
Improved Building Blocks for Secure
Multi-Party Computation based on Secret

Sharing with Honest Majority

Marina Blanton1, Ahreum Kang2, and Chen Yuan1

1 Department of Computer Science and Engineering, University at Buffalo (SUNY),
Buffalo, USA, {mblanton,chyuan}@buffalo.edu

2 SCH Media Labs, Soonchunhyang University, Asan-si, South Korea,
armk@arkang.net

Abstract. Secure multi-party computation permits evaluation of any
desired functionality on private data without disclosing the data to the
participants. It is gaining its popularity due to increasing collection of
user, customer, or patient data and the need to analyze data sets dis-
tributed across different organizations without disclosing them. Because
adoption of secure computation techniques depends on their performance
in practice, it is important to continue improving their performance. In
this work, we focus on common non-trivial operations used by many
types of programs, where any advances in their performance would im-
pact the runtime of programs that rely on them. In particular, we treat
the operation of reading or writing an element of an array at a private
location and integer multiplication. The focus of this work is on secret
sharing setting with honest majority in the semi-honest security model.
We demonstrate improvement of the proposed techniques over prior con-
structions via analytical and empirical evaluation.

Keywords: Secure multi-party computation, secret sharing, array access at pri-
vate location, multiplication

1 Introduction

Secure multi-party computation refers to the ability of a number of participants
to evaluate a function of their choice on private data without disclosing unin-
tended information about the private data to the computation participants. It
has been the subject of research for many years with its performance experienc-
ing significant progress during the last decade. Such techniques are now suitable
for data and computations of significant sizes. Furthermore, they can be increas-
ingly applied to perform analysis of large private data sets distributed among
a number of participants, as well as data analytics and decision making using
private distributed data (including medical, financial, and other domains).

Of particular interest to the research community in recent years has been
privacy-preserving machine learning, which uses non-trivial algorithms to ana-
lyze large volumes of data. Computation used in such analyses often requires

access to data at private locations, be it due to the nature of data representa-
tion, e.g., in the form of sparse data sets or due to the nature of the algorithm
itself. When such operations are executed as part of secure computation on pri-
vate data, we must employ data-oblivious (i.e., data-independent) constructions
for realizing the operations to eliminate leakage of private information. In the
case of accessing memory at a private location, we could either access each lo-
cation of the data set or array or employ more complex randomized techniques
such are Oblivious RAM (ORAM) for secure computation. The latter has lower
asymptotic complexities as a function of the memory size, but are more complex
to set up and invoke. As a result, the former approach known as linear scan
outperforms known ORAM constructions for memory of small to medium sizes.
While improved secure computation ORAM techniques in both two-party and
multi-party settings are an active area of research, in this work we focus on im-
proving performance of linear scan in the multi-party setting, which is also not
an entirely straightforward operation.

In addition, we revisit the multiplication operation with optimizations in the
computational (as opposed to information-theoretic) setting. While information-
theoretic security might be considered stronger than computational security,
all known secure multi-party computation frameworks rely on secure channels
for communications, which are instantiated with algorithms secure only in the
computational setting. This makes any invocation of a secure multiplication
protocol only computationally secure. Multiplication is a fundamental building
blocks of many secure computation frameworks based on arithmetic circuits and
is ubiquitously used for realizing more complex operations including linear scan.

Motivating example. Consider the problem of building an exact machine
learning model such as a Bayesian network from a distributed data set located
at different organizations (for instance, patient information located at different
hospitals). A data set includes a number of attributes or features (e.g., age, gen-
der, medical diagnosis, BMI, etc. in the case of medical data) with an instance
of the data set corresponding to a user, customer, or patient. Constructing a
model consists of determining correlation between different attributes based on
instances located at different locations. This can be accomplished using the so-
called variable assignment or parent assignment problem [22], which is the criti-
cal component of Bayesian network learning, Markov blankets identification and,
more generally, feature selection [22, 18]. Correlation between different variables
is commonly computed using the MDL score [27] which uses conditional entropy
computation as part of the score calculation. This computation is heavy on the
use of logarithms, with in this context must be evaluated on private inputs. In
particular, the computation takes the form of log(X), where X corresponds to
the number of instances with a combination of specific values for some features
(and thus is private), and the function is called extensively on different values
of X. However, evaluating the logarithm function within a secure multi-party
computation framework is expensive.

Our observation is that, instead of evaluating the logarithm function directly,
we could build an alternative solution of much higher speed. In particular, be-

2

cause X is integer and ranges between 0 and the (combined) data set size, we
can pre-compute the values of log(i) for each i in that range and store the result
in array A. Then executing log(X) would translate into retrieving the value of
stored at the private location X of array A. When the size of the array (which
is proportional to the number of data set instances) is not very large, a solu-
tion based on a linear scan would outperform other alternatives such as using
ORAM or evaluating the logarithm function itself. In this work we thus revisit
existing solutions to implementing read or write operations at private locations
in the multi-party setting based on secret sharing (SS) and show that significant
optimizations are possible.

Our contributions. In this work we develop new constructions for access to
an array at a private location (read or write) that significantly outperform con-
ventional implementations of this operations in the setting with honest majority
based on secret sharing. We present a general construction which works for
any number of computation participants n that uses conventional Shamir secret
sharing. We also present a custom construction for the common case of three
parties, which outperforms the general construction. Because it uses 2-out-of-2
additive secret sharing, we show how to convert between that representation and
conventional three-party Shamir SS.

We also develop optimizations for the multiplication operation based on
Shamir SS in the computational setting. We provide two constructions: the first
has communication complexity linear in the number of parties n (i.e., constant
per party) and practical performance. The second construction has communica-
tion complexity quadratic in the number of parties, but offers lower communica-
tion complexity for the important case of n = 3 parties with a single field element
transmitted by each party. This matches communication of the best known cus-
tom three-party multiplication protocols (designed for custom replicated secret
sharing) from [3]. Our optimizations are tailored to the setting where the number
of computational parties is small.

We implement our constructions on operations of varying sizes in the setting
of the PICCO compiler [36] and show that they significantly outperform the
previous implementations adopted by PICCO.

2 Related Work

Conventional implementations of performing an array access at a private location
via a linear scan can be comparison-based or multiplexer-based as we further
discuss in section 4. Optimizations to the simple solutions are available in both
two-party setting based on garbled circuits (which does not directly apply to
the content of this work) and in the multi-party setting. The closest to our work
is the construction due to Laud [23] for array read, which is applicable to both
Shamir SS and Sharemind framework. The goal of that work was to minimize the
online work (which depends on the private inputs), while our goal is to minimize
the overall work. As a result, the proposed solution from [23] has large round
complexity. It also offers optimizations, the most effective of which is applicable

3

only to the Sharemind framework. We draw a more detailed comparison to the
construction from [23] and our solutions in section 4.

Laud [24] proposed efficient protocols for reading and writing elements of an
array at private locations in parallel. The solution is based on sorting and for `
parallel read requests to an array of size m has complexity O((m+`) log(m+`)).
Because the solution is non-trivial and was implemented in the Sharemind frame-
work, we are unable to empirically compare its runtime to our constructions de-
signed for Shamir secret sharing. We, however, note that based on the best known
oblivious sorting algorithms, this construction will require O((m+ `) log(m+ `))
comparisons each of cost O(k) for k-bit integers. Based on our detailed analysis
of its possible implementation in our setting, we expect that it might outperform
our proposed constructions only when both m and ` are large. That is, when the
number of parallel invocations ` is small or when the array size m is not large
(even with a very large number of parallel invocations), we expect our construc-
tions to outperform the solution from [24]. We provide additional comments in
section 6.

Oblivious RAM [13, 25, 14] can also be used to realize array read or write
at a private location, where a client outsources its private memory to a re-
mote server without revealing any information including access patterns to the
server. There are many results (see, e.g., [29, 31, 29, 32, 26, 11]) including publi-
cations in the multi-server setting (e.g., [30, 15]), but they are still not applicable
to secure multi-party computation because the client’s work is not distributed
and the client has access to the data in the clear. In the context of ORAM
for secure computation, SCORAM [34] was among the early constructions in
the two-party setting, after which a number of improvements such as [33, 35,
9] followed. There are also multi-party or three-party constructions in different
setting including [19, 20, 10, 17, 5]. These constructions become competitive with
approaches based on a linear scan only for rather large array or dataset sizes.
We compare performance of our constructions to the state-of-the-art ORAM in
section 6.

