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Abstract. Leakages during the signing process, including partial key
exposure and partial (or complete) randomness exposure, may be dev-
astating for the security of digital signatures. In this work, we investi-
gate the security of lattice-based Fiat-Shamir signatures in the presence
of randomness leakage. To this end, we present a generic key recovery
attack that relies on minimum leakage of randomness, and then theo-
retically connect it to a variant of Integer-LWE (ILWE) problem. The
ILWE problem, introduced by Bootle et al. at Asiacrypt 2018, is to re-
cover the secret vector s given polynomially many samples of the form
(a, 〈a, s〉+e)∈ Zn+1, and it is solvable if the error e∈ Z is not superpoly-
nomially larger than the inner product 〈a, s〉. However, in our variant
(we call the variant FS-ILWE problem in this paper), a∈ Zn is a sparse
vector whose coefficients are NOT independent any more, and e is re-
lated to a and s as well. We prove that the FS-ILWE problem can be
solved in polynomial time, and present an efficient algorithm to solve it.

Our generic key recovery method directly implies that many lattice-based
Fiat-Shamir signatures will be totally broken with one (deterministic or
probabilistic) bit of randomness leakage per signature. Our attack has
been validated by experiments on two NIST PQC signatures Dilithium
and qTESLA. For example, as to Dilithium-III of 125-bit quantum secu-
rity, the secret key will be recovered within 10 seconds over an ordinary
PC desktop, with about one million signatures. Similarly, key recovery
attacks on Dilithium under other parameters and qTESLA will be com-
pleted within 20 seconds and 31 minutes respectively.

In addition, we also present a non-profiled attack to show how to obtain
the required randomness bit in practice through power analysis attacks
on a proof-of-concept implementation of polynomial addition. The ex-
perimental results confirm the practical feasibility of our method.

? This work was supported in part by National Natural Science Foundation of China
(No.61632020, U1936209) and Beijing Natural Science Foundation (No. 4192067).

?? Corresponding author.



Keywords: Randomness leakage attacks · Fiat-Shamir signature ·Dilithium
· qTESLA · ILWE · the least squares method

1 Introduction

Most cryptographic algorithms are designed under the assumption that all the
sensitive values are kept hidden. However, when a cryptographic algorithm is
practically used, these values may be leaked to adversaries due to implementa-
tion, communication or other reasons. Taking digital signatures as an example,
leakages3 during the signing process, including partial key exposure and partial
(or complete) randomness exposure, are proved to be devastating for their secu-
rity. For example, Heninger and Shacham [23] showed that the RSA secret key
with small public parameters can be efficiently recovered given its 27% random
bits. DSA whose key is 160-bit can be totally broken if only 2 least significant
bits (LSBs) of randomness are known [27]. In this work we focus on the security
of signatures in the presence of partial randomness leakage(s).

Howgrave-Graham and Smart [24] proposed the first partial randomness (i.e.
nonce) leakage attack on DSA by reducing it to the closest vector problem
(CVP), which can be solved using Babai’s nearest plane algorithm [4] together
with the LLL lattice reduction algorithm [26]. However, their attack relied on
several heuristic assumptions. Later, Nguyen and Shparlinski [35] presented the
first provable attack on DSA with partially known randomness bits. The main
idea of their attack is mapping the leakage attack on DSA to an Hidden Number
Problem (HNP) introduced in [11], which can be reduced to CVP and then solved
with lattice reduction algorithms. Nguyen and Shparlinski showed that their at-
tack can apply to DSA-like signatures, including ECDSA [36] and Schnorr’s
signature [41].

Considering the similarity between DSA and Fiat-Shamir signatures, it is
natural for us to think about the following important issue: whether or not
the randomness leakage attack in [35] applies to the Fiat-Shamir signatures [19]
besides Schnorr’s signature whose signatures are in the form of z = y+sc mod q.
Recall that in HNP we aim to recover the hidden number α∈ Fq given many
known random t ∈ Fq and the l MSBs of αt mod q which denote any rational u
such that |αt mod q − u|q ≤ q/2l+1. Suppose that the l LSBs of randomness y
are leaked and y = a + 2lb. Obviously, the key recovery attack of Fiat-Shamir
signature given leakage a is then converted to an HNP where t = 2−lc mod q and
u = (2−l(a − z)− q/2l+1) mod q. Hence, Fiat-Shamir signatures are vulnerable
to such partial randomness leakage attacks.

In 2016, NIST announced a competition to develop standards for quantum-
safe public key primitives. In the post-quantum setting, lattice-based cryptogra-
phy is acknowledged as one of the most promising candidates and has gained a
lot of attention. There were three lattice-based signatures in the second round
of NIST post-quantum cryptography (PQC) competition, two of which follow

3 “leakage” in our work stands for general information leaked from a cryptographic
device and/or implementation, and is usually of no specific forms.
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the Fiat-Shamir paradigm: Dilithium [30] and qTESLA [9]. According to the
latest report [34] released on July 22, 2020, Dilithium was one of the 7 finalists
(3 of which are signatures), while qTESLA did not advance to the third round
due to performance issues. In contrast to the theoretical security, the security of
lattice-based Fiat-Shamir signatures in the presence of randomness leakage still
remains an open problem.

