Neural Network Model Assessment for
Side-Channel Analysis

Guilherme Perin, Baris Ege and Lukasz Chmielewski

Riscure BV, The Netherlands, surname@riscure.com

Abstract. Leakage assessment of cryptographic implementations with side-channel
analysis relies on two important assumptions: leakage model and the number of
side-channel traces. In the context of profiled side-channel attacks, having these
assumptions correctly defined is a sufficient first step to evaluate the security of
a crypto implementation with template attacks. This method assumes that the
features (leakages or points of interest) follow a univariate or multi-variate Gaussian
distribution for the estimation of the probability density function. When trained
machine learning or neural network models are employed as classifiers for profiled
attacks, a third assumption must be taken into account that it the correctness of the
trained model or learning parameters. It was already proved that convolutional neural
networks have advantages for side-channel analysis like bypassing trace misalignments
and defeating first-order masking countermeasures in software implementations.
However, if this trained model is incorrect and the test classification accuracy is close
to random guessing, the correctness of the two first assumptions (number of traces
and leakage model) will be insufficient and the security of the target under evaluation
can be overestimated. This could lead to wrong conclusions in leakage certifications.
One solution to verify if the trained model is acceptable relies on the identifying
of input features that the neural network considers as points of interest. In this
paper, we implement the assessment of neural network models by using the proposed
layer-wise activation path method. Our method is employed during the profiling
phase as a tool to verify what the neural network is learning from side-channel traces
and to support the optimization of hyper-parameters. The method is tested against
masked AES implementation. One of the main results highlights the importance of
L2 regularization for the automated points of interest selection from a neural network.

Keywords: Side-Channel Analysis - Neural Networks - Model Assessment - Hyper-
Parameters Optimization

1 Introduction

Embedded systems containing cryptographic implementations are known to be vulner-
able to side-channel analysis. These attack methods explore the leakage of information
that is conveyed through unintended side-channels where usually power consumption,
electromagnetic emanation and time are considered. Profiled (e.g., template attacks[1],
linear regression[2], machine learning[3][4]) and non-profiled attacks (e.g., DPA[5], CPA[6],
MIA][7], clustering[8]) are considered to assess the levels of security of a cryptographic
implementation.

With the progress that has been made in the field of big data analysis and neural
networks, deep learning has been considered as a powerful attack method for side-channel
analysis. In many different domains where large amounts of data are available, like natural
language processing, computer vision, medical data analysis, etc., a deep neural network

mailto:surname@riscure.com

2 Neural Network Model Assessment for Side-Channel Analysis

is being able to achieve high levels of accuracy in classification and recognition tasks.
Side-channel analysis also falls into the big data scenario, because tenths of millions of
side-channel traces need to be processed in a (conventional) hardware or software security
assessment.

The application of multiple-layer perceptron (MLP) for side-channel analysis has been
proposed in [4][9]. Recently, researchers have demonstrated that deep neural networks are
able to break protected software AES implementations [10]{11][12]. The elimination of
jitter and other misalignment effects is not a straight-forward task and these effects directly
affect the performance of first-order or profiled side-channel attacks. When these effects
are strongly present in side-channel traces, it can lead to the (precipitate) conclusion that
the target is sufficiently robust against high-potential side-channel attacks, as the leakage
assessment phase is not detecting important leakages. Convolutional neural networks
(CNNs) can deal with misaligned traces, as shown in [11]. Their results demonstrate that
CNNs overcome misalignment and jitter-based countermeasures with the application of
data augmentation techniques. Besides the confirmed advantages, the advent of deep
neural networks for profiled side-channel analysis leaves some open questions that still need
to be properly addressed. in [13], the authors investigate how machine learning metrics
should be interpreted in order to estimate the success rate of an attack. The conclusion
from that paper is that accuracy, precision or recall are not able to replace success rate or
guessing entropy.

Another topic that needs more clarification is how to interpret the trained model
parameters in order to assume that this model can be used to estimate the leakage of
information from the target under evaluation. In [14], the authors proposed to use input
gradient activations in order to identify what are the samples in side-channel traces that
a neural network presents major sensitivity with respect to the cost function. A similar
analysis has been presented in [12]. The authors of [15] investigate a layer-wise propagation
method which is based on the relevance of a neuron with respect to the next layer in the
network. Therefore, the methods presented in [14], [12] and [15] can all be used to verify
which input features have more impact in the neural network output probabilities.

Main contributions: In this paper, we call the techniques presented in [14], [12] and
[15] as model assessment and we propose an extension of the layer-wise propagation method
called layer-wise activation. For every side-channel trace, the proposed method is able to
point out the sample(s) with more contribution to the output layer activation decision. We
test the proposed method against unprotected and protected AES software implementations
(simulations and ASCAD database). The obtained results highlight that neural networks
are able to recognize second-order leakages, which is sufficient to defeat the masked AES
implementation proposed in [16]. Next, we provide experiments to demonstrate how model
assessment can be used to optimize neural networks hyper-parameters. In particular, we
show how small variations in the regularization L2 directly affect the leakage detection
by the neural network. An important conclusion from our experiments is that as soon
as the L2 regularization hyper-parameter is wrongly set (i.e, too small or too large), the
rest of hyper-parameters are very difficult to be found with respect to the precision of
points of interest identification by the neural network. Therefore, the identification of a
good L2 value has strong impact in the network’s capability for leakage detection. We also
enforce that different model assessment techniques may provide different results and that
the usage of different methods can lead to more accurate conclusions about the trained
model.

The rest of the paper is organized as follows. Section 2 provides definitions and
terminologies that are referred along the paper. Section 3 provides an overview about
neural networks and side-channel analysis. In particular, in this section, we address
the main open points with respect to the application of neural networks in side-channel
analysis. We start by separating the main open problems into four main groups and then

Guilherme Perin, Baris Ege and Lukasz Chmielewski 3

we propose a discussion on them. For one of them, model assessment, this paper focuses its
main contributions. Discussion about model assessment techniques for neural networks is
provided in Section 4. Section 5 describes the proposed layer-wise activation path method.
Experiment results for different AES implementations are provided in Section 6. Section
7 provides an investigation on hyper-parameters optimization from model assessment.
Finally, conclusions are presented in Section 8.

2 Background

This section provides definitions of terms and notations that will referred along the text.
Following, a description of profiled side-channel analysis is explained in 2.2.

2.1 Terms and Notations

In this paper, we will refer to z; ; as being a sample ¢ (0 <t <) in a trace ¢ belonging to
a trace set Ty containing N traces. Thus, T'(i) = [x;0, ..., ©;,s—1] refers to the i—th trace
from the trace set. Every observation x from a side-channel trace can be seen as a leakage
observation.

A leakage model defines a function that quantifies an internal variable being processed
during the execution of a cryptographic algorithm. In this paper, all the tests are performed
on AES-128 and we consider Hamming weight of Spe, output, £; = HW (Stez(pi ® ki),
as the leakage model. Therefore, the term /¢; defines the label that is attributed to each
side-channel trace i.

