1318153 5.28 - - -
DH-Protocol + Paillier (Deployed) 0.33 3165 0.003 5.1 48930 0.06 84 776461 0.88

TABLE 7: Comparison of Communication, Computation and Monetary Costs between Garbled Circuit Protocols and
our solutions. Garbled Circuit Protocol costs are drawn from Tables 3 and 5 of [50], and are only costs for PSI, and
exclude the cost of Intersection-sum. Garbled Circuit protocols also include time due to network communication over
a LAN, while our solutions exclude network communication time. All communication costs are in MB, all times are
in milliseconds, and all ”Costs” are the monetary cost in cents (USD), using the resource valuations for GCP in Table
1. Missing measurements are either due to unavailable measurements, or because the computation ran out of memory.

monetary cost. The DH-protocol using Paillier (that is,
our deployed protocol) is more expensive than the variant
based on RLWE in monetary cost, but the difference is
small (around 10%). Meanwhile, the RLWE-based proto-
col is 40% cheaper in computation. This means that the
RLWE-based protocol may be especially useful in settings
where computation cost is higher or communication cost
is cheaper than the valuations we consider.

6. Conclusion

We described deploying a secure computation protocol
in an industry setting as a solution for business interactions
between different companies. The problem that our work
has tackled is privacy preserving attribution of aggregate
ad conversions. We described factors that we believe made

this problem a good fit for a secure-computing solution,
and described various practical constraints on our design.

The protocol we deployed was chosen because of
its simplicity, but also for its communication efficiency,
which has a huge impact on monetary cost. We also
revisited the problem of private intersection-sum with car-
dinality in light of recent advancements, based on which
we constructed two new protocols. We implemented all
our constructions in order to evaluate and compare their
concrete costs, including monetary costs. From our mea-
surements, all but one of our protocols compares favorably
in terms of monetary cost against approaches for securely
computing generic functions over an intersection. Our de-
ployed protocol was found to be 20× cheaper in monetary
cost than generic approaches. Our other solutions offer
better computation in trade off for communication.
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Appendix A.
Preliminaries, Cryptographic Primitives and
Hardness Assumptions

A.1. Notation

Z represents the integers, and Z+ represents the
nonnnegative integers. The notation [k] for k > 0 to

donate the set {1, 2, ..., k}. The notation [a, b] for a < b
represents the set of integers, {a, a+1, ..., b}, while [a, b)
represents the set {a, a+ 1, ..., b− 1}.

Let Π be a randomized interactive protocol between
two parties P1 and P2, with P1 holding input X and P2

holding input Y . For security parameter λ, we use the
notation REALi,λΠ (X,Y ) to represent the random variable
corresponding to the view of Pi in the protocol for i ∈
{1, 2}. The view of a party is the input of that party,
its randomness, and all messages received by that party
during the execution of Π, including aborts by the other
party. The random variable varies over the randomness of
P1 and P2.

A.2. Decisional Diffie–Hellman

Definition 1 (Decisional Diffie–Hellman [19]). Let G(λ)
be a group family parameterized by security parameter
λ. For every probabilistic adversary M that runs in time
polynomial in λ, we define the advantage of M to be:

|Pr[M(λ, g, ga, gb, gab) = 1]−Pr[M(λ, g, ga, gb, c) = 1]|−1

2

Where the probability is over a random choice G from
G(λ), random generator g of G, random a, b, c ∈ [1, |G|]
and the randomness of M . We say that the Decisional
Diffie–Hellman assumption holds for G if for every such
M , there exists a negligible function ε such that the
advantage of M is bounded by ε(λ).

In other words, the distributions (g, ga, gb, gab) and
(g, ga, gb, gc) are computationally indistinguishable.
Through this paper we will write group operations using
multiplicative notion.

A.3. Random Oracle Model

Definition 2 (Random Oracle [3]). A random oracle RO
is a map from {0, 1}∗ to {0, 1}∞ chosen by selecting each
bit of RO(x) uniformly and independently, for every x.
{0, 1}∞ means an output of infinite length, which can be
truncated to any fixed appropriate size depending on the
setting.

We say a protocol is secure when modeling a hash
function H as a Random Oracle if we can prove security
when each invocation of H in the protocol is replaced by
a call to a Random Oracle RO on the same input.

A.4. Additively Homomorphic Encryption
Scheme

Definition 3 (Additively Homomorphic Encryption). An
additively homomorphic encryption scheme consists of the
following probabilistic polynomial-time algorithms:

AGen: Given a security parameter λ, AGen(λ)
returns outputs a public-private key pair
(pk , sk), and specifies a message space M.

AEnc: Given the public key pk and a plaintext mes-
sage m ∈ M, one can compute a ciphertext
AEnc(pk ,m), an encryption of m under pk .

ADec: Given the secret key sk and a ciphertext
AEnc(pk ,m), one can run ADec to recover
the plaintext m.



ASum: Given the public key pk and a set of cipher-
texts {AEnc(pk ,mi)} encrypting messages
{mi}, one can homomorphically compute a
ciphertext encrypting the sum of the underly-
ing messages5, which we denote for ease of
exposition as:

AEnc(pk ,
∑
i

mi) = ASum({AEnc(pk ,mi)}i) .

Note that homomorphic multiplication by a plaintext
scalar can be trivially achieved by repeated homomorphic
addition. All homomorphic encryption schemes we con-
sider also support homomorphic multiplication by a plain-
text scalar. In addition, we will make use of the property
that one can randomize ciphertexts using a randomized
procedure denoted as ARefresh. In particular, we will use
the fact that the distribution of

ARefresh(ASum({AEnc(pk ,mi)}))

and
ARefresh(AEnc(pk ,

∑
i

mi))

are statistically close, even against an adversary that holds
the secret key sk . In popular schemes such as Paillier
[46] and Exponential ElGamal [23], this ARefresh can be
achieved by adding an additional fresh encryption of 0.
In the RLWE-based homomorphic encryption scheme [8],
this can be achieved by adding a sufficiently large random
value in order to drown the “noise” of the ciphertext.

We rely on the standard notion of CPA security of
encryption, meaning, informally, that without knowledge
of the private key sk , encryptions of different messages
are computationally indistinguishable.

A.5. Oblivious Pseudorandom Function (OPRF)

Definition 4 (Oblivious Pseudorandom Function [25],
[43]). A two-party protocol P is said to be an Oblivious
Pseudorandom Function (or OPRF) if there exists some
Pseudorandom Function family fk, such that P securely
computes the following functionality.