Now there is a natural question that whether or not partial randomness leak-
age attacks on Fiat-Shamir signatures based on other mathematical structures,
such as the attack in [35], can apply to lattice-based Fiat-Shamir signatures.
Unfortunately, the answer to this question is NO. The major reason is that the
secret key of lattice-based Fiat-Shamir signatures consists of one or more poly-
nomials with small coefficients and there is a big difference between polynomial
multiplication and number multiplication, making it hard to define an HNP over
lattices.

1.1 Our Contributions

In this work, we aim to investigate the security of lattice-based Fiat-Shamir
signatures when randomness is partially leaked. Basically, our work consists of
two logically connected parts.

The first and also the fundamental part is a theoretically sound key recovery
attack against lattice-based Fiat-Shamir signatures, together with computation
complexity and data complexity of the proposed attack. Specifically,

– We present a new polynomial time key recovery attack on lattice-based Fiat-
Shamir signatures exploiting minimum leakage of randomness (actually only
one bit per signature is needed). Our method relies on one and only one bit
randomness leaking during the signing process, and applies to most known
lattice-based Fiat-Shamir signatures. On the other hand, our method makes
no assumptions regarding the concrete implementations of signatures (for
example, whether the target implementation is in software or in hardware),
nor the adversary’s specific strategy to get this one randomness bit (for
example, which kinds of concrete leakages can be obtained and how leakages
occur in practice). Therefore, our attack method has wide applicability and
actually belongs to a generic attack.

– Our attack is reduced to the Fiat-Shamir integer learning with error (FS-
ILWE) problem, which is a variant of the mathematical problem ILWE [12].
Besides, we analyze the special structural properties of FS-ILWE and prove it
can be solved using least squares method in polynomial time. By establishing
a deep connection between our attack and a mathematical problem, a solid
foundation for ensuring the theoretical correctness of our attack is laid.
We investigate the quantitative relationship among the leakage position, the
leakage probability4 and the data complexity of our key recovery attack.

4 The leakage probability corresponds to the success rate of the randomness bit recov-
ery in SCAs.
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Specifically, almost four times as many signatures theoretically are necessary
if the leakage position is shifted to the left by one bit. On the other hand, as
long as the leakage probability of the randomness bit required in our attack
is larger than 0.5, the secret key of lattice-based Fiat-Shamir signatures can
be recovered using our method.

– We choose Dilithium and qTESLA as two cases of study to verify our key re-
covery attack by simulated experiments. The results validate the correctness
of our method and the corresponding theoretical analysis, and also show the
extremely low requirements for our attack in terms of the processing power
and computing resources of computing equipment. For example, when one
specific bit of randomness per signature is leaked, it takes only several sec-
onds to recover the secret key of Dilithium on an ordinary desktop, while it
takes about thousands of seconds for qTESLA5.

The second part is supportive, aiming to provide a demonstrative case of
how to obtain this required one bit of randomness in practice. Specifically, we
perform a practical power analysis attack against a proof-of-concept implemen-
tation of the basic operation in lattice-based Fiat-Shamir signatures (i.e. poly-
nomial addition) on MCU 8051 STC89C58RD+. The attack results show that
when our method is put into practice, the required randomness bit can be ob-
tained even with the help of well-known power analysis attacks. This proof-
of-the-concept real-world attack initially demonstrates the practicality of the
fundamental method proposed in the first part.

1.2 An Intuitive Idea of Our Attack

Our attack stems from an observation that the Fiat-Shamir signatures over lat-
tices look like ILWE samples. Specifically, the lattice-based Fiat-Shamir signa-
ture is computed as z = y + sc, where s,y, c, z are elements over the ring6

R = Z[x]/(xN + 1). Considering each coefficient of z, we have z = y + 〈s, c̄〉
where z and y are the corresponding coefficient of z and y, and 〈s, c̄〉 is the
corresponding coefficient of the polynomial multiplication sc and c̄ is a row of
the rotation matrix C of c. Take c̄ as the random vector a and y as the error
e, each coefficient of the signature z = y + 〈s, c̄〉 seems like a sample of the
ILWE problem. As shown in [12], the ILWE problem can be solved with high
probability by the least squares method followed by rounding if the standard
deviation σe of the error distribution χe is not superpolynomially larger than
the standard deviation σa of χa. Generally speaking, the larger the ratio of σe
and σa, the more samples we need to recover s. However, in the lattice-based
Fiat-Shamir signatures, c̄ is a sparse vector whose non-zero coefficient is either 1
or −1, and y is much larger than 〈s, c̄〉, making the ratio of σe and σa very large.

5 The leakage position considered is l + 1.
6 If a Fiat-Shamir signature scheme is based on a lattice, the secret key S is a matrix

over Z, and y, c, z are vectors over Z. If a scheme is based on a module lattice (e.g.
Dilithium), s,y, z are elements over Rl (l is a positive integer parameter) and c is
an element over R.
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Worse still, the fatal reason why the idea does not work is that the lattice-based
Fiat-Shamir signatures are filtered by the rejection sampling technique, which
provides that z is independent of the secret key s statistically, and we cannot
infer any information of s from z.