Integer multiplication is a fundamental operation of any secure computation
framework based on arithmetic circuits. Its original efficient implementation in
Shamir SS is due to Gennaro et al. [12], while most recent version of multiplica-
tion for Sharemind can be found in [21]. The best known multiplication we are
aware of is in a custom three-party replicated SS from [3], which we match with
an n-party construction based on Shamir SS in this work. Additional information
is provided in section 5.

3 Preliminaries

3.1 Secure Multi-Party Computation

We consider the conventional secure multi-party setting with n computational
parties, out of which at most t can be corrupt. We work in the setting with honest
majority, i.e., t < n/2 and focus on security against semi-honest participants,

4

in which the participants are trusted to follow the prescribed computation, but
might attempt to learn unauthorized information based on the information they
possess. We use the standard simulation-based security definition that requires
that the participants do not learn any information beyond their intended output.
For completeness, it is provided in Appendix A, where we also provide security
proofs of our protocols.

As customary with techniques based on SS, the set of computational parties
does not have to coincide with (and can be formed independently from) the set
of parties supplying inputs in the computation (input providers) and the set
of parties receiving output (output recipients). Then if a computational party
learns no output, the computation should not reveal any information to that
party. Consequently, if we wish to design a functionality that takes input in the
secret-shared form and produces shares of the output, any computational party
should learn nothing from protocol execution.

3.2 Secret Sharing

A secret sharing scheme allows one to produce shares of secret x such that access
to a predefined number of shares reveals no information about x. In the case of
(n, t) threshold secret sharing schemes, there are n participants, each of whom
receive their own shares. The security requirement is that possession of shares
stored at any t or fewer parties reveals no information about x, while access to
shares stored at t + 1 or more parties allows for efficient reconstruction of x.
We refer to this type of secret sharing as t-sharing. Of particular importance
to secure multi-party computation is linear secret sharing schemes, which have
the property that a linear combination of secret shared values can be performed
locally on the shares.

Shamir secret sharing. Shamir secret sharing [28] (SSS) is an (n, t)-linear
SS scheme with t < n/2, where computation takes places over a finite field F.
A secret value s ∈ F is represented by a random polynomial of degree t with
the free coefficient set to s. Each share of s corresponds to the evaluation of the
polynomial on a unique non-zero point. Consequently, given t+1 or more shares,
the parties can reconstruct the polynomial and learn s using Lagrange interpola-
tion. Possession of t or fewer shares, on the other hand, information-theoretically
reveals no information about s. With this representation, computation of any
linear combination of secret-shared values is performed locally by each party
using its shares, while multiplication requires interaction.

In what follows, we use notation [x] to denote that the value of x is secret
shared among the participants using (Shamir) t-sharing. We also let [x]p denote
the share of x stored at party p ∈ [1, n]. Because each secret-shared value is a field
element, the size of the field F needs to be large enough to be able to represent
values in the desired range. For example, to be able to support computation on
k-bit integers, we must have that |F| ≥ 2k. Furthermore, because we rely on
certain building blocks from [6], some of them may place additional constraints
on the field size (to increase the size by a certain amount) as specified in [6].

5

As customary in the literature, we measure performance in the number of
elementary interactive operations (such as multiplication, opening the shares of
private value, etc.) and the number of sequential operations, i.e., rounds. Local
operations are not included in the cost due to their speed.

Replicated secret sharing. Replicated secret sharing (RSS) [16] is another
type of linear secret sharing that can be used to realize (n, t)-threshold secret
sharing (and can be defined for more general access structures Γ , but we limit
our use to threshold structures only). RSS can be defined for any n ≥ 2 and any
t < n and works over any finite ring. The RSS access structure uses the notion
of qualified sets, which are all subsets of the participants who are permitted to
reconstruct the secret (i.e., all subsets of t+1 or more parties in our case), while
all other subsets are called unqualified. To secret-share private x ∈ F using RSS,
we additively split it into shares xT such that x =

∑
T∈T xT (in F), where T

consists of all maximal unqualified sets (i.e., all sets of t parties in our case).
Then each party p ∈ [1, n] stores shares xT for all T ∈ T subject to p 6∈ T . In the
general case of (n, t)-threshold RSS, the total number of shares is

(
n
t

)
with

(
n−1
t

)
shares stored by each party, which can become large as n and t grow. However,
for small n, the number of shares is small (e.g., with both (3, 1) and (3, 2) RSS,
there are the total of 3 shares).

An important optimization on which we rely is non-interactive evaluation of
a pseudo-random function (PRF) using RSS in the computational (as opposed
to information-theoretic) setting as proposed in [7]. In particular, [7] provide
a mechanism for non-interactive generation of Shamir secret shares from RSSs
as follows: suppose that shares of secret key k have been distributed to the
parties according to a (n, t)-threshold RSS and let PRF : {0, 1}κ × {0, 1}∗ → F
denote a pseudo-random function that takes a sufficiently large κ-bit key (κ is
a security parameter). On input a, the parties collectively compute shares of
x = PRFk(a) =

∑
T∈T PRFkT (a) (in F), where each party p ∈ [1, n] computes its

(Shamir) share of x as [x]p =
∑
T∈T ,p6∈T PRFkT (a) ·fT (p). Here, for each T ∈ T ,

fT refers to the unique polynomial of degree t such that fT (0) = 1 and fT (p) = 0
for each p ∈ T . We note that each (replicated) share kT needs to be sufficiently
long, while the computed (Shamir) shares [x]p can be within a smaller field. We
denote this operation by PRSS (pseudo-random secret sharing).

4 Array Access at a Private Location

We next proceed with describing our constructions, which are in the honest
majority setting based on Shamir secret sharing. In this section we treat opti-
mizations to array access at a private location, while the next section discusses
integer multiplication.

Assume that we are given an array ofm (private or public) elements a0, . . ., am−1
and would like to retrieve the element aj at a private index j. Conventional im-
plementations of this functionality via linear scan include (i) privately comparing
j to every integer in the range [0,m− 1] to compute m bits and computing the
dot product of the resulting bits and the array elements and (ii) bit-decomposing

6

the index and using a multiplexer to retrieve the desired element. The latter ap-
proach was implemented in the PICCO compiler [36] using conventional Shamir
secret sharing arithmetic, while the former was later shown to be slightly faster
for this setting [4]. Array write is implemented similarly, where instead of com-
puting the dot product (i.e., a sum of products), we update each element of the
array based on the result of an individual product. A similar logic is used for
the multiplexer-based approach as well.

4.1 General Construction

Our starting point for improving the general solution was the first traditional
approach above where we privately compare j to each position of the array and
retrieve the element for which the result of the comparison was true. If we let
EQ denote the operation of privately comparing two integers for equality with
at least one of them being private, this operation can be represented as follows:

[b]← ArrayRead(〈[a0], . . ., [am−1]〉, [j])
1. for i = 0 to m− 1, compute in parallel [ci]← EQ([j], i);

2. [b]←
∑m−1
i=0 [ci] · [ai];

3. return [b];

This computation is written to take an array of private elements as its input, but
when the elements are public, the computation proceeds similarly. To turn this
operation into the write operation where we write value w at private location j,
one would use:

[b]← ArrayWrite(〈[a0], . . ., [am−1]〉, [j], [w])

1. for i = 0 to m− 1, compute in parallel [ci]← EQ([j], i);
2. for i = 0 to m− 1, compute in parallel [bi]← [ci]([w]− [ai]) + [ai];
3. return [b0], . . . , [bm−1];

The second line here implements branching based on the value of ci to use either
w or ai, as in [bi]← [ci]·[w]+(1−[ci])[ai], and is rewritten to lower the number of
multiplications. The cost of both ArrayRead and ArrayWrite is heavily dominated
by the cost of comparison EQ.

To optimize performance of this operation, our first observation stems from
the fact that j is compared to all index values between 0 and m − 1 and, as
a result, part of the computation might be redundant. To determine whether
this might be the case, let us look at the details of the secure equality operation
EQ. The most efficient constant-round equality protocol in our setting is due to
Catrina and de Hoogh [6], which we specify below. It proceeds by comparing
a single private integer a to 0 and is denoted by EQZ. To compare a to b, one
would enter their difference a − b as the input to the protocol. The algorithm
also takes a second argument, which is the bitlength k of the first operand a.