Inputs: Party 1 holds an evaluation point x; Party 2
holds holds a key k.

Outputs:Party 1 outputs fk(x); Party 2 outputs nothing

In other words, an OPRF protocol allows Party 1 to
receive the output of a PRF fk on an input x, using a key
k held by Party 2, while hiding the input x from Party
2. Furthermore, the evaluation of the PRF fk on all other
inputs remains pseudorandom in the view of Party 1.

A.6. Random Oblivious Transfer (ROT)

Definition 5 (Random Oblivious Transfer [37]). Let fk be
a Pseudorandom function family. A two-party protocol P
is said to be an Random Oblivious Transfer Protocol (or
ROT) if it securely computes the following functionality:

Inputs: Party 1 holds m evaluation point x1, ..., xm;
Party 2 has no input.

5. If the sum is large, it can wrap around in the message space M.
In this work, we only consider messages and sums that are too small to
wrap around.

Outputs:Party 2 outputs m keys ki; Party 1 outputs
fki(xi).

That is,ROT can be viewed as multiple OPRF pro-
tocols executed simultaneously, where the keys for the
underlying PRF are dynamically generated during the
ROT execution.. Like in an OPRF evaluation, the output
of any fki on any point x 6= xi remains pseudorandom
in the view of Party 1. (In the implementation of [37],
technically the PRF family is a “relaxed” PRF family
with related keys. We refer the reader to [37] for details,
and omit them here since the distinction does not have a
significant impact on our protocol or proofs.)

A.7. Bloom Filter

Definition 6 (Bloom Filter [4]). A Bloom Filter is a
probabilistic data structure that supports insertion and
membership checking. A Bloom filter is parameterized by
a size N and a sequence of k randomly chosen hash
functions h1, ..., hk : {0, 1}∗ → [N ]. An empty Bloom
filter BF consists of N bits, each set to 0. inserting an
item x into a Bloom Filter is implemented by setting the
hi(x)-th bit of the Bloom Filter to 1 for all i. Checking
if an item x is in a Bloom Filter is achieved by checking
that the hi(x)-th bit of the Bloom Filter is 1 for all i.

Bloom filters can possibly give false-positives on the
membership test. The probability that an element x yields
a false positive membership check is dependent on N, k
and the number of items inserted into the Bloom Filter.
[42] is a good reference on setting the Bloom Filter
parameters.

A.8. Cuckoo Hash

Definition 7 (Cuckoo Hash Table [45]). A Cuckoo Hash
Table is a data structure supporting insertion and mem-
bership tests. It is parameterized by a number of bins N ,
a stash size s, and by k randomly chosen hash functions.
An empty Cuckoo Hash Table has N empty bins. When
inserting an item x into the table, if any of the bins
{hi(x)}ki=1 is empty, then x is placed in one of those bins.
Otherwise, a bin in {hi(x)}ki=1 is randomly chosen, and
the item in that bin is replaced with x. The evicted item is
then recursively inserted. If this process does not terminate
after a fixed set of iterations, then the final evicted element
is placed in a special bin called the stash. If the stash
already contains s items, the insertion algorithm fails.

To check if an item x is in the Cuckoo Hash Table,
one checks each of the bins in {hi(x)}ki=1 for the item.

[18] show through extensive experiments that when
inserting n items into a cuckoo hash for n ≥ 512, N =
1.5n bins, k = 3 hashes, and s = 0 stash size is sufficient
to get a 2−40 probability of cuckoo hash failure.

Appendix B.
Instantiating the Homomorphic Encryption
scheme

Each of the three Private Intersection-Sum protocols
that we presented, requires an additive-homomorphic en-
cryption scheme in order to encrypt the associated values



and homomorphically sum them. The Random-OT-based
protocol and the Bloom-filter-based protocol additionally
rely on an additive homomorphic encryption scheme in or-
der to encrypt and intersect the identifiers themselves. The
choice of homomorphic encryption scheme has a strong
impact on both the communication and computation costs
of each protocol. In this section, we discuss three possible
additive homomorphic encryption schemes that we can
use, namely Paillier encryption [46], Exponential ElGamal
encryption [23], and schemes based on Ring-LWE [8],
[9], [24], [29]. We discuss the various characteristics of
each scheme, together with optimizations that could be
applied to each of them. These differences are summarized
in Figure 5.

B.1. Paillier Encryption

Paillier encryption [46] is a well-known additively
homomorphic encryption scheme with security based on
the Decisional Composite Residiuosity Assumption.

It requires relatively expensive modular exponentiation
(“public-key”) operations in order to encrypt and decrypt.
Paillier ciphertexts also have large plaintext and ciphertext
spaces, which leads to a large communication expansion
when the values being encrypted are small. For example,
using typical security parameters, a Paillier ciphertext will
have ciphertext size 4096 bits, with plaintext space 2048
bits. However, if the associated values to be encrypted
and summed are in the range of 20 bits, then using Pail-
lier results in approximately 200× ciphertext expansion
compared to the plaintext.

However, the Paillier scheme’s large plaintext space
can be divided into “slots” by packing multiple values
together by shifting-and-adding, to create a single large
place that better utilizes the large capacity. The lower slots
can also be shifted into higher positions by homomorphi-
cally multiplying powers of 2.

Slotting helps make Paillier encryption much more ef-
ficient for encrypting associated values: the party holding
the associated values can encrypt a different associated
value tj into each slot. Once the other party determines
which slots must be added together, it can rotate those
values into a single privileged slot (namely the highest
slot), and homomorphically add the rotated ciphertexts to
compute the encrypted sum. The adding party can then
mask the other slots with random values to hide any
residual sums in those slots, and send the final ciphertext
back to the first party to decrypt.

The slots need to be large enough to accomodate the
associated values, with some extra bits to allow summing
without overflow, and some further bits to allow random
masking. Additionally, only half the plaintext space can
be used for slots in order to rotate the lowest slot into the
highest slot’s position without overflowing the plaintext
space. Slotting can also be combined with Damgard-Jurik
optimizations [16], which allows increasing the plaintext
space of the Paillier scheme with a proportionally smaller
increase in the ciphertext size.