To overcome these technical hurdles, our approach is to establish the depen-
dency between the signature z and the secret key s by leaking the randomness
while keeping the signature form unchanged, and then further process the sig-
nature to reduce the difficulty of this special LWE problem. With these steps,
recovering the secret the secret key s is exactly solving the FS-ILWE problem,
in which coefficients of a are not mutually independent and e is related to a and
s due to the rejection sampling technique. Finally, we prove that FS-ILWE can
also be solved using least squares regression in polynomial time. Similar meth-
ods are also applicable to scenarios where adversaries leak randomness with a
certain probability.

1.3 Related Work

Leakage Attacks on (EC)DSA. The work [24,35,36] has shown that attacks
on DSA-like signature schemes with partial known randomness can be mapped to
an HNP problem, which can be reduced to CVP and solved by lattice reduction
techniques [4,26,16]. Based on the idea, a series of work estimated the security
of implementations of DSA and ECDSA in OpenSSL [14,1,15,8,42,2]. Almost
all of them used the cache-based side-channel attacks (SCAs) to extract the
leaked information except [15], which used a remote timing attack to obtain the
MSBs of the ECDSA randomness. [27] reduced the number of required LSB of
randomness for 160-bit DSA key from 3 to 2 by proposing a new lattice reduction
technique.

Leakage Attacks on Lattice-based Fiat-Shamir Signatures. Since lattice-
based cryptography has received widespread attention, a large number of schemes
and implementations have emerged. More recently, researchers started to in-
vestigate the implementation security against leakage and fault attacks. In the
case of randomness leakage attacks on lattice-based signatures, the target of
existing work on BLISS [20,18] and BLISS-B [37], both of which follow the
Fiat-Shamir paradigm, is the Gaussian sampling algorithm used to generate
the randomness polynomial y. The main idea is leaking almost the entire y
exploiting the non-constant time property of Gaussian sampling algorithm by
the FLUSH+RELOAD cache-attack or the branch tracing technique. With the
signature z = y + sc, the secret key s can be recovered via basic linear alge-
bra or lattice reduction techniques. In contrast, our attack requires only one
(deterministic or probabilistic) bit of leakage per signature, and one bit of leak-
age is easier to obtain in practice. Furthermore, there are no requirements for
the distribution of randomness in our attack, that is, our attack is applicable
to lattice-based Fiat-Shamir signatures whose randomness follows both Gaus-
sian distribution (such as [5]) and uniform distribution (such as Dilithium and
qTESLA). To be emphasized, compared to leaking randomness by SCAs, our
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randomness leakage attack is more concerned on mathematical techniques to
exploit randomness leakage to recover the secret key.

In the case of secret key leakage attacks on lattice-based signatures, there
are two leakage sources: the rejection sampling algorithm and the polynomial
multiplication. The former can be used to obtain an exact quadratic function of
the secret key and a noisy linear function of the secret key using electromagnetic
analysis (EMA) or branch tracing [18]. They showed how to exploit the quadratic
leakage to compute the secret key, however the method can only apply to a small
fraction (around 7%) of keys. [12] found that the linear leakage function can be
seen as an ILWE problem, which can be solved by least squares regression, and
the method applies to 100% of keys. Note that although our attack is mapped to
the ILWE problem variant, our attack is totally different from that in [12]. Their
attack needs to obtain a noisy linear function of the secret key by SCAs on the
non-constant time rejection sampling algorithm, while our attack is a generic
leakage attack and works as long as a single specific bit of randomness per
signature leaks during the use process of lattice-based Fiat-Shamir signatures,
without limiting the leakage methods and leakage sources. Moreover, their attack
does not apply to Dilithium and qTESLA because of the uniform distribution.

Besides, side-channel vulnerabilities of polynomial multiplication have been
presented, including differential power analysis (DPA) on the sparse polynomial
multiplication and the schoolbook polynomial multiplication in BLISS [18] and
Dilithium [40], and template attack (TA) on the Number Theoretic Transform
(NTT) polynomial multiplication in lattice-based PKE [38]. However, DPA be-
longs to non-profiled attacks, which is less powerful than other profiled attacks
and needs much more traces to successfully recover the secret key. TA is more
powerful, but requires the adversary to fully control a profiling device to access
a large number of profiling traces. Thus, we do not think these two attacks are
practical enough for lattice-based cryptographic implementations.

2 Preliminaries

In this section, we present some basic notations and definitions.

Notations. For x ∈ R, rounding the number x is denoted by dxc. We denote
column vectors and matrices in bold, respectively by bold lowercase (e.g. x) and
uppercase (e.g. A). The Euclidean norm of the vector x = (x1, . . . , xn)T ∈ Rn
is denoted by ‖x‖2, and the infinity norm by ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).