The term ag- defines the activation value for a neuron j in a layer [. The value wé;l
defines the weight connection from a neuron ¢ in layer [— 1 to a neuron j in layer . For
this case, the layer can be input, dense or output. The activation of a neuron takes into
consideration an activation function f(-), its weight connections wé;l and bias b'~! from
layer | — 1. The term len(l) defines number of neurons in a layer [.

For convolutional layers, the term alq ; defines a feature in the feature map that is
obtained as a result from a convolution of a set of filter weights with a input activations. A

7l

filter in a convolutional layer [is defined as w!! = [wy”, - - - ,wZ’sl_l], where ks is the kernel

size or filter length. We must consider two scenarios:

e Input Layer — Convolutional Layer: every filter weight w”! is associated to a filter
index r and its position w inside the filter vector. The lenght of the filter is given by
the kernel size ks and number of filters is given by R;

e Convolutional Layer — Convolutional Layer: every filter weight w,’;:L is associated to
a filter index r in layer [— 1, a filter index ¢ in layer [and its position (g, u) inside
the filter array. This filter array is represented as Q)p«xs, where R is the number of
filters in layer [— 1.

2.2 Profiled Side-Channel Analysis

Standard non-profiled approaches like CPA or DPA are limited by the necessity of a
leakage model and a selection function. They are also univariate nature: each time sample
is being attacked independently. Therefore, these univariate attacks might be not sufficient
if the assumed leakage model and selection function are too far from reality or a leakage is
exploitable only if several time samples are combined together.

In these cases so-called profiled side-channel analysis attacks, in particular, template
attacks[1], linear regression|2], and machine learning[3][4], might be successful due to their
multi-variate nature (i.e., they can combine multiple samples for the same leakage).

4 Neural Network Model Assessment for Side-Channel Analysis

In general, the profiled attacks aim to answer the following question: “when possessing
a device, which is under a full control of the attacker, how to make the best use of it
to attack another device for which the key is unknown?”. The assumption is that both
devices differ only in the keys that they use. Besides that they are identical with respect
to hardware and software.

Usually a profiled attack consists of two phases. The first phase, called learning or
profiling, requires a profiling device, which is under full control of the attacker, on which
they can characterize leakage of the device. The result of the learning phase can be seen as
a set of templates where each template represents a piece of information about a class of
population. These templates together let the adversary to distinguish one class apart from
another in the second phase. In the second phase, called attacking, the attacker matches
the result of the learning phase to the leakage coming from the attacked device (which
stores an unknown secret)?.

Different profiled attacks have different requirements with respect to points of interest
selection and modelling the leakage, which is usually performed using probability density
function (pdf). In particular, with respect to deep learning attack, neural networks learn
the pdf function from the traces and this process is significantly affected by the choice of
network hyper-parameters. Therefore, to implement the proper neural network to correctly
learn from traces, we need to correctly define hyper-parameters and for that we need to
assess the neural network model.

3 Neural networks and side-channel attacks

Research and developments of side-channel attacks allows the academic community and
chip manufacturers to provide high-end secure solutions for embedded systems with respect
to unintended side-channel leakages. Recent publications have considered software AES
implementations to provide evidences that deep neural networks poses serious threats
for certain targets even when the collected trace sets contains jitter or misalignments or
when the AES is protected with first-order masking schemes. In the context of public-
key cryptography, [17] provides security evaluation of protected RSA implementation by
using neural networks. Therefore, secure cryptographic implementations (both, hardware
accelerators and software crypto libraries) are now threatened by the possibility that deep
neural networks can bypass countermeasures that were sufficient to repel the possibility of
leakage detection with state-of-art side-channel attack methods.

When neural networks are considered for profiled side-channel attacks, the good results
were obtained for open-source trace sets (ASCAD [16] and DPAContest). However, there
are several open points that the research community has to address in order to make neural
networks as a solid and trustful methodology for side-channel analysis evaluations. This is
important not only to understand what are sufficient countermeasures for the life cycle of
the product, but also to improve security based on the information that neural network
models can provide.

Well-known machine learning metrics are also employed for neural networks: accuracy,
recall, precision and cost function. In [13], the authors provide a comprehensive evaluation
of machine learning metrics for side-channel attacks, where the main focus is the imbalance
class problem for leakage models defined for symmetric-key algorithms (Hamming distance
and Hamming weight). The main conclusion is that side-channel attacks cannot only rely
on machine learning metrics as they do not succeed in replacing success rate or guessing
entropy metrics. When the analysis in conducted against a symmetric algorithm (e.g.,
AES), the key ranking after test phase is conducted in a DPA-like approach with the
processing of many traces with a fixed key. For that, the trained model provides output
class probabilities for each processed test trace. These class probabilities from the output

1Usually for the sake of simplicity, only a single device is used during security evaluations.

Guilherme Perin, Baris Ege and Lukasz Chmielewski 5

network layer are then employed in the key ranking. However, from our experience, for
some cases even when test accuracy is close to a random guessing, the key ranking can
still return the correct key candidate. This does not refer to the fact that metrics are not
important, but indicates that output probabilities in fact do contain relevant information
for side-channel attacks.

For a given training data set, we want to configure a neural network that can achieve
good enough generalization in its optimization problem. The network parameters (weight
connections and biased values in network layers) are learned based on the configurable
hyper-parameters (e.g., number of layers, elements per layer, activation functions, back-
propagation algorithm, etc.). Solutions for this difficult problem include genetic algorithm,
simulated annealing or Bayesian optimization. This hyper-parameters search algorithms
are very time-consuming and, to the best of our knowledge, there are no publications
with practical results about the application of optimization algorithms in neural networks
for side-channel attacks. Model assessment techniques that verify what and how the
neural network is learning its parameters can be a good alternative as an information
gathering to optimize the hyper-parameters. Some publications [14][15][12] have proposed
different techniques to visualize what the network identifies as main input features (points
of interest) in order to make its decisions. In [14], the authors also consider input activation
gradient as a metric for the selection of points of interest for template attacks. In [12]
the sensitivity analysis (with is also based on input activation gradients) is employed as
a distinguisher for non-profiled attacks. It is interesting to note that both mentioned
references consider the same database (ASCAD) for the experiments, however successful
results are obtained against a masked AES implementation with different neural networks
configurations. While in [14] the experiments are conducted for deep convolutional neural
networks with up to 7 convolutional layers, in [12] the authors define MLPs or CNNs with
up to 2 dense layers or 2 convolutional plus pooling layers, respectively. This opens the
question related to the importance of correctly choosing the hyper-parameters and what
is the importance of each one of them in the leakage detection. Additionally, we would
like to find some conclusions on what hyper-parameters have more or less influence in the
identification of points of interests from side-channel traces.

In this paper, we provide a contribution on model assessment for side-channel analysis
by proposing an alternative solution based on the identification of backward (layer-wise)
propagation paths in neural networks. We provide proof-of-concept on unprotected and
protected AES implementations and show how model assessment can give interesting
insights about the effect of hyper-parameters in the leakage detection.