[b]← EQZ([a], k)

1. ([r′], [r], [rk−1], . . ., [r0])← PRandM(k, k);
2. c← Open([a] + 2k[r′] + [r]);
3. (ck−1, . . ., c0)← Bits(c, k);

7

4. for i = 0 to k − 1 do [di]← ci + [ri]− 2ci[ri];
5. [b]← 1− KOr([dk−1], . . ., [d0]);
6. return [b];

Here, the operation PRandM(k, α) assumes that we work with k-bit integers and
generates a (k+ ρ)-bit random integer for a statistical security parameter ρ, the
α least significant bits of which are available in the bit-decomposed form. The
returned result is the shares of α random bits r0, . . . , rα−1, α-bit r =

∑α−1
i=0 2iri,

and (k+ ρ−α)-bit integer r′. The Open function reveals the value of its private
argument. Bits(c, α) simply returns the α least significant bits of its public
argument c. Lastly, KOr computes the k-ary OR of its k private input bits..

This operation hides the value of a by adding large random 2k · r′ + r to it
and opening the sum.3 Because the bits of r are available (as r0 through rk−1),
the remaining computation can efficiently compute the bits of a (in step 4) and
consequently test whether at least one of them is 1 (in step 5) using k-ary OR
of k bits. The cost of this operation is dominated by PRandM which contributes
k (parallel) interactive operations, while KOr costs 4 log(k) and Open costs 1
interactive operation, respectively. The overall number of rounds is 4.

When we compare private j to all possible indices i in the set, we invoke EQZ
on inputs j−i, the adjacent values of which differ by 1. This introduces significant
inefficiencies because expensive generation of random bits is invoked for each i
to protect related values with a known difference. This means that, instead of
generating independent random bits for each j− i via a new call to PRandM, we
could execute this function once, protect j using the random values as in step 2
above, and open this protected value as c. Given the protected value c of j, we
can then form protected values of j− i by computing c− 0, c− 1, . . ., c− (m− 1)
if we assume that i ranges from 0 to m− 1. In other words, the computation for
array read with a private index becomes:

[b]← ArrayRead(〈[a0], . . ., [am−1]〉, [j])
1. ([r′], [r], [rlogm−1], . . ., [r0])← PRandM(logm, logm);
2. c← Open([j] + 2logm[r′] + [r]);
3. for i = 0 to m− 1, compute in parallel

(a) v ← c− i;
(b) (vlogm−1, . . ., v0)← Bits(v, logm);
(c) for ` = 0 to logm− 1, compute in parallel [d`]← v` + [r`]− 2v`[r`];
(d) [bi]← 1− KOr([dlogm−1], . . ., [d0]);

4. [b]←
∑m−1
i=0 [bi] · [ai];

5. return [b];

This optimization reduces the cost of array read fromm(logm+4 log logm+1)+1
interactive operations in 5 rounds to 4m log logm+logm+2 in 5 rounds. Alterna-

3 Note that the original EQZ in [6] was designed for signed k-bit integers. Because
of that, it also specified to add 2k−1 to the value being opened, to move the input
into the positive range. In our application, we use only positive values and let the
entire k-bit space be occupied by them. For that reason, one should omit adding
that constant.

8

tively, we could use a simple tree-like implementation of KOr with logm−1 inter-
active operations in log logm rounds, which makes the complexity of ArrayRead
be m(logm− 1) + logm+ 1 in log logm+ 2 rounds.

This, however, still appears redundant because the bits of v, and consequently
bits d provided as input into the k-ary OR in step 3(d), are often reused from one
loop iteration i to another. For example, we know that c and c− 1 are going to
differ in their least significant bits, but a number of most significant bits might
be the same. Also, because the bitlength of j is logm, we know that most of (or
all) possible combinations of logm bits will be used in KOr across all i. In other
words, for any given v, its ith bit will be either the ith bit of c or its complement,
and most of all possible 2logm combinations of bits will be used across all is to
form vs. To combat this inefficiency, we design a new efficient mechanism for
computing OR of all possible combinations of bits and then incorporate it in the
private lookup protocol.

Our algorithm for computing ORs of bits uses a divide-and-conquer approach,
where we split the original size into two halves, recurse on each half, and then
assemble the result. It is denoted as AllOr and given below. On input k bits
di, it computes 2k k-ary ORs of the form

∨k−1
i=0 ci, where ci is either di or its

complement ¬di.
〈[b0], . . ., [b2k−1]〉 ← AllOr([dk−1], . . ., [d0])

1. if (k = 1) return 〈[d0], 1− [d0]〉;
2. else
3. `← bk/2c;
4. [u0], . . ., [u2`−1]← AllOr([d`−1], . . ., [d0]);
5. [v0], . . ., [v2k−m−1]← AllOr([dk−1], . . ., [d`]);
6. for i = 0 to 2k−` − 1 and j = 0 to 2` − 1, compute in parallel [b2`i+j] ←

[vi] + [uj]− [vi] · [uj];
7. return 〈[b0], . . ., [b2k − 1]〉;

To integrate this solution into our array read protocol, we apply AllOr to the
bits ris computed in step 1 of the last variant of ArrayRead and, as before,
reveal the value of j protected by r; let the logm least significant bits of the
protected value be denoted by c′. The intuition is now that the computed k-
ary ORs correspond to all possible k-ary ORs over all k-bit integers “shuffled”
based on the value of r and the only OR that evaluates to 0 will be at position
r. This means that if we would like to know whether, e.g., j = 0, we need to
test whether c′ = r or, equivalently, whether the c′th position in the array of
k-ary ORs corresponds to 0. Similarly, for testing whether j = i, we test whether
c′ = r + i (or, equivalently, whether r = c′ − i) and retrieve the (c′ − i)th value
in the returned array. Lastly, because we need a single OR evaluate to 1 with
the remaining values being 0, we complement the result of the AllOr operation.
(Note that the original implementation of EQZ from [6] computes c⊕ r instead
of c − r prior to calling KOr using a more complex logic to show correctness of
the algorithm, but the same approach does not work in our case.) We obtain the
following solution:

[b]← ArrayRead(〈[a0], . . ., [am−1]〉, [j])

9

1. ([r′], [r], [rlogm−1], . . ., [r0])← PRandM(logm, logm);
2. 〈[b0], . . ., [b2log m−1]〉 ← AllOr([rlogm−1], . . ., [r0]);
3. for i = 0 to 2logm − 1, [bi] = 1− [bi];
4. c← Open([j] + 2logm[r′] + [r]);
5. c′ ← c mod 2logm;
6. [b]←

∑m−1
i=0 [bc′−i mod 2log m] · [ai];

7. return [b];

To realize the write operation with private index j, we replace line 6 of ArrayRead
above with the computation [di] ← [bc′−i mod 2log m]([w] − [ai]) + [ai] for i =
0, . . . ,m − 1, where, as before, [w] corresponds to the value being written, and
return the updated array [d0], . . . , [dm−1].

The cost of ArrayRead is dominated by that of the AllOr protocol. The re-
currence in AllOr can be specified as T (k) = 2T (k/2) + 2k. Thus, the function
has complexity Θ(2k) or, equivalently, Θ(m) where k = logm. Furthermore, the
constant behind the asymptotic notation is low and the number of interactive
operations per array element reduces as the array size increases. For example,
with m = 24, AllOr executes 1.5 multiplications per array element (i.e., 24), with
m = 28, it is < 1.19 multiplications per array element, and with m = 216, it is
< 1.01 per array element. The remaining steps in ArrayRead contribute logm+2
interactive operations. The round complexity of AllOr with logm-bit argument
is log logm, which means that the overall number of rounds of ArrayRead is
log logm + 3. Furthermore, the first three steps can be precomputed, which
makes the online number of rounds to be 2 and the online number of interactive
operations is also 2. Implementing array write at a private location increases the
total (and online) number of interactive operations by m − 1 without affecting
round complexity.

An alternative solution for this operation developed by Laud in [23] uses m+3
interactive operations in m+ 3 rounds4 in the Shamir SS setting, where most of
the work can be carried offline with the online work being 3 interactive operations
in 3 rounds. The linear round complexity is however prohibitive, especially in the
WAN setting. The round complexity of the array read from [23] can be reduced
to a constant at the cost of increasing the number of multiplications by several
times, at which point our construction is attractive and uses only a fraction of
that cost. Thus, we offer practical performance improvement over known results.

To demonstrate security, we note that all instructions are input-independent
and follow a similar structure to that of EQZ from [6]. All steps operate on shares
except step 4, in which the value of c is revealed. The value of c corresponds to
private j protected by a random value at least ρ bits longer than j. This means
that the probability that any information is revealed about j is negligible in the
security parameter ρ and is therefore acceptable. This implies that we are able to
simulate the adversarial view without access to the inputs, as is formally shown
in the appendix.