For any random variable X, E[X] denotes the expectation of X and D(X) =
E[X2]− E[X]2 denotes the variance. We write X ∼ χ to denote that X follows
the distribution χ. If χ is a discrete distribution over some countable set S,
then for any s ∈ S, we denote by χ(s) the probability that a sample from χ
equals to s. In particular, if f : S → R is any function and X ∼ χ, we have:
E[f(s)] =

∑
s∈S f(s) · χ(s).

For the rest of the paper, we will work in the ring R , Z[x]/(xn + 1) where

n is a power-of-two integer. For an element a =
∑n−1
i=0 aix

i ∈ R, it can also be
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represented as a vector (a0, a1, . . . , an−1). For two polynomials a,b, the inner

product is denoted by 〈a,b〉 =
∑n−1
i=0 aibi = aTb. The polynomial multiplication

is represented as ab and can also be denoted as matrix multiplication Ab or Ba
where A, B are the rotation matrices related to a and b. The rotation matrix
A of a is the following Toeplitz matrix:

A =


a0 a1 a2 · · · an−1
−an−1 a0 a1 · · · an−2

...
...

...
. . .

...
−a1 −a2 −a3 · · · a0

 (1)

For a matrix A ∈ Rm×n, the operator norm ‖A‖opp of A with respect to the
p-norm is given by

‖A‖opp = sup
x∈Rn\0

‖Ax‖p
‖x‖p

= sup
‖x‖p=1

‖Ax‖p.

For a ∈ Z and l ∈ N, [a]2l is the l least significant bits of a in (−2l, 2l) such
that [a]2l = a (mod 2l) when a ≥ 0 and [a]2l = −(|a| (mod 2l)) when a < 0.
We extend the definition to vectors: for v = (v1, . . . , vn), [v]2l denotes the same
length vector with entries [vi]2l .

2.1 Subgaussian Distribution

In this section, we recall the notion of subgaussian distributions in [12] and
collect some properties of subgaussian distributions.

Definition 1 (Subgaussian). A random variable X over R is said to be τ -
subgaussian for some τ if the following bound holds for all s ∈ R:

E[exp(sX)] ≤ exp(
τ2s2

2
).

Lemma 1. A τ -subgaussian random variable X satisfies:

E(X) = 0 and E(X2) ≤ τ2.

Lemma 2. Any distribution over R of mean zero and supported over a bound

interval [a, b] is (b−a)
2 -subgaussian.

Similar to Gaussian distributions, the tail of a subgaussian variable can be
bounded.

Lemma 3. Let X be a τ -subgaussian distribution. For any t > 0,

Pr[X > t] ≤ exp(− t2

2τ2
).

Besides, a linear combination of independent subgaussian random variables
is also subgaussian.
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Lemma 4. Let X1, . . . , Xn be independent random variables such that Xi is τi-
subgaussian. For all µ1, . . . , µn ∈ R, the random variable X = µ1X1+· · ·+µnXn

is τ -subgaussian with:
τ2 = µ2

1τ
2
1 + · · ·+ µ2

nτ
2
n.

The definition of subgaussian distributions can be extended to vectors.

Definition 2. A random vector x ∈ Rn is called a τ -subgaussian random vec-
tor if for all vectors u ∈ Rn with ||u||2 = 1, the inner product 〈u,x〉 is a
τ -subgaussian random variable.

It is obviously that if X1, . . . , Xn are independent τ -subgaussian random
variables, then the random vector x = (X1, . . . , Xn) is τ -subgaussian, and vice
versa. A nice feature of subgaussian random vectors is that the image of a random
vector x under any linear transformation A ∈ Rm×n is also subgaussian. It
should be emphasized that Ax is still subgaussian even when the distribution of
x is related to A, because every coefficient 〈ai,x〉 of Ax is subgaussian according
to Lemma 4, which holds as long as x1, . . . , xn are independent subgaussian
random variables, without the necessity of independence between ai and x7.

Lemma 5. Let x be a τ -subgaussian vector in Rn given A ∈ Rm×n. Then the
random vector y = Ax is τ ′-subgaussian where τ ′ = ‖AT ‖op2 · τ .

Besides, extending the tail property to higher dimensions, we have the fol-
lowing lemma:

Lemma 6. Let v be a τ -subgaussian random vector in Rn. Then:

Pr[‖v‖∞ > t] ≤ 2n · exp(− t2

2τ2
).

2.2 The Integer LWE Problem

A main tool of our attack is the ILWE problem, which is defined in [12] and is
computed over Z rather than Z/qZ.

Definition 3 (ILWE Distribution). For any vector s ∈ Zn and any two prob-
ability distribution χa, χe over Z, the ILWE distribution Ds,χa,χe associated with
those parameters is the probability distribution over Zn × Z defined as follows:
samples from Ds,χa,χe are of the form

(a, b) = (a, 〈a, s〉+ e)

where a← χna and e← χe.

Definition 4 (ILWE Problem). Given m samples {(ai, bi)}1≤i≤m from the
ILWE distribution Ds,χa,χe for some s ∈ Zn, one is asked to recover the vector
s.
7 For completeness, we provide proofs of Lemma 4 and Lemma 5 in Appendix A,

which are almost the same as that in [12].
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Let σe and σa be the standard deviation of the error distribution χe and the
coefficient distribution χa respectively. Bootle et al. [12] showed the ILWE prob-
lem with m samples can be solved in polynomial time using statistical learning
techniques when m ≥ Ω(σe/σa)2 and σe is not superpolynomially larger than
σa.