As an example, consider associated values of 20 bits
each, with 1024 values in the intersection-sum (requiring
10 bits), and with 40 additional bits per slot for random
masking. This leads to k = 20 + 10 + 40 = 70 bits

per slot. Consider also using Damgard-Jurik optimiza-
tions with s = 4, which means each ciphertext has
4 · 2048 = 8192 bits of plaintext space, and the ciphertext
has size 5 · 2048 = 10240 bits. Each ciphertext can
accomodate at most d8192/(70 ·2)e = 59 slots with slack
for masking and rotation. Therefore, the expansion of each
ciphertext over the size of the associated values it can
accomodate is (10240/(20 · 59)), which corresponds to
a 8.67× expansion, a clear improvement over the 200×
originally considered.

B.2. Exponential ElGamal

Exponential ElGamal encryption [23] also has public-
key operations for encryption, but has relatively smaller
ciphertexts than Paillier encryption. ElGamal over elliptic
curves has ciphertexts of length 512 bits, which for a 20
bit plaintext value would have an expansion of 25×. A
downside of Exponential ElGamal is that decryption is
expensive, involving solving DDH in the plaintext space.
This limits the sizes of plaintexts that can be decrypted to
about 60 bits, and also blocks optimizations like slotting.

However, if the values to be encrypted are small (e.g.
20 bits), and the number of them to add together is also
small (e.g. 216 elements then after summing the plaintext
size will be 36 bits, which is small enough to decrypt. This
makes exponential ElGamal a good alternative to (unslot-
ted) Paillier for encrypting associated values. Decryption
can also be made faster by using lookup tables in memory

Exponential ElGamal is an improvement over Paillier
in the Bloom Filter-based protocol (Section 4.3.2), where
we use additive homomorphic encryption to encrypt each
bit of the Bloom filter, and only need to test if decrypted
values are zero or nonzero. For that protocol, we get
smaller ciphertexts with no loss of computational effi-
ciency, since testing if a ciphertext decrypts to 0 is very
cheap in the exponential ElGamal scheme.

B.3. Ring-LWE-Based Cryptosystems

Another option is to lattice-based encryption. The
most efficient schemes of this type are based on the hard-
ness of Ring-Learning-With-Errors [8], [9], [24], [29].6
Ring-LWE-based encryption schemes are also usually
quite computationally efficient compared to schemes like
Paillier and Exponential ElGamal, since they do not in-
volve expensive modular-exponentiation operations to en-
crypt and decrypt, and their polynomial operations can be
sped up using number-theoretic transforms (NTT).

RLWE-based schemes also have ciphertexts with large
plaintext spaces, but these naturally decompose into mul-
tiple ‘slots’, where each slot is individually additively
homomorphic. Furthermore, slots can be efficiently ho-
momorphically rotated by multiplying ciphertexts with the
plaintext monomials corresponding to single powers of x.
Therefore, the party holding the associated values can put
one associated value into each slot of a plaintext, and
encrypt and send the ciphertexts to the other party, who
can homomorphically rotate the ciphertexts so that values
to be added all end up in a specially designated slot (for

6. These schemes are actually “fully”-homomorphic, but here we
consider only their additive homomorphism



Encryption Scheme Unslotted-Expansion Efficient Decryption Slotting Slot-Shuffle
Paillier/Damgard-Jurik encryption High X X X
Exponential ElGamal encryption Medium X X X

Ring-LWE encryption High X X X (Expensive)

Figure 5: Comparison of the properties of various additively-homomorphic encryption schemes. Unslotted-Expansion
is a qualitatiative comparison of the size of the ciphertext to the plaintext. Efficient Decryption denotes whether the
scheme has computationally efficient decryption. Slotting denotes whether the scheme is compatible with encrypting
multiple values into different “slots” of a single ciphertext. Slot-Shuffle denotes whether the scheme is compatible with
homomorphically shuffling slots within a ciphertext and between ciphertexts.

# of sym. Communication
key operations (bits)

Yao SCS [32] 12λM + 3λM 2λMs(1 + 3 logM)
GMW SCS [32] 12λM logM 6λM(s+ 2) logM
Yao PWC [53] 4λM + 6393λ λ(M3s+ 3198s+ 15)
GMW PWC [53] 6λM + 9594λ λ(M4 + 6396 + 2sM +

6396s)
Graph Navigation 4λM + 3λ 2λMs+Ms
[11]

TABLE 8: (Table 1 from [11]) Computation and com-
munication complexity comparison for the PSM case. M
represents the size of the set, s is the security parameter
and λ is the bit-length of each element.

example, the slot corresponding to the constant term of
the polynomial), then homomorphically add the rotated
ciphertexts, and finally, mask the other slots with random
values.

One subtlety with RLWE-based encryption schemes is
in the ARefresh procedure used to randomize the cipher-
texts. Indeed, the error in the resulting ciphertexts must be
masked to hide the sequence of operations used to create
them. To do this, the ARefresh procedure statistically
drowns the error with a large amount of fresh noise, so
as to statistically hide which input ciphertexts were used.
This induces some additional communication overhead.7

Appendix C.
Analytical Comparison of Garbled-Circuit
style approaches

In this section, we reproduce the table of [11] that
provides an excellent analytical comparison of the com-
munication and computation costs of different Garbled-
circuit style protocols for privately computing generic
functions over an intersection. This table appears as Table
1 in [11]. The specific private function considered by [11]
in creating this table is “Private Set Membership with
encrypted output”, which is a building block for privately
computing any generic function over the intersection.

They key high-level takeaway from this table from
the point of view of our work is that the communication
cost of each protocol is O(λMs), that is, it depends on

7. As a concrete example, consider if we had 20 bit values, and we
expected 210 of them to be added together, meaning the sum is bounded
by 30 bits. Assume also that each polynomial coefficient has 3 bits of
error added to it for RLWE-security. When 210 values are added together,
the error could grow to 13 bits. If we wanted 2−40 statistical hiding of
the added error, we would need 40 additional bits per coefficient. This
would lead to polynomial coefficients of size 30 + 13 + 40 + 1 = 84
bits (where the last bit is required to ensure correctness), to hold each
20 bit associated value, an expansion of 4.2×.

the product of the security parameter, the set size and,
crucially the bit length of each identifier. This asymptotic
communication complexity also appears in garbled-circuit
style solutions for functionalities beyond Private Set Mem-
bership, and is roughly due to the need to separately
encrypt each bit of the identifiers. 8

To clarify the comparison to our works, compare to
Table 3. Table 3 shows that our protocols all have com-
munication dominated by the size of group elements and
homomorphic ciphertexts, and the size of the sets held
by each party. Our protocols do also depend in subtle
ways on the bit length of the identifiers, for example, the
parameters of homomorphic encryption may have to be
increased if the identifiers are very large. However, of the
protocols presented in this work, none have communica-
tion complexity with a multiplicative dependency on the
bit length of the identifiers in the way that garbled-circuit
style protocols do.