4 This information is not explicitly provided in [23], but rather is deduced by us.

10

4.2 Custom Three-Party Construction

We also provide a second construction which is designed to work only with n = 3
parties using custom computation, but offers superior performance compared to
the general construction. Our second construction uses 2-out-of-2 additive secret
sharing, which means that if we would like to use it together with a standard
SS framework such as Shamir SS, we need to provide procedures for converting
between the two representations. This is what we do at the end of this section
as well.

In what follows, we use notation JxK to denote that the value of x ∈ F is
secret shared using 2-out-of-2 additive secret sharing. We note that this solution
works over any finite ring, which has performance benefits such as using native
hardware implementations of arithmetic in Z2k for some k. For the purposes of
this work, we let computation to be over a finite field to be compatible with
other constructions we propose.

Because in this representation the shares are held by two parties out of three,
for concreteness of the presentation, we let the notation include the parties hold-
ing the shares. Thus, we use JxKp1p2 to indicate that the value is split between
parties p1, p2 ∈ [1, 3] with p1 6= p2. For example, we might use JxK12. Then no-
tation JxKp1 and JxKp2 denotes the individual shares when x is secret shared as
JxKp1p2 .

In our construction, the data set is originally additively shared between par-
ties 1 and 2 (i.e., we have Ja0K12, . . . , Jam−1K12). The private index j can be
secret-shared using any linear SS scheme and for simplicity we assume it is
shared using Shamir SS as [j]. The intuition behind our solution is that the data
set is rotated by a private number of positions and the value of j gets adjusted
by that value. Then the parties who do not have information about the entire
amount of rotation learn the modified value of j and read the element at that
position. To implement this idea, we need to be careful to ensure that reading
the element is performed on the shares to prevent any single party from having
access to the read element. And at the same time we must enforce that the par-
ties with cleartext access to the modified j do not know by which value j was
modified from its original value.

To realize this intuition, we instruct parties 1 and 2 to rotate their shares
of the data set by random amount r1 ∈ Zm known only to the two of them.
Next, party 1 re-shares its shares of the data set between parties 2 and 3, which
makes the rotated data set to be shared between these two parties. Now parties
2 and 3 again rotate the shared data set by random amount r2 known only to
the two of them, after which party 2 re-shares its data set shares among parties
1 and 3. At this point, the data set has been rotated by r1 + r2 and is shared
between parties 1 and 3, neither of whom knows the value of r1 + r2. Thus, we
open h = (j + r1 + r2) mod m to parties 1 and 3 who consequently retrieve the
element at position h in their data sets and return their share as the output.

In our solution, we propose that the parties generate r1 and r2 non-interactively
using a shared seed to a pseudo-random generator. That is, parties 1 and 2 share
key k12, while parties 2 and 3 share key k23. Because generation of r1 and r2 is

11

a one-time cost independent of the data set size, any other suitable mechanism
for agreeing on these values will work as well (e.g., if one wants to maintain
information-theoretic security of the protocol). The computation then proceeds
as follows:

JbK← ArrayRead(〈Ja0K12, . . ., Jam−1K12〉, [j])
1. Parties 1 and 2 agree on random r1 ∈ Zm and locally rotate their shares

as 〈Jar1Kp, . . ., Jam−1Kp, Ja0Kp, . . ., Jar1−1Kp〉 ← 〈Ja0Kp, . . ., Jam−1Kp〉, where
p ∈ [1, 2], and also let [h]← [j] + r1.

2. Party 1 randomly generates si ∈ F for i ∈ [0,m−1] and sends 〈s0, . . ., sm−1〉
to party 2, who consequently sets Ja′iK2 = JaiK2 + si for i ∈ [0,m− 1].

3. Party 1 sets Ja′iK3 = JaiK1−si for i ∈ [0,m−1] and sends 〈Ja′0K3, . . ., Ja′m−1K3〉
to party 3.

4. Parties 2 and 3 agree on random r2 ∈ Zm and locally rotate their shares
as 〈Ja′r2Kp, . . ., Ja′m−1Kp, Ja′0Kp, . . ., Ja′r2−1Kp〉 ← 〈Ja

′
0Kp, . . ., Ja′m−1Kp〉 and let

[h]← [h] + r2.
5. Party 2 randomly generates s′i ∈ F for i ∈ [0,m−1] and sends 〈s′0, . . ., s′m−1〉

to party 3, who consequently sets Ja′′i K3 = Ja′iK3 + s′i for i ∈ [0,m− 1].
6. Party 2 sets Ja′′i K1 = Ja′iK2−s′i for i ∈ [0,m−1] and sends 〈Ja′′0K1, . . ., Ja′′m−1K1〉

to party 1.
7. The value of h mod m is opened to parties 1 and 3 who set JbKp = Ja′′hKp for
p ∈ [1, 3].

8. Return JbK13.

This computation is dominated by communicating 4m elements in two rounds,
i.e., similar to that of executing m multiplications in parallel. There might also
be communication for computing h or h mod m depending on the underlying SS
scheme. In particular, if h is secret-shared using additive SS in Zm, no additional
communication is needed. That is, with additive SS, we would need to modify
only one of the shares to perform addition of r1 or r2, and the opened value
will be in Zm, as desired, because the arithmetic is in Zm. With a different type
of SS such as Shamir SS, the parties need to update h and re-share its value
across all parties with fresh randomness. Similarly, when computation is not
in Zm, computing h mod m is needed prior to opening the value. For example,
with SSS, one might invoke efficient Mod protocol from [6] (integer division with
public divisor). This is a one-time operation of cost at most O(logm) and does
not have a significant impact on the performance of the overall protocol.

If the parties would like to execute the write operation and store value JwK
at private index j, we modify the protocol above to have parties 1 and 3 update
the element at position h with shares of w in step 7. This is sufficient for this
operation. However, if the values are to be opened instead of being used in
consecutive computation, they would need to be re-randomized.

To show security in the three-party setting with a single corrupt party, we
argue that the data set remains information-theoretically protected from any
participant. In particular, it is always secret-shared among two parties. Further-
more, the value of j is also information-theoretically protected from the parties
if r1 and r2 are chosen randomly (and otherwise is computationally protected).

12

Thus, it can be shown that the simulated view with no access to real data is
indistinguishable from a real run of the protocol. We provide a formal proof in
the appendix.

Lastly, to permit this construction to be used in conjunction with SSS tech-
niques, we next provide conversion procedures to and from 2-out-of-2 additive
secret sharing and SSS over the same field F. The cost of converting a field ele-
ment to or from additive SS is that of communicating two field elements. This
means that for a read operation, the cost of converting the inputs and outputs
of ArrayRead is communicating about 2m elements, while for a write operation
it is 4m. The cost of the conversion, however, can be amortized among multiple
operations if these operations are repeatedly called on the same data set without
other intermediate operations.

We start from the SSS to additive SS conversion, which proceeds as follows:

JaK12 ← S2A([a])
1. [r]← PRSS();
2. [d]← [a]− [r];
3. Open r to party 1 who sets JaK1 = r;
4. Open d to party 2 who sets JaK2 = d;
5. return JaK12;

If we assume that PRSS can be realized non-interactively as previously described,
reconstructing r in step 3 and d in step 4 involves communicating one field
element each. That is, party 2 or 3 sends its share of r to party 1 in step 3, from
which party 1 recovers r. Thus, the cost is communicating 2 field elements in 1
round.

The conversion from additive SS to SSS is as follows:

[a]← A2S(JaK12)
1. Party 1 creates Shamir secret shares of JaK1 and distributes them among the

parties;
2. Party 2 creates Shamir secret shares of JaK2 and distributes them among the

parties;
3. [a] = [JaK1] + [JaK2];
4. return [a];

Steps 1 and 2 can be accomplished by communicating a single field element
each in the computational setting similar to the approach taken in section 5.2
(otherwise, the cost is 2 field elements in the information-theoretic setting).
That is, party 1 shares a secret key with another party for generating that
party’s share as a pseudo-random value. The remaining shares are computed to
be consistent with the pseudo-random share and the value of JaK1, which requires
communication of a single share. Thus, the protocol’s cost is communicating 2
field elements in 1 round.

5 Multiplication

In this section, we design and present two new multiplication protocols suitable
for use with Shamir SS that lower communication cost of prior protocols. In

13

Protocol
n-party 3-party

comm. rounds comp. comm. rounds comp.