4 Model Assessment Techniques for Side-Channel Analy-
sis

Deep neural networks can implement highly complex models. For every trace set col-
lected from a specific target-of-evaluation, there will be different sets of hyper-parameters
that define several local minima and a global minima in the landscape (defined by the
error/loss/cost function). It is generally assumed that as soon as the learning model finds a
local minima, the neural network would be actually learning from data-dependent leakages.
Ideally, the network should also discard non-leaking samples from its decision process. Of
course, this task is accompanied by the correct selection of a leakage model. The task of
making the model to converge to one of the local minima or, ideally, to the global minima,
is difficult due to the large amount of possible combinations of hyper-parameters. However,
training metrics (accuracy, loss function) could indicate such performances during training
and validation. The remaining question is related to what exactly the network has learned
from side-channel traces.

6 Neural Network Model Assessment for Side-Channel Analysis

If the work relies on identifying what are the optimal values for two or three of the
hyper-parameters, a grid search could cover all possibilities. However, if more hyper-
parameters need to be found, the usage of an optimization algorithms would be necessary,
such as evolutionary algorithms. However, optimization algorithms can lead to unrealistic
situations where the convergence to a good set of hyper-parameters is unfeasible within a
reasonable time. When evaluating the security of cryptographic implementations, leakage
certifications or even security assessments on the manufacturer’s side, the available time
can not afford for a very extensive hyper-parameters search.

To clearly understand how a trained model is actually performing the distinction
between data-dependent samples from non-leaking samples, we need to appeal for model
assessment techniques. In neural networks, it also refers to the identification of input
features that are decisive for the classification task. Some works [18] give some directions in
showing how information is conveyed through the hidden layers, and others try to explain
how the features in the input data affect the activations in hidden layers [19]. Techniques
that highlight what convolution layers learn from images, allows the localization of objects
in input data. Some techniques, based on occlusion sensitivity [19, 20], are useful in the
direction of identifying how the convolution layers treat separate classes from the input
data. For side-channel analysis, the works presented in [14], [15] and [12] provide good
coverage of model assessment techniques for side-channel analysis. Next, we provide a
brief description of these techniques.

4.1 Occlusion techniques

The author of [19] proposes different visualization techniques for object detection for
computing vision. One of the techniques is called occlusion and it refers to input (in case,
two-dimensional data) manipulation in order to identify the features that contributes more
for a neural network decision.

For side-channel analysis, this technique can be used to identify the samples associated
to neural network activations after training stops. The associated training traces can
be processed, one-by-one, with parts of traces occluded. The occlusion is nothing more
than zeroing a sample interval in the entire training set and asking the neural network to
perform the classification. By observing the metrics after every occlusion, it is possible to
identify the intervals that, once occluded, reduces the classification accuracy of the trained
model or even affect key ranking results.

The main possible limitation of occlusion techniques for side-channel analysis is related
to leakage order. As already stated in this paper, neural networks implement very complex
models and are possibly able to learn from high-order leakages. If the occluded interval
suppress some of the leakages, the classification accuracy can still be high enough because
the network is detection leakages from different trace samples.

4.2 Input Activation Gradients

In [14], the authors proposed the visualization of input activation gradients as a technique
to characterize the automated selection of points of interests by deep neural networks. The
result is a vector of gradients that are computed by the back propagation algorithm as
the derivative of the cost function with respect to the input activation. Basically, when
the neural network is trained in a correct way, the gradient visualization (GV) method
indicates which samples have more influence in the network predictions. In [12], the
authors proposed the same solution, defined as sensitivity analysis, and they used it in the
context of non-profiled side-channel analysis where input activation gradients are basically
used as distinguishers.

Guilherme Perin, Baris Ege and Lukasz Chmielewski 7

4.3 Layer-wise Relevance Propagation

The authors of [15] compared different techniques for the assessment of trained neural
networks. One of the methods, called layer-wise relevance propagation (LRP) implements
a recursive process of the activations in the neural network until the input layer is reached.
The method computes the relevance of a neuron in layer [— 1 with respect to a neuron
l. In this paper, we propose a variant of the LRP where the relevance is excluded from
the recursion. As will be described in the next section, the main idea of out proposed
model assessment method is to identify the neurons with greater influence in the network’s
decision by suggesting what would happen if that neuron wouldn’t exist in the network or,
in other words, if that neuron would have activation zero for a particular input side-channel
trace.

5 Layer-Wise Activation Path

Once a neural network is trained, the training traces are again provided to the network
and, one by one, a neuron which is activated with the higher value in the output layer
(after softmazx activation function) is taken into account. This single neuron represents
one of the classes defined in the input data set. For side-channel analysis, it is well-known
that the number of classes is derived from the selected leakage model and the number of
neurons in the output layer is equal to this number of classes.

A neuron in the output layer is fully connected to all the neurons in the previous layer
through a set of connection weights. Furthermore, the activation value for each neuron
depends on all their previous weights connections and activation values of the previous
layer. Every connection between two neurons is defined by a weight value, which remains
unchanged after training stops as well as the bias value for every layer. The values of
the input data (or, input trace) are processed by all the neuron connections, producing
different activation values for all the neurons inside the network. The main goal of training
a neural network for side-channel analysis is to learn the parameters (weights and biases) in
a way that the network can distinguish input trace samples that represent data dependent
leakage. If the neural network is able to create activation paths based on input samples
that are actually points of interest (i.e., samples that contains data dependent information)
we then assume that our model is trained in a way that it is learning the actual leakages
from side-channel traces.

We are interested in identifying exactly the sample(s) from each input trace that the
network is selecting as the most important one(s) for its classification task. By doing this
assessment, we are able to observe whether the trained model is actually selecting leaking
samples (points of interest). The proposed method can be applied to training data as
well as validation data. When the method is applied to training data, it is possible to
visualize how the network is fitting the data. By processing validation (or test) data with
layer-wise activation path method it is possible to visualize the generalization capabilities
as an additional information to the conventional metrics (accuracy, recall or loss function).

5.1 Method Description

This section provide details about the proposed method. The adopted solution is a layer-
wise process. Neural networks can present different types of layer structures. Therefore,
we describe all the possible cases for MLPs and CNNs. For CNNs, the only requirement
is that the network is always structured with the following configuration: input layer,
convolution + pooling layers, dense layers and output layer.

Dense to dense layer: Let us represent a neuron by its activation value aé., where
j is the index of the neuron in layer . We are interested in identifying what neuron in
layer [— 1 has more importance for the activation value aé. This procedure is done by

8 Neural Network Model Assessment for Side-Channel Analysis

analyzing what multiplication result wl L.al=! provides the major contribution in the

2
resulting activation value ab = f(Zé:g(l b “L 4 bY), where W) S is the weight

2V’
connection between a neuron i in layer [— 1 and a neuron j in layer I, b'~! is the bias
of layer [— 1 and f(-) is the activation function. Therefore, for i = [0, ...,len(l — 1)], we

compute:

len(l—1)
a (Z w almt4pl 1) (1)
1=0,i#m

The index of the neuron in layer { — 1 that contributes more for the activation @ in

J
layer [is then given by:

21 = indexOf(argmin (aé - aé- (m)))) (2)
0<m<len(l—1)

This procedure can also be understood as a layer-wise activation path identification.

Fig. 1 illustrates an example for What an activation path looks like. In this illustrative

example, it was identified that a iwi o is the most contributory term for the activation aj

in layer 3, which is, from (2), z* = =1.