Appendix D.
Security Analysis for DDH-Based Protocol

In this section, we will prove security of the DDH-
based protocol ΠDDH, presented in Figure 2, Section 3.1.
The proof is in the honest-but-curious model, where we
assume participants follow the steps of the protocol hon-
estly, but try to extract as much information as possible
afterwards from the protocol transcript. This model still
requires some degree of trust between the two parties not
to deviate from the prescribed protocol.

We prove security in the honest-but-curious model;
our proof is similar to the proof given by Agrawal et
al. [1]. We show security by giving a simulator that can
indistinguishably simulate the view of each honest party in
the protocol given only that party’s input, the cardinality
of the intersection, and the intersection-sum (but not the
input of the other party). Intuitively, this will show that
each party learns nothing more by participating in the
protocol than the cardinality of the intersection and the
intersection sum.

In such a protocol execution, the view of a party
consists of its internal state (including its input and ran-
domness) and all messages this party received from the
other party (the messages sent by this party do not need
to be part of the view because they can be determined
using the other elements of its view).

8. [50] describes hashing or truncating the inputs to the Garbled
Circuits to be 40 + log(M) − 1 bits long, where M is the number of
inputs. However, each of these inputs still need to be encrypted bit-by-
bit, which leads to similar communication complexity.



Let REALi,λΠDDH
({vi}m1

i=1, {(wj , tj)}
m2
j=1) be a random

variable representing the view of Pi in a real protocol
execution, where the random variable ranges over the
internal randomness of all parties, and the randomness
in the setup phase (including that of the Random Oracle).

Our first theorem, which we restate from Section 3.1,
shows that P1’s view in the protocol ΠDDH can be sim-
ulated given only that P1’s input and the size of the
intersection (but not the input of P1).

Theorem 1 (Honest But Curious Security against P1

in the DDH-based Protocol ΠDDH). There exists a PPT
simulator SIM1 such that for all security parameters λ
and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL1,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM1(1

λ, {vi}m1
i=1,m2, |J |)

Where m2 is the size of P2’s input, J = {j : wj ∈
{vi}m1

i=1} is the intersection set, and |J | is its cardinality.

Proof. We describe the simulator algorithm SIM1 in Algo-
rithm 1. Notice that the main difference between SIM1 and

Algorithm 1 The simulator for P1 in the DDH-based
Protocol
Input:(λ, {vi}m1

i=1,m2, |J |) Output:SimV iew(P1)
SIM1(λ, {vi}m1

i=1, |J |):
1: Generate key k1 ∈ G, and key-pair (pk , sk) for the

additively homomorphic encryption scheme.
2: Honestly generate and send {H(vi)

k1}i∈[m] in shuf-
fled order as P1’s message in Round 1.

3: Create a dummy set V ∗ = {gi}m1
i=1, where each gi is

randomly selected from G. Send {gk1i }
m1
i=1 in shuffled

order as P2’s message in Step 2 of Round 2.
4: Create a dummy set W ∗ = {hj}m2

j=1 for P2 by setting
hj = gj for j ∈ {1, ..., |J |}, and each hj for j ∈
{|J |, ...,m2} is randomly selected from G .

5: Send {(hj ,AEnc(pk , 0))}m2
j=1 in shuffled order as P2’s

message in Step 4 of Round 2, where each AEnc(0)
is freshly generated.

6: Honestly generate P1’s message in Round 3 using
P2’s dummy messages from the previous step.

7: Output P1’s view in the simulated execution above.

a real protocol execution is in Round 2: instead of sending
{H(vi)

k1k2} and {(H(wj)
k2} as in a real execution, SIM1

instead uses random group elements {gi} and {hj} which
have an intersection of the same size, and additively
homomorphic encryptions of 0. We argue that

REAL1,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1) ≈

SIM1(1
λ, {vi}m1

i=1,m2, |J |)

using a multi-step hybrid argument, where each neighbor-
ing pair of hybrid distributions is computationally indis-
tinguishable.

Hyb0 The view of P1 in a real execution of the
protocol.

Hyb1,0 The same as Hyb0, except, in Round 2, all
additively-homomorphic ciphertexts sent by
P2 are replaced with fresh encryptions of 0.

Hyb1,i for i ∈ {1, ...,m1 − |J |]}: The same as
Hyb1,i−1, except with H(vi∗)

k1k2 replaced
by gk1i∗ in Party 2’s message in Step 2 of
Round 2, where where vi∗ is the lexicograph-
ically smallest as-yet-unreplaced element of
{vi}m1

i=1 \ {wj}
m2
j=1, and gi∗ is a random ele-

ment of G.
Hyb2,0 Identical to Hyb1,m−|J|.
Hyb2,j for j ∈ {1, ..., n− |J |]}: The same as

Hyb2,j−1, except with H(wj∗)
k2 replaced by

hj∗ in Party 2’s message in Step 4 of Round
2, where where wj∗ is the lexicographically
smallest as-yet-unreplaced element of
{wj}m2

j=1 \ {vi}
m1
i=1, and hj∗ is a random

element of G.
Hyb3,0 Identical to Hyb2,n−|J|.
Hyb3,k for k ∈ {1, ..., |J |}]: The same as Hyb3,k−1,

except

• H(vk∗)
k1k2 replaced by gk1k∗ in P2’s

message in Step 2 of Round 2 and
• H(wk∗)

k2 replaced by gk∗ in Party 2’s
message in Step 4 of Round 2

where vk∗ = wk∗ is the lexicographi-
cally smallest as-yet-unreplaced element of
{vj}m1

i=1 ∩ {wi}
m2
i=1, and gk∗ is a random ele-

ment of G.
Hyb4 The view of P1 output by SIM1.

We now argue that each successive pair of hybrids in
the sequence above is indistinguishable.

We first observe that Hyb0 and Hyb1,0 are indis-
tinguishable by the CPA security of the additively-
homomorphic encryption scheme. We also observe that
the pairs of hybrids (Hyb1,m−|J|, Hyb2,0), (Hyb2,n−|J|,
Hyb3,0) and (Hyb3,|J|, Hyb4) are identical.