3 The Partial Randomness Leakage Attack

In the section, we present a polynomial time attack to recover the secret key of
lattice-based Fiat-Shamir signatures with minimum leakage of randomness.

In a Fiat-Shamir signature scheme whose form of signature is z = y + sc,
the random oracle output c and the signature z are known, while the secret key
s and the randomness y are unknown. Each coefficient z of z is obtained by
z = y + 〈s, c̄〉, where c̄ is a corresponding row of the rotation matrix C of c. A
natural way to recover s is leaking the whole y and solving a system of linear
equations. In the following, we show how to minimize the number of leakage bits
of y. As a result, we can recover the secret key s even if only one bit of y is
leaked per signature.

There are two crucial issues to recover s. Firstly, the distribution of the
signature z is not related to the distribution of s due to the rejection sampling
technique, so we build the relationship between z and s via one randomness
bit of leakage and reduce the key recovery attack to an FS-ILWE problem in
Section 3.1. Another obstacle comes from solving the FS-ILWE problem, whose
distributions of the random vector a and the error e are different from those in
the ILWE problem. We show that FS-ILWE problem is also solvable with linear
regression in Section 3.3.

3.1 Description of Our Attack

The crux of our attack is reducing it to a problem called FS-ILWE and in this
section, we describe the reduction procedure in four steps. The whole description
of our attack (leaking the (l + 1)-th bit of y) is given in Algorithm 1.

Step 1: Throw Away the Most Significant Bits Note that in the Fiat-
Shamir signature scheme, y is used to mask the value of 〈s, c̄〉 and we always
pick a y in a range that is much larger than the range of 〈s, c̄〉, that is, only the
low-order bits of the signature z are related to the secret key s. Therefore, there
is no need to leak the whole y to recover 〈s, c̄〉 and only the least significant bits
of y are necessary. For example, in Dilithium-III, ‖sc‖∞ is less than 6 bits8. In
such case, we only need to leak the 6 least significant bits of y to recover s. It
should be noted that here we need to leak the extra seventh bit to recover the
exact value of 〈s, c̄〉.
8 In Dilithium, the original β is 8 bits so that ‖sc‖∞ ≤ β except with a probability

of 2−80. However, in practice most of sc is much smaller than that bound and we
take 6 bits as the real bound since ‖sc‖∞ ≤ 26 with 99% probability according to
the statistical result.
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Algorithm 1 Partial Randomness Leakage Attack(Σ = ((c̄(1), z(1)), . . . ,

(c̄(m), z(m))),Y = (y
(1)
l+1, . . . , y

(m)
l+1 ))

1: for i = 1 to m do
2: a(i) = c̄(i)

3: if z(i) > 0 then
4: b(i) = z(i) mod 2l

5: else
6: b(i) = −(|z(i)| mod 2l)
7: end if
8: if z

(i)
l+1 6= y

(i)
l+1 then

9: if −2l < b(i) < −2l−1 or 0 < b(i) < 2l−1 or (b(i) == 0 and z(i) > 0) then
10: b(i) = b(i) + 2l

11: else
12: b(i) = b(i) − 2l

13: end if
14: end if
15: end for

16: A =

 a(1)

...

a(m)

, b =

 b(1)

...

b(m)


17: s̃ = Least-Squares-Method(A,b)
18: s = ds̃c
19: return s

Step 2: Throw Away the Least Significant Bits Another difference be-
tween lattice-based Fiat-Shamir signature and Fiat-Shamir signatures based on
other mathematical structures is that the former is computed without modular
reduction. Taking c̄ as the random vector a and y as the error e, each coefficient
of the Fiat-Shamir signature z = y + 〈s, c̄〉 looks like a sample of the ILWE
problem. As shown in [12], such a problem can be solved in polynomial time
using statistical learning technique. Combining with the first observation above,
we can reduce the leakage attack on the lattice-based Fiat-Shamir signatures to
an ILWE-like problem with relatively small errors. Assuming ‖sc‖∞ < 2l, we
can rewrite the signature as:

z = y + 〈s, c̄〉 (2)

⇒z mod 2l = (y mod 2l + 〈s, c̄〉) (mod 2l) (3)

⇒[z]2l ± d · 2l = [y]2l + 〈s, c̄〉 (4)

where we let

a = c̄, e = [y]2l and b = [z]2l ± d · 2l.

(3) follows from the fact ‖sc‖∞ < 2l and (4) follows from the leakage of y.
That is, without extra information of y, we cannot remove the modulus in (4)
and cannot reduce the attack to the ILWE-like problem. Hence, we need to leak
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the (l + 1)-th bit of y to judge whether the sum of [y]2l and sc exceeds l bits.
Specifically, if the (l+1)-th bit of y and the (l+1)-th bit of z are the same, then
d = 0, otherwise d = 1.