Mult1 (section 5.1) 1 + 2t−1
n

2 O(nt) 1 1
3

2 O(1)

Mult2 (section 5.2) n− t− 1 1 O(n) 1 1 O(1)
Table 1. Summary of proposed multiplication protocols.

particular, the conventional multiplication protocol for SSS from [12] results in
communicating the total of n(n− 1) field elements in the n-party setting, with
each party sending n− 1 field elements. This means that in the 3-party setting,
the total of 6 elements are transmitted. Sharemind’s multiplication protocol from
[21] also results in communicating 6 elements with 3 computational parties and
only works when n = 3; it is designed for additive SS. What we achieve is that our
first multiplication protocol communicates at most 2(n − 1) field elements and
thus has lower communication cost than the protocol from [12] for any n, and in
particular communicates 4 field elements with n = 3. Our second protocol, when
instantiated with any n, has communication cost quadratic in it (specifically,
it is nt), but for n = 3 communicates only 3 field elements. It also uses fewer
local operations for larger n than our first construction. Our optimizations are
tailored to the settings when the number of parties n is not large. Both of our
multiplication protocols are secure in the computational setting (as opposed
to the information-theoretic setting in the presence of secure channels in [12]).
We do not view this as a disadvantage because information-theoretically secure
protocols rely on secure channels for communication, which are also built on
computational assumptions.

A summary of our proposed multiplication protocols is given in Table 1.
Communication refers to the average number of field elements transmitted by
a party (i.e., all communication divided by the number of parties) and com-
putation refers to the average work performed by a party including local and
communication work. Performance is dominated by communication and round
complexity unless local work is excessive.

5.1 Linear-Communication Multiplication

Our starting point was the multiplication protocol from [8] (figure 4 in section
3.3). The high-level structure of the computation is as follows: On input shares of
a and b, each participant performs local multiplication of its shares (which raises
the degree of the resulting polynomial to 2t) and sends the result protected by
a random element for reconstruction to a dedicated party (called the king). The
king performs the reconstruction and announces the result to all other parties
who use the opened value to adjust their respective shares. The protocol can
be specified as given next and uses two different types of sharings of the same
field element. Namely, we have conventional t-sharing of x denoted by [x] and
2t-sharing of x denoted by 〈x〉, where shares are computed using a polynomial
of degree 2t and at least 2t + 1 different shares are required for reconstruction
of x.

14

[c]← Mult([a], [b])

1. ([r], 〈R〉)← DRand();
2. Each p ∈ [1, n] computes 〈D〉p = [a]p · [b]p+〈R〉p and sends 〈D〉p to the king;
3. The king reconstructs D ← Open2(〈D〉) and sends D to each party;
4. [c] = D − [r];
5. return [c];

Operation DRand (double random) refers to generation of a random value under
two different types of secret sharing: t-sharing and 2t-sharing. In other words, the
execution of ([r], 〈R〉) ← DRand() produces two different sharings of the same
value: [r] and 〈R〉 reconstruct to the same field element, but each sharing uses
its own randomness. Open2 is similar to Open that reconstructs a value from its
shares, but Open2 takes its input represented using 2t-sharing and thus requires
at least 2t+ 1 shares for reconstruction.

The conventional implementation of Open (or Open2) involves parties sending
their shares to others, after which each party reconstructs the value locally using
its own and received shares. This requires O(n2) communication for any t =
O(n). However, with the use of a dedicated king, the overall communication can
be lowered to O(n), where the value is reconstructed only by the king. To realize
Open2 in this way, we need 2t participants to communicate their share to the
king, who reconstructs the value and consequently communicates it to all other
n − 1 participants. With n = 2t + 1, we obtain 2n − 2 = 4t transmitted field
elements, which for the (3,1) setting corresponds to communicating the total of
4 elements. When n > 2t+ 1, still only 2t parties send their shares to the king,
and the total number of communicated elements is 2t+ n− 1.

Our main optimization consists of computing double randoms as in DRand
non-interactively. While the goal of [8] was to design protocols secure in the
stronger, malicious model, even their preliminary construction secure in the semi-
honest security setting was not very cheap. Performing double random generation
in a batch of size ` = n− t required O(n`+n2) communication measured in field
elements. We can entirely eliminate this communication by utilizing replicated
secret sharing and using computational security.

We start by saying that it is possible to generate pseudo-random [r] non-
interactively using RSS as described in section 3.2. Then if the same key shares
are used in a related setup with a threshold set to 2t, we would be able to
non-interactively generate 〈R〉, where R = r. This, however, leads to the use of
correlated randomness in the generation of [r] and 〈R〉, which is not sufficient
to provide the necessary security guarantees for our use of these shares. Instead,
our approach is as follows: we first generate [r] non-interactively using RSS.
To create a 2t-sharing of r using fresh randomness, we first raise the degree
of r’s secret sharing representation to 2t by multiplying it by another degree-
t polynomial corresponding to [1]. Lastly, we randomize the resulting shares
by adding fresh 〈0〉 to the result. The last step is accomplished by calling the
protocol for pseudo-random zero sharing from [7], denoted as PRZS. Luckily,
that construction is already given for creating 〈0〉 where the representation uses

15

a polynomial of degree 2t. We obtain the following construction for DRand that
assumes pre-distributed shares kT and a fixed representation of [1]5:

([r], 〈R〉)← DRand()

1. [r]← PRSS();
2. 〈0〉 ← PRZS();
3. Each p ∈ [1, n] computes 〈u〉p = [r]p · [1]p;
4. 〈R〉 = 〈u〉+ 〈0〉;
5. return ([r], 〈R〉);

Returning to the performance of our multiplication operation, we obtain com-
munication of 2t + n − 1 ≤ 2n − 2 field elements, which we can contrast with
n(n− 1) field elements in the solution of [12]. For a (3, 1)-sharing, the reduction
is by a factor of 6/4 = 1.5; for a (5, 2)-sharing, it is by a factor of 2.5, and the
difference continues to grow with n.

To demonstrate security, we note that we only modified the DRand func-
tionality from that of the multiplication protocol from [8]. Our DRand protocol,
however, only invokes secure building blocks (PRSS and PRZS) and only oper-
ates on shares for the remaining computation without disclosing any values. This
means that we can easily create a simulator which will not be able to distinguish
between the real and simulated views. See the appendix for a detailed proof.

5.2 Alternative Multiplication

As mentioned before, we present another multiplication protocol that outper-
forms the protocol above in terms of communication only when n = 3. However,
it can still be useful for higher values of n because the total work is limited by
O(n) per party and does not require the use of replicated secret sharing.

The idea behind this solution is that the parties locally multiply their shares,
which, as before, raises the polynomial degree to 2t and results in a 2t-sharing
of the product. To convert the product to a t-sharing, each participant re-shares
its value using t-sharing and uses interpolation to compute the result similar to
[12]. The difference is that instead of choosing a new random polynomial to do
re-sharing, each party uses t pseudo-random points to create the polynomial.
These points, together with the party’s secret, define the polynomial and allow
for the evaluation of the polynomial on other points. Then the pseudo-random
points serve the role of the shares for t out of n participants, while the remaining
shares are computed by the owner of the secret and are communicated to the
remaining parties. The idea is that a pseudo-random value can be generated
by two participants without communication and this approach reduced overall
communication from n(n − 1) to n(n − t − 1) field elements, which is a factor
of 2 with n = 2t+ 1. In particular, in the case of (3, 1) secret sharing, we have
each party transmitting 1 field element, for the total of 3 field elements and

5 Note that it is very easy to generate a fixed representation of [1] by choosing any
degree-t polynomial that evaluates to 1 at 0, e.g., by setting all of its coefficients to 1.
Each party computes [1]p using that polynomial and uses it in all calls to DRand().

16

25% bandwidth reduction compared to the previous multiplication protocol in
section 5.2. This also matches best-known 3-party multiplication communication
cost based on custom replicated secret sharing arithmetic from [3].

Before we proceed with the algorithm specification, we need to define addi-
tional notation. For a secret-shared [x], we let fx() denote the underlying poly-
nomial according to which the shares of x were computed (i.e., [x]p corresponds
to fx(p) and [x]0 = fx(0) = x). We also denote the procedure of reconstructing
the polynomial fx from at least t+ 1 shares of x by SSReconstt+1. In addition,
we let λp denote polynomial interpolation constants as defined in [12].

