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Abstract. The Hidden Subgroup Problem (HSP) aims at capturing all
problems that are susceptible to be solvable in quantum polynomial time
following the blueprints of Shor’s celebrated algorithm. Successful solu-
tions to this problems over various commutative groups allow to effi-
ciently perform number-theoretic tasks such as factoring or finding dis-
crete logarithms.

The latest successful generalization (Eisenträger et al. STOC 2014) con-
siders the problem of finding a full-rank lattice as the hidden subgroup
of the continuous vector space Rm, even for large dimensions m. It un-
locked new cryptanalytic algorithms (Biasse-Song SODA 2016, Cramer
et al. EUROCRYPT 2016 and 2017), in particular to find mildly short
vectors in ideal lattices.

The cryptanalytic relevance of such a problem raises the question of a
more refined and quantitative complexity analysis. In the light of the in-
creasing physical difficulty of maintaining a large entanglement of qubits,
the degree of concern may be different whether the above algorithm re-
quires only linearly many qubits or a much larger polynomial amount of
qubits.

This is the question we start addressing with this work. We propose a de-
tailed analysis of (a variation of) the aforementioned HSP algorithm, and
conclude on its complexity as a function of all the relevant parameters.
Our modular analysis is tailored to support the optimization of future
specialization to cases of cryptanalytic interests. We suggest a few ideas
in this direction.
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1 Introduction

The Hidden Subgroup Problem. Among all quantum algorithms, Shor’s
algorithm [33] for factoring and finding discrete logarithms stands out as demon-
strating the largest complexity gap between classical and quantum computing.
It is also singular by its cryptanalytic implications, and, due to progress toward
the realization of large quantum computers, this celebrated algorithm is now mo-
tivating the standardization of quantum-resistant schemes [24], in preparation
of a global update of widely deployed encryption and authentication protocols.

The core idea of quantum period finding from [33] is not limited to factoring
and discrete logarithm, and the Hidden Subgroup Problem formalized in [23]
serves as a convenient interface between the quantum-algorithmic techniques
for period finding, and applications to solve other computational problems, in
particular problems arising from number theory. We will here discuss only the
case of commutative groups. The cases of non-abelian groups such as dihedral
groups are very interesting as well and have fascinating connections with lattice
problems [30]; however, no polynomial time algorithm is known for those cases,
and the best known algorithm has sub-exponential complexity [20], using very
different techniques.

The simplest version of the Hidden Subgroup Problem consists of finding a
hidden subgroup H in a finite abelian group G, when given access to a strictly
H-periodic function f : G→ R. Here, in the language of representation theory,
the off-the-shelf period-finding quantum algorithm finds a uniformly random
character χ ∈ Ĝ that acts trivially on H. Shor’s original algorithm [33] for integer
factoring finds a hidden subgroup H in the ambient group Z. The infiniteness of
Z induces some “cut-off” error; nevertheless, the distribution of the algorithm’s
output is still concentrated around the multiples of the inverse period.

A generalization to the real line H = R was given by Hallgren [17] and allows
to solve Pell’s equation. The case of real vector space of constant dimension
H = Rc has also been studied in [16,32], and permits the computation of unit
groups of number fields of finite degree.

The Continuous Hidden Subgroup Problem in large dimension. The
latest generalization of the HSP algorithm, given by Eisenträger, Hallgren, Ki-
taev and Song in an extended abstract [12], targets the ambient group G = Rm
(for a non-constant dimension m) with a hidden discrete subgroup H = Λ, i.e.
a lattice. Next to the ambient group Rm being continuous, an additional special
feature is that the Λ-periodic function f is assumed to produce a “quantum out-
put”. More formally, f : Rm → S, x 7→ |f(x)〉, where S is the state space of a
quantum system, and the HSP algorithm is given access to a unitary that maps
|x〉|0〉 to |x〉|f(x)〉. A crucial observation here is that |f(x)〉 and |f(y)〉 are not
necessarily orthogonal (or even distinct) for distinct x and y modulo Λ. In other
words, it is not assumed that f is strictly periodic, but merely that |f(x)〉 and
|f(y)〉 are “somewhat orthogonal” for x and y that are “not too close” modulo
Λ, and that f is Lipschitz continuous.
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Mor specifically. they consider a variation of the standard HSP algorithm in
order to tackle the Continuous Hidden Subroup Problem (CHSP). In order to
deal with the continuous nature of the domain Rm of f , the given HSP algo-
rithm acts on a bounded “grid” of points within Rm. Additionally, the algorithm
is modified in the following ways: (1) The initial state is not a uniform super-
position (over the considered grid points in Rn) but follows a trigonometric
distribution, and (2) the quantum Fourier transform is done “remotely”, i.e.,
rather than applying it to the actual register, the register is entangled with an
ancilla and the quantum Fourier transform is then applied to the ancilla instead.
According to [12], applying the quantum Fourier transform directly would make
the resulting approximation errors difficult to analyze.

As an application, the work of [12] also gave a quantum polynomial time
algorithm for computing the unit group of a number field in their article [12].
This was generalized by Biasse and Song [3] to the computation of S-unit groups,
and therefore to the computation of class groups and to finding a generator of
a principal ideals. This led to solving the short vector problem in certain ideal
lattices for non-trivial approximation factors [8,9,28]. While the cryptanalytic
consequences for ideal-lattice based cryptography seems limited so far [11], these
results demonstrate a hardness gap between ideal lattices and general ones.

The algorithm of [12] has proved itself to be a key tool in quantum crypt-
analysis, and, as such, the question of its precise range of application, and of its
practical efficiency are therefore of cryptographic interest. Unfortunately, [12]
offers only an informal treatment of the algorithm, both in terms of the analysis
and in terms of the formulation of the result. Also, at the time of preparing this
article, there was no full version publicly available.3

The extended abstract [12] explains convincingly that in the limit of choos-
ing an unbounded and infinitely fine grid in Rm the algorithm does what it is
supposed to do; however, the “rate of convergence” and thus the quantitative
aspects of their result are not provided. Furthermore, it was not clear to us
what “polynomial-time” formally meant when the input is an oracle, specified
by various parameters. For example, in an application of the Continuous HSP
algorithm it may be critical to know whether the running time grows polyno-
mially in the Lipschitz constant of f (which is one of the 3 parameters of the
Continuous HSP), or polynomially in its logarithm.

In an email from September 2018, Fang Song [34] partially answered early
questions we had; technically his comments corresponds to a claim on the error
term εlip in Part 2 Step 2 of our analysis of the Dual Lattice Sampling step
(Section 5.2). We found that this claim could be related to Yudin-Jackson The-
orem [38]. To make the analysis tighter, we found it preferable to generalize
Yudin-Jackson Theorem to multi-dimensional ranges (See Appendix D).

The urge to understand the security post-quantum cryptography motivates
the elevation of the powerful result of [12] into an open and lively research topic.

3 The STOC 2014 submitted version [12] has been made publicly available online on
November 2019 (after submissison of this paper) http://www.cse.psu.edu/~sjh26/
units-stoc-submission.pdf . A full version is announced to be in preparation.
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Our work. The goal of this paper is to provide a complete, modular, and
quantitative analysis of (a slightly modified version of) the Continuous HSP
quantum algorithm given by [12]. More concretely, we provide an explicit bound
on the number of qubits needed by the algorithm, clarifying the dependency on
the parameters of the Continuous HSP instance and on the required precision
and success probability. This shows explicitly in what parameters the algorithm
is polynomial time and with what exponent.

The algorithm that we consider and analyze differs from the one consid-
ered [12] in the following points:

– First, we specify the initial state of the algorithm to have Gaussian ampli-
tudes, while [12, Sec. 6.2] suggests to use a cropped trigonometric function; as
far as we can see, our choice makes the analysis simpler and tighter thanks
to the well known tail-cut and smoothness bounds of Banaszczyk [1] and
Micciancio and Regev [21].

– Secondly, we do not make use of a “remote” Fourier transform but instead
follow the blueprint of Shor’s original algorithm in that respect; the claimed
advantage of the “remote” Fourier transform is unclear to us.

These modifications simplify the algorithm and its analysis. Due to the lack of
details given in [12], we can not state a complexity comparison, but we think
this variation is at least as efficient as the original algorithm.

Our analysis is divided into four parts, each summarized by a formal state-
ment given in Sections 2.3 to 2.6, leading to the main theorem (Section 2.2). We
insist on this modular presentation, so as to enable future work on optimization
and specialization of this algorithm to instances of interests; specific suggestions
follow.

In the first part (Dual Lattice Sampling), which is the technically more in-
volved one, we show that the appropriately discretized and finitized, but oth-
erwise (almost) standard HSP quantum algorithm produces sample points in
Rm that lie close to the dual lattice Λ∗ with high probability. More precisely,
and more technically speaking, we show that the algorithm’s output is a sample
point close to `∗ ∈ Λ∗ with probability close to 〈c`∗ |c`∗〉, where the vectors |c`∗〉
are the Fourier coefficients of the function f . This is in line with the general
HSP approach, where for instance Shor’s algorithm for period finding over Z
produces a point that is close to a random multiple of the inverse period, except
with bounded probability.

In this first part (Section 4 and Section 5), we bound the complexity of
the core algorithm in terms of the error that we allow in the above context of a
sampling algorithm, and depending on the Lipschitz constant of f . In particular,
we show that the number of qubits grows as mQ, where Q, the “number of qubits
per dimension”, grows linearly in the logarithm of the Lipschitz constant of f ,
the logarithm of the inverse of the error probability and the logarithm of the
inverse of the (absolute) precision, and quasi-linearly in m. The running time of
the algorithm is then bounded4 by O(m2Q2).

4 This complexity estimate can be lowered to O(mQ log(kmQ)) if we allow an error
in the L2-distance of < 1/k2 [15], see Remark 1.
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In the second part (Full Dual Recovery, Section 6), we then relate the pa-
rameters of the Continuous HSP instance to the number of sample points, and
thus to how often the core algorithm needs to be repeated, necessary in order to
have an approximation of the entire dual lattice Λ∗.

In the third part (Primal Basis Reconstruction, Appendix B), we study the
numerical stability of reconstructing an approximate basis of the primal lattice
Λ from a set of approximate generators of the dual lattice Λ∗. This is based on
the Buchmann-Pohst algorithm [5] already mentioned in [12]. The claim of [12]
involves intricate quantities related to sublattices of Λ, making the final com-
plexity hard to derive; we provide a simpler statement with a detailed proof.

Finally, in the last part (Appendix C), we revisit the quantum poly-time
algorithm for Gaussian State Preparation [14,19] used as a black-box in our first
part, and provide its precise complexity.

These four parts leads to our formal and quantitative version of the informal
CHSP Theorem of [12, Theorem 6.1], stated as Theorem 1 in Section 2.2.

Conclusion and Research Directions. Our conclusion is that, in its generic
form, the Continuous Hidden Subgroup Problem is rather expensive to solve; not
accounting for other parameters than the dimension m, it already requires Õ(m3)
qubits and Õ(m7) quantum gates (or, Õ(m4) quantum gates if an approximate
quantum Fourier transform is used). However, this inefficiency seems to be a
consequence of its genericness. In particular, the core algorithm for Dual Lattice
Sampling would only need Õ(m2) qubits, if it wasn’t for accommodating for the
terrible numerical stability of the Primal Basis Reconstruction step. Similarly,
we expect the number of samples needed to generate the dual lattice to be
significantly smaller for smoother oracle functions.

All in all, our modular analysis of the generic steps of the CHSP algorithm
sets the stage for analyzing and optimizing its specializations, in particular to
cryptanalytic applications [8,9]. We propose as few research directions towards
this objective:

– Study the costs (qubits, quantum gates) and the parameters of the oracle
functions from [12,3,35] for solving the Unit Group Problem, the Principal
Ideal Problem (PIP), and for the computation of the class-group.

– Find stronger hypotheses satisfied by the above oracle functions (or by vari-
ant thereof) that improve this generic analysis of the CHSP algorithm; or
resort to an ad-hoc analysis of the Full Dual Recovery step by directly study-
ing the spectrum of these oracle functions.

– Explore the possibility of a trade-off between the (classical) Primal Basis
Reconstruction step and the (quantum) Dual Lattice Sampling step, possi-
bly up to small sub-exponential classical complexity. More specifically, does
replacing LLL by BKZ with an medium block-size substantially improve the
numerical stability of Buchmann-Pohst algorithm?

– Exploit prior knowledge of sublattices (potentially close to full-rank) of the
hidden lattice to accelerate or skip the Full Dual Recovery and Primal Basis
Reconstruction steps. This is for example the case when solving PIP [3] while
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already knowing the unit group and the class group of a given number field.
This would be applicable in the context of [8,9].

– Exploit known symmetries of the hidden sublattice to improve the Full Dual
Recovery and Primal Basis Reconstruction steps. Such symmetries are for
example induced by the Galois action on the log-unit lattice and the lattice
of class relation, in particular in the case of the cyclotomic number fields.
This would again be applicable in the context of [8,9].

Acknowledgments. We would like to thank Stacey Jeffery, Oded Regev and
Ronald de Wolf for helpful discussions on the topic of this article.