Collecting multiple samples of the form (4), the problem of recovering the
secret s is thus an ILWE-like problem in which the random vector a is the
output of the random oracle with special structure and the error term e is not
independent of a and s due to the rejection sampling. This problem is called the
FS-ILWE problem in the rest of the paper. Later we will estimate the distribution

of the error term, denoted by χ
(a,s)
e .

Step 3: Determine the Sign Caused by Overflow In addition, in the case
of overflow (d = 1), we need to determine whether it is caused by a carry or
a borrow – i.e. determine whether b = [z]2l + 2l (carry occurs) or b = [z]2l −
2l (borrow occurs). Our strategy is determining b based on the value of [z]2l .
Roughly speaking, if [z]2l ≥ 0, then [y]2l ≥ 0 and if [z]2l ≤ 0, then [y]2l ≤ 0.
Suppose |〈s, c̄〉| < 2l−1. When an overflow occurs, there are three cases9:

– [z]2l > 0: b is bounded by: −2l−1 < b < 2l+ 2l−1. That is, if [z]2l ∈ (0, 2l−1),
carry occurs; if [z]2l ∈ (2l−1, 2l), borrows occurs.

– [z]2l < 0: Similarly, b is bounded by: −2l − 2l−1 < b < 2l−1. That is, if
[z]2l ∈ (−2l,−2l−1), carry occurs; if [z]2l ∈ (−2l−1, 0), borrows occurs.

– [z]2l = 0: if z > 0, carry occurs; if z < 0, borrow occurs.

Because both a carry and a borrow are possible for some values of [z]2l , deter-
mining the value of [z]2l ± 2l will introduce extra errors. However, our strat-
egy is almost always correct if |〈s, c̄〉| < 2l−1. Hence, in order to guess b cor-
rectly, Pr[|〈s, c̄〉| < 2l−1] ≈ 1 is a necessary condition and we choose l sat-
isfying Pr[|〈s, c̄〉| < 2l−1] > 99% in actual experiments10. In general, when
we launch an attack, we firstly judge whether there is an overflow, and if so,
we determine the value of b according to the value of [z]2l : b = [z]2l + 2l

when [z]2l ∈ (−2l,−2l−1) ∪ (0, 2l−1) ∪ {0}z>0, and b = [z]2l − 2l when [z]2l ∈
(−2l−1, 0) ∪ (2l−1, 2l) ∪ {0}z<0. Here we heuristically assume that the guess of
the sign caused by overflow is always correct.

Step 4: Estimate the Distribution χ(a,s)
e of the Error Term We now turn

our attention to the error term e, which is written as e = [y]2l = [z − 〈s, c̄〉]2l .
Because of the rejection sampling technique, each coefficient z of signatures
is independent from the secret key s and follows a public and fixed distri-
bution, denoted by χz, including the discrete Gaussian distribution and the
uniform distribution. To facilitate understanding, we assume z follows a uni-
form distribution over (−2γ , 2γ) ∩ Z, then y follows a uniform distribution over

9 When [z]2l = ±2l−1 and |〈s, c̄〉| < 2l−1, no overflow occurs.
10 It is worth noting that in step 1 we require that l satisfying Pr[|〈s, c̄〉| < 2l] > 99%,

and in step 2 the constraint condition of l is the probability of |〈s, c̄〉| < 2l−1 is larger
than 99%. The final constraint we use in the experiments is the intersection of two
conditions, i.e. Pr[|〈s, c̄〉| < 2l−1] > 99%.
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(−2γ−〈s, c̄〉, 2γ−〈s, c̄〉)∩Z, denoted by χ
(a,s)
e . Therefore the probability density

function of e = [y]2l
11 is

p(x) =



∑
ξ<0, ξ≡x mod 2l

py(ξ), x ∈ (−2l, 0) ∩ Z∑
ξ≡0 mod 2l

py(ξ), x = 0∑
ξ>0, ξ≡x mod 2l

py(ξ), x ∈ [0, 2l) ∩ Z

=



2γ−l

2γ+1 − 1
, x ∈ (−2l,−〈s, c̄〉] ∩ Z

2γ−l + 1

2γ+1 − 1
, x ∈ (−〈s, c̄〉, 0) ∩ Z

2γ−l+1

2γ+1 − 1
, x = 0

2γ−l

2γ+1 − 1
, x ∈ (0, 2l − 〈s, c̄〉) ∩ Z

2γ−l − 1

2γ+1 − 1
, x ∈ [2l − 〈s, c̄〉, 2l) ∩ Z

It is easy to work out that E([y]2l) = − 2l−1
2γ+1−1 〈s, c̄〉 is close to 0. For simplicity,

we approximately regard the distribution of [y]2l as subgaussian over a bounded
interval (−2l, 2l) and the heuristic assumption can finally be removed.

Taken together, the attack in the presence of randomness leakage is reduced
to the FS-ILWE problem and we show it can be solved with O((nτe/h)2 log(n))
samples using the least squares regression in Section 3.3.