We define mapping γ, which for each participant p specifies t other parties
with whom p shares PRG seeds for the purpose of non-interactive share com-
putation of its secret. Specifically, for each γ(p, p′) = 1 we let kp,p′ be the seed
shared by parties p and p′ and let PRG(kp,p′).next() denote retrieval of the next
field element from the PRG seeded by kp,p′ . Our multiplication protocol then
proceeds as follows:

[c]← Mult([a], [b])

1. Each p ∈ [1, n] computes 〈c〉p = [a]p · [b]p;
2. Each p ∈ [1, n] sets t shares [dp]p′ ← PRG(kp,p′).next() for each {p′ | γ(p, p′) =

1} and one more share [dp]0 = 〈c〉p;
3. Each p ∈ [1, n] executes f〈c〉p ← SSReconstt+1([dp]);
4. Each p ∈ [1, n] evaluates [dp]p′ = f〈c〉p(p′) for each {p′ | γ(p, p′) 6= 1} and

sends [dp]p′ to party p′ (other than p′ = p).
5. Each p ∈ [1, n] computes [c]p =

∑n
p′=1 λp′ [dp′]p, where [dp′]p was either re-

ceived in step 4 or computed as [dp′]p ← PRG(kp′,p).next() (for {p′ | γ(p′, p) =
1});

6. return [c];

As discussed before, this protocol communicates n(n − t − 1) fields elements
across all parties in a single round, and the local work per party is O(n).

Security follows from the fact all computation proceeds on secret-shared val-
ues and no intermediate values get revealed. Conceptually this construction fol-
lows the structure of the multiplication protocol from [12], where we replace
a number of shares to be pseudo-random instead of chosen at random. Thus,
while the construction of [12] is secure against unbounded adversaries (assuming
secure channels), our security holds in the computational setting. A complete
proof is given in the appendix.

6 Performance Evaluation

We have implemented the proposed array read and multiplication operations in C
using single invocation as well as batched execution. Because the custom 3-party
array read is asymmetric, our batched execution of that protocol used 3 threads,
each taking on the role of a different party and with the workload divided evenly
across the threads. We used the GNU Multiple Precision Arithmetic Library
(GMP) [2] for field arithmetic and executed SSS constructions within the PICCO

17

25 210 215 220
10−4

10−3

10−2

10−1

100

Array size

R
u
n
ti
m
e
(s
ec
)

25 210 215 220

10−1

100

Array size

R
u
n
ti
m
e
(s
ec
)

New 3-party array read (sec. 4.2) New general array read (sec. 4.1) Original array read
Floram CPRG [9] New array read+new mult (secs. 4.1 & 5.2)

Fig. 1. Performances of array read with private index on a LAN (left) and WAN (right).

compiler framework [36]. We also execute original array read with private index
and multiplication operations as previously implemented in PICCO. All of our
protocols are evaluated in the three-party setting with a single corrupt party. For
comparison, we also include runtimes of two-party Floram CPRG [9] using their
implementation from [1]. This is one of the best performing ORAM constructions
among two- and three-party implementations and its performance tells us at
which array sizes ORAM techniques outperform linear scan. Note that ORAM
use might involve additional overhead beyond what we report, e.g., for initializing
ORAM or converting between different data representations.

We provide experiments in the LAN and WAN configurations. Our LAN
experiments were carried out on identical machines with a 2.1GHz processor
connected via 1Gbps Ethernet with one-way latency of 0.15ms. Our WAN ex-
periments used local machines and one remote machine with a 2.4GHz processor.
One-way latency between the remote and local machines was 23ms. We note that
although the machine configurations were slightly different, we do not expect this
to introduce inconsistencies in the experiments. In particular, computation time
is dictated by the slower machines which do not change across our experiments
and the introduced slowdown is attributed to the longer round-trip times and
lower bandwidth in WAN experiments. All experiments except Floram used a
single core and all experiments (except Floram) were executed over a 64-bit finite
field and averaged over 100 executions.

Performance of array read is shown in Figures 1 in both LAN and WAN set-
tings. We see that the custom three-party construction significantly outperforms
other options and further improvements are possible with parallel execution
(which we discuss later in this section). We also see that linear scan construc-
tions outperform ORAM-based solutions for arrays of size up to 216 in the LAN
setting and up to 221 in the WAN setting. The figure also shows the difference in
the performance of our general array read protocol using the original multipli-
cation protocol as implemented in PICCO (with 6 field elements communicated
per multiplication) and the new multiplication protocol from section 5.2 (with 3
field elements per multiplication). The difference between the two multiplication
protocols is further detailed in Table 2, which shows that improved multiplica-

18

Setting LAN WAN

Batch size 1 10 102 103 104 105 106 1 10 102 103 104 105 106

Orig. mult. 0.139 0.169 0.521 2.24 23.5 246 2,520 22.9 23.03 23.8 29.0 178 1119 6760
New mult. 0.121 0.144 0.482 1.59 15.5 170 1,720 15.39 15.43 15.8 18.9 53.55 365 3,750

Table 2. Performance of the original [12] and new multiplication protocols (section
5.2) in the (3,1) setting on a LAN and WAN in batches of varying sizes in milliseconds.

Original array read New array read (sec. 4.1) New 3-party array read (sec. 4.2)
1 10 102 103 1 10 102 103 1 10 102 103

24 0.0022 0.0058 0.025 0.24 0.00087 0.0021 0.0095 0.096 0.00022 0.00039 0.00084 0.0069

27 0.0085 0.028 0.26 2.33 0.0018 0.0071 0.044 0.46 0.00043 0.00075 0.0057 0.048

210 0.029 0.28 2.9 27.2 0.0049 0.028 0.29 2.98 0.0016 0.0039 0.036 0.37

213 0.27 2.77 28.8 276 0.022 0.22 2.2 22.5 0.0092 0.027 0.28 3.21

216 2.67 27.8 267 2,689 0.174 1.75 17.6 180 0.061 0.23 2.41 26.1

Table 3. Performance of array read with private index for varying array sizes and in
batches of varying size (from 1 to 103) on a LAN in seconds. General constructions
used (3, 1) setting.

tion protocol provides up to over 30% runtime reduction in the LAN setting and
up to 70% reduction in the WAN setting.

We further note that a flatter curve in Figure 1 indicates that round complex-
ity or another portion of the computation sub-linear in the array size (Floram
or linear scans for arrays of small sizes in the WAN setting) is the bottleneck. A
steeper curve indicates that work linear in the array size (e.g., O(m) communi-
cation in the case of linear scans) is the bottleneck.

We also provide measurement results for parallel execution of array read
in Table 3. We compare the original PICCO multiplexer-based implementation
with (i) our new general array read with new multiplication from section 5.2
and (ii) our custom 3-party array read from section 4.2. Substantial runtime
reduction over single execution is observed for arrays of relatively small size and
improvement is present for all sizes in the case of the custom 3-party array read.
The largest difference between the original and our general solution is by a factor
of 16 with array size of 216 and batch size of 10 and the largest difference between
the original and our custom 3-party solution is by a factor of over 120 for the
same configuration.

We also attempted to compare performance of our array read protocols with
that of the parallel array access protocols from [24], which is designed to do
many simultaneous read or write operations in a batch. Because the protocols
were implemented in the Sharemind setting using different underlying arithmetic
and building blocks, a direct comparison is not possible. Furthermore, the results
were plotted in the log-scale and therefore extracted precise numbers is difficult
and we can only offer approximate insights. The experiments in [24] were run on

19

a cluster of three 12-core 3GHz computers on a 1Gbps LAN. Our conclusion was
that our solutions significantly outperform that from [24] when either the array
size is rather small or when the number of parallel invocations is low (or both).
For example, performing 5 parallel reads from an array of size 5 costs > 10ms
in [24], which is 5 and 25 times slower than executing 10 reads from an array of
size 24 in our general and 3-party solutions, respectively (recall that Sharemind-
based implementation in [24] also works only with three parties). Performing
100 and 1 simultaneous reads from an array of size of 100 takes around 100ms
and 50ms, respectively, which is 2 and respectively > 25 times slower than the
same number of reads from an array of 27 in our general protocol, and > 17 and
115 times slower than our 3-party protocol. Executing a single read is always
faster in our solution for all available data points by a significant amount (1–3
orders of magnitude). Where the construction of [24] can offer advantage over
our solutions is when both the number of parallel reads and the array size are
large. The largest advantage we can observe for 1000 simultaneous reads from an
array of size 216, where our general construction is slower than the results from
[24] by about a factor of 18 while our three-party construction is only slower by
about 2.5 times.