It remains to show that hybrids of the form
Hyb1,i−1,Hyb1,i, Hyb2,j−1,Hyb2,j and Hyb3,k−1,Hyb3,k

are indistinguishable. We will argue that Hyb1,i−1 and
Hyb1,i are indistinguishable for all i ∈ {1, ...,m − |J |},
based on the hardness. We note that hybrids of the form
Hyb2,j−1,Hyb2,j and Hyb3,k−1,Hyb3,k can be proven
indistinguishable by a very similar argument.

Consider Algorithm 2 below, that takes as input a
DDH tuple (g, ga, gb, gc) and hybrid index i, and sim-
ulates Hyb1,i:

We observe that the output distribution produced by
Algorithm 2 on input i and a DDH tuple (g, ga, gb, gc) for
uniformly random a, b, c is identical to Hyb1,i. To see this,
we first observe that the Random Oracle has uniformly
random outputs even after reprogramming, since all the
reprogrammed values are random powers of a generator.
Next, interpreting the hidden exponent b as P2’s key k2, all
the simulated messages sent by P2 in Round 2 are of the
correct form for Hyb1,i: un-replaced messages in Round
2 Step 2 have the form H(vi)

k1k2 , and messages sent in
Round 2 Step 4 have the form (H(wj)

k2 ,AEnc(0)).
We now replace the DDH tuple given as input to Al-

gorithm 2 to have the form (g, ga, gb, gab). The only effect
is that, instead of gi∗ = gc, we have gi∗ = gab = H(vi∗)

b.
From our earlier interpretation of b as k2, this means
gk1i∗ = H(vi)

k1k2 . This change is exactly the difference



Algorithm 2 Simulator for Hyb1,i

Input:(λ, i, (g, ga, gb, gc), {vi}m1
i=1, {wj}

m2
j=1)

Output:SimV iew(P1) in Hyb1,i

SIMHyb1,i
(λ, i∗, (g, ga, gb, gc), {vi}m1

i=1, {wj}
m2
j=1)

with vi∗ being the new element replaced with a random
one in Hyb1,i

1: for i ∈ {1, ...,m1} do
2: if vi 6= vi∗ then
3: Randomly sample ri ← {1, , ..., |G|}
4: Program H(vi) = gri

5: else if vi = vi∗ then
6: Program H(vi) = ga

7: end if
8: end for
9: for j ∈ {1, ...,m2} do

10: if wj /∈ {vi}m1
i=1 then

11: Randomly sample sj ← {1, ..., |G|}
12: Program H(wj) = gsj

13: end if
14: end for
15: Generate key k1 ∈ G, and key-pair (pk , sk) for the

additively homomorphic encryption scheme.
16: Send {H(vi)

k1}m1
i=1 in shuffled order as Party 1’s

message in Round 1.
17: for i ∈ {1, ...,m1} do
18: if vi = vi∗ then
19: gi ← gc

20: else if vi /∈ {wj}m2
j=1, vi < vi∗ then

21: gi ← random element of G
22: else
23: gi ← (gb)si

24: end if
25: end for
26: Send {gk1i }i∈[m] in shuffled order as P2’s message

in Step 2 of Round 2. Send {((gb)sj ,AEnc(0))}j∈[n]
in shuffled order as Party 2’s message in Step 4 of
Round 2, where each AEnc(0) is freshly generated.

27: Honestly generate P1’s message in Round 3 using
P2’s dummy messages from the previous step.

28: Output P1’s view in the simulated execution above.

between Hyb1,i−1 and Hyb1,i. Thus, the output of Algo-
rithm 2 on inputs i and (g, ga, gb, gab) is identical to
Hyb1,i−1.

From the preceding argument, we can infer that if
any adversary can distinguish between Hyb1,i−1 and
Hyb1,i, then it can distinguish between (g, ga, gb, gab)
and (g, ga, gb, gc). Therefore, by the assumed hardness of
DDH, Hyb1,i−1 and Hyb1,i are indistinguishable.

Our second theorem, which we restate from Sec-
tion 3.1, shows that P2’s view in the protocol ΠDDH can be
simulated given only that P2’s input and the intersection-
sum (but not the input of P1).

Theorem 2 (Honest But Curious Security against P2

in the DDH-based Protocol ΠDDH). There exists a PPT
simulator SIM2 such that for all security parameters λ

and inputs {vi}m1
i=1, {(wj , tj)}m2

j=1,

REAL2,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM2(1

λ, {(wj , tj)}m2
j=1,m1, SJ)

Where m1 is the size of P1’s input, J = {j : wj ∈
({vi}m1

i=1} is the intersection set, and SJ =
∑

j∈J tj is
the intersection-sum.

Proof. We define SIM2 to perform the Setup phase hon-
estly, and honestly performs the operations corresponding
to P2. SIM2 simulates the messages sent by P1 as follows:

• In Round 1, instead of sending {H(vi)
k1}m1

i=1 as
P1’s message, SIM2 instead sends m1 randomly
selected elements of G.

• In Round 3, instead of performing the intersection
and computing the intersection-sum, SIM2 instead
sends a fresh additively-homomorphic ciphertext
encrypting the value SJ it received as input.

We note that the only difference between the output
of SIM2 and the view of P2 in a real execution is in
the Round 1 messages. However, the Round 1 messages
output by SIM2 can be shown to be indistinguishable
from those in a real execution by using a simple hybrid
argument: Define m! hybrids, where, in each successive
hybrid, SIM2 replaces one additional “real” Round 1
message of the form H(vi)

k1 with a random element of G.
Then, each pair of neighboring hybrids can be shown to
be indistinguishable based on the fact that k1 is secret and
that DDH is hard in G. The details are very similar to the
proof of Theorem 1, and we leave them as an exercise.

Appendix E.
Security Analysis for Random OT-Based Pro-
tocol

In this section, we prove security for the Random-OT
based Private Intersection-Sum protocol ΠROT presented
in Section 4.3.1 and Figure 3. We prove security in the
honest-but-curious model.

Let REALi,λΠROT
({vi}m1

i=1, {(wj , tj)}
m2
j=1) be a random

variable representing the view of Pi in a real execution of
the Random-OT based protocol ΠROT, where the random
variable ranges over the internal randomness of all parties.