Up to now, we can recover the secret key of lattice-based Fiat-Shamir signa-
tures with only one bit leakage of the randomness per signature and the leakage
is necessary for our attack as shown in (4). Another reason we cannot recover
the secret key without leakage is that lattice-based Fiat-Shamir signatures z are
filtered by the rejection sampling, which provides that z are independent from
the secret key s. Therefore, to some extent, the rejection sampling technique
fundamentally eliminates the potential threat of statistical attacks like ours in
the leak-free setting. A detailed analysis of the attack without leakage can be
found in Appendix B.

3.2 High-Order Bit Leakage

We have shown how to recover the secret key with the (l+ 1)-th bit of y and in
this section, we give a similar argument with leakage at other known position.
Suppose the leakage bit is from the t-th bit of y where l + 1 ≤ t ≤ k and k is
the length of coefficients of y. Applying the leakage attack in section 3.1 to this
case directly, we can get the following FS-ILWE problem:

[z]2t−1 ± d · 2t−1 = [y]2t−1 + 〈s, c̄〉 (5)

where we let

a = c̄, e = [y]2t−1 and b = [z]2t−1 ± d · 2t−1.
11 Here we only provide the probability density function when 〈s, c̄〉 > 0, and the case

when 〈s, c̄〉 < 0 is similar.
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Compared with (4), the only difference is the error distribution in FS-ILWE.
The error distribution in (4) is an approximately subgaussian distribution over
(−2l, 2l) and in (5) it can also be approximated to a subgaussian distribution
but with larger bounds (−2t−1, 2t−1). Thus, we need more samples to compute
the secret key with the t-th leakage bit of randomness. Roughly, whenever the
leakage location is shifted to the left by one bit, then the subgaussian moment
of error τe doubles and almost four times as many as samples are necessary.

3.3 Solving the FS-ILWE Problem

In this section we would like to show how to solve FS-ILWE using the least
squares method, which is similar to that for solving ILWE.

First, we provide a definition of FS-ILWE. In FS-ILWE, the random vector
is one output of the random oracle (or hash function). Specifically, in Dilithium
or qTESLA, the output of the hash function is an n-dimensional vector and has
h non-zero coefficients that are either -1 or 1 with equal probability. Denote the
output set by Bh and the definition of FS-ILWE is given blow.

Definition 5 (FS-ILWE Distribution). For any vector s ∈ Zn, the FS-ILWE
distribution D

s,Bh,χ
(a,s)
e

associated with those parameters is the probability dis-

tribution over Zn × Z defined as follows: samples from D
s,Bh,χ

(a,s)
e

are of the

form

(a, b) = (a, 〈a, s〉+ e)

where a← Bh and e← χ
(a,s)
e .

Definition 6 (FS-ILWE Problem). Given m samples {(ai, bi)}1≤i≤m from
the FS-ILWE distribution D

s,Bh,χ
(a,s)
e

for some s ∈ Zn, one is asked to recover

the vector s.

Note that for simplicity, the distribution of the error term in this section
is subgaussian, but it is not exactly consistent with the real attack setting, in

which the distribution is χ
(a,s)
e . In Appendix C we will provide a theoretical

justification of why FS-ILWE whose error term distribution is χ
(a,s)
e is solvable.

The FS-ILWE equation for s can be written in matrix form:

b = As + e (6)

where A ∈ Zm×n, e ∈ Zm is subgaussian.

The idea to solve s using the least squares method is to find an approximate
solution s̃ ∈ Rn of the noisy linear system (6) such that the squared Euclidean
norm ‖b−As̃‖22 is minimal. If we can establish the bound

‖s− s̃‖∞ < 1/2 (7)
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then we can simply round s̃ coefficient by coefficient to get s = ds̃c = (ds̃1c, . . . , ds̃nc)
and the FS-ILWE problem is solved 12. In particular, when m is large, ATA will
be invertible and we can compute s̃ = (ATA)−1 ·ATb. Therefore, we have

s̃− s = (ATA)−1 ·ATe = Me (8)

where M is the matrix (ATA)−1 ·AT . Since e is a τe-subgaussian vector, s̃−s =
Me is also τ ′-subgaussian follows from Lemma 5 where

τ ′ = ‖AT ‖op2 · τe = τe

√
λmax(MMT ) = τe

√
λmax((ATA)−1AT ·A(ATA)−1)

= τe

√
λmax((ATA)−1) =

τe√
λmin(ATA)

.

Now it remains to bound the smallest eigenvalue λmin(ATA) so as to satisfy
the condition in (7). In the original ILWE, the coefficients of each row ai of A
follow a τ -subgaussian distribution and every coefficient of any of ai is inde-
pendent from all the others. When χa is a subgaussian distribution, the bound
can be derived from a lemma [25, Lemma 2] which is a tail inequality for the
smallest and largest eigenvalues of subgaussian random vectors. However, it no
longer holds in our leakage attack. In our FS-ILWE, every row c of A is sampled
from Bh but each row is independent of each other. Obviously, the coefficients
of c are not independent, however, c has the following good properties.