2 Problem Statements and Results

2.1 Notation and Set-Up

Here and throughout the paper, H is a complex Hilbert space of dimension
N = 2n, and S is the unit sphere in H; thus, a vector in S describes the state of
a system of n qubits. For an arbitrary positive integer m, we consider a function

f : Rm → S ⊂ H , x 7→ |f(x)〉

that is periodic with respect to a full rank lattice Λ ⊂ Rm; hence, f may be
understood as a function Rm/Λ→ S. The function f is assumed to be Lipschitz
continuous with Lipschitz constant

Lip(f) = inf{L > 0 | ‖|f(x)〉 − |f(y)〉‖H ≤ L ‖x− y‖2,Tm}.

Later, we will also require f to be “sufficiently non-constant”. One should think
of f as an oracle that maps a classical input x to a quantum state over n qubits,
which is denoted |f(x)〉.

We write Λ∗ for the dual lattice of Λ. By λ1(Λ) we denote the length of a
shortest non-zero vector of Λ, and correspondingly for λ1(Λ∗). Since Λ is typically
clear from the context, we may just write λ1 and λ∗1 instead of λ1(Λ) and λ1(Λ∗).

We denote by Br(x) = {y ∈ Rm | ‖y − x‖ < r} the open Euclidean ball
with radius r around x, and by Br(x) = Br(x) ∩ Zm its integer analogue. For
the open ball around 0 we just denote Br, and for a set X ⊂ Rm we write
Br(X) =

⋃
x Br(x) and Br(X) =

⋃
xBr(x) where the union is over all x ∈ X.

Definition 1 (Definition 1.1 from [12]). A function f : Rm → S ⊂ H is
said to be an (a, r, ε)-HSP oracle of the full-rank lattice Λ ⊂ Rm if

– f is Λ-periodic,
– f is a-Lipschitz: Lip(f) ≤ a,
– For all x, y ∈ Rm such that dRm/Λ(x, y) ≥ r, it holds that |〈f(x)|f(y)〉| ≤ ε,

where dRm/Λ(x, y) = minv∈Λ ‖x − y − v‖ denotes the distance induced by the
Euclidean distance of Rn modulo Λ.

6



2.2 Main Theorem: Continuous Hidden Subgroup Problem

Theorem 1. There exists a quantum algorithm that, given access to an (a, r, ε)-
HSP oracle with period lattice Λ, r < λ1(Λ)/6 and ε < 1/4, computes, with
constant success probability, an approximate basis B̃ = B+∆B of this lattice Λ,
satisfying ‖∆B‖ < τ .

This algorithm makes k quantum oracle calls to the (a, r, ε)-HSP oracle, and
uses mQ+n qubits, O(km2Q2) quantum gates and poly(m, log a

λ∗1
, log a

τ ) classical

bit operations, where

Q = O(mk) +O

(
log

a

λ∗1

)
+O

(
log

1

λ∗1 · τ

)
, (1)

k = O
(
m · log

(√
m · a · (detΛ)1/m

))
(2)

Remark 1. The quantum gate complexity in this theorem can be lowered to
O(kmQ log(kmQ)) if we approximate the quantum Fourier transform [15] over
Z/qmZ. For example, an approximation that is 1/k2-close in the induced matrix
norm – which is sufficient for our purposes – can be computed usingO(mQ log(kmQ))
quantum gates (where Q = log q). Repeating this approximate Fourier transform
k times, one arrives at the complexity O(kmQ log(kmQ)).

Remark 2. Note that the quantities inside logarithms are homogeneous. In par-
ticular, scaling the lattice Λ by a factor f , also scales τ , 1/a and 1/λ∗1 by the
same factor f , leaving the complexity parameters Q and k unaffected.

Remark 3. The expert reader may expect the “distortion” parameter λ1 · λ∗1 of
the lattice Λ to have a bearing on the complexity of this algorithm. It is indeed
implicitly the case: the assumption the HSP definition implies that ar ≥ 1− ε2,
and therefore the theorem’s hypothesis requires a ≥ 45

8λ1
.

Proof. This is obtained by instantiating Theorems 2 to 5. First, we obtain k sam-
ples close to the dual lattice by invoking k times Algorithm 1, whose correctness
and complexity is given in Theorem 2. Samples whose Euclidean length exceed
a certain threshold R are rejected. The approximate samples are collected into
a matrix G̃.

The above step requires to prepare Gaussian states with parameter s over a
grid of granularity q; this is obtained by k calls to Algorithm 1, whose cost and
correctness is stated in Theorem 5. The cost of this subroutine is dominated by
the cost of Algorithm 1.

According to Theorem 3, the approximated dual samples generate the dual
lattice Λ∗ with constant probability. Finally, one applies the Buchmann-Pohst
algorithm [6,5] and matrix inversion to G̃, in order to recover an approximate
basis of the primal lattice Λ. The loss of precision induced by this computation
is given in Theorem 4. The parameters are instantiated as follows:

• the failure probability η of dual lattice sampling is set to η = 1/k2,
• the parameter α driving the success of dual reconstruction is set to α = 1,
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• the relative error on dual lattice sample is set to

δ =
(λ∗1)2 · det(Λ∗)

2O(mk) · ‖G̃‖m+1
∞

· τ,

• the maximal entry size of the dual samples is ‖G̃‖∞ ≤ R where R =
√
m · a,

• the discretization granularity is set to q = 2Q,

• the Gaussian windowing parameter s is set to s = O(
√
m log(η−1)).

We defer the detailed bookkeeping for deriving the parameters Q and k to Ap-
pendix A. ut

2.3 Dual Lattice Sampling Problem

Following our modular approach as outlined in the introduction, we first con-
sider the following Dual Lattice Sampling Problem instead. Informally, the task
is to sample points in Rm that are respectively close to points `∗ ∈ Λ∗ that fol-
low the distribution Dideal(`∗) = 〈c`∗ |c`∗〉, where |c`∗〉 are the vectorial Fourier
coefficients of f : Rm/Λ→ S (see Section 3).

Problem 1 (Dual Lattice Sampling Problem). Given error parameter η > 0
and a relative distance parameter 1

2 > δ > 0, and given oracle access to an
HSP oracle f as above, sample according to a (finite) distribution D on Rm
that satisfies, for any S ⊆ Λ∗,

pS := D
(
Bδλ∗1 (S)

)
≥

(∑
`∗∈S

〈c`∗ |c`∗〉

)
− η . (3)

In the problem statement above, D
(
Bδλ∗1 (S)

)
denotes the cumulative weight

of the set Bδλ∗1 (S) with respect to the distribution D.

Theorem 2. Algorithm 1 solves the Dual Lattice Sampling Problem with pa-
rameters η and δ; it uses m calls to the Gaussian superposition subroutine (see
Theorem 5), one quantum oracle call to f , mQ+ n qubits, and O(m2Q2) quan-
tum gates, where

Q = O

(
m log

(
m log

1

η

))
+O

(
log

(
Lip(f)

η · δλ∗1

))
. (4)

Remark 4. Note that this step only requires smoothness of the HSP oracle (via
the Lipchitz constant), but does not rely on the “separability” assumption (third
item of Definition 1). Indeed this third assumption will only play a role to ensure
that those samples are actually non-trivial and usable.
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2.4 Full Dual Lattice Recovery

Recovering the full lattice (or equivalently its dual) requires an extra assumption
on the oracle function f , as captured by the third condition in the following
definition, reformatted from Definition 1.1 of [12].

According to Eisenträger et al. [12], for (some undetermined) adequate pa-
rameters, Definition 1 ensures that the distribution on the dual lattice Λ∗ is not
concentrated on any proper sublattice, hence sufficiently many samples will gen-
erate the lattice fully. We formalize and quantify this proof strategy, and obtain
the following quantitative conclusion. We note that the constraints on r and ε
are milder that one could think, for example ε does not need to tend to 0 as a
function of n or m.

Theorem 3. Let f : Rm → S be an (a, r, ε)-HSP oracle with r ≤ λ1(Λ)/6
and ε ∈ [0, 1/3), and let Dideal be the distribution described above, given by
Dideal(`

∗) = 〈c`∗ |c`∗〉 for `∗ ∈ Λ∗. Furthermore, denote by S the random variable
defined by the number of samples that need to be drawn from Dideal such that the
samples together generate Λ∗ as a lattice. Then, for any α > 0,

Pr

[
S > (2 + α)

t+m
1
2 −

1
4π2 − ε

]
≤ exp(−α(t+m)/2)

where t = m log2(
√
m · a) + log2(det(Λ)).

The above Theorem is obtained by combining Lemmata 5 and 8 from Section 6,
instantiating the parameter R to R2 = ma2. This choice is somewhat arbitrary
and given for concreteness, however it does not have a critical quantitative im-
pact.

2.5 Primal Basis Reconstruction

Theorem 4. There exists a polynomial time algorithm, that, for any matrix
G ∈ Rk×m of k generators of a (dual) lattice Λ∗, and given an approximation
G̃ = G+∆G ∈ Qk×n, computes an approximation B̃ = B +∆B of a basis B of
the primal lattice Λ, such that

‖∆B‖∞ ≤
2O(mk) · ‖G̃‖m+1

∞
(λ∗1)3 · det(Λ∗)

· ‖∆G‖∞,

under the assumption that ‖∆G‖∞ <
min(1,(λ∗1)

2)·det(Λ∗)
2O(km)·‖G̃‖m+1

∞
.

Remark 5. More specifically, the algorithm from Theorem 4 essentially consists
of the Buchmann-Pohst algorithm [6,5] and a matrix inversion. Its complexity
is dominated by two calls to LLL on matrices of dimension (m + k) × k and
entry bitsize O(k2 log(‖G̃‖/λ∗1)) (see the discussion before [5, Cor. 4.1]). One can
optimize the final running time by choosing the adequate variant of LLL [25,27]
depending on the relative dimension and bitsizes of these inputs.

Our contribution on this step is merely a completed numerical analysis, with
the help of a theorem from [7]. A claim with a similar purpose is given in [12],
yet involves more intricate lattice quantities.
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2.6 Gaussian State Preparation

The main algorithm of this paper requires the preparation of a multidimensional
Gaussian initial state, which can be obtained by generating the one-dimensional
Gaussian state on m parallel quantum registers. This task is known to be poly-
nomial time [14,19], and we provide a quantitative analysis in Appendix C. The
precise running time of preparing this Gaussian state is summarized below.

Theorem 5. For any positive integers q, p and for any s > 1, there exists a
quantum algorithm that prepares the one-dimensional Gaussian state

1√
ρ1/s(

1
q [q]c)

∑
x∈ 1

q [q]c

√
ρ1/s(x)|x〉 (5)

up to trace distance se−πs
2/8 + Q · 2−p using O(Q + p) qubits and O(Q · p3/2 ·

polylog(p)) quantum gates, where Q = log(q) and 1
q [q]c = [− 1

2 ,
1
2 ) ∩ 1

qZ.

The above theorem is obtained by instantiating Theorem 12 with parameters
µ = q/2, k = p and σ =

√
2q/s and relabeling the basis states. Whenever above

theorem is used as a subroutine in Theorem 2, choosing p = log(mQ/η2) is
sufficient, causing merely an extra error of η2.

Remark 6. In Theorem 1, we chose η to be 1/k2, yielding p = log(mk4Q). There-
fore, one call to the one-dimensional Gaussian state preperation with the param-
eters of Theorem 1 takes O(Q) qubits and O(Q log(kmQ)) quantum gates. As
Theorem 1 requires k subsequent preparations of the m-dimensional Gaussian
state, the total costs of the Gaussian state preparation steps are O(mQ) qubits
and Õ(kmQ) quantum gates. As this is negligible to the overall complexity of
Theorem 1, we can ignore these costs.

3 Preliminaries

We start with a brief introduction to Fourier analysis over arbitrary locally
compact Abelian groups. Our general treatment allows us to then apply the
general principles to the different groups that play a role in this work. For the
reader that is unfamiliar with such a general treatment, it is useful — and almost
sufficient — to think of R, of T = R/Z, and a finite group. For more details and
for the proofs we refer to [10].

3.1 Groups

Here and below we consider a locally compact Abelian group G. Such a group
admits a Haar measure µ that is unique up to a normalization factor. The crucial
property of such a Haar measure is that it is invariant under the group action.
Simple examples are G = R with µ the Lebesgue measure λ, or a finite group G
with µ the counting measure #.

10



The dual group Ĝ, consisting of the continuous group homomorphisms χ from
G into the multiplicative group of complex numbers of absolute value 1, is again
a locally compact Abelian group. As we shall see soon, for a fixed choice of the
normalization factor of the Haar measure µ for G, there is a natural choice for
the normalization factor of the Haar measure µ̂ for Ĝ.

Examples of locally compact Abelian groups that play an important role
in this work are: the m-dimensional real vector space Rm; the m-fold torus
Tm := Rm/Zm and more generally Rm/Λ for an arbitrary lattice Λ in Rm; and
the finite group Dm := 1

qZ
m/Zm ⊂ Tm (which is isomorphic to Zm/qZm) for a

positive integer q. Figure 1 below shows the corresponding dual groups as well
as the respective (dual) Haar measures as used in this paper.

G µ Ĝ µ̂

Rm λ R̂m ' Rm λ

Tm := Rm/Zm λ T̂m ' Zm #

Dm := 1
q
Zm/Zm 1

qm
# D̂m ' Zm/qZm #

Rm/Λ 1
det(Λ)

λ ̂(Rm/Λ) ' Λ∗ #

Fig. 1. Some groups G and their respective dual groups Ĝ, plus the considered (dual)
Haar measures µ and µ̂. Here, λ denotes the Lebesgue and # the counting measure.