We restate the theorem from Section 4.3.1:

Theorem 3 (Honest But Curious Security against Party
1 in the ROT-based protocol ΠROT). There exists a PPT
simulator SIM1 such that for all security parameters λ
and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL1,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM1(1

λ, {vi}m1
i=1,m2, |J |)

Where m2 is the size of Party 2’s input, J = {j : wj ∈
{vi}m1

i=1} is the intersection set, and |J | is its cardinality.

Proof. We describe the simulator algorithm SIM1 in Al-
gorithm 3.



Algorithm 3 The simulator for Party 1 in the ROT-based
protocol.
Input:(λ, {vi}m1

i=1,m2, |J |) Output:SimV iew(P1)
SIM1(λ, {vi}m1

i=1, |J |)
1: Honest simulate the Setup phase between P1 and P2.

2: Honestly simulate steps 1-4 between P1 and P2, re-
ceiving the set {cti = AEnc(pk1, fki(vi))}n+si=1 at the
end of Step 4.

3: In Step 5, choose a set A∗ consisting of n+s random
elements ai. Compute ct′i to fresh encryptions to each
ai under P1’s public key pk1, and send these values
to P1.

4: In Step 6, choose the set {(Wj , cttj)}
m2
i=1 such that

each Wj contains exactly k + s randomly chosen
elements, and each cttj is a fresh encryption of 0
under P2’s key pk2. For exactly |J | indices j, replace
a single random element of Wj with an element of
A∗, chosen randomly without replacement (i.e. each
element in A∗ is used at most once). Send the set
{(Wj , cttj)}

m2
i=1 to P1.

5: Simulate Step 7 for P1 honestly.
6: Output the view of P1 in this interaction.

We argue that

REAL1,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1) ≈

SIM1(1
λ, {vi}m1

i=1,m2, |J |)

using a multi-step hybrid argument, where each neighbor-
ing pair of hybrid distributions is computationally indis-
tinguishable.

Hyb0 The transcript corresponding to the view of
Party 1 in a real execution of the protocol.

Hyb1 The same as Hyb0, except, in Step 6, P2

replaces the additively-homomorphic cipher-
texts cttj with fresh encryptions of 0 under
pk2.

Hyb2 The same as Hyb1, except in Step 6 for all
j, P2 replaces the elements in Wj \ V ∗ with
uniformly random values.

Hyb3 The same as Hyb2, except, in Step 5, each ct′i
is replaced with an encryption of a uniformly
random value ai, and, in Step 6, the corre-
sponding element of Wj (which is an element
of Wj ∩ V ∗) is also replaced with ai.

Hyb4 The view of Party 1 output by SIM1.

We now argue that each successive pair of hybrids
in the sequence above is indistinguishable. Notice first
that Hyb0 and Hyb1 are indistinguishable by the hiding
property of the additive-homomorphic encryption scheme.
Hyb1 and Hyb2 differ exactly in that the fki(wj) values
for wj not in the set held by P1 have been replaced with
uniformly random values. Therefore Hyb1 and Hyb2 can
be shown indistinguishable based on the pseudorandom-
ness of non-retrieved items in the Random OT protocol.
Hyb2 and Hyb3 can be shown to be indistinguishable using
the one-time-pad property of adding the random value ri,
together with the special property of the homomorphic
encryption scheme discussed in Definition 3, namely that

a fresh encryption is indistinguishable from one produced
using homomorphic operations. Finally, Hyb3 and Hyb4

are identically distributed.
Since each pair of neighboring hybrids is indistin-

guishable, we conclude that

REAL1,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1) ≈

SIM1(1
λ, {vi}m1

i=1,m2, |J |)

We now argue that P2 learns nothing from the protocol
except the intersection-sum. We restate the theorem from
Section 4.3.1:

Theorem 4 (Honest But Curious Security against Party
2 in the ROT-based Protocol ΠROT). There exists a PPT
simulator SIM2 such that for all security parameters λ
and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL2,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM2(1

λ, {(wj , tj)}m2
j=1,m1, SJ)

Where m1 is the size of Party 1’s input, J = {j : vj ∈
{vi}m1

i=1} is the intersection set, and SJ =
∑

j∈J tj is the
intersection-sum.

Proof. We observe that P2 view in the protocol consists
of the following:

1) Whether P1 aborts due to cuckoo-hashing failure
(Step 2).

2) The Sender’s view in a Random-OT execution
(Step 3).

3) The set {cti}n+si=1 of ciphertexts encrypted under
P1’s key pk1 (Step 4).

4) A ciphertext CT encrypting the intersection sum
d under P2’s key pk2 (Step 7).

Observe that for the items 2 and 3 (the sender’s view in
a Random-OT protocol and encryptions under the key of
the other party), P1 learns nothing. Furthermore, for item
4, P2 sees a ciphertext encrypting the homomorphically-
computed sum d, which, by the special property of the ho-
momorphic encryption scheme discussed in Definition 3,
is indisitinguishable from a fresh encryption of d. Finally,
the probability of cuckoo-hash failure can be made negli-
gible by appropriate choice of parameters.

Therefore, we can simulate the view of P2 as follows:

• The Simulator never aborts in Step 2.
• In Step 3, the Simulator requests arbitrarily chosen

values ai in the Random OT protocol.
• In Step 4, the Simulator sends P2 {cti}n+si=1 to be

fresh encryptions of 0.
• In Step 7, the Simulator sends CT to be a fresh

encryption of d under pk2.

It is straightforward to show that the view of P2 in the
above simulated execution is indistinguishable from P2’s
view in a real execution. We leave the detailed hybrid
proof as an exercise.



Appendix F.
Security Analysis for Bloom-Filter-Based
Protocol

We briefly argue security against semi-honest adver-
saries for the Bloom-Filter-based Intersection-Sum pro-
tocol ΠBF presented in Section 4.3.2 and Figure 4. The
arguments below assume parameters have been set to have
negligible probability of Bloom-Filter collision.

We first argue that P2 learns nothing more than the
intersection-sum d. Observe that P2’s view consists of

• Ciphertexts encrypted with P1’s encryption key
pk1 (Step 3).

• A rerandomized encryption CT of the
homomorphically-computed intersection-sum
d (Step 6).