Input Dense Dense Cutput
(Layer 0) (Layer 1) (Layer 2) [Layer 3)
a,’
ap
[«2] @-0:

a,’ 1@ @10 »@ Predicted
= T 1 R
Main 0 2 .’
Feature W34 .l a 4

b Y 2

Figure 1: Illustration of selected layer-wise activation path for MLPs.

Convolution to dense layer: So far, the layer-wise activation path is described for
multiple-layer perceptrons. The method can also be extended to convolutional neural
networks. For MPLs, the task of identifying the layer-wise activation path is quite simple,
because we only need to find the more contributory term wl Jl =1 for the activation of
a neuron when there are two consecutive dense layers. However for CNNs, we have to
identify the more contributory terms for connections from pooling to dense layers and
from convolutional to convolutional layers.

In the connection from a pooling to a dense layer, the procedure is quite simple, because
the output of a pooling layer is flattened and connected to this dense layer. The only
difference refers to the identification of the feature in the pooled feature map and what
filter is responsible for this feature result. Fig. 2 illustrates this procedure. The goal is to
identify which feature (and which filter) from the feature map of layer 2 contributes more
for the activation aj in dense layer 3. The example determines that the term a?ﬁ;“?‘m

contributes more to the activation aj. This can be done by following Equations (1) and

Guilherme Perin, Baris Ege and Lukasz Chmielewski 9

(2). Next, we select what features from the feature map of the convolution layer 1 were
considered to generate this feature a% . As we can see, two features (a}c1 o a}l ,) are then
identified in the layer-wise activation path when the convolution layer 1 is reached.

Input Convelution Pooled Flattened Denze
{Layer 0) Feature Map Feature Map Pooled Output (Layer 3)
(Layer 1) (Layer2)
a. 2
To.o %3
; O 3
| Filter 1 aq
: 1 a. 2
H To
5 ; 0.z 023
1 1 1 1 1 1 2 2 2 2
Yoo Yor Yz TRz Op. s S Yoo Yoz Uua Uia

az?

2 2 2 9
Yo~ Yha I:> [w 2 |:> To Layer 4
et @

~soa po=y

1 1 1 il 1 2 2
Qe @y Qp, dp, Qp,." ap, oo Har O

1 1 1 1]
P %o %ha %, | %fn
3 3

as
3 Filters KernelSize=2 ﬂj’zc.2
Stride =2
a
s

Figure 2: Illustration of selected layer-wise activation path for the connection between
pooling and dense layer.

Convolution to convolution layer: Let us assume that we have a CNN where the
first layers are, in this order: input (layer 0), convolutional (layer 1), convolutional (layer 2)
and pooling (layer 3). Fig. 3 illustrates this example by showing the output feature maps
of each of this layers. At this point, we assume that we already know what are the features
in layers 2 and 3 the contribute more for the activation of the neuron in next layer (layer
4) that, in our case, is a dense layer (e.g., see Fig. 2). For two consecutive convolutional
layers in a network, we are interest in identifying what are the features in layer 1 (and
corresponding filter) that contribute more for the generation of specific features in layer 2
(and corresponding filter). In the illustrative example from Fig. 3, the features a}u and
a}m (related to filter 2 in layer 1) are the ones that contribute more for the generation of

features ai , and ai . (related to filter 4 in layer 2), respectively.

Input Convelution Convelution Pooled
(Layer 0) Feature Map Feature Map Feature Map
(Layer 1) (Layer 2) (Layer 3)
Filter5

1
| I
| 3 3 3
| 2 2 2 z 2 -
[Filter2 @ ? ag.® ap.? ap ? ap? ap ? ag ° ap ° ap.
| | 5 .
| 1 B 501 3 3 3
2 2 2 2 2 2 a a a
! ag “ ag . * ap ° ap . 4, 4" o ha Op,
a; ' ar Vg, 1 g ! g, g, 1 1! ;
el el e e el el RN 2 2 2 2 21 ap,? an.® ap®
ap.” ag.° @p ° @ ° ap, 20 e Of,

3 3 3
o %o Gp,

3 3 3
LA A

3 Filters - o -
3

Il
Ore” i ap,

[S— i 6 Filters, Kernel Size = 2, Stride = 1 KernelSize = 2, Stride= 2

Figure 3: Illustration of selected layer-wise activation path for the connection between
convolution layers.

Considering ks and st as the kernel size and stride, respectively, of the convolutional

10 Neural Network Model Assessment for Side-Channel Analysis

layer I. Also, we consider r and ¢ as being the filter indexes of layers [— 1 and [, respectively,
and R and @ are the number of filters in layers [— 1 and [, respectively. A filter weight
is given by o.)‘r{yﬁ. Therefore, a feature ay, ; in the feature map of layer [is computed as
follows:

af,, = (20 +) 3)

and ’yj’l is the convolution result for the calculation of the feature ay, ; in layer [— 1 with
respect to the filter ¢ in this layer [— 1 and it is given by:

q,l q,l
wo,? wo,;es—l
a, a,
w w
gl _ _ -1 -1 1,0 1,ks—1
V" = Arxks X Qrxks = ([ay ., Q5 ires : g
Wit w?®
R—1,0 R—1,ks—1

Eq. 4 basically describes how all the filters Qg s in layer [combines information from
every feature map row output from layer [— 1. Following the illustrative example from
Fig. 3, equation (4) becomes:

4,2 42
42 L “9% “%3
Vit =Arxa x Q30 = | | ag,, ap,] Wiy Wii (5)
422 42
| “W2,0 W21 |
and:
42 42 7
4,2 1 1 w%g w%%
V5 = Aixe X Qo = | | fy 5 Afyg] Wig Wi (6)
22 42
| W20 Wou |

We are interested in computing the terms alfjlj(r, u) (forr=0,...,R—landu=0,..., ks)

by setting the element wf’}

of Q) to zero. Finally, the feature alf_1 from layer [— 1 that

J

contributes more for the activation of feature aﬁcq , in layer [is given by:

-1 _ ; -1 -1
ay . = indexOf (oguirkgsrggd% {afr7j ay (r,u) }) (7)

As a result, we can identify which feature w in filter r from layer [— 1 contributes more
for the activation of a feature in layer [.

Convolution to input layer: after the more contributory feature in convolution
layer 1 is identified, the method identify what is the input feature (from input side-channel
trace) that contributes more for the activation of this feature in layer 1.

Considering ks and st as the kernel size and stride, respectively, of the convolutional
layer 1. Also, r and R are the filter index and the number of filters, respectively, of this
layers 1. A filter weight is given by w’>!. Therefore, a feature a f..; in the feature map of
layer | with respect to filter r is computed as follows:

j.st+ks—1

ah, =1 % ah et o) ®)

i=j.st

where f(-) is the convolution layer activation function and b} is layer bias for the convolution
filter ». We are interested in computing the following values:

Guilherme Perin, Baris Ege and Lukasz Chmielewski 11

j.st+ks—1
11
af) =f(X ah w0k)
i=j.st,i#m

for all » € [0,..., R — 1]. The input feature that contributes more for the activation of
feature a%‘j is given by:

a?fw_ = inde:vOf(argmin {a(}r’j - at}r’j(m)}) (10)
0<i<ks,

Therefore, following this layer-wise method it is possible to identify the input feature
(from input layer) that has more contribution in the activation of a specific neuron in the
output layer. Next, a proof-of-concept is provided with respect to first and second-order
leakages from simulated AES traces. After, the proposed method is applied to the ASCAD
database and it is demonstrated how this model assessment mechanism can be used to
improve leakage detection or the automatic selection of points of interests from side-channel
traces.