In some cases it will be useful to identify the quotient groups Tm = Rm/Zm
and Dm = 1

qZ
m/Zm with the respective representing sets

Tmrep := [− 1
2 ,

1
2 )m ⊂ Rm and Dmrep := 1

qZ
m ∩ Tmrep ,

and similarly D̂m ' Zm/qZm with

D̂mrep := [q]mc := Zm ∩ [− q2 ,
q
2 )m .

It will be useful to understand that if H ⊂ G is a closed subgroup then G/H
and H have dual groups that satisfy the following natural isomorphisms.

Ĝ/H ' H⊥ := {χ ∈ Ĝ | χ(h) = 1∀h ∈ H} ⊂ Ĝ and Ĥ ' Ĝ/H⊥.

As we shall see soon, for any choice of the Haar measure µH for H there is a
natural choice for the Haar measure µG/H for G/H, and vice versa.

3.2 Norms and Fourier Transforms

Let G be as above with a fixed choice for the Haar measure µ. For any p ∈ [1,∞],
Lp(G) denotes the vector space of measurable functions f : G → C with finite

11



norm ‖f‖p (modulo the functions with vanishing norm), where

‖f‖pp :=

∫
g∈G
|f(g)|pdµ for p <∞,

and
‖f‖∞ := ess sup

g∈G
|f(g)|,

the essential supremum of |f |. We write ‖f‖p,G if we want to make G explicit.

For any function f ∈ L1(G), the Fourier transform of f is the function

FG{f} : Ĝ→ C, χ 7→
∫
g∈G

f(g)χ̄(g)dµ ,

also denoted by f̂ when G is clear from the context. The Fourier transform of
f ∈ L1(G) is continuous, but not necessarily in L1(Ĝ).

For example, for the group Dm := 1
qZ

m/Zm with the Haar measure as fixed
in Figure 1, the L2-norm and the Fourier transform are respectively given by

‖f‖22 =
1

qm

∑
x∈Dm

|f(x)|2 and F{f}(y) =
1

qm

∑
x∈Dm

f(x)e−2πi〈x,y〉 .

We note that we use a different convention on the scaling than what is common
in the context of the quantum Fourier transform.

Given the Haar measure µ for G, there exists a unique dual Haar measure µ̂
for Ĝ with the property that, for any f ∈ L1(G), if f̂ = FG{f} ∈ L1(Ĝ), then

f = F−1G {f̂}, where

F−1G {f̂} : G→ C, g 7→
∫
χ∈Ĝ

f̂(χ)χ(g)dµ̂

is the inverse Fourier transform. From now on it is always understood that the
Haar measure of the dual group is chosen to be the dual of the Haar measure of
the primal group. With this choice, we also have the following well known fact
[10, Thm. 3.4.8].

Theorem 6 (Plancherel’s Identity). For all f ∈ L1(G) ∩ L2(G),

‖f‖2,G = ‖FG{f}‖2,Ĝ .

Finally, we recall the convolution theorem, which states that f̂g = f̂ ? ĝ =∫
x∈G f̂(x)ĝ(· − x)dµ(x) for all functions f, g ∈ L1(G) that have Fourier trans-

forms f̂ , ĝ ∈ L1(G). This extends to functions f ∈ L1(G/H) and g ∈ L1(G),
with f understood as an H-periodic function on G. Tailored to G = Rm and
H = Λ, where Rm/Λ has dual group Λ∗, it then states that

FRm{fg}(y) = FRm/Λ{f} ? FRm{g}(y) =
∑
`∗∈Λ∗

FRm/Λ{f}(`∗)FRm{g}(y − `∗)

for any y ∈ Rm.

12



3.3 The Poisson Summation Formula

Poisson summation formula is well-known for the group G = R, where it states
that

∑
k∈Z f̂(k) =

∑
x∈Z f(x). In the case G = Z/NZ, it states that

N/s∑
i=0

f̂(is) =

s∑
j=1

f(jNs )

for any integer s that divides N . In order to formulate the Poisson summation
formula for an arbitrary locally compact Abelian group G, we need to introduce
the notion of restriction and periodization of functions.

Definition 2 (Restriction). Let H ⊆ G be a subset or a subgroup. For any
continuous function f : G→ C we define f

∣∣
H

: H → C, h 7→ f(h).

Definition 3 (Periodization). Let H be a closed subgroup of G with Haar
measure µH . For any function f ∈ L1(G), we define

f |G/H : G/H → C, g +H 7→
∫
h∈H

f(g + h)dµH .

For any closed subgroup of G with some fixed Haar measure µ and any choice
of the Haar measure µH for H, there exists a Haar measure µG/H for G/H such
that the quotient integral formula∫

G/H

(∫
H

f(g + h)dµH(h)

)
dµG/H(g +H) =

∫
G

f(g)dµ(g) (6)

holds for any continuous function f : G → C with compact support (see [10,
Section 1.5]).

With this choice of Haar measure for G/H, and with the dual measures for
the respective dual groups, we are ready to state the general form of the Poisson
summation formula (obtained from [10, Section 3.6], see also Fig. 2).

Theorem 7 (Poisson Summation Formula). For continuous f ∈ L1(G),

FH{f
∣∣
H
} = FG{f}|Ĥ and FG/H{f |

G/H} = FG{f}
∣∣
Ĝ/H

.

L1(H) L1(G) L1(G/H)

L1
(
Ĝ/Ĝ/H

)
L1(Ĝ) L1

(
Ĝ/H

)
FH

∣∣
H |G/H

FG FG/H

|Ĥ
∣∣
Ĝ/H

Fig. 2. Informal illustration of Theorem 7 by means of a diagram that commutes
whenever the maps are well defined.
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Applied to G = Rm and H = Zm, so that G/H = Tm and Ĝ/H ' Zm; and
applied to G = Tm and H = Dm below, we obtain the following.

Corollary 1. For continuous h ∈ L1(Rm), we have FTm{h|T
m

} = FRm{h}
∣∣
Zm .

Corollary 2. For continuous t ∈ L1(Tm), we have FDm
{
t
∣∣
Dm
}

= FTm{t}|D̂
m

.

3.4 The Fourier Transform of Vector-Valued Functions

The Fourier transform as discussed above generalizes to vector-valued functions
f : G → CN simply by applying F to the N coordinate functions, resulting in
a function F{f} : Ĝ → CN . By fixing an orthonormal basis, this extends to
functions f : G→ H for an arbitrary finite-dimensional complex Hilbert space,
where, by linearity of the Fourier transform, F{f} : Ĝ → H is independent of
the choice of the basis.

The norm ‖·‖2,G on functions G → C generalizes to vector-valued functions
f : G → H, as well, by defining ‖f‖2,G to be the norm of the scalar function
x 7→ ‖f(x)‖H =

√
〈f(x)|f(x)〉. The vectorial Fourier transforms and norms are

compatible with each other, in the sense that Plancherel’s identity (see Theo-
rem 6) still holds; that is,

‖f‖2,G = ‖FG{f}‖2,Ĝ .

Also the Poisson summation formula (see Theorem 7) is still valid, as well as the
convolution theorem whenever one of the functions in the product is scalar:

FG{fg} = FG{f} ? FG{g}.

An important example is the case f : Rm/Λ → H. Spelling out the above, we
get

FRm/Λ{f} : Λ∗ → H, `∗ 7→ |c`∗〉 :=
1

detΛ

∫
x∈Rm/Λ

|f(x)〉e−2πi〈x,`
∗〉dx ,

where the vectors |c`∗〉 are also referred to as the (vectorial) Fourier coefficients
of f . The Parseval-Plancherel identity then becomes∑

`∗∈Λ∗
〈c`∗ |c`∗〉 = ‖f‖22,Rm/Λ :=

1

detΛ

∫
x∈Rm/Λ

〈f(x)|f(x)〉dx .

3.5 Trigonometric Approximation

As another application of the Poisson summation formula, we derive a relation
between the Lipschitz constant of a function on Tm and the ‘error of discretiza-
tion’ in the Fourier transform when restricting the function to Dm.
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Theorem 8. For any Lipschitz function h : Tm → H with Lipschitz constant
Lip(h), and any subset C ⊆ D̂m, we have

∣∣ ‖1C · FDm {h}‖2,D̂m − ‖1C · FTm{h}‖2,Zm
∣∣ ≤ 4π

√
mLip(h)

q

Here and below, we slightly abuse notation and use 1C as indicator function
acting on D̂m and on Zm, justified by identifying D̂m with D̂mrep = [q]mc ⊂ Zm.
Also, we write FDm {h} instead of FDm {h|Dm}, taking it as understood that h
is restricted to Dm when applying FDm .

Proof. Using a result of Yudin ([38, Example I after Theorem 2], see also5 Ap-
pendix D), there exists a trigonometric approximation t of h, i.e. a function
t : Tm → C with t̂(x) := FTm{t}(x) = 0 for all x 6∈ [q]mc so that ‖h− t‖∞ ≤
π
√
mLip(h)/q. Recalling that D̂m ' Zm/qZm, the fact that t̂ : Zm → C vanishes

outside of [q]mc implies for all x ∈ [q]mc that

t̂(x) =
∑
d∈qZm

t̂(x+ d) = t̂|D̂
m

(x+ qZm) = FDm {t} (x+ qZm) ,

where the last equality holds by Corollary 2 (and our convention of omitting
the restriction to Dm). In particular, we have ‖1C · FDm {t} ‖2,D̂m = ‖1C ·
FTm{t}‖2,Zm . Therefore, by the (reverse) triangle inequality and the linearity
of the Fourier transform, one obtains∣∣ ‖1C · FDm {h}‖2,D̂m − ‖1C · FTm{h}‖2,Zm

∣∣
≤ ‖1C · FDm {h− t}‖2,D̂m + ‖1C · FTm{h− t}‖2,Zm .

We now observe that

‖1C · FG{h− t}‖2,Ĝ ≤ ‖FG{h− t}‖2,Ĝ = ‖h− t‖2,G ≤
√
µ(G) ‖h− t‖∞

where µ(G) =
∫
G
dµ denotes the total measure of G. We conclude by noting that

µ(G) = 1 for both groups at hand G = Dm and G = Tm. ut

3.6 The Gaussian Function and Smoothing Errors

Let m be a fixed positive integer. For any parameter σ > 0, we consider the
m-dimensional Gaussian function

ρσ : Rm → C , x 7→ e−
π‖x‖2

σ2 ,

which is well known to satisfy the following basic properties.

5 In Appendix D, we provide a slight generalization of Yudin’s paper [38] to functions
with vectorial output. In principle the bound of Theorem 8 can also derived without
this generalization, but at the cost of an undesirable extra factor dimH = 2n.
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Lemma 1. For all σ > 0, m ∈ N and x, y ∈ Rm, we have
∫
z∈Rm ρσ(z)dz = σm,

FRm{ρσ} = σmρ1/σ,
√
ρσ(x) = ρ√2σ(x) and ρσ(x)ρσ(y) = ρ σ√

2
(x+y2 )ρ σ√

2
(x−y2 ).

Remark 7. From these properties it follows that the integral of the L2-norm of

x 7→ σm/2 ·
√
ρ1/σ(x) equals 1, i.e.,

∥∥σm/2 ·√ρ1/σ(x)
∥∥2
2,Rm = 1.

The following two results (and the variations we discuss below) will play an
important role and will be used several times in this paper: Banaszczyk’s bound,
originating from [1], and the smoothing error 6 , as introduced by Micciancio
and Regev [21]. They allow us to control

ρσ(X) :=
∑
x∈X

ρσ(x) ,

for certain discrete subsets X ⊆ Rm. For ease of notation, we let

β(m)
z :=

(
2πez2

m

)m/2
e−πz

2

,

which decays super-exponentially in z (for fixed m). The following formulation
of Banaszczyk’s lemma is obtained from [22, Equation (1.1)].

Lemma 2 (Banaszczyk’s Bound). Whenever r/σ ≥
√

m
2π ,

ρσ
(
(Λ+ t) \ Br

)
≤ β(m)

r/σ · ρσ(Λ) ,

where Br = Br(0) = {x ∈ Rm
∣∣ |x| < r}.

Imitating techniques from [21, Lemma 3.2], we have:

Lemma 3. Let σ ≥
√
m

λ1(Λ∗)
. Then ρ1/σ(Λ∗\0) ≤ 2 · β(m)

σλ1(Λ∗)
.

As a direct corollary, we have the following result.

Corollary 3. Let σ ≥ 2
√
m, and let x ∈ Rm with ‖x‖∞ ≤ 1/2. Then

ρ1/σ
(
Zm\{0}+ x

)
≤ 2β

(m)
σ/2 .

Proof. We have ρ1/σ
(
Zm\{0}+x

)
≤ ρ1/σ

(
(Zm+x)\B 1

2

)
≤ β(m)

σ/2ρ1/σ(Zm), where

the second inequality follows from Lemma 2. Using Lemma 3 to argue that

ρ1/σ(Zm) = 1 + ρ1/σ(Zm\0) ≤ 1 + 2β
(m)
σ ≤ 2 then proves the claim. ut

The following lemma, which combines [21, Lemma 4.1] and [21, Lemma 3.2],
controls the fluctuation of the sum ρs(Λ+ t) for varying t ∈ Rm.