We can thus simulate its view by sending it encryptions
of 0 in Step 3, and a fresh encryption of d in Step 6.
The indistinguishability of this simulated view from its
view in a real protocol can be seen based on the hiding
of the encryption scheme, as well as (for Step 3) and the
special property of the homomorphic encryption scheme
discussed in Definition 3, namely that a fresh encryption is
indistinguishable from one produced using homomorphic
operations (for Step 6). We conclude that P2 learns only
the intersection-sum d from the protocol ΠBF.

For P1, we argue it learns nothing more than the
intersection cardinality C. We sketch a simulator SIM as
follows.

• In Step 5, SIM replaces the ct2i values with en-
cryptions of 0 at exactly C random positions, and
encryptions of uniformly chosen random values
at all other positions. SIM further replaces all
ctti with encryptions of 0. It sends all such pairs
(ct2i , ctti) to P1.

• For all other steps, SIM simulates the behavior an
honest P2.

One can see that P1’s view in the simulation described
above is indistinguishable from a (correct) real execution
by the hiding property of the encryption scheme.

We reiterate that, unlike the real execution, SIM has
zero correctness error. Therefore, in order for the real
and simulated executions to remain indistinguishable, we
require that parameters have been selected to ensure that
real executions have negligible correctness error.

Appendix G.
“Reverse” variants

We note that, in each of the protocols described in
Section 4.3, a specific party receives the intersection-sum
as output, namely P2, the party who has the associated
values as input. Additionally, each of the protocols has
the property that the other party (P1) performs the ho-
momorphic addition of associated values. Furthermore, in
each protocol, P1 also learns the size of the intersection
before performing the homomorphic addition, and this
enables us to give P1 the option to abort the protocol
if the intersection-size is too small, without P2 learning
the intersection-sum.

In some cases, we may want the reverse configuration,
namely that P1 learns the intersection-sum, and P2 has the
ability to abort before the intersection-sum is learned if
the intersection-size is too small. It turns out that there is
a straightforward modification that can be made to each
of our protocols that allows this alternate configuration,
which we call a “reverse” variant. The idea is as follows

• P2 uses an additive-homomorphic encryption
scheme to encrypt each of its associated values
tj using its encryption key pk2, and sends these
encrypted values to P1.

• P1 homomorphically masks each associated value
with a random additive mask ri, and sends the
resulting ciphertexts (rerandomized) to P2 in shuf-
fled order.

• P2 decrypts the ciphertexts to recover the masked
associated values. P2 then adds together the values
that were determined to be in the intersection.
(Which values are to be added is determined
differently in each protocol, depending on the
underlying PSI technique used in that protocol,
namely DDH, Random-OT or Encrypted Bloom
Filter.) If the intersection-size is too small, P2 can
abort, otherwise P2 sends the masked sum to P1,
together with the set of indices that were in the
intersection.

• P1 uses the indices received in the previous step
to determine which masks must be removed from
the masked sum. P1 subtracts these masks from
the masked sums, and outputs the recovered value
as the intersection-sum.

We present the concrete instantiation of the reverse
variant of the DDH-based protocol in Appendix G, to-
gether with a short security sketch drawing on the security
argument for the forward variant. We omit the detailed
descriptions for the reverse variants for the Random-OT
and Bloom-filter based protocols, noting that they can
be constructed in a straightforward way using the recipe
described above.

G.1. The “Reverse” DDH-based Protocol

The DDH-based Private Intersection-Sum protocol
ΠDDH we presented in Section 3.1 can be modified in
a straightforward way to allow both parties to learn the
intersection-sum or intersection-size. It is also possible
to ensure that one or the other party performs the actual
intersection operation, for example, to allow that party to
abort if the intersection is below some threshold, which
might be imposed for policy reasons. We present one such
variant in Figure 6, which we refer to as the “reverse”
protocol. In this protocol, P2 performs the intersection,
and can abort the protocol if the intersection size is too
small, without either party learning the intersection-sum.
In addition, both parties learn the intersection size, but
only P1 learns the intersection-sum. To implement this, we
additionally need P1 to blind the additively homomorphic
ciphertexts with random masks, and for these masks to
be removed after the masked associated values have been
added. The details can be seen in Figure 6.



Reverse Intersection-Sum Protocol
• Inputs:

– Both parties: A group G of prime order, and an identifier space U . A hash function H : U → G, modeled as a random oracle, that
maps identifiers to random elements of G.

– P1 : Set V = {vi}m1
i=1, where vi ∈ U .

– P2: Set of pairs W = {(wi, ti)}m2
i=1, with wi ∈ U , ti ∈ Z+.

• Setup:

– Each Pi chooses a random private exponent ki in the group G.
– Party2 generates a fresh key-pair (pk , sk) ← AGen(λ) for the additive homomorphic encryption scheme and sends the public

key pk with Party1.

• Round 1 (P2):

1) For each element (wj , tj) in its set, P2 applies the Random Oracle and then single-encrypts wj using its key k2, thus computing
H(wj)

k2 .
2) P2 sends {(H(wj)

k2 ,AEnc(tj))}m2
j=1 to P1 in shuffled order.

• Round 2 (P1):

1) For each element (H(wj)
k2 ,AEnc(tj)) received from P2 in the previous step, P1 double-encrypts them using its key k1 and

homomorphically computes a one-time pad encryption of tj under addition in the message spaceM of the additively-homomorphic
encryption scheme, computing (H(wj)

k1k2 ,AEnc(tj + rj)).
2) P1 sends {(H(wj)

k1k2 ,AEnc(tj + rj)}m2
j=1 to P2 in shuffled order. The (shuffled j → rj) map is saved for a future step.

3) For each item vi in its input set, P1 applies the Random Oracle to the first element of the pair and encrypts it using key k1. It
encrypts the second element of the pair using the key pk for the additively homomorphic encryption scheme. It thus computes the
pair. H(vi)

k1 .
4) P1 sends the set {H(vi)

k1}m1
i=1 to P2 in shuffled order.

• Round 3 (P2):

1) For each item H(vi)
k1 received from P1 in Round 2 Step 4, P1 double-encrypts the using k2, thus computing H(vi)

k1k2 .
2) P2 computes the intersection set J :

J = {j : H(wj)
k1k2 ∈ {H(vi)

k1k2}m2
i=1}

3) For all items in the intersection, P2 decrypts AEnc(tj+rj) and adds the associated (one-time pad encrypted) ciphertexts, computing
a ciphertext encrypting the intersection-sum SJ =

∑
j∈J tj + rj

4) P2 sends SJ together with the indexes J corresponding to the additively homomorphic ciphertexts in the intersection, to P1.