6 Experiments

In this section, we provode some experimental results to validate the proposed method. We
start by defining the neural network configuration that is considered for the experiments.
Ee provide results for simulated AES traces in order to have a proof-of-concept. Next, we
show the application of the proposed method to the ASCAD database.

6.1 Neural network configuration

For the experiments provided in this section, we defined a convolutional neural network
with the following hyper-parameters:

e Convolutional layer: 10 filters, kernel size (ks) (or filter length) of 10, stride (st) of 5
and Relu activation function;

e Dense Layer: 40 neurons, Relu activation function;
e Dense Layer: 40 neurons, Relu activation function;

e QOutput layer: 9 neurons, Softmax activation function.

The mini-batch size is 128, learning rate is set to 0.01 and the chosen optimizer is
nesterovs with momentum equal to 0.9. The only considered regularization technique is
L2 = 0.05. For each experiment, the network parameters (weights) are initialized with
zavier method. No learning rate decay is considered during training. We consider two
scenarios. First, we evaluate the method against simulated AES traces. Next, we apply
the method to ASCAD database.

6.2 Method Validation on Simulated AES Traces

In order to validate the proposed layer-wise activation path method, this section provides
results for simulated AES traces. The main idea is to demonstrate that this model
assessment can be used to verify how a neural network identifies first-order leakages or
either combines input features for side-channel analysis in a second-order context.

12 Neural Network Model Assessment for Side-Channel Analysis

Training Validation

100k 1000

o
&
requency
o
o
2

L 40k ' &4 "
20k '“ 200 i

N PN L;MQW&L\H‘MMM P o Rala sl i A MmmiL.w._Lm N

0 20 40 B0 20 100 0 20 40 60 80 100

Label 0 Label 1 Label 3 Label 4
Lskel 5 Label 6 Label 7 Label 8

Label 2

Label 0 Label 1 Label 2 Label 3 Label 4
Label 5 Label 6 Label 7 Label 8

Figure 4: layer-wise activation path results for simulated AES traces. Result for training
(left) and validation (right) traces.

6.2.1 Simulated AES traces

As a proof-of-concept we first provide results for simulated traces. The simulated side-
channel traces simply contain random samples values s € [0, ..., 8], except for the sample
68 which contains exactly the same value of the target leakage (e.g., the Hamming weight
of the Spos(k; ® pi)). Fig. 4 shows results for the application of the layer-wise activation
path on training and validation traces. As the figure indicates, sample 68 is recognized
as the most contributory sample for the output activations. For this experiment, 100,000
traces were generated, where 99,000 were used for training and 1,000 for validation.

The y-axis in Fig. 4 indicates the frequency that an input sample is selected as the
most important feature for the output network activation in the processed trace set.

6.2.2 Masked Simulated AES Traces

The generation of masked AES traces follows the implementation described in [16], which
is the masked AES implementation for the ASCAD database. Every simulated traces
contain 100 samples. Each trace contain the following values for specific sample positions:

e Sample 32 contains the Hamming weight of state0[i] < pli] & r[i], where p[i] is a
plaintext byte and r[i] is a random masking byte.

e Sample 33 contains the Hamming weight of a random masking byte: statel[i] < r[d].

e Sample 67 contains the Hamming weight of state0[i] < (stateO[i] ® key[i] ® rin)
statel[i], where r;, is random mask value;

e Sample 68 contains the Hamming weight of state0[] < Spor * [state0[d]], where Spoq*
is a masked substitution table.

e Sample 69 contains the Hamming weight of stateQ[i] + (state0[i] ® statelli]) S rout,
where 7,,; is a random mask value.

All other samples contain random values ranging from 0 to 8. Fig. 5 shows the results
for the backward activation method against the simulated masked AES traces. Again,
100,000 traces were generated, where 99,000 were used for training and 1,000 for validation.
As we can see, the trained network considers samples 33 and 68 as the main input samples
for the activation of the output layer. These two samples are the mask r[i] and the masked
Shos* output value, meaning that the trained neural network is actually combining these
two samples for the output activation. These could be understood as a second-order
leakage detection by the neural network.

Guilherme Perin, Baris Ege and Lukasz Chmielewski 13

Training Validation
1000
200

600

Frequency
Frequency

400

200

|
i
— N W
20

100

20k
1] SN A - —
0 20 40 &0

20 100 0 20 40 60

Label 0 Label 1 Label 2 Label 3 Label 4
Label 3 Label 6 Label 7 Label 8

Label 0 Label 1 Label 2 Label 3 Label 4
Label 5 Label 6 Label 7 Label 8

Figure 5: layer-wise activation path results for simulated masked AES traces. Result for
training (left) and validation (right) traces.

6.3 Method Validation on ASCAD Database

We are interested in assessing the learnability of a neural network during training with
respect to automatic selection of points of interest. A good enough trained model would
be the one that classifies input traces by activating a neuron in the output layer because
it identifies a feature in the input layer that contains information related to the selected
leakage model.

Neural network metrics like accuracy, precision or recall may indicate how well the
neural network is being able to fit from training data and to generalize to validation data.
Even if these metrics are very useful in demonstrating the amount of learning, they cannot
represent if the neural network is actually detecting leakages from side-channel traces. For
that, we consider the ASCAD database that allows us to validate the proposed method
against unprotected and protected AES traces.

6.3.1 Software AES - ASCAD Database

In [16] the authors provide a full description of the AES implementation that was used to
generate the ASCAD database for side-channel traces and it is available on GitHub (link).
The authors suggest the usage of 50k traces for training and 10k traces for validation.

The AES implementation is protected with masking countermeasure and the side-
channel traces contain information of electromagnetic emanation related to the first round.
The operations on sub-key bytes 1 and 2 are not masked. Therefore, we select the trace
interval containing 700 samples with respect to the processing of the k1. Fig. 6 provides the
correlation analysis for the Sy, output (right) and results for the backward propagation
method (left) for the trained network over this interval. As we can obverse, the backward
propagation method indicate that the trained network is actually selecting the samples
that are actually point of interest (high correlation) as the main input features. In this
case, we can assume that the network is actually recognizing with a high precision the
location of points of interest.