6 Although most literature on lattices analyze smoothing errors in terms of the smooth-
ing parameter ηε, we chose not to do so. Instead, this paper addresses smoothing
errors in a reversed and more direct way, making the errors occurring in the later
analysis more easy to describe.
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Lemma 4 (Smoothing Error). Let Λ ∈ Rm be a full rank lattice, and let
σ ≥
√
m/λ1(Λ∗). Then, for any t ∈ Rm,

(1− 2β
(m)
σλ1(Λ∗)

)
σm

detΛ
≤ ρσ(Λ+ t) ≤ (1 + 2β

(m)
σλ1(Λ∗)

)
σm

detΛ
. (7)

Corollary 4. For σ ≥
√
m

λ1(Λ∗)
and for any t ∈ Rm, we have ρσ(Λ+ t) ≤ 2 σm

detΛ .

Proof. Using Lemma 4 and noticing 2β
(m)
σλ1(Λ∗)

≤ 2β
(m)√
m
≤ 1 yields the result. ut

3.7 Lipschitz Condition

Theorem 9 (Rademacher’s theorem). A Lipschitz function f : Rm/Λ→ H
has weak partial derivatives ∂xjf : Rm/Λ→ H lying in L2(Rm/Λ). In particular,∑m
j=1

∥∥∂xjf ∥∥22,Rm/Λ ≤ Lip(f)2.

Proof. Combining the proof of [18, Theorem 4.1 and 4.9] and [36, Theorem 2]
on measures of compact sets, we obtain this result. ut

Corollary 5. Let f : Rm/Λ → H be a Lipschitz-continuous function, and de-
note by |c`∗〉 the vectorial Fourier coefficients of f . Then,

∑
`∗∈Λ∗
‖`∗‖≥B

〈c`∗ |c`∗〉 ≤
Lip(f)2

4π2B2
.

Proof. Since f is Lipschitz, we can apply Theorem 9. Furthermore, the identity
|f(x)〉 =

∑
`∗∈Λ∗ |c`∗〉e2πi〈x,`

∗〉 implies |∂xjf(x)〉 = 2πi
∑
`∗∈Λ∗ `

∗
j |c`∗〉e2πi〈x,`

∗〉

almost everywhere ([37, Lemma V.2.11] or [31, Lemma 2.16]). Finally, given that∑m
j=1

∥∥∂xjf∥∥22,Rm/Λ ≤ Lip(f)2, Plancherel’s identity implies that

Lip(f)2 ≥
m∑
j=1

∥∥∂xjf∥∥22,Rm/Λ = 4π2
∑
`∗∈Λ∗

‖`∗‖22 〈c`∗ |c`∗〉

≥ 4π2
∑
`∗∈Λ∗
‖`∗‖2≥B

‖`∗‖22 〈c`∗ |c`∗〉 ≥ 4B2π2
∑
`∗∈Λ∗
‖`∗‖2≥B

〈c`∗ |c`∗〉 ,

from which the claim follows. ut

4 Algorithm

4.1 The Algorithm

Given a Λ-periodic function f : Rm → S as discussed in Section 2, which maps a
classical input x to a quantum state |f(x)〉, we consider the following quantum
algorithm (see Figure 3). The algorithm has oracle access to f , meaning that
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it has access to a unitary that maps |x〉|0〉 to |x〉|f(x)〉. As a matter of fact,
we may obviously assume the algorithm to have oracle access to a unitary that
maps |x〉|0〉 to |x〉|f(V x)〉 for a parameter V ∈ R chosen by the algorithm. Per
se, x may be arbitrary in Rm; for any concrete algorithm it is of course necessary
to restrict x to some finite subset of Rm.

The algorithm we consider follows the blueprint of the standard hidden-
subgroup algorithm. Notable differences are that we need to discretize (and
finitize) the continuous domain Rm of the function, and the algorithm starts off
with a superposition that is not uniform but follows a (discretized and finitized)
Gaussian distribution. The reason for the latter choice is that Gaussian distri-
butions decay very fast and behave nicely under the Fourier transform (as they
are eigenfunctions of the Fourier transform).

The algorithm is given in Figure 3 below. It uses two quantum registers, each
one consisting of a certain number of qubits. Associated to the first register are
orthonormal bases {|x〉Dm}x∈Dm and {|y〉D̂m}y∈D̂m where the basis vectors are
labeled by x ∈ Dm and y ∈ D̂m, respectively, which we identify with elements
x ∈ Dmrep and y ∈ D̂mrep (see Section 3.1). The second register has state space H.
The algorithm is parameterized by q ∈ N (which determines Dm), s > 0 and
V > 0. Intuitively, the fraction s

V is tightly related to the absolute precision of
the output, whereas q is connected with the number of qubits needed.

Algorithm 1: Quantum algorithm for the dual lattice sampling prob-
lem

1 Prepare the Gaussian state |ψ◦〉 :=
∑
x∈Dm

√
ρ1/s(x) · |x〉Dm |0〉 ;

2 Apply the f-oracle, yielding
∑
x∈Dm

√
ρ1/s(x) · |x〉Dm |f(V x)〉 ;

3 Apply the quantum Fourier transform on the first register, yielding

the unnormalized state
∑
x∈Dm

∑
y∈D̂m

√
ρ1/s(x) · e−2πi〈x,y〉 · |y〉D̂m |f(V x)〉 ;

4 Measure the first register in the D̂mrep-basis yielding some y ∈ D̂mrep, and
output y

V
;

Fig. 3. The continuous-hidden-subgroup quantum algorithm.

The description and Analysis of Step 1 is deferred to Appendix C. It will
be shown (as summarized in Theorem 5) that its cost is negligible compared to
the main cost of Algorithm 1, while contributing an error of at most o(η) in the
trace distance.
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4.2 The Figure of Merit

Recall that N = dimH = 2n. Then the state after step (2) of Algorithm 1 equals,
up to normalization,

|ψ〉 := sm/2
∑
x∈Dm

√
ρ1/s(x) |x〉Dm |f(V x)〉

which we can rewrite as

|ψ〉 =
∑
x∈Dm

|x〉Dm |h(x)〉

where

h(x) := sm/2
√
ρ1/s(x) · |f(V x)〉 .

Applying the quantum Fourier transform in step (3) maps this to

|ψ̂〉 = q−m/2
∑
x∈Dm

∑
y∈D̂m

e−2πi〈x,y〉|y〉D̂m |h(x)〉 = qm/2
∑
y∈D̂m

|y〉D̂m |FDm {h} (y)〉 ,

where the factor qm/2 comes from the fact that, by our convention, the Fourier
transform FDm is scaled with the factor q−m, while the quantum Fourier trans-
form comes with a scaling factor q−m/2.

Up to normalization, the probability to observe outcome y in step (4) thus is

〈ψ̂|(|y〉〈y| ⊗ I)|ψ̂〉 = qm ‖FDm {h} (y)‖2H ,

and so, for any “target” subset C ⊂ D̂m, the probability for the algorithm to
produce an outcome y ∈ C equals

D(C) =
∑
y∈C

〈ψ̂|(|y〉〈y| ⊗ I)|ψ̂〉
〈ψ◦|ψ◦〉

=
‖1C · FDm {h}‖22,D̂m
sm

qm

∑
x∈Dm ρ1/s(x)

. (8)

Intuitively, in the limit q →∞, the grid 1
qZ

m becomes Rm; thus, neglecting

constant factors, the function FDm {h} is expected to converge to

FRm{ρ√2/sf(V ·)} = ρs/
√
2 ? FRm{f(V ·)} .

Furthermore, when V is large enough compared to s then, relative to the dual
lattice V Λ∗, the Gaussian function behaves as a Dirac delta function. Thus, the
above function is then supported by V Λ∗ and takes on the values |c`∗〉. Hence,
by taking square norms, we get the claimed 〈c`∗ |c`∗〉.

Below, we prove that this intuition is indeed correct, and we work out the
actual “rate of convergence”.
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5 Analysis

5.1 Proof Overview

In the overview here and in the formal analysis in the next section, we consider
the case V = 1. This is without loss of generality; in order to deal with an
arbitrary V we simply apply our analysis to the function fV := f(V ·), with the
effect that in the error term, Λ∗ becomes V Λ∗ and Lip(fV ) becomes V Lip(f).

The error analysis (for V = 1) is divided into three parts. The first part
consists of showing that the denominator from Equation (8) satisfies

sm

qm

∑
x∈Dm

ρ1/s(x) ≈ 1 .

In the second part, which is the most technical one, we show that for any
C ⊂ D̂m, also understood as a subset of D̂mrep = [q]mc ⊂ Zm,

‖1C · FDm {h}‖22,D̂m &
∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

〈c`∗ |c`∗〉 . (9)

We recall that |c`∗〉 are the vectorial Fourier coefficients of f and Bδλ∗1 (`∗) =
Bδλ∗1 (`∗) ∩ Zm. This approximation (9) is divided into the following five steps:

‖1CFDm {h}‖22,D̂m
(1)
≈
∥∥∥1CFDm

{
h|T

m
}∥∥∥2

2,D̂m

(2)
≈
∥∥∥1CFTm{h|T

m

}
∥∥∥2
2,Zm

(3)
= ‖1CFRm{h}‖22,Zm

(4)
≈

∑
`∗∈Λ∗

〈c`∗ |c`∗〉 · ιC(`∗)
(5)

≥
∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

〈c`∗ |c`∗〉 .

It thus follows that
D(C) &

∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

〈c`∗ |c`∗〉 ,

and therefore, applied to C := Bδλ∗1 (S), that for any S ⊂ Λ∗ for which Bδλ∗1 (S) ⊂
[q]mc , requirement (3) is satisfied.

The third part of the analysis is to show that (3) is satisfied also for S ⊂ Λ∗
for which Bδλ∗1 (S) is not fully contained in [q]mc . For such S, it is then sufficient to
show that

∑
`∗∈S\S0

〈c`∗ |c`∗〉 ≈ 0 then, where S0 = {`∗ ∈ S | Bδλ∗1 (`∗) ⊆ [q]mc }.
We prove this by means of Corollary 5.

We emphasize that in the formal proof below, we explicitly follow this 3-part
structure of the proof, with part 2 being divided into 5 steps as indicated above.

5.2 Formal Analysis

Part 1 By Lemma 4, we have (whenever q/s ≥
√
m),

sm

qm

∑
x∈Dm

ρ1/s(x) ≤ sm

qm
· ρ1/s

(
1

q
Zm
)
≤ 1 + 2β

(m)
q/s . (10)
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Therefore,

‖1C · FDm {h}‖22,D̂m
sm

qm

∑
x∈Dm ρ1/s(x)

≥ ‖1C · FDm {h}‖22,D̂m − εdenom (11)

with εdenom = 2β
(m)
q/s .

Part 2 Recall that h = sm/2·f ·ρ√2/s is a function h : Rm → H. In the following,
by slightly abusing notation, we also understand h as a function h : Tm → H
by considering the restriction of h to Tmrep = [− 1

2 ,
1
2 )m. Similarly, we understand

h as a function h : Dm → H by considering its restriction to Dmrep = Tmrep∩ 1
qZ

m.

Step 1. Observe that∥∥∥1C · FDm {h} − 1C · FDm
{
h|T

m
}∥∥∥

2,D̂m
≤
∥∥∥FDm

{
h− h|T

m
}∥∥∥

2,D̂m
=
∥∥∥h|Tm − h∥∥∥

2,Dm
.

Writing out the definition of h|T
m

and h, we obtain (provided that s
2
√
2
≥
√
m)

∥∥∥h|Tm − h∥∥∥2
2,Dm

=
1

qm

∑
x∈Dm

∥∥∥∥∥∥
∑

z∈Zm\0

h(x+ z)

∥∥∥∥∥∥
2

H

≤
‖f‖2∞ sm

qm

∑
x∈Dm

( ∑
z∈Zm\0

ρ√2/s(x+ z)

)2

≤ 4sm(β
(m)
s

2
√

2

)2,

as ρ√2/s

(
Zm\{0}+ x

)
≤ 2β

(m)
s

2
√

2

, from Corollary 3, combining with the fact that

‖f‖∞ = 1. Taking square roots and using the reverse triangle inequality yields∣∣∣∣‖1C · FDm {h}‖2,D̂m −
∥∥∥1C · FDm

{
h|T

m
}∥∥∥

2,D̂m

∣∣∣∣ ≤ 2sm/2β
(m)
s

2
√

2

=: εper

Step 2. Using Theorem 8 with h|T
m

, one obtains∣∣∣∣∥∥∥1C · FDm
{
h|T

m
}∥∥∥

2,D̂m
−
∥∥∥1C · FTm{h|T

m

}
∥∥∥
2,Zm

∣∣∣∣ ≤ εlip,
where εlip = 4π

√
mLip(h|T

m
)

q . Recall that we use 1C as indicator function acting

on Zm and on D̂m ' Zm/qZm in the obvious way.

The Lipschitz constant of h|T
m

can be obtained by taking the maximum value
of the absolute value of the derivative.

∂

∂xj

(
h|T

m
)

= sm/2
∑
z∈Zm

(
∂

∂xj
f(x+ z) · ρ√2/s(x+ z) + f(x+ z)

∂

∂xj
ρ√2/s(x+ z)

)
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The norm of ∇
(
h|T

m
)

is therefore bounded by

sm/2

(
Lip(f)ρ√2/s(x+ Zm) + πs2 ‖f‖∞

∑
z∈Zm

‖x+ z‖ ρ√2/s(x+ z)

)

≤ sm/2
(
2 Lip(f) + 2πs2

)
where we used ‖∇f‖ =

√∑m
j=1

∥∥∥ ∂
∂xj
f
∥∥∥2
H
≤ Lip(f), ‖f‖∞ ≤ 1, ∇ρ√2/s(x) =

πs2x · ρ√2/s(x), ρ√2/s(x + Zm) ≤ 2 and
∑
z∈Zm ‖x+ z‖ ρ√2/s(x + z) ≤ 2. The

second last inequality follows from ρ√2/s(x + Zm) ≤ 1 + ρ√2/s(Zm\{0} + x) ≤
1 + 2β

(m)
s

2
√

2

≤ 2, see Corollary 3. The last inequality can be obtained by the fact

that ‖x+ z‖ ρ√2/s(x+z) ≤ ρ√2/(s−1)(x+z), and repeating the former argument.