• Output (P1): P1 computes SJ −
∑

j∈J rj to recover
∑

j∈J tj .

Figure 6: Detailed description of the “Reverse” Private Intersection-Sum protocol.

G.2. Security Analysis

The security proof for the reverse variant of the DDH-
based protocol is similar to the “forward” DDH-based
protocol, but with the roles of the parties reversed, with
Party 2 learning only the intersection size, and Party 1
learning both the intersection size and the intersection
sum. The simulator for Party 1 is almost identical to the
simulator for Party 2 in the original protocol; the one
difference is that the simulator must also provide indices J
(known to the simulator during the course of simulation)
in Round 3 to allow Party 1 to compute SJ −

∑
j∈J rj .

For Party 2, the simulator is very similar to the original
Party 1 simulator SIM1 in Algorithm 1. We omit details
of simulators and the hybrid security argument.

Appendix H.
Additional Measurements

H.1. Using an idealized homomorphic encryption
scheme

In Table 9 and Figure 7, we show communication and
computation costs for each of the 3 protocols we present,
assuming an “idealized” homomorphic encryption scheme
that incurs no computational cost and no communication

overhead as compared to sending plaintexts. We see that
in these schemes, the Random OT protocol and Bloom-
Filter protocol gain a large computational edge over the
DDH-based protocol. We interpret this as an indication
that it may be beneficial to explore further optimizations
to the additive homomorphic encryption scheme.

In this section, we present some additional measure-
ments for the Random-OT based protocol (Section 4.3.1),
Figure 3) using a different combination of additive homo-
morphic encryptions.

H.2. Using different additive encryption schemes
for the Random-OT-based Protocol

In particular, we measure the computation and com-
munication when we use Ring-LWE for encrypting both
fki(vi) values, and encrypting the associated values. We
use two different sets of RLWE parameters for the two
different use-cases.

For encrypting the associated values, we use the same
parameters as discussed in Section 5, namely slotted
RLWE encryption with an 80 bit modulus and 2048
coefficients, with 32 bit plaintext space.

For encrypting fki(vi) values, we use RLWE encryp-
tion with a 14-bit modulus, 1024 coefficients, and a plain-
text modulus of 2, corresponding to 1 bit per coefficient.



(a) Comparison of Computation Costs for Intersection Sum with
Idealized Homomorphic Encryption.

(b) Comparison of Communication Costs for Intersection Sum
with Idealized Homomorphic Encryption.

Figure 7: Compares computation and communication costs for “idealized” variants of intersection-sum, assuming and
additive homomorphic encryption schemes which have no computational cost, and ciphertexts that are the same size as
the plaintext. Wall-clock running times are the totals across both parties, excluding network transfer time. Communication
costs are also totals for both parties.

DDH + Idealized HE Random-OT + Idealized HE Bloom Filter + Idealized HE
Input Size Time(s) Comm.[MB] Time(s) Comm.[MB] Time(s) Comm.[MB]

1000 4.01 0.09 0.61 0.41 0.00 0.71
2000 7.83 0.17 0.66 0.73 0.01 1.45
3000 11.81 0.26 0.70 1.04 0.01 2.19
4000 15.80 0.35 0.75 1.36 0.01 2.95
5000 19.69 0.43 0.79 1.68 0.01 3.71
10000 39.29 0.87 1.02 3.27 0.03 7.56
20000 79.38 1.74 1.53 6.47 0.07 15.39
30000 119.70 2.60 1.98 9.68 0.10 23.32
40000 157.71 3.47 2.43 12.90 0.14 31.32
50000 196.61 4.34 2.97 16.12 0.18 39.37
100000 393.84 8.68 5.31 32.28 0.37 80.12

TABLE 9: Comparison of the protocols for Intersection Sum, assuming the existence of an ideal additively-homomorphic
encryption scheme, with no computation cost or ciphertext expansion. We assume this scheme is used for encrypting
not just associated values, but also the Li[vi] values in the Random-OT variant, and the bits of the Bloom filter in the
Bloom-filter variant.

We encrypt each fki(vi) value in a different ciphertext. To
be encrypted, each 256 bit fki(vi) value is decomposed
into 256 single-bit values that are inserted into the first
256 coefficients. The masks are homomorphically added
to the ciphertexts, along with 12 bits of additional noise,
leading to a 2−9 statistical hiding of the error. (We note
that this is less statistical hiding, but since we are only
hiding a single homomorphic addition, this is enough to
drown out the original error. We defer a detailed analysis.)

We present the measurements in Table 10. For
easy comparison, we also present the costs when using
unslotted-Paillier to encrypt both fki(vi) and the asso-
ciated values, and also the costs from Table 5, which
shows the cost when using unslotted-Paillier to encrypt the
fki(vi) and slotted-Ring-LWE to encrypt the associated
values. We refer to the three variants as Paillier-Paillier,
Paillier-RLWE and RLWE-RLWE, with the first part rep-
resenting the scheme used to encrypt which shows the
cost when using unslotted-Paillier to encrypt both fki(vi)
and second part representing the scheme used for the
associated values.

We note that using RLWE for both the fki(vi) values
and the associated values nearly halves the computational

cost of the scheme, while significantly increasing com-
munication costs. However, the total computation is still
about 20% more than the DDH + RLWE protocol (see
Table 5).



Paillier-Paillier Paillier-RLWE RLWE-RLWE
Input Size Time(s) Comm.[MB] Time(s) Comm.[MB] Time(s) Comm.[MB]

1000 11.31 1.64 9.89 1.33 5.15 7.07
2000 21.82 3.20 19.61 2.52 9.71 14.07
3000 32.31 4.76 29.66 3.74 14.28 21.12
4000 43.28 6.32 39.33 4.94 19.00 28.17
5000 53.83 7.89 48.72 6.16 24.22 35.26
10000 107.91 15.75 97.67 12.22 46.99 70.79
20000 216.57 31.51 196.86 24.55 94.73 142.30
30000 325.42 47.36 294.95 36.73 140.37 214.13
40000 434.27 63.22 399.50 49.02 187.31 286.17
50000 543.68 79.09 492.17 61.34 245.57 358.36
100000 1,115.10 158.74 989.88 123.21 554.75 720.83

TABLE 10: Comparison of variants of the Random-OT based Private Intersection-Sum protocol, using different
homomorphic encryption schemes to encrypt the fki(vi) values and the associated values.
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