6.3.2 Software AES with Masking - ASCAD Database

AES rounds from sub-key bytes 3 to 16 are masked and the corresponding mask values
are also available for each trace in the database. This information allows the calculation
of the masked Sp,, output value. Based on that, we select the interval representing the
processing of sub-key byte ¢ = 3 and compute the correlation for r[3] (mask for £3) as
well as the masked Sy, output value. Fig. 7 (right side) shows these correlation results.
Next, we train a CNN over these data set and also implement the model assessment with

https://github.com/ANSSI-FR/ASCAD

14 Neural Network Model Assessment for Side-Channel Analysis

Label 0 Label 1 Label 3 Label 4
Label 5 Label & Label 7 Label 8

Label 2

Frequency

Correlation
L L R e =-T =)

*10

0 20 30 40 50 50

Samples Samples

Figure 6: Layer-wise activation path result (left) and correlation with Spe, output values
for k1 (right).

e 3] S

Label 0 Label 1 Label 2 Label 3 Lsbel 4
Label 5 Label 6 Label 7 Label 2

=)
=1
=]

Correlation
B b o 2w e @

Frequency

=
=1

0 ; " v U |
0 200 400 600 1} 10 20 30 40 50)
Samples Samples

Figure 7: Layer-wise activation path result (left) and correlation with 7[3] and masked
Shoz output (right).

backward propagation method. The analysis is performed in a black-box scenario, where
the training traces are labelled based on the Hamming weight of Sy, output without any
masking into consideration: £p, , = HW (Spoz(pi B ki)).

Fig. 7 (left side) provides results for this model assessment. Comparing both figures,
it is possible to verify that the neural network considers the input samples related to
the mask 7[3] and the masked Sp,, output as the main features. This confirms that the
trained neural network is actually combining two or more samples for every trace, as a
second-order attack.

It is important to highlight that the definition of a neural network that selects points
of interests as main input features requires the tuning of hyper-parameters. Section 7
describes how small changes in some of these hyper-parameters completely changes these
results. In particular, it is demonstrated how small variations in the regularization L2
completely modifies these points of interests selection by the neural network.

7 Optimizing neural network hyper-parameters from model
assessment

So far, this paper has demonstrated that model assessment techniques are able to provide
valuable information in order to visualize how trained neural networks identify the points
of interest automatically. A further question in this investigation would be how to use
model assessment techniques to improve model learnability by modifying hyper-parameters.

Guilherme Perin, Baris Ege and Lukasz Chmielewski 15

The report presented in [16] provides several experiments for different hyper-parameters
on the ASCAD database. Here, the idea is to compare different hyper-parameters and see
how they influence the leakage detection by the neural network. We start by assessing
how regularization L2 has an important impact on the learning process against a masked
AES implementation.

7.1 Assessing the effect of L2 regularization

L2 regularization (also known as weight decay or ridge regularization) imposes a penalty
during the parameters (weight connections) updates in the back propagation algorithm
with stochastic gradient descent. This penalty prevents the weights to become too large
and, as a consequence, the network has less chances to overfit the training data. The
following equation helps us to understand how the regularization is employed in the cost
or error function:

E(x)r2 = E(x) + AZ jwi ;I (11)

The error E(x) is based on an equation that evaluates the global distance between the
actual labels and the predicted labels. Examples for that are mean squared error, negative
log-likelihood and cross-entropy. By adding a regularization)‘Zi, j \wi’j|2 to the error
function (where X is the regularization term and w; ; are the weights), the back-propagation
interprets the error as being already too large and, as a consequence, the weights become
smaller to compensate such an effect.

In this section we demonstrate how the same neural network architecture learns
differently when different amounts of regularization are considered. It is well-known
that the increase in the number of training traces also provide a inherent regularization
to the network. However, this comes with increased training time which can be very
critical for side-channel analysis. In [11], as already discussed in this paper, the authors
considered random shifts over the training set during training phase as a regularization
technique for convolutional neural networks. Their results prove that CNNs learn more
from input traces if data augmentation techniques are considered against misaligned traces.
In [21] the authors adopted the noise addition technique during training as a method to
avoid overfitting. Moreover, the mini-batch size also provide an inherent regularization to
the network, specially if larger mini-batch sizes are chosen. Here, we provide results for
different L2 regularization values while keeping the rest of the hyper-parameters unchanged.
Moreover, we show that a change in the number of training traces or the mini-batch size
would require another optimal value for A.

The main idea of this section is to emphasise the neural networks can learn more
accurately from points of interests if a proper L2 regularization value is considered. We
test the regularization on the masked AES traces from ASCAD database. The analyses
are conducted over the sample interval representing the processing of S, for k3 (i = 3 in
116)).

Section 6.3.1 presents successful results in terms of points of interest selection by the
neural network. However, before achiving this good result, it was tested several different
hyper-parameters and we verified that the L2 regularization was providing major effects in
the points of interest identification. Here, we provide results for three different values for
A while the rest of hyper-parameters remain unchanged. First, A is set to 0.01 and the
backward propagation method results are shown in Fig. 8 (left). As the figure shows, the
network learned from different places and it is not feasible to conclude that this trained
model is actually performing its activation by having the points of interest (processing of
mask r[3] and masked Sp,, output values) as main input features. A preliminary conclusion
is that the network is learning basically every sample in the input traces, which would
lead to overfitting and, as a consequence, provide poor generalization.

16 Neural Network Model Assessment for Side-Channel Analysis

o ca
=1 =1
=] =]

Frequency
.
&
2

Frequency

5}
5]

Label 0 Label 1
Label 5 Label 6 Label 7 Label 8

Label 2 Label 3 Label 4

Label 2 Label 3 Label 4

Label 0 Label 1
Label 5 Label 6 Label 7 Label 8

Figure 8: Layer-wise activation path method result for A = 0.01 (left) and A = 0.1 (right).

A totally different result is achieved when A is to set 0.05 and it is shown in Fig. 7
(left). Tt is impressive how a small change in A makes the network to select almost exactly
the points of interest as main features for its activations. Now, we raised A to 0.1 and
the backward propagation method results are shown in Fig. 8 (right). In this case, the
network is inconsistently identifying main input features for its activations.

As expected, for A = 0.05, the key ranking for £3 indicated a successful attack, even if
the test accuracy and recall were close to a random guessing (0.285 and 0.12, respectively).
When A = 0.01 or A = 0.1, the key recovery was not successful.

7.2 Number of training traces and L2

ASCAD database for the masked AES implementation contains 60,000 traces. As the
authors of the database suggest [16], 50,000 traces are sufficient to train a neural network
that is able to recover the key from this protected implementation when processing up to
10,000 traces in the test or validation phase. Similar results are proposed in [11], [14], [12],
[15] and [21]. In this section, we demonstrate that the attack can be successful with less
traces for both training and test phases. Additionally, we would like to emphasize that
even with less traces for the training phase, it is possible to make the network to recognize
leakages from the intervals containing actual points of interests, as demonstrated in Section
6.3.1. To achieve such results, we keep the network hyper-parameters unchanged, except
for the L2 regularization term. Results clearly indicate the importance of the correct
selection of this hyper-parameter in the learnability of the neural network parameters. Fig.
9 illustrates results after training with 20,000 and 40,000 training traces and with A set to
0.09 and 0.075, respectively. This figure shows results for the application of the layer-wise
activation path (top) and gradient visualization (bottom). The latter is evaluated for every
epoch during training. The key recovery was successful for both cases.