Step 3. Apply Corollary 1 to conclude that∥∥∥1C · FTm{h|T
m

}
∥∥∥
2,Zm

= ‖1C · FRm{h}‖2,Zm ,

where we continue to abuse notation here by identifying FRm{h} with its re-
striction to Z.

Using |a2 − b2| = |a + b||a − b| ≤ (|a − b| + 2|a|)|a − b| and the fact that
‖1C · FDm {h}‖2,D̂m ≤ 2 (which follows from Equation (8) and Equation (10)),
we conclude that∣∣∣‖1C · FDm {h}‖22,D̂m − ‖1C · FRm{h}‖22,Zm

∣∣∣ ≤ 5(εper + εlip),

where we assume that εper + εlip < 1.

Step 4. By applying the convolution theorem as outlined in Section 3.2, we see
that

FRm{h}[y] = FRm/Λ{f}?FRm{sm/2ρs/√2}(y) =

(
2

s

)m/2∑
`∗∈Λ∗

|c`∗〉ρs/√2(y−`∗)

where |c`∗〉 are the vectorial Fourier coefficients of f . Therefore,

‖FRm{h}[y]‖2H =

(
2

s

)m ∑
k∗∈Λ∗

∑
`∗∈Λ∗

〈c`∗ |ck∗〉ρs/√2(y − `∗)ρs/√2(y − k∗)

=

(
2

s

)m ∑
u∗∈ 1

2Λ
∗

∑
v∗∈u∗+Λ∗

〈cv∗+u∗ |cv∗−u∗〉ρs/2(u∗)ρs/2(y − v∗) ,

where the latter is obtained by the variable substitution u∗ = `∗−k∗
2 , v∗ = `∗+k∗

2 ,
and using Lemma 1. Summing over y ∈ C, setting

ιC(`∗) :=

(
2

s

)m∑
y∈C

ρs/2(y − `∗) ,
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and splitting into u∗ = 0 and u∗ 6= 0, we obtain

‖1CFRm{h}‖22,Zm =
∑
v∗∈Λ∗

〈cv∗ |cv∗〉 · ιC(v∗)

+
∑

u∗∈ 1
2Λ
∗\0

ρs/2(u∗)
∑

v∗∈u∗+Λ∗
〈cv∗+u∗ |cv∗−u∗〉 · ιC(v∗)

We now bound the second term. Assuming s ≥
√
m, we have that ιC(v∗) ≤(

2
s

)m
ρs/2(Zm + t) ≤ 2 (see Corollary 4). Furthermore, by the Cauchy-Schwartz

inequality,∣∣∣∣∣ ∑
v∗∈u∗+Λ∗

〈cv∗+u∗ |cv∗−u∗〉

∣∣∣∣∣ ≤ ∑
v∗∈Λ∗

√
〈cv∗+2u∗ |cv∗+2u∗〉〈cv∗ |cv∗〉

≤
∑
v∗∈Λ∗

(〈cv∗+2u∗ |cv∗+2u∗〉+ 〈cv∗ |cv∗〉) = 2 ‖f‖22,Rm/Λ = 2

Finally, using Lemma 3, we have∑
u∗∈ 1

2Λ
∗\0

ρs/2(u∗) = ρs (Λ∗ \ 0) ≤ 2 · β(m)
λ∗1
s

.

Putting all together, we obtain that∣∣∣∣∣‖1CFRm{h}‖22,Zm −
∑
`∗∈Λ∗

〈c`∗ |c`∗〉ιC(`∗)

∣∣∣∣∣ ≤ εdiag ,
where εdiag = 8 · β(m)

λ∗1/s
.

Step 5. Recall the notation Bδλ∗1 (`∗) = {x ∈ Zm | |x − `∗| < δλ∗1}. Whenever
Bδλ∗1 (`∗) ⊆ C, it obviously holds that

ιC(`∗) =

(
2

s

)m∑
y∈C

ρs/2(y − v∗) ≥
(

2

s

)m ∑
y∈Bδλ∗1 (`

∗)

ρs/2(y − `∗)

≥
(

2

s

)m
ρs/2(Zm)

(
1− β(m)

2δλ∗1/s

)
≥ (1− 2 · β(m)

s/2 )(1− β(m)
2δλ∗1/s

) ,

where the second inequality follows from Banaszczyk’s bound (see Lemma 2)
and the last from Lemma 4. It follows then that∑

`∗∈Λ∗
〈c`∗ |c`∗〉ι(`∗) ≥ (1− εsmooth)

∑
`∗∈Λ∗

BV δ(V `
∗)⊆C

〈c`∗ |c`∗〉 .

where εsmooth = 2 · β(m)
s/2 + β

(m)
2δλ∗1/s
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Finalizing By collecting all the error terms, we obtain that

‖1C · FDm {h}‖22,D̂m

≥
∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

〈c`∗ |c`∗〉 − εsmooth − εdiag − 5(εper + εlip)

whenever s, δ and λ∗1 satisfy the following:

2δλ∗1
s
≥
√
m and

s

2
√

2
≥
√
m. (12)

Part 3 Let D be the distribution defined by the output y of Algorithm 1 (recall
that we assumed V = 1); note that D has support only on [q]mc . Throughout
this part of the analysis, S denotes a subset of Λ∗.

By above analysis, we can conclude that whenever Bδλ∗1 (S) ⊆ [q]mc , we have
(putting C = Bδλ∗1 (S)),

pS := D(Bδλ∗1 (S)) ≥
∑
`∗∈S

〈c`∗ |c`∗〉 − η′,

where η′ = εsmooth + εdiag + εdenom + 5(εper + εlip).

For general S ⊆ Λ∗, write S = S0 ∪ S1 as a disjoint union, where S0 =
{`∗ ∈ S | Bδλ∗1 (`∗) ⊆ [q]mc }. Then it is evident that S1 ⊆ Λ∗\[− q4 ,

q
4 ]m. Then,

putting εtail = 4mLip(f)2

π2q2 ≥
∑
`∗∈Λ∗\[− q4 ,

q
4 ]
m〈c`∗ |c`∗〉 ≥

∑
`∗∈S1

〈c`∗ |c`∗〉, (see

Corollary 5), we have

D(Bδλ∗1 (S)) ≥ D(Bδλ∗1 (S0)) ≥
∑
`∗∈S0

〈c`∗ |c`∗〉 − η′ ≥
∑
`∗∈S

〈c`∗ |c`∗〉 − εtail − η′,

=
∑
`∗∈S

〈c`∗ |c`∗〉 − εsmooth − εdiag − εdenom − 5(εper + εlip)− εtail (13)

5.3 Tuning Parameters

The left hand side of the table in Figure 4 collects the different error terms
obtained above, considering V = 1. The general case is obtained simply by
applying the above analysis to the function fV := f(V ·). The hidden lattice
of fV is 1

V Λ, which has V Λ∗ as its dual, and the Lipschitz constant of fV is
V Lip(f). Thus, the requirements on the parameters (see Equation (12)) change
to

2δV λ∗1
s

≥
√
m and

s

2
√

2
≥
√
m, (14)

and the different error terms become as listed in the table in Figure 4.
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Error V = 1 V arbitrary

εdenom 2β
(m)

q/s 2β
(m)

q/s

εsmooth 2 · β(m)

s/2 + β
(m)

2δλ∗1/s
2 · β(m)

s/2 + β
(m)

2δV λ∗1/s

εdiag 8β
(m)

λ∗1/s
8β

(m)

V λ∗1/s

εper 2sm/2β
(m)
s

2
√

2

2sm/2β
(m)
s

2
√

2

εlip
4π
√
msm/2(2 Lip(f)+2πs2)

q

4π
√
msm/2(2V Lip(f)+2πs2)

q

εtail
mLip(f)2

π2q2
mV 2 Lip(f)2

π2q2

Fig. 4. Change of the errors when applying the analysis to fV

Recall that β
(m)
z :=

(
2πez2

m

)m/2
e−πz

2

and N = 2n. We can now choose the
parameters s, V and q of the algorithm appropriately to enforce all the error
terms to be small. In detail, we can select:

– s ∈ O(
√
m log(η−1)) so that 5εper ≤ η/6, and 2β

(m)
s/2 ≤ η/12 in εsmooth.

– V ∈ O(

√
m log(η−1)s

δλ∗1
) = O(m log(η−1)

δλ∗1
) so that εsmooth, εdiag ≤ η/6.

– Q = log(q) ∈ O(m log(s)+log(V )+log(Lip(f))+log(η−1)) so that 5εlip ≤ η/6
and εtail ≤ η/6.

With the above choice of parameters, εsmooth + εdiag + εdenom + 5(εper + εlip) +
εtail ≤ η in Equation (13). Unrolling the expression of Q = log(q) and recalling
that the quantum Fourier transform requires a quadratic number of gates [26,
Ch. 5], we obtain the main theorem.

Theorem 2. Algorithm 1 solves the Dual Lattice Sampling Problem with pa-
rameters η and δ; it uses m calls to the Gaussian superposition subroutine (see
Theorem 5), one quantum oracle call to f , mQ+ n qubits, and O(m2Q2) quan-
tum gates, where

Q = O

(
m log

(
m log

1

η

))
+O

(
log

(
Lip(f)

η · δλ∗1

))
. (4)

6 From Sampling to Full Dual Lattice Recovery

We have so far focused on approximate sampling dual lattice points following
weights 〈c`∗ |c`∗〉 for `∗ ∈ Λ∗, regardless of how useful this distribution may be.
Indeed, until now, it could be that the function f : Rm/Λ → S is constant,
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and therefore that the weight is concentrated on 0 ∈ Λ∗. We would like now
make sure we can reconstruct (approximately) Λ∗ from such samples, i.e., that
a sufficient number of sampled vectors from Λ∗ will generate it. Informally, an
equivalent condition is that the weight 〈c`∗ |c`∗〉 is not concentrated on any proper
sublattice M∗ ( Λ∗. More formally, we give the following sufficient conditions.

Definition 4. Let L ⊆ Rm be a full-rank lattice. A distribution D on L is
called p-evenly distributed whenever Prv←D[v ∈ L′] ≤ p for any proper sublattice
L′ ( L.

Definition 5. Let L ⊆ Rm be a full-rank lattice. A distribution D on L is called
(R, q)-concentrated whenever Prv←D[‖v‖ ≥ R] ≤ q.

Lemma 5. Let L ⊆ Rm be a full-rank lattice with a p-evenly distributed and
(R, q)-concentrated distribution D. Denote by S the random variable defined by
the number of samples that needs to be drawn from D such that the samples
together generate L as a lattice. Then, for all α > 0,

Pr

[
S > (2 + α) · (t+m)

1− p− q

]
≤ exp(−α(t+m)/2)

where t = m log2(R)− log2(det(L)).

Proof. First, we define the following sublattices of L, for any v1, . . . , vj−1 ∈ L.

Lv1,...,vj−1
=

{
spanR(v1, . . . , vj−1) ∩ L if dim(spanR(v1, . . . , vj−1)) < m
〈v1, . . . , vj−1〉 otherwise.

Consider a sequence of samples (vi)i>0 (from D). We call vj ‘good’ whenever
‖vj‖ ≤ R and vj /∈ Lv1,...,vj−1 . We argue that we need at most m+t good vectors
to generate L.

Denote L′ for the lattice generated by the m+ t good vectors. Then the first
m good vectors ensure that L′ is of rank m, whereas the last t good vectors will
reduce the index of the L′ lattice in L. Calculating determinants, using the fact
that all good vectors are bounded by R, we have det(L′) ≤ Rm/2t ≤ det(L).
This yields L′ = L.

Denote by X the random variable having the negative binomial distribution
with success probability p+ q and number of ‘failures’ m+ t. That is, X is the
number of independent samples from a (p+ q)-Bernoulli distribution until m+ t
‘failures’ 7 are obtained. We argue that the random variable S is dominated by
the random variable X, i.e., Pr[S > x] ≤ Pr[X > x] for every x ∈ N.

Again, consider a sequence of samples (vi)i>0 (from D). The probability of vj
being a ‘good’ vector is at least 1−p−q, by the fact that D is (R, q)-concentrated
and p-evenly distributed. Because at most m + t ‘good’ vectors are needed to
generate the whole lattice, S is indeed dominated by X. Therefore, for any k ∈ N,

Pr

[
S >

t+m+ k

1− p− q

]
≤ Pr

[
X >

t+m+ k

1− p− q

]
≤ Pr [B < m+ t] (15)

7 In our case, the failures are the ‘good’ vectors. We nonetheless chose the word ‘failure’
because it is standard nomenclature for the negative binomial distribution.
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≤ exp

(
−1

2

k2

t+m+ k

)
where B is binomially distributed with b t+m+k

1−p−q c trials and success probability
1−p−q. The first inequality follows from the fact that S is upper bounded by X.
The second inequality comes from the close relationship between the negative
binomial distribution and the binomial distribution [13, Ch. 8, Ex. 17]. The
last inequality follows from Chernoff’s bound. Putting k = (1 + α)(t + m) into
Equation (15) yields the claim. ut

We conclude by relating the parameters (a, r, ε) of the HSP oracle (Defini-
tion 1) f : Rm/Λ→ S and the assumption used in the above Lemma 5.