7 Conclusions

In this work we study performance improvements to certain common building
blocks in secure multi-party computation based on secret sharing. We present op-
timized protocols for reading or writing an element of an array at a private index
and for integer multiplication. Most of our constructions are based on Shamir
secret sharing with the exception of one array access construction. The latter
uses 2-out-of-2 additive secret sharing in the three-party setting with honest
majority, but offers superior performance compared to general constructions.
To be compatible with computation based on Shamir secret sharing, we also
provide conversion procedures to convert between the two representations. We
implement the presented constructions in the setting with three computational
parties and show that they offer attractive performance in both LAN and WAN
settings.

Acknowledgments

This work was supported in part by grant CNS-1705262 from the National Sci-
ence Foundation, Google Faculty Research Award, and grant 2018R1A6A3A01011337
from the National Research Foundation of Korea. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the funding agencies. We also
acknowledge the NSF-sponsored Global Environment for Network Innovations
(GENI) test bed, which allowed us to run WAN experiments.

20

References

1. The floram oblivious ram implementation for secure computation.
https://gitlab.com/neucrypt/floram/tree/floram-release.

2. The GNU multiple precision arithmetic library. https://gmplib.org/.
3. T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-

honest secure three-party computation with an honest majority. In ACM CCS,
pages 805–817, 2016.

4. F. Bayatbabolghani, M. Blanton, M. Aliasgari, and M. Goodrich. Secure fingerprint
alignment and matching protocols. arXiv Report 1702.03379, 2017.

5. P. Bunn, J. Katz, E. Kushilevitz, and R. Ostrovsky. Efficient 3-party distributed
ORAM. Cryptology ePrint Archive Report 2018/706, 2018.

6. O. Catrina and S. De Hoogh. Improved primitives for secure multiparty integer
computation. In SCN, pages 182–199, 2010.

7. R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In TCC, pages 342–362, 2005.

8. I. Damg̊ard and J. Nielsen. Scalable and unconditionally secure multiparty com-
putation. In CRYPTO, pages 572–590, 2007.

9. J. Doerner and A. Shelat. Scaling ORAM for secure computation. In ACM CCS,
pages 523–535, 2017.

10. S. Faber, S. Jarecki, S. Kentros, and B. Wei. Three-party ORAM for secure com-
putation. In ASIACRYPT, pages 360–385, 2015.

11. C. W. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov. Bucket ORAM: Single
online roundtrip, constant bandwidth oblivious RAM. IACR Cryptology ePrint
Archive Report 2015/1065, 2015.

12. R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In PODC, pages 101–
111, 1998.

13. O. Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In ACM STOC, pages 182–194, 1987.

14. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM, 43(3):431–473, 1996.

15. T. Hoang, C. D Ozkaptan, A. A Yavuz, J. Guajardo, and T. Nguyen. S3ORAM: A
computation-efficient and constant client bandwidth blowup ORAM with Shamir
secret sharing. In ACM CCS, pages 491–505, 2017.

16. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structures. In IEEE Globecom, pages 99–102, 1987.

17. S. Jarecki and B. Wei. 3PC ORAM with low latency, low bandwidth, and fast
batch retrieval. In ANCS, pages 360–378, 2018.

18. S. Karan and J. Zola. Scalable exact parent sets identification in Bayesian networks
learning with Apache Spark. In IEEE HiPC, pages 33–41, 2017.

19. M. Keller and P. Scholl. Efficient, oblivious data structures for MPC. In ASI-
ACRYPT, pages 506–525, 2014.

20. M. Keller and A. Yanai. Efficient maliciously secure multiparty computation for
RAM. In EUROCRYPT, pages 91–124, 2018.

21. L. Kerik, P. Laud, and J. Randmets. Optimizing MPC for robust and scalable
integer and floating-point arithmetic. In Financial Cryptography and Data Security
Workshops, pages 271–287, 2016.

22. M. Koivisto. Parent assignment is hard for the MDL, AIC, and NML costs. In
International Conference on Computational Learning Theory, pages 289–303, 2006.

21

23. P. Laud. A private lookup protocol with low online complexity for secure multiparty
computation. In ICICS, pages 143–157, 2014.

24. P. Laud. Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees. PoPETs, 2015(2):188–205, 2015.

25. R. Ostrovsky. Efficient computation on oblivious RAMs. In ACM STOC, pages
514–523, 1990.

26. L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas.
Ring ORAM: Closing the gap between small and large client storage oblivious ram.
IACR Cryptology ePrint Archive Report 2014/997, 2014.

27. G. Schwarz. The Annals of Statistics, 6:461–464, 1978.
28. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,

1979.
29. E. Shi, T-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((logN)3)

worst-case cost. In ASIACRYPT, pages 197–214, 2011.
30. E. Stefanov and E. Shi. Multi-cloud oblivious storage. In ACM CCS, pages 247–

258, 2013.
31. E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. arXiv Report

1106.3652, 2011.
32. E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas.

Path ORAM: An extremely simple oblivious RAM protocol. In ACM CCS, pages
299–310, 2013.

33. X. Wang, H. Chan, and E. Shi. Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound. In ACM CCS, pages 850–861, 2015.

34. X. Wang, Y. Huang, T-H. Chan, A. Shelat, and E. Shi. SCORAM: Oblivious RAM
for secure computation. In ACM CCS, pages 191–202, 2014.

35. S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans, and J. Katz.
Revisiting square root ORAM: Efficient random access in multi-party computation.
In IEEE S&P, pages 218–234, 2016.

36. Y. Zhang, A. Steele, and M. Blanton. PICCO: A general-purpose compiler for
private distributed computation. In ACM CCS, pages 813–826, 2013.

A Security Definitions and Proofs

The security definition that we adopt in this work is as follows:

Definition 1. Let parties P1, . . ., Pn engage in a protocol Π that computes func-
tion f(in1, . . ., inn) = (out1, . . ., outn), where ini and outi denote the input and
output of party Pi, respectively. Let VIEWΠ(Pi) denote the view of participant Pi
during the execution of protocol Π. More precisely, Pi’s view is formed by its in-
put and internal random coin tosses ri, as well as messages m1, . . .,mk passed be-
tween the parties during protocol execution: VIEWΠ(Pi) = (ini, ri,m1, . . .,mk).
Let I = {Pi1 , Pi2 , . . ., Pit} denote a subset of the participants for t < n, VIEWΠ(I)
denote the combined view of participants in I during the execution of protocol Π
(i.e., the union of the views of the participants in I), and fI(in1, . . . , inn) denote
the projection of f(in1, . . . , inn) on the coordinates in I (i.e., fI(in1, . . . , inn) con-
sists of the i1th, . . ., itth element that f(in1, . . . , inn) outputs). We say that proto-
col Π is t-private in the presence of semi-honest adversaries if for each coalition
of size at most t there exists a probabilistic polynomial time (PPT) simulator SI

22

such that {SI(inI , fI(in1, . . . , inn)), f(in1, . . ., inn)} ≡ {VIEWΠ(I), (out1, . . . , outn)},
where inI =

⋃
Pi∈I{ini} and ≡ denotes computational or statistical indistin-

guishability.

Theorem 1. The ArrayRead and corresponding ArrayWrite protocols of section 4.1
are t-private for any t < n/2 assuming security of sub-protocols PRandM and
multiplication.

Proof. As in definition 1, let I denote the set of corrupt parties for any t < n/2.
We build a simulator SI , which simulates the view of the parties in I in the ideal
model without access to private data. Note that in the case of ArrayRead and
ArrayWrite operations, each corrupt party contributes no private input and learns
no private output. Thus, the simulator needs to construct their view without
access to any private data. Our simulator SI proceeds as follows:

– In step 1 of the protocol, SI invokes the simulator for PRandM, which sim-
ulates the view of the corrupt parties.

– During the computation of AllOr, SI invokes the simulator for each multi-
plication of secret-shared values called by that protocol.

– During step 4, SI broadcasts shares of c on behalf of honest parties such that
all shares reconstruct to random c of the desired length. In particular, SI
can wait for the corrupt parties to transmit their shares and fix a desired c
(which corresponds to a share evaluated at point 0). These t+1 values define
a unique degree-t polynomial, which SI reconstructs through polynomial
interpolation and consequently computes and broadcasts shares on behalf of
the honest parties.
Note that SI is not required to wait for the corrupt parties to transmit their
shares. Instead, SI can use its access to the corrupt parties’ inputs in the
protocol, including randomness that they use throughout the computation.
Based on that information and the messages that each corrupt party receives
prior to step 4, SI can correctly compute the share that each party in I is
to broadcast in step 4. From that point, it creates shares of c on behalf of
the remaining parties as specified above.

– In step 6 of the protocol, SI invokes the simulator for the multiplication
operations (or the simulator for the dot product if available as a separate
primitive).