7.3 Mini-batch size, learning rate and L2

When the learning rate or the mini-batch size is modified, there will be a different optimal
range of values for A in order to make the network to generalize (successful key recovery) and
to learn from points of interests. Usually, to achieve similar and high validation accuracy,
a modification in the mini-batch size or in the learning rate would require different number
of epochs. This is one of the most costly parts of training neural networks, because the
modification of one hyper-parameter affects the others. Assuming that we want our trained
neural network to be successful against the ASCAD masked AES implementation in terms
of key recovery as well as in terms of correct points of interest detection (a network that
learns second-order leakages), we define a limit of 100 epochs and a learning rate of 0.01.
By doing so, we need to identify the correct balance between mini-batch size and A. Fig. 10

Guilherme Perin, Baris Ege and Lukasz Chmielewski 17

1000
200

600

IO TR AN Y Y RS

]

Frequency
Frequency

600] 200 400 800

Label 0 Label 1 Label 3 Label 4
Label 5 Label 6 Label 7 Label 2

Label O Label 1 Label 3 Label 4
Label 5 Label 6 Label 7 Label 8

Label 2 Label 2

Input Gradients Input Gradients

poch
Epoch

Samples samples

Figure 9: Results from backward propagation and gradient visualization methods for
20,000 training traces and A = 0.09 (left) and 40,000 training traces and A = 0.075 (right).

shows model assessment results using layer-wise activation path and gradient visualization
when the mini-batch size is set to 64 and A = 0.01 and also when the mini-batch size is
set to 256 and A = 0.075. As we can see, similar results in terms of points of interest
identification were obtained by balancing the relationship between mini-batch size and
A. For both scenarios, the training phase considered 18,000 traces and key recovery was
successful with less than 1000 validation traces.

A preliminary conclusion from these experiments indicates that the automated points
of interest detection by the neural network is strongly related to regularization. Here, we
mainly tested the effect of the L2 regularization against different mini-batch sizes and
different number of traces. It is possible to achieve neural network configurations with very
similar leakage detection capabilities for different combinations of hyper-parameters. As we
mentioned before, the results presented in [14], [12] and in this paper provide similar results
for leakage detection from neural network with very different configurations. Therefore,
we can assume that for the evaluated traces, it is possible to make the network to identify
points of interests from side-channel traces by optimizing global network hyper-parameters
(mini-batch size, learning rate, regularization L2, optimizer) rather than looking for the
optimal layer hyper-parameters (number of layers, number of neurons, kernel size, stride
and activation functions).

8 Conclusion

In this paper, we extend the assessment of neural network models for side-channel analysis
with a proposed technique called layer-wise activation path. After adopting neural networks
as a tool to identify and classify leakages for profiled side-channel attacks, we concluded
that model assessment, that verifies which input features the network is assuming as the
most important ones for its decisions, is a very informative metric for the improvement
and validation of neural networks models. The proposed method indicates, according to

18 Neural Network Model Assessment for Side-Channel Analysis

3000

2000
1000

Frequency
Frequency

1000 500

] 200 400 600 0 200 400 600

Label 0 Label 1 Label 3 Label 4
Label 5 Label 6 Label 7 Label 8

Label 2

Label 2

Label 0 Label 1 Label 3 Label 4
Label 5 Label 6 Label 7 Label 8

Input Gradients Input Gradients

Epoch
poch

T
0 200 400 600

I 0 0
i} 200 400 600

samples Samples

Figure 10: Results from backward propagation and gradient visualization methods for
mini-batch size of 64 with A = 0.01 (left) and for mini-batch size of 256 with A = 0.075
(right).

the selected number of backward paths, the input trace samples that contribute more
for activation in the output layer. We provided results for unprotected and protected
AES implementations. For reference results, we evaluated the protected AES traces from
the ASCAD database and it was demonstrated how the network automatically selects
points of interest if the hyper-parameters are correctly chosen. During th execution of this
research, we tested several layer-wise hyper-parameters (for convolutional and dense layers)
as well as global hyper-parameters related to the back propagation algorithm. We verified
that the L2 regularization (and its relation to number of training traces, learning rate
and mini-batch size) plays an important role in the prevention of overfitting, allowing the
network to learn from leaking samples with more precision if this value is correctly chosen
for a given amount of training traces. Additionally, we suggest that hyper-parameter search
is an important mechanism to train successful models as soon as we identify what are
the most affecting hyper-parameters for the leakage detection. Here, we verified that L2
regularization can be tuned to an optimal value while keeping the rest of hyper-parameters
unchanged. The obtained results confirmed that neural networks are able to combine two
or more input samples in order to implement models that can learn second-order leakages
from masked AES implementations.

9 Acknowledgements

This work was supported by the European Union’s H2020 Programme under grant agree-
ment number ICT-731591 (REASSURE).

Guilherme Perin, Baris Ege and Lukasz Chmielewski 19

References

[1]

S. Chari, J. R. Rao, P. Rohatgi, Template attacks, in: B. S. K. Jr., C. K. Kog,
C. Paar (Eds.), Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, Vol. 2523 of Lecture Notes in Computer Science, Springer, 2002, pp. 13-28.
doi:10.1007/3-540-36400-5_3.

URL https://doi.org/10.1007/3-540-36400-5_3

W. Schindler, K. Lemke, C. Paar, A stochastic model for differential side channel
cryptanalysis, in: J. R. Rao, B. Sunar (Eds.), Cryptographic Hardware and Embedded
Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 -
September 1, 2005, Proceedings, Vol. 3659 of Lecture Notes in Computer Science,
Springer, 2005, pp. 30-46. doi:10.1007/11545262_3.

URL https://doi.org/10.1007/11545262_3

L. Lerman, S. F. Medeiros, G. Bontempi, O. Markowitch, A machine learning approach
against a masked AES, in: Smart Card Research and Advanced Applications - 12th
International Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013.
Revised Selected Papers, 2013, pp. 61-75. doi:10.1007/978-3-319-08302-5_5.
URL https://doi.org/10.1007/978-3-319-08302-5_5

Z. Martinasek, J. Hajny, L. Malina, Optimization of power analysis using neural
network, in: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected
Papers, 2013, pp. 94-107. doi:10.1007/978-3-319-08302-5\ 7.

URL https://doi.org/10.1007/978-3-319-08302-5_7

P. C. Kocher, J. Jaffe, B. Jun, Differential power analysis, in: M. J. Wiener (Ed.),
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, Vol.
1666 of Lecture Notes in Computer Science, Springer, 1999, pp. 388-397. doi:
10.1007/3-540-48405-1_25

URL https://doi.org/10.1007/3-540-48405-1_25

E. Brier, C. Clavier, F. Olivier, Correlation power analysis with a leakage model, in:
M. Joye, J. Quisquater (Eds.), Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004.
Proceedings, Vol. 3156 of Lecture Notes in Computer Science, Springer, 2004, pp.
16—29. doi:10.1007/978-3-540-28632-5_2.

URL https://doi.org/10.1007/978-3-540-28632-5_2

B. Gierlichs, L. Batina, P. Tuyls, B. Preneel, Mutual information analysis, in: E. Os-
wald, P. Rohatgi (Eds.), Cryptographic Hardware and Embedded Systems - CHES
2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008.
Proceedings, Vol. 5154 of Lecture Notes in Computer Science, Springer, 2008, pp.
426-442. doi:10.1007/978-3-540-85053-3_27.