Lemma 6. Let Λ be a lattice, and let M ) Λ a proper super-lattice of Λ. Then
there exists a v ∈M such that d(v, Λ) ≥ λ1(Λ)/3.

Proof. Let w ∈M be the shortest non-zero vector in M and write ‖w‖ = αλ1(Λ)
for α < 1. We show that v = d 1

3αe · w ∈ M suffices. If α ≥ 1/3 this is certainly
true. For α < 1/3 it is clear that ‖v‖ ≥ λ1(Λ)/3 and ‖v‖ ≤ λ1(Λ)/3 + ‖w‖ ≤
2
3λ1(Λ). In particular, for any ` ∈ Λ \ {0}, ‖v − `‖ ≥ λ1(Λ) − ‖v‖ ≥ λ1(Λ)/3.
Therefore, d(v, Λ) ≥ λ1(Λ)/3. ut

Lemma 7. Let Λ be a lattice and M ) Λ a proper super-lattice of Λ. Then the
number N =

∣∣{c ∈M/Λ | d(c, Λ) < 1
6λ1(Λ)

}∣∣ of close cosets is at most 1
2 ·|M/Λ|.

Proof. By Lemma 6 there exists a v ∈M such that d(v, Λ) ≥ 1
3λ1(Λ). Denoting

T =
{
c ∈M/Λ | d(c, Λ) < 1

6λ1(Λ)
}

, we can deduce that T ∪ (T + v) is a disjoint
union in M/Λ. Indeed, elements c ∈ T satisfy d(c, Λ) ≤ 1

6λ1(Λ), whereas c′ ∈
T+v satisfy d(c′, Λ) ≥ d(v, Λ)− 1

6λ1(Λ) ≥ 1
6λ1(Λ). Therefore N = |T | ≤ 1

2 |M/Λ|.
ut

Lemma 8. Let f : Rm → S be an (a, r, ε)-HSP oracle of the full-rank lattice
Λ ⊂ Rm, with r ≤ λ1(Λ)/6. Let Dideal be the distribution supported by Λ∗, with
weight 〈c`∗ |c`∗〉 at `∗ ∈ Λ∗, where |c`∗〉 are the vectorial Fourier coefficients of

the function f . Then Dideal is both ( 1
2 + ε)-evenly distributed and (R, ma2

4π2R2 )-
concentrated for any R > 0.

Proof. The distribution Dideal being (R, ma2

4π2R2 )-concentrated for any R > 0 is
a direct consequence of Corollary 5. For the ( 1

2 + ε)-evenly distributed part,
we argue as follows. Let M∗ be any strict sublattice of Λ∗, and let M be its

dual, which is then a superlattice of Λ. Put f |R
m/M

(x) = 1
|M/Λ|

∑
v∈M/Λ f(x+

v), the periodization of f with respect to Rm/M (c.f. Definition 3). We have
the following sequence of equalities, of which the first follows from the Poisson
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summation formula (see Theorem 7).∑
v∗∈M∗

〈cv∗ |cv∗〉 =
∥∥∥f |Rm/M∥∥∥

2,Rm/M
=

1

detM

∫
x∈Rm/M

〈
f |R

m/M ∣∣f |Rm/M〉dx,
=

1

|M/Λ|2
∑

v,w∈M/Λ

1

detM

∫
x∈Rm/M

〈f(x+ v)| f(x+ w)〉 dx︸ ︷︷ ︸
Iv,w

=
1

|M/Λ|2
∑

v,w∈M/Λ
dRm/Λ(v,w)<r

Iv,w +
1

|M/Λ|2
∑

v,w∈M/Λ
dRm/Λ(v,w)≥r

Iv,w

By the definition of an (a, r, ε)-oracle, we have that |Iv,w| ≤ ε whenever dRm/Λ(v, w) ≥
r. In the rest of the cases we have |Iv,w| ≤ 1, because f maps to the unit sphere.

Above expression is therefore bounded by |M/Λ ∩ Br|
|M/Λ| + ε, where Br is the open

unit ball with radius r. By Lemma 7, we have |M/Λ ∩ rB|
|M/Λ| ≤ 1

2 for r ≤ λ1(Λ)/6.

Summarizing all results, we conclude that∑
v∗∈M∗

〈cv∗ |cv∗〉 ≤
1

2
+ ε.

Since M∗ was chosen arbitrarily, we can conclude that Dideal is ( 1
2 + ε)-evenly

distributed. ut

Remark 8. A similar reasoning happens in [29, Lecture 12], though it specifi-
cally targets the discrete Gaussian distribution on lattices. Despite being not
general enough for our purposes, it may well be helpful for optimizing a future
specialization.
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A Parameters in Theorem 1

In the proof of Theorem 1 appropriate parameter choices were made. The choice
of k (see Equation (2)) follows directly from Theorem 3 (note the choice R =√
ma). In order to achieve constant success probability of sampling k good ap-

proximations of dual lattice vectors, we need η = o(1/k); putting η = 1/k2 is
then a reasonable choice. The size of δ is chosen in such a way that the decline
in precision (see Theorem 4) is taken care of; note that ‖∆G‖∞ < δ · λ∗1.

We will show that substituting η = 1/k2, Lip(f) = a and δ =
(λ∗1)

2·det(Λ∗)
2O(mk)·‖G̃‖m+1

∞
·τ

in Equation (4) of Theorem 2 yields Equation (1). Writing log(1/δ) = (m +
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1) log(
√
ma) + log(det(Λ)) +O(mk)− τ − 2 log(λ∗1), noting that m log(

√
ma) +

log(det(Λ)) = O(k) = O(mk), we see that

O

(
log

Lip(f)

η · δλ∗

)
= O(mk) +O(log(a/τ)) +O(log(a/λ∗1))

As m log(m log(η−1)) = m log(m log(k2)) = O(mk), this part of Equation (4)
vanishes, yielding Equation (1).

B Recovering a Basis of the Primal Lattice

The last problem that needs to be resolved is how to obtain an approximate
basis B̃ of the primal lattice Λ, given a set of approximate generators G̃ of the
dual lattice. Also, we would like to know how the approximation errors of G̃ and
B̃ are related.

Recovering the approximate basis B̃ proceeds by two steps. The first step
consists of applying the Buchmann-Pohst algorithm [6] twice to the set of gener-
ators G̃, yielding a approximate basis D̃ of the dual lattice Λ∗ whose errors are
relatively easy to analyze. The second step consists of inverting and transposing
the square matrix D̃. This yields an approximate basis B̃ for the primal lattice
Λ.

The next two subsections follow above summary, and consist of theorems
that indicate the decline in precision after each step.

We use row notation for matrices, i.e., any row represents a vector. The
matrix of generators G̃ is an k ×m matrix, thus consisting of k generators. We
assume that the lattice Λ (and thus Λ∗ as well) is of full rank m, meaning that
the resulting bases D̃ and B̃ must be m × m square matrices. We denote by
‖M‖∞ the matrix norm induced by the infinity norm, explicitly defined as

‖M‖∞ := max
1≤i≤m

n∑
j=1

|mij |.

B.1 An Approximate Well-Conditioned Basis of the Dual

Obtaining an approximate and well-conditioned basis of the dual proceeds by
means of the Buchmann-Pohst algorithm, which is rigorously analyzed by Buch-
mann and Kessler [5, Section 4]. This algorithm consists of concatenating the
generating matrix by a scaled identity matrix and applying the LLL lattice re-
duction algorithm. As described after the proof of [5, Thm. 4], this particular
algorithm is actually applied twice, once on the matrix of generators G̃ and once
again on the resulting intermediate approximate basis D̃ to achieve a new basis
whose errors are easier to analyze. From now on, we will refer to applying this
procedure twice as the Buchmann-Pohst algorithm.

From [5] we can extract the following result.

31



Theorem 10. Let G̃ = G + ∆G be an approximation of a k × m matrix of

generators G of the full-rank lattice Λ∗ , with ‖∆G‖∞ < γ <
λ∗1 ·det(Λ

∗)

2O(km)·‖G̃∗‖m∞
.

Then the Buchmann-Pohst algorithm outputs an LLL-reduced matrix [D̃| γ ·M ],
with D̃ = D + ∆D being an approximate basis of Λ∗, where both ‖∆D‖∞ and
‖γ ·M‖∞ are upper bounded by

2O(km)‖G̃∗‖m+1
∞

λ∗1 · det(Λ∗)
· γ

Proof. As already mentioned, applying the Buchmann-Pohst algorithm on G̃
takes two reduction steps. The first reduction step yields an intermediate basis
D̃0 = M0G̃ and the second step yields the final basis D̃ = MM0G̃. Here M and
M0 are unimodular matrices.

The fact that the matrix [D̃|γ·M ] is the output of the second step, proves that
this must be an LLL-reduced basis (note that γ ·M is just the matrix M scaled
by the scalar γ). From [5, Cor. 4.1], we deduce that both ‖M‖∞ and ‖MM0‖∞
are bounded by 2k−1(

√
mk + 2) · λ′α′/λ1(Λ∗), given that8 γ < λ1(Λ

∗) det(Λ∗)

(
√
mk+2)·λ′·2

k−3
2

.

Putting in the actual values of α′ = (
√
mk + 2)2

k−1
2 · ‖G̃‖∞ and

λ′ = λ(
√
mk + 2)m2

k−1
2 m = (k

√
m/2 +

√
k)(
√
mk + 2)m2

k−1
2 m ‖G̃‖m∞

det(Λ∗)

yields the bound on ‖γM‖∞ and the assumption on γ. For the bound on ∆D,
notice that ‖∆D‖∞ = ‖MM0∆G‖∞ ≤ ‖MM0‖∞‖∆G‖∞ and by assumption
‖∆G‖∞ ≤ γ. ut

For small enough γ, the LLL-reduced basis [D̃ | γ ·M ] is very close to [D | 0].
One of the main results of Chang, Stehlé and Villard [7, Col. 5.7] states that the
close matrix [D | 0] must then also be ‘weakly LLL-reduced’. This knowledge
can then be used to show that this basis D is well-conditioned.

Lemma 9. Let [D̃ | γM ] = [D | 0] + [∆D | γM ] be an LLL-reduced basis with
‖[∆D | γM ]‖∞ ≤ µ(3/

√
2)−3m‖D̃‖∞ for some µ < 1. Then D is (d, η′, θ′)-weakly

LLL-reduced as in [7, Def. 5.1], with d = 3
4 +O(2−mµ), η = 1

2 +O(2−mµ) and
θ = O(2−mµ).

Corollary 6. Let the basis D satisfy the same assumptions as in Lemma 9.
Then

‖D−1‖∞ ≤
23m

λ1(Λ∗)

Proof. We can decompose D = RV Q, with Q orthonormal, V diagonal with
diagonal entries ‖d∗i ‖ and R lower triangular with ones on the diagonal. Here,
d∗i are the Gram-Schmidt orthogonalized basis vectors of D.

8 See [5, Thm. 4.1], where λ needs to be replaced by λ′, as described in the text after
the proof of [5, Thm. 4.2]).
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By the submultiplicativity of the matrix norm, we have

‖D−1‖∞ ≤ ‖R−1‖∞‖V −1‖∞‖Q−1‖∞ = ‖R−1‖∞‖V −1‖∞ ≤
‖R−1‖∞
mini‖d∗i ‖

By Lemma 9, D is weakly (d, η, θ)-LLL-reduced with d = 3
4 +O(2−mµ), η = 1

2 +

O(2−mµ) and θ = O(2−mµ). Therefore, by [7, Thm. 5.4], taking α = 2 >
√

2 for
simplicity, we know that λ1(Λ∗) ≤ ‖d1‖ ≤ 2m mini‖d∗i ‖, so that 1/mini‖d∗i ‖ ≤
2mλ1(Λ∗)−1. In the end of the proof of [7, Lemma 5.5], we see9 that

‖R−1‖∞ ≤
(1 + α)(1 + η + θ)mαm

(1 + η + θ)α− 1
≤ 4m,

by taking α = 2, η = 1/2 +O(2−mµ) and θ = O(2−mµ). This yields the claim.
ut

B.2 Inverting the Dual Approximate Basis

As the basis D̃ constructed in the previous subsection is a basis of the dual
lattice Λ∗, we need to invert and transpose it to get an approximate basis of the
primal lattice Λ. In other words, the basis that we would like to approximate is
B = D−>, by means of computing B̃ = D̃−>. Though, inverting an approximate
matrix induces errors closely related with the matrix norm of the inverse of the
exact basis. More precisely, we have the following result [2, Cor. 7.2, Eq. 7.46]

Theorem 11. Let D̃ = D +∆D with ‖∆D‖∞ · ‖D−1‖∞ < 1
2 , and denote B =

D−> and B̃ = D̃−> (where D−> is the inverse transpose of D). Then we have

‖B − B̃‖∞ ≤ 2‖D−1‖2‖∆D‖∞.

B.3 Combining the Errors and Tuning the Parameters

Theorem 4. There exists a polynomial time algorithm, that, for any matrix
G ∈ Rk×m of k generators of a (dual) lattice Λ∗, and given an approximation
G̃ = G+∆G ∈ Qk×n, computes an approximation B̃ = B +∆B of a basis B of
the primal lattice Λ, such that

‖∆B‖∞ ≤
2O(mk) · ‖G̃‖m+1

∞
(λ∗1)3 · det(Λ∗)

· ‖∆G‖∞,

under the assumption that ‖∆G‖∞ <
min(1,(λ∗1)

2)·det(Λ∗)
2O(km)·‖G̃‖m+1

∞
.