Now we need to compare the view that SI produces with the view of the corrupt
parties in the real protocol execution. Notice that most steps invoke simulators
for the respective building blocks which we assume secure. This means that the
views produced by those simulators are indistinguishable from the parties’ views
in the real protocol execution. The only value that SI produces on its own is c.
Because SI samples the value of c from the same distribution as the protocol
does, the only difference between the real and simulated values can come from the
fact that adding j to the random value prior to its opening in the real protocol
execution may result in overflow and thus be distinguishable. The probability
of this happening, however, is negligible in the statistical security parameter ρ

23

and is beyond the adversarial control. Therefore, the real and simulated views
are statistically indistinguishable, which completes the proof. �

Theorem 2. Custom three-party ArrayRead and ArrayWrite of section 4.2 are
1-private.

Proof. We prove that our custom three-party array read and write protocols
are secure in the presence of a single corrupt party based on definition 1. We
consider corruption of party 1, 2, and 3 in turn.

Party 1 is corrupt. First, let party 1 be corrupt, and we build the correspond-
ing simulator S1. As before, the protocol has no private inputs or outputs for
any party and therefore the simulator is not given any private values. Our S1

proceeds as follows:

– If updating [h] in steps 1 and 4 of the protocol or computation of [h mod m]
in step 7 involves interaction, S1 invokes simulators for the corresponding
computation.

– In step 2, S1 receives shares s0, . . . , sm−1 from party 1 on behalf of party 2.
– In step 6, S1 generates random shares Ja′′0K1, . . ., Ja′′m−1K1 and sends them to

party 1 on behalf of party 2.
– In step 7, S1 participates in opening shares of h mod m on behalf of party

3. To do so, S1’s behavior depends on the choice of the secret sharing used.
For additive sharing over Zm, S1 simply generates random shares in Zm and
sends them to party 1. For Shamir SS over F, S1 computes the remaining
shares for its choice of random h ∈ Zm taking into account its knowledge of
party 1’s share. The mechanism is the same as what SI used in the proof of
Theorem 1.

To analyze party 1’s view, we see that party 1 has access to 1 out of 2 shares
for each element ai at step 1 and later receives a new share of each ai after
its re-sharing in step 6. Party 1 also has access to r1 and obtains the value
of h mod m = (j + r1 + r2) mod m in step 7. In the simulated view, party 1
receives random shares in step 6 and a random h ∈ Zm in step 7. Now notice
that the shares of ais that party 1 receives in step 6 are distributed uniformly in
F and are therefore distributed identically to the values that the party receives
in the simulated view. Also, because the values that (r2 + j) mod m takes is
distributed as a random (or pseudo-random) element of Zm in the real execution,
h = (r1 + r2 + j) mod m in the real execution is indistinguishable from random
h ∈ Zm in the simulated execution.

Party 2 is corrupt. We next construct simulator S2 for the case of corrupt
party 2. In this case, the simulator is simple: besides accepting messages from
party 2 in steps 5 and 6, S2 only needs to simulate the message party 1 sends
to party 2 in step 2. To do so, S2 randomly generates shares s0, . . ., sm−1 and
sends them to party 2. Also, if computation of h and h mod m in steps 1, 4, and
7 is interactive, S2 would need to invoke the corresponding simulators.

From the above, it is clear that the simulated view is identical to the real
view, i.e., values s0, . . ., sm−1 are distributed identically in both views. Party 2
also has access to r1 and r2, which are independent of private data.

24

Party 3 is corrupt. Lastly, we consider party 3 to be corrupt and construct
simulator S3 which works as follows:

– As before, if the computation of h and h mod n is interactive, S3 invokes the
corresponding simulators.

– S3 generates and sends random shares Ja′0K3, . . ., Ja′m−1K3 to party 3 in step
3.

– S3 generates and sends random shares s′0, . . ., s
′
m−1 to party 3 in step 5.

– In step 7, S3 participates in opening a random value h ∈ Zm in the same
way it was accomplished by S1.

To analyze the real and simulated views, we first note that the shares s′i commu-
nicated to party 3 are chosen and distributed identically in both views. Further-
more, while S3 used random values for Ja′iK3s, but in the real protocol execution
these shares were computed differently, the real execution shares were protected
by uniformly random values not accessible to party 3 and thus both have uni-
formly random distributions. Lastly, party3 learns random h ∈ Zm in the simu-
lated view, while in the real execution the opened value is (j + r1 + r2) mod m
with r2 known by party 3, the views are still indistinguishable. This is because
r1 is a random or pseudo-random element of Zm and (r1 + j) mod m has the
same distribution is that of r1.

We conclude that our custom three-party construction is secure in the pres-
ence of a single semi-honest party. �

Theorem 3. The multiplication protocol of section 5.1 is t-private for any t <
n/2.

Proof. We prove our multiplication protocol t-private based on definition 1. Be-
cause one of the participants, namely, the king, plays a special role, we divide
the proof into two cases: when the king is among the corrupt parties and when
it is not. We denote the set of the corrupted parties by I.

First consider the case that the king is not corrupt and we construct a simu-
lator S1 for this case. Recall that the parties supply no private input and learn
no private output and the only interactive parts of the protocol are steps 2 and
3. Consequently, we instruct S1 to receive 〈D〉p from each party p ∈ I in step 2
and broadcast a random field element D to the corrupt participants on behalf of
the king. In addition to the shares given as the input or computed by the corrupt
participants during the protocol execution, D is the only value that they receive.

Then the only difference in the real and simulated views must come from
that D as a set of t shares can correspond to any possible field element. Recall
that in the real protocol execution, the parties learn the value to which their
shares reconstruct, while in the simulated view they receive a random element.
The corrupt parties, however, are unable to determine that the simulated D was
not the value based on which their shares were originally constructed based on
the properties of secret sharing, whether t or fewer shares could map to any field
element. Furthermore, the value of D follows the uniform (or indistinguishable
from the uniform) distribution in both the real and executed views, and therefore
the views are computationally indistinguishable.

25

Next, we consider the case that the king is among the corrupt parties and
construct a simulator S2 for that case. S2 generates random input shares and key
material of the corrupt parties. Because only steps 2 and 3 of our multiplication
are interactive, the main task that S2 needs to accomplish is to generate shares
〈D〉p on behalf of honest parties in step 2 and send them to the king. Note that
the shares that S2 creates in combinations with the shares of the corrupt parties
should correspond to a polynomial of degree 2t. To ensure this, S2 computes 〈D〉p
for each p ∈ I in the same way each corrupt participants does from its inputs.
Consequently, S2 randomly generates shares 〈D〉p for each remaining party p,
verifies that all shares indeed correspond to a polynomial of degree 2t, and
sends the shares corresponding to the honest parties to the king. Afterwards, S2

receives the reconstructed value D from the king on behalf of the honest parties.
We now examine the differences between the real and simulated views. The

only difference here is that shares 〈D〉p that correspond to honest parties were
chosen at random and therefore the result reconstructs to a random field element
D. As before, the value of D transmitted in the real execution is indistinguishable
from a random field element for any t < n/2 participants and therefore the views
are indistinguishable.

This covers all cases and concludes the proof. �

Theorem 4. The multiplication protocol of section 5.2 is t-private for any t <
n/2.

Proof. As before, we prove our multiplication protocol t-private based on defi-
nition 1. Because the roles the parties play are symmetric we treat only a single
case of t corrupt parties whom we denote by I. We construct simulator SI as
follows:

– SI has the map function and generates random shares and key material for
each p ∈ I.

– In step 4, for each pair (p, p′) such that p 6∈ I, p′ ∈ I, and γ(p, p′) 6= 1, SI
randomly generates [dp]p′ on behalf of honest party p and sends the share
to the corrupt party p′. SI also receives [dp]p′ from each p ∈ I on behalf of
any honest party p′.

Because most of the computations in this protocol is local, the real and simulated
views are identical until step 4 based on the security of the SS scheme. In step 4,
each party p from I expects to receive [dp]p′ generated based on pseudo-random
values and the share product. This results in pseudo-random shares and conse-
quently pseudo-random coefficients in a polynomial encoding the secret-shared
value. This means access to t shares produced in a such a way is indistinguishable
from random shares to a computationally bounded adversary. In the simulated
view, the shares [dp]p′ are chosen uniformly at random and thus the corrupt par-
ties are unable to distinguish them from the shares used in the real execution. We
obtain that the real and simulated views are computationally indistinguishable
in the presence of t < n/2 corrupt participants. �

26