URL https://doi.org/10.1007/978-3-540-85053-3_27

L. Batina, B. Gierlichs, K. Lemke-Rust, Differential cluster analysis, in: C. Clavier,
K. Gaj (Eds.), Cryptographic Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings,
Vol. 5747 of Lecture Notes in Computer Science, Springer, 2009, pp. 112-127. doi:
10.1007/978-3-642-04138-9_9.

URL https://doi.org/10.1007/978-3-642-04138-9_9

https://doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-319-08302-5_5
https://doi.org/10.1007/978-3-319-08302-5_5
http://dx.doi.org/10.1007/978-3-319-08302-5_5
https://doi.org/10.1007/978-3-319-08302-5_5
https://doi.org/10.1007/978-3-319-08302-5_7
https://doi.org/10.1007/978-3-319-08302-5_7
http://dx.doi.org/10.1007/978-3-319-08302-5_7
https://doi.org/10.1007/978-3-319-08302-5_7
https://doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-85053-3_27
http://dx.doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-642-04138-9_9
http://dx.doi.org/10.1007/978-3-642-04138-9_9
http://dx.doi.org/10.1007/978-3-642-04138-9_9
https://doi.org/10.1007/978-3-642-04138-9_9

20

Neural Network Model Assessment for Side-Channel Analysis

[9]

[11]

[12]

[13]

[15]

[17]

Z. Martinasek, O. Zapletal, K. Vrba, K. Trasy, Power analysis attack based on the
MLP in DPA contest v4, in: 38th International Conference on Telecommunications
and Signal Processing, TSP 2015, Prague, Czech Republic, July 9-11, 2015, IEEE,
2015, pp. 154-158. doi:10.1109/TSP.2015.7296242.
URL https://doi.org/10.1109/TSP.2015.7296242

H. Maghrebi, T. Portigliatti, E. Prouff, Breaking cryptographic implementations using
deep learning techniques, in: C. Carlet, M. A. Hasan, V. Saraswat (Eds.), Security,
Privacy, and Applied Cryptography Engineering - 6th International Conference,
SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings, Vol. 10076
of Lecture Notes in Computer Science, Springer, 2016, pp. 3-26. doi:10.1007/
978-3-319-49445-6_1.

URL https://doi.org/10.1007/978-3-319-49445-6_1

E. Cagli, C. Dumas, E. Prouff, Convolutional neural networks with data augmentation
against jitter-based countermeasures - profiling attacks without pre-processing, in:
W. Fischer, N. Homma (Eds.), Cryptographic Hardware and Embedded Systems -
CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, Vol. 10529 of Lecture Notes in Computer Science, Springer, 2017, pp.
45—68. doi:10.1007/978-3-319-66787-4_3.

URL https://doi.org/10.1007/978-3-319-66787-4_3

B. Timon, Non-profiled deep learning-based side-channel attacks with sensitivity
analysis, TACR Trans. Cryptogr. Hardw. Embed. Syst. 2019 (2) (2019) 107-131.
doi:10.13154/tches.v2019.i2.107-131.

URL https://doi.org/10.13154/tches.v2019.i2.107-131

S. Picek, A. Heuser, A. Jovic, S. Bhasin, F. Regazzoni, The curse of class imbalance
and conflicting metrics with machine learning for side-channel evaluations, TACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019 (1) (2019) 209-237. doi:10.13154/
tches.v2019.11.209-237.

URL https://doi.org/10.13154/tches.v2019.i1.209-237

L. Masure, C. Dumas, E. Prouff, Gradient visualization for general characterization
in profiling attacks, in: I. Polian, M. Stottinger (Eds.), Constructive Side-Channel
Analysis and Secure Design - 10th International Workshop, COSADE 2019, Darmstadst,
Germany, April 3-5, 2019, Proceedings, Vol. 11421 of Lecture Notes in Computer
Science, Springer, 2019, pp. 145-167. doi:10.1007/978-3-030-16350-1_9.

URL https://doi.org/10.1007/978-3-030-16350-1_9

B. Hettwer, S. Gehrer, T. Giineysu, Deep neural network attribution methods for
leakage analysis and symmetric key recovery, TACR Cryptology ePrint Archive 2019
(2019) 143.

URL https://eprint.iacr.org/2019/143

E. Prouff, R. Strullu, R. Benadjila, E. Cagli, C. Dumas, Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database, IACR
Cryptology ePrint Archive 2018 (2018) 53.
URL http://eprint.iacr.org/2018/053

M. Carbone, V. Conin, M. Cornelie, F. Dassance, G. Dufresne, C. Dumas, E. Prouff,
A. Venelli, Deep learning to evaluate secure RSA implementations, TACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019 (2) (2019) 132-161. doi:10.13154/tches.
v2019.12.132-161.

URL https://doi.org/10.13154/tches.v2019.1i2.132-161

https://doi.org/10.1109/TSP.2015.7296242
https://doi.org/10.1109/TSP.2015.7296242
http://dx.doi.org/10.1109/TSP.2015.7296242
https://doi.org/10.1109/TSP.2015.7296242
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
http://dx.doi.org/10.1007/978-3-319-49445-6_1
http://dx.doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
http://dx.doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i2.107-131
http://dx.doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
http://dx.doi.org/10.13154/tches.v2019.i1.209-237
http://dx.doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9
http://dx.doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9
https://eprint.iacr.org/2019/143
https://eprint.iacr.org/2019/143
https://eprint.iacr.org/2019/143
http://eprint.iacr.org/2018/053
http://eprint.iacr.org/2018/053
http://eprint.iacr.org/2018/053
https://doi.org/10.13154/tches.v2019.i2.132-161
http://dx.doi.org/10.13154/tches.v2019.i2.132-161
http://dx.doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.13154/tches.v2019.i2.132-161

Guilherme Perin, Baris Ege and Lukasz Chmielewski 21

[18] R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via
information, CoRR abs/1703.00810. arXiv:1703.00810.
URL http://arxiv.org/abs/1703.00810

[19] F. Chollet, Deep Learning with Python, 1st Edition, Manning Publications Co.,
Greenwich, CT, USA, 2017.

[20] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, CoRR
abs/1311.2901. arXiv:1311.2901.
URL http://arxiv.org/abs/1311.2901

[21] J. Kim, S. Picek, A. Heuser, S. Bhasin, A. Hanjalic, Make some noise: Unleashing
the power of convolutional neural networks for profiled side-channel analysis, ITACR
Cryptology ePrint Archive 2018 (2018) 1023.

URL https://eprint.iacr.org/2018/1023

http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
https://eprint.iacr.org/2018/1023
https://eprint.iacr.org/2018/1023
https://eprint.iacr.org/2018/1023

	Introduction
	Background
	Terms and Notations
	Profiled Side-Channel Analysis

	Neural networks and side-channel attacks
	Model Assessment Techniques for Side-Channel Analysis
	Occlusion techniques
	Input Activation Gradients
	Layer-wise Relevance Propagation

	Layer-Wise Activation Path
	Method Description

	Experiments
	Neural network configuration
	Method Validation on Simulated AES Traces
	Method Validation on ASCAD Database

	Optimizing neural network hyper-parameters from model assessment
	Assessing the effect of L2 regularization
	Number of training traces and L2
	Mini-batch size, learning rate and L2

	Conclusion
	Acknowledgements