9 In [7, Lemma 5.5], the unit-diagonal lower triangular matrix is denoted R̄, and the
bound is about R̄−1
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Proof. For the moment, assume that the full output10 [D̃ | γM ] = [D | 0] +
[∆D | γM ] of the Buchmann-Pohst algorithm satisfies ‖[∆D | γM ]‖∞ ≤ µ(3/

√
2)−3m‖D̃‖∞

for some µ < 1 and ‖∆D‖∞‖D−1‖∞ < 1/2. Then, by applying Theorem 11,
Corollary 6 and Theorem 10 subsequently, we obtain

‖∆B‖∞ ≤ 2‖D−1‖2∞‖∆D‖∞ ≤
26m+1

(λ∗1)2
‖∆D‖∞ ≤

2O(mk) · ‖G̃‖m+1
∞

(λ∗1)3 · det(Λ∗)
· γ.

It remains to prove that assumptions in the beginning of this proof are indeed
fulfilled. By Theorem 10, we have

‖[∆D | γM ]‖∞ ≤
2O(mk) · ‖G̃‖m+1

∞
λ∗1 · det(Λ∗)

· γ < O(1),

and by Theorem 11, we have

‖∆D‖∞‖D−1‖∞ ≤ ‖∆D‖∞
23m

λ∗1
≤ 2O(mk) · ‖G̃‖m+1

∞
(λ∗1)2 · det(Λ∗)

· γ < O(1).

So choosing γ appropriately small, the assumptions of Theorem 11, Corollary 6
and Theorem 10 are all fulfilled. ut

C The Gaussian State

C.1 Reducing to the One-Dimensional Case

In this appendix, we are going to estimate the exact quantum complexity of
obtaining an approximation (in the trace distance) of the state

1√
ρ1/s(Dmrep)

∑
x∈Dmrep

√
ρ1/s(x)|x〉, (16)

where Dmrep = 1
qZ

m ∩ [0, 1)m, and where ρ1/s is the Gaussian function (see Sec-

tion 3.6).
An element |x〉 with x = (x1, . . . , xm) ∈ Dmrep is represented as a tensor

product |x1〉 ⊗ . . . ⊗ |xm〉. As the function
√
ρ1/s(x) = ρ√2/s(x) can be writ-

ten as a product of functions with separated variables as well, we obtain that
Equation (16) equals

m⊗
j=1

1√
ρ1/s(

1
q [q]c)

∑
a∈ 1

q [q]c

√
ρ1/s(a)|a〉 (17)

where 1
q [q]c = [−1/2, 1/2) ∩ 1

qZ. Therefore, the problem of approximating the

state as in Equation (16) reduces to the one-dimensional case, i.e., as in Equa-
tion (17).

10 In reality, the Buchmann-Pohst algorithm is applied with the largest precision such
that all required assumptions hold. So the costs of applying the LLL-algorithm does
not involve the precision ‖∆G‖∞.
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C.2 The Periodic and Non-Periodic Discrete Gaussian

To obtain a Gaussian superposition in one dimension, we follow Kitaev and
Webb [19]. Their algorithm is an improvement of that of Grover and Rudolph
[14].

Definition 6 (Gaussian function). We denote by ρµ,σ : R→ R the function

ρµ,σ(x) = e−π
(x−µ)2

σ2

The discrete Gaussian ρ̈µ,σ : Z→ R is a rescaling of ρµ,σ such that
∑
j∈Z ρ̈µ,σ(j)2 =

1. Explicitly, ρ̈µ,σ(j) = 1√
ρ2µ,σ(Z)

ρµ,σ(j).

Kitaev and Webb’s algorithm actually doesn’t compute a discrete Gaussian
quantum state, but something very close; a periodized discrete Gaussian quan-
tum state. This state has the advantage of having a more natural normalization
and having a sum decomposition. These advantages lead to a slightly more ef-
ficient algorithm [19] computing the discrete Gaussian superposition, compared
to the algorithm of Grover and Rudolph.

Definition 7 (Discrete Periodized Gaussian function). We denote by ξµ,σ,Q :
Z/2QZ→ R>0 the function defined by the following rule

ξµ,σ,Q(x)2 = ρ̈2µ,σ(x+ 2QZ) =
∑
t∈Z

ρ̈µ,σ(x+ 2Qt)2

The discrete periodized Gaussian state is then denoted by |ξµ,σ,Q〉 :=
∑2Q−1
j=0 ξµ,σ,Q(j)|j〉.

Note that the state is already normalized. As we already mentioned, the discrete
periodized Gaussian state is very close to the discrete (non-periodized) Gaussian
state. This is formalized in the next lemma.

Lemma 10. Denote |ρ̈µ,σ〉 = 1√
cµ,σ

∑2Q−1
j=0 ρ̈µ,σ(j)·|j〉, with cµ,σ =

∑2Q−1
j=0 ρ̈µ,σ(j)2.

Then, for µ ∈ [0, 2Q − 1] and σ < 2Q−1,

D
(
|ρ̈µ,σ〉, |ξµ,σ,Q〉

)
≤ β(1)

dµ
σ

where dµ := min(µ, 2Q − µ), D is the trace distance, and β
(1)
dµ
σ

is Banaszczyk’s

function (see Section 3.6).

Proof. Since ξµ,σ,Q(j) ≥ ρ̈µ,σ(j), we have

〈ξµ,σ,Q|ρ̈µ,σ〉 =
1

√
cµ,σ

2Q−1∑
j=0

ρ̈µ,σ(j)ξµ,σ,Q(j) ≥ 1
√
cµ,σ

2Q−1∑
j=0

ρ̈µ,σ(j)2 =
√
cµ,σ

Since the trace distance between the pure states |ρ̈µ,σ〉 and |ξµ,σ,Q〉 is equal to√
1− |〈ξµ,σ,Q|ρ̈µ,σ〉|2 [26, §9.2], we obtain D

(
|ρ̈µ,σ〉, |ξµ,σ,Q〉

)
≤
√

1− cµ,σ. As

1 − cµ,σ =
ρµ,σ/

√
2(Z\{0,...,2

Q−1})
ρµ,σ/

√
2(Z)

≤ β
(1)
√

2dµ
σ

(see Lemma 2), and

√
β
(1)
z ≤ β

(1)

z/
√
2
,

we obtain the claim. ut
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Above lemma essentially states that whenever Q is relatively large, µ is rela-
tively far away from the borders and σ is not too large, then the periodic discrete
Gaussian and the (non-periodic) discrete Gaussian are very close in total varia-
tion distance.

C.3 Computing the Periodic Gaussian State

According to the last subsection, we can compute the state |ξµ,σ,Q〉 instead
of |ρ̈µ,σ〉, as they are close to each other for a suitable choice of parameters.
As already mentioned, the quantum state |ξµ,σ,Q〉 can be decomposed into a
superposition that can be exploited algorithmically. The following lemma shows
this decomposition.

Lemma 11 (Eq. 11 in [19]).

|ξµ,σ,Q〉 = |ξµ
2 ,
σ
2 ,Q−1〉 ⊗ cosα|0〉+ |ξµ−1

2 ,σ2 ,Q−1
〉 ⊗ sinα|1〉,

with α = arccos
(√

ρµ
2 ,

σ
2
√

2
(Z)
/
ρµ, σ√

2
(Z)
)

.

Proof. We have

|ξµ,σ,Q〉 =

2Q−1∑
j=0

ξµ,σ,Q(j)|j〉 =

2Q−1−1∑
j=0

ξµ,σ,Q(2j)|j〉|0〉+
2Q−1−1∑
j=0

ξµ,σ,Q(2j+1)|j〉|1〉.

It remains to show that ξµ,σ,Q(2j) = cos(α) · ξµ
2 ,
σ
2 ,Q−1(j) and ξµ,σ,Q(2j + 1) =

sin(α) · ξµ−1
2 ,σ2 ,Q−1

(j). We show the equality of the latter part, as the former

part can be shown similarly.

ξµ,σ,Q(2j + 1)2 = ρ̈2µ,σ(2j + 1 + 2Q · Z) =
ρ2µ−1,σ(2j + 2Q · Z)

ρ2µ,σ(Z)

=
ρ2µ−1

2 ,σ2
(j + 2Q−1 · Z)

ρ2µ,σ(Z)
=
ρ2µ−1

2 ,σ2
(Z)

ρ2µ,σ(Z)
· ξµ

2 ,
σ
2 ,Q−1(j)2

Taking square roots, noting that ρ2µ,σ = ρµ, σ√
2

and ρµ−1
2 , σ

2
√

2

(Z) + ρµ
2 ,

σ
2
√

2
(Z) =

ρµ, σ√
2
(Z) yields the result. ut

This lemma directly leads to an algorithm for computing (an approximation of)
the state |ξµ,σ,Q〉, which is spelled out in Algorithm 2.

C.4 Estimating the Complexity and Fidelity of Algorithm 2

We will discuss now how well Algorithm 2 approximates the state |ξµ,σ,Q〉. For
ease of analysis, we will assume (without loss of generality) that the operations
on the parameters µ and σ (in step 5 and 7 of Algorithm 2) are exact. Then it
turns out that the approximation error is primarily caused by the fact that the
angle α in the algorithm is computed up to precision 2−k. This is made precise
in the following lemma.
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Algorithm 2: Recursive algorithm preparing the periodic Gaussian
state

Input : The parameters µ, σ ∈ R>0, k ∈ N and Q ∈ N.
Output: An approximation of the state |ξµ,σ,Q〉

1 Initial state: |0k〉|µ, σ,Q〉|0Q〉 ;

2 Compute α in the first register, yielding |α〉|µ, σ, n〉|0Q〉, where

α = arccos

(√
ρµ

2
, σ
2
√

2
(Z)
/
ρµ, σ√

2
(Z)

)
;

3 Apply the α-rotation on the last qubit, yielding

|α〉|µ, σ,Q〉|0Q−1〉 (cosα|0〉+ sinα|1〉) ;

4 Uncompute α, yielding |0k〉|µ, σ,Q〉|0Q−1〉 (cosα|0〉+ sinα|1〉) ;

5 Apply a parameter change, controlled by the last qubit yielding

cosα|0k〉|µ
2
, σ
2
, Q− 1〉|0Q−1〉|0〉+ sinα|0k〉|µ−1

2
, σ
2
, Q− 1〉|0Q−1〉|1〉 ;

6 Apply quantum recursion (step 2 - 5) on all qubits except the last,
whenever Q > 1, yielding
cosα|0k〉|µ

2
, σ
2
, Q− 1〉|ξµ

2
,σ
2
,Q−1〉|0〉+ sinα|0k〉|µ−1

2
, σ
2
, Q− 1〉|ξµ−1

2
,σ
2
,Q−1
〉|1〉 ;

7 Un-apply the parameter change, yielding

|0k〉|µ, σ,Q〉
(

cosα|ξµ
2
,σ
2
,Q−1〉|0〉+ sinα|ξµ−1

2
,σ
2
,Q−1
〉|1〉
)

=

|0k〉|µ, σ,Q〉|ξµ,σ,Q〉 ;

Lemma 12. Algorithm 2 with input parameters µ, σ, k,Q computes the periodic
Gaussian |ξµ,σ,Q〉 within trace distance Q2−k.

Proof. The proof proceeds by induction onQ. We use the the identityD(|ψ〉, |φ〉)2+
|〈ψ|φ〉|2 = 1 (see [26, §9.2]) multiple times throughout the proof. Let α̃ be the
k-bit approximation of α, and denote

|ξ̃µ,σ,Q〉 = cos α̃|ξ̃µ
2 ,
σ
2 ,Q−1〉|0〉+ sin α̃|ξ̃µ−1

2 ,σ2 ,Q−1
〉|1〉

for the output of Algorithm 2 with input parameters µ, σ, k and Q. Then the
inner product 〈ξ̃µ,σ,Q|ξµ,σ,Q〉 equals

cos(α) cos(α̃)〈ξ̃µ
2 ,
σ
2 ,Q−1|ξµ2 ,σ2 ,Q−1〉+ sin(α) sin(α̃)〈ξ̃µ−1

2 ,σ2 ,Q−1
|ξµ−1

2 ,σ2 ,Q−1
〉.

By the induction hypothesis and the fact that the periodic Gaussian state has
only positive amplitudes, above expression is at least

(cos(α) cos(α̃)+sin(α) sin(α̃))
√

1− (Q− 1)22−2k = cos(α−α̃)
√

1− (Q− 1)22−2k

Therefore D(|ξµ,σ,Q〉, |ξ̃µ,σ,Q〉) =
√

1− |〈ξµ,σ,Q|ξ̃µ,σ,Q〉|2 ≤ sin(α − α̃) + (Q −
1)2−k ≤ Q2−k. ut
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Lemma 13. Computing α with k-bits of precision in step 2 of Algorithm 2 can
be done within O(k3/2 · polylog(k)) operations.

Proof. Can be found in Appendix C.5. ut

Lemma 14. Encoding µ and σ in O(Q) bits, Algorithm 2 with input µ, σ, k and
Q, runs on O(Q+ k) qubits and uses O(Q · k3/2 · polylog(k)) quantum gates.

Proof. The number of qubits used in Algorithm 2 equals O(Q + k), because α
is stored with k bits of precision and σ and µ with O(Q) bits of precision.

For the number of gates, we go through the steps of Algorithm 2. Step 1 is the
initial state. Step 2 (and step 4) computes α with precision 2−k. By Lemma 13,
we estimate that this costs O(k3/2 polylog(k)) quantum gates. Step 3 applies
the α-rotation, which costs k quantum gates, as a sequence of controlled Rπ/2j -
gates. Step 5 (and step 7) is a parameter change, which costs a mere constant
number of gates. Step 6 applies recursion, which, by induction, costs O((Q− 1) ·
k3/2 ·polylog(k)) gates. Adding all up, gives a number of O(Q ·k3/2 ·polylog(k))
gates. ut

Theorem 12. For any positive integers Q, k and for any µ ∈ [0, 2Q − 1] and
any σ > 1, there exists an quantum algorithm that prepares the one-dimensional
Gaussian state

|ρ̈µ,σ〉 =

2Q−1∑
j=0

ρ̈µ,σ(j)|j〉 (18)

within trace distance β
(1)
dµ
σ

+ Q · 2−k using O(Q + k) qubits and O(Q · k3/2 ·
polylog(k)) quantum gates.

Proof. The state in Equation (18) can be approximated by running Algorithm 2
with parameters µ, σ,Q, k. Combining Lemma 10 and Lemma 12 and using the
fact that we can add trace distances [26, Ch. 9], this approximation is within

trace distance β
(1)
dµ
σ

+Q2−k. For the running time, use Lemma 14 to conclude that

Algorithm 2 with the mentioned parameters uses O(Q+k) qubits and O(Q·k3/2)
quantum gates, which proves the claim. ut

C.5 Proof of Lemma 13

Lemma 15. The value ρµ
2 ,

σ
2
√

2
(Z) can be computed with relative precision 2−k

within time O(k3/2 polylog(k)).

Proof. We distinguish two cases.

– σ <
√

2. Then
∣∣∣ρµ, σ√

2
(Z)− ρbµe, σ√

2
({−h, . . . , 0, . . . h})

∣∣∣ ≤ β
(1)√
2h/σ

· ρµ, σ√
2
(Z),

by Lemma 2.
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– σ >
√

2. Applying the Poisson summation formula, we obtain ρµ, σ√
2
(Z) =

σ√
2

∑
t∈Z ρ0,

√
2
σ

(t)e−2πitµ. Therefore∣∣∣∣∣∣ρµ, σ√2
(Z)− σ√

2

∑
t∈{−h,...,0,...h}

ρ√2
σ

(t)e−2πitµ

∣∣∣∣∣∣ ≤ σ√
2
β
(1)

σh/
√
2
· ρ0,√2/σ(Z)

which is bounded by β
(1)

σh/
√
2
· ρ0,σ/√2(Z) ≤ 2β

(1)

σh/
√
2
· ρµ, σ√

2
(Z), by the Pois-

son summation formula and by smoothing arguments (see Lemma 4), as

ρµ,σ/
√
2(Z) ≥ (1− 2β

(1)

s/
√
2
)ρ0,σ/

√
2 ≥

1
2ρ0,σ/

√
2.

So the relative error is at most 2β
(1)
h ≤ e−(h−1)

2

for h > 2. Therefore, choosing
h = k1/2 + 1 is enough to compute ρµ

2 ,
σ

2
√

2
(Z) with relative error 2−k. Because

evaluating an exponential function takes O(k · polylog(k)) time [4], we arrive at
the claim. ut

Lemma 16. The fraction ρµ
2 ,

σ
2
√

2
(Z)
/
ρµ, σ√

2
(Z) can be computed with precision

2−k within time O(k3/2 · polylog(k)).

Proof. Denote a = ρµ
2 ,

σ
2
√

2
(Z) and b = ρµ, σ√

2
(Z). Suppose we have relative errors

|ã − a| ≤ 2−ka/2 ≤ 2−kb/2, |b̃ − b| ≤ 2−kb/2 and ã/b̃ < 1, then
∣∣∣ ã
b̃
− a

b

∣∣∣ ≤
|b̃(a−ã)−ã(b−b̃)|

bb̃
≤ |a−ã|b + |b−b̃|

b ≤ 2−k. By Lemma 15, we see that both a and b

can be computed within relative precision 2−k/2 within time O(k3/2 polylog(k)).
Therefore, the fraction a/b can be computed with absolute precision 2−k within
time O(k3/2 polylog(k)). ut

Lemma 17. For x ∈ [0, 1− ε] and ε < 3
4 , we have

| arccos(
√
x+ ε)− arccos(

√
x)| ≤ 8

√
ε

Proof. The derivative of arccos(
√
t) equals w(t) = − 2√

(1−t)t
. Therefore

| arccos(
√
x+ ε)− arccos(

√
x)| ≤

∣∣∣∣∫ x+ε

x

w(t)dt

∣∣∣∣ ≤ ∫ x+ε

x

|w(t)|dt ≤
∫ ε

0

|w(t)|dt.

The last inequality follows from the fact that w(t) is both strictly decreasing on
[0, 1/2] and symmetric around t = 1/2. The claim then follows from the bound∫ ε
0
|w(t)|dt =

∫ ε
0

2√
(1−x)x

≤ 4
∫ ε
0
dt√
t

= 8
√
ε. ut

By combining Lemma 16 and Lemma 17, we obtain that the expression

arccos
√
ρµ

2 ,
σ

2
√

2
(Z)
/
ρµ, σ√

2
(Z) can be approximated with k bits of precision within

O(k3/2 · polylog(k)) time, which proves Lemma 13.
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D The Yudin-Jackson theorem

In Section 3.5, we refer to a paper of Yudin [38] for the existence of a good
trigonometric approximation. For selfcontainedness, and since Yudin [38] does
not explicitly state that his result also applies to vector-valued functions, we give
here a complete proof.

D.1 Result

Recall from Section 3.2 and Section 3.4 that the Lp-norm for p ∈ [1,∞] for a
function f : Tm → CN is defined as follows11.

‖f‖p,Tm :=

(∫
x∈Tm

‖f(x)‖pCN dx
)1/p

,

where ‖·‖CN is the Euclidean norm on CN . Any function for which the value
‖f‖p,Tm is well-defined is called an Lp-function. For a function f : Tm → CN
we define its Lipschitz constant to be

Lip(f) = inf{L | ‖f(x)− f(y)‖CN ≤ L ‖x− y‖Tm for all x, y ∈ Tm}

For f we also define a related constant, the modulus of smoothness [38]:

ω2(f , δ)p := sup
|y|≤δ

‖f(· − y)− 2f(·) + f(·+ y)‖p,Tm .

It is evident that ω2(f , δ)p ≤ ω2(f , δ)∞ ≤ 2 Lip(f)δ for Lipschitz functions f .
The modulus of smoothness also satisfies the following ‘scaling’ property.

Lemma 18. For any Lp function f : Tm → CN and for any ρ, δ > 0, we have
ω2(f , ρδ)p ≤ 2(1 + ρ2)ω2(f , δ)p.

Proof. Note that we have the following ‘telescopic’ finite sum

f(x−nt)−2f(x)+f(x+nt) =

n−1∑
j=−n+1

(n−|j|)
[
f(x+(j−1)t)−2f(x+jt)+f(x+(j+1)t)

]
So, for |t| ≤ δ, we have, by the triangle inequality

‖f(· − nt)− 2f(·) + f(·+ nt)‖p,Tm ≤
n−1∑

j=−n+1

(n− |j|)ω2(f , δ)p = n2ω2(f , δ)p.

Therefore, for any ρ > 0, ω(f , ρδ)p ≤ ω(f , dρeδ)p ≤ dρe2ω(f , δ)p ≤ (1 +
ρ)2ω(f , δ)p. Using the fact that (1 + ρ)2 ≤ 2(1 + ρ2), we obtain the result. ut
We denote by C the cube [−1/2, 1/2]m ⊆ Rm, and by rC the scaled cube with
edge length r > 0.

Theorem 13. Let f : Tm → CN be an Lp-function. Then there exists a function
t : Tm → CN with FTm{t} having support in rC, such that

‖f − t‖p,Tm ≤ 2ω2(f ,
√
m/r)p.

11 For p =∞, we let ‖f‖∞,Tm to be the essential supremum of the function x 7→ ‖f‖CN .
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D.2 Proof

Let λ : Rm → C be a function that has support in C, satisfies λ(0) = 1 and
λ(−x) = λ(x) for all x ∈ R (i.e., λ is even). Furthermore, let the Fourier trans-
form of λ be positive, i.e., FRm{λ} ≥ 0. Denoting λr = λ(·/r), and defining
K = F−1Tm(λr

∣∣
Zm) : Tm → C, we put the approximation to be12

t := F−1Tm(f̂ · λr
∣∣
Zm) = f ? K.

Note that by the Poisson summation formula and the evenness and positivity of

λr, we have that K = FRm{λr}|Z
m

≥ 0 and that K is an even function as well.
Therefore

f?K =

∫
t∈Tm
f(x−t)K(t)dt =

∫
t∈Tm
f(x+t)K(t)dt =

∫
t∈Tm

f(x− t) + f(x+ t)

2
Kr(t)dt

Using the fact that
∫
t∈Tm K(t)dt = λr(0) = 1, we see that

t(x)− f(x) =
1

2

∫
t∈Tm

(f(x− t)− 2f(x) + f(x+ t))K(t)dt

Taking Lp-norms, using the integral-triangle inequality and the fact that Kr(t)
is a positive scalar, we obtain

‖f − t‖p,Tm ≤
1

2

∫
t∈Tm

ω2(f , |t|)pKr(t)dt

Putting |t| = ρδ with δ =
√
m/r in Lemma 18, we have

ω2(f , |t|)p ≤ 2(1 + ρ2)ω2(f , δ)p = 2

(
1 +
|t|2r2

m

)
ω2(f ,

√
m/r)p.

Therefore,

‖f(x)− t(x)‖p,Tm ≤
∫
t∈Tm

(
1 +
|t|2r2

m

)
ω2(f ,

√
m/r)pK(t)dt

= ω2(f ,
√
m/r)p

(
1 +

r2

m

∫
t∈Tm

|t|2 ·K(t)dt

)
So it remains to evaluate

∫
t∈Tm |t|

2 ·K(t)dt. In the next part we show that there

exists a λ : Rm → C, such that
∫
t∈Tm |t|

2 ·K(t)dt ≤ m/r2, where we recall that

K = F−1Tm(λr
∣∣
Zm). Then clearly, ‖f(x)− t(x)‖p,Tm ≤ 2ω2(f ,

√
m/r)p, which

finishes the proof.

12 Note that for λ = 1C (i.e., the indicator function of C), we get the Fourier approxi-
mation of f by its ‘small’ Fourier coefficients. This is apparently not the best way to
Lp-approximate f by means of trigonometric polynomials; namely, we will see later
that for different λ : Rm → C, the approximation is better.
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Using a specific λ

We define λ = φ ? φ =
∫
t∈Rm φ(· − t)φ(t)dt, where

φ(x1, . . . , xm) =

{
2m
∏m
j=1 cos(2πxj) if (x1, . . . , xm) ∈ 1

2C
0 otherwise

where C = [−1/2, 1/2]m. Then λ has support only on C, λ is an even function (as

φ is even) and λ(0) = φ ? φ(0) = ‖φ‖2L2 = 1. Note that λ̂ = FRm{λ} = φ̂ · φ̂ ≥ 0,
by the convolution theorem. So the function λ : Rm → C satisfies all assumptions

required. It remains to show that
∫
t∈Tm |t|

2·K(t)dt ≤ m/r2. AsK = FRm{λr}|Z
m

and |t|2 ≤ |t+ v|2 for any v ∈ Zm and t ∈ C, we have∫
Tm
|t|2K(t)dt ≤

∫
Rm
|t|2FRm{λr}(t)dt =

∫
Rm
|t|2λ̂(rt)rmdt = r−2

∫
Rm
|y|2λ̂(y)dy,

where the last equality holds by the substitution rule. By the definition of λ and
by Plancherel’s theorem, we obtain that the latter equals 13

r−2
∫
y∈Rm

|y|2φ̂(y)φ̂(y)dy = r−2
∥∥∥yφ̂(y)

∥∥∥2
2,Rm

= r−2
∥∥(2π)−1∇φ

∥∥2
2,Rm ,

where last equation holds because 2πiyφ̂ = FRm{∇φ}. We have

|(2π)−1∇φ|2Rm =

{
22m

∑m
j=1 sin2(2πxj)

∏
k 6=j cos2(2πxk) if (x1, . . . , xm) ∈ 1

2C
0 otherwise

.

Integrating this formula yields the value m, so that r−2
∫
t∈Rm |t|

2K(t)dt ≤ m/r2,
which finishes the claim.

13 In order to apply Plancherel’s theorem, the function y 7→ |y|φ̂(y) must be square
integrable. As we have φ̂(y) = (2/π)m ·

∏m
j=1 cos(πyj/2)/(1 − y2j ), one can directly

deduce that |y|φ̂(y) is square integrable from the fact that the scalar functions t 7→
(2/π)·t cos(πt)/(1−t2) and t 7→ (2/π)·cos(πt)/(1−t2) are square integrable (both L2-

norms equal 1). This can also be used to derive
∥∥∥|y|φ̂(y)

∥∥∥2
2,Rm

= m in an alternative

way.
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