Lemma 7. Let c1, ..., cm be sampled from Bh independently, then they satisfy:

1. E[cic
T
i |c1, ..., ci−1] = E[cic

T
i ] =

h

n
I;

2. E[exp(αT ci)|c1, ..., ci−1] = E[exp(αT ci)] ≤ exp(
1

2
) for all α ∈ Rn with

‖α‖2 = 1, and ci is a 1-subgaussian random vector for all i = 1, ..,m.

Proof.

1. If we write ci = (ci1, ..., cin), in order to calculate E[cic
T
i ], we need to know

E[cijcij ] and E[cijcik](j 6= k). For the first expectation, we have:

E[cijcij ] = Pr[cij = 1] · 12 + Pr[cij = −1] · (−1)2 =
h

2n
+

h

2n
=

h

n

for all i = 1, ..,m and j = 1, .., n.
Although cij and cik(j 6= k) are not independent, fortunately, their covari-
ance is 0:

E[cijcik] = (Pr[cij = 1, cik = 1] + Pr[cij = −1, cik = −1])− (Pr[cij = 1, cik = −1]

+ Pr[cij = −1, cik = 1])

= (
h · (h− 1)

2n · 2(n− 1)
+

h · (h− 1)

2n · 2(n− 1)
)− (

h · (h− 1)

2n · 2(n− 1)
+

h · (h− 1)

2n · 2(n− 1)
) = 0

12 The reason why FS-ILWE is solvable even when χ
(a,s)
e is not subgaussian is that the

additional error introduced by the distribution of e is much smaller than 1/2 and it
don’t affect the rounding at the end.
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for all i = 1, ..,m and j, k = 1, ..n with j 6= k.

2. Because every vector ci from Bh has h non-zero coefficients, without loss of
generality, we assume that the first h coefficients of ci are non-zero, then
cij(1 ≤ j ≤ h) is a Rademacher random variable, and cij and cik(1 ≤ j, k ≤
h, j 6= k) are independent. If we write α = (α1, ..., αn), we have:

E[exp(α)Tci] ≤ E[exp(α1ci1 + ...+ αhcih)] ≤ E[exp(α1ci1)]...E[exp(αhcih)]

≤ exp(
α2
1

2
)...exp(

α2
h

2
) = exp(

α2
1

2
+ ...+

α2
h

2
) = exp(

1

2
)

for all i = 1, ..,m. The third inequality is followed that the Rademacher
random variable is a 1-subgaussian random variable.

In order to estimate the smallest eigenvalue of ATA, we adapt the lemma
[25, Lemma 2] to our analysis by specializing their statement to ε0 = 1/4 and
γ =

√
n/h.

Lemma 8. Let x1, . . . ,xm be random vectors in Rn such that,

E[xix
T
i |x1, . . . ,xi−1] = I and

E[exp(αTxi)|x1, . . . ,xi−1] ≤ exp(

√
n

2
√
h

) for all α ∈ Rn with ‖α‖2 = 1

for all i = 1, . . . ,m, almost surely. For any δ ∈ (0, 1),

Pr[λmax(
1

m

m∑
i=1

xix
T
i ) > 1+2εδ,m or λmin(

1

m

m∑
i=1

xix
T
i ) < 1−2εδ,m] ≤ δ (9)

where εδ,m := 2

√
n

h
· (
√

8(n log(9)+log(2/δ))
m + n log(9)+log(2/δ)

m ).

If we write AT = (c1, ...cm), then ATA can be expressed by
m∑
i=1

cic
T
i . Com-

bining Lemma 7 and Lemma 8, we get the bound on the smallest eigenvalue of
ATA by replacing xi with

√
n/h · ci (1 ≤ i ≤ m).

Theorem 1. Let A be an m × n random matrix and every row ci(1 ≤ i ≤ m)
of it is sampled from Bh independently. There exist constants C1, C2 such that
for all β ∈ (0, 1) and η ≥ 1, if m ≥ n(C1n+ C2η)/(hβ2) then

Pr[λmax(ATA) > (1 + β) · mh
n

or λmin(ATA) < (1− β) · mh
n

] < 2−η

Furthermore, one can choose C1 = 144 log 9 and C2 = 288 log 2.
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Proof. Let xi =
√
n/h · ci(1 ≤ i ≤ m). According to Lemma 7, we can easily

derive that xi meets the condition of Lemma 8. As
m∑
i=1

xix
T
i = (h/n)

m∑
i=1

cic
T
i =

(h/n)ATA, we plug the relation into equation (9):

Pr[λmax(

m∑
i=1

ATA) > (1+2εδ,m)·mh
n

or λmin(

m∑
i=1

ATA) < (1−2εδ,m)·mh
n

] ≤ δ

(10)
Let ρ = (n log(9) + log(2/δ))/m and δ = 2−η, we can simplify the expression

of εδ,m to 2
√

(nρ)/h(
√

8 +
√
ρ). If m ≥ 144n(n log(9) + log(21+η))/(hβ2), there

are
√

8 +
√
ρ ≤ 3, then we have:

2εδ,m ≤ 12
√
nρ/h ≤ β. (11)

Equation (10) (11) with δ = 2−η can derive our result.

Combining Theorem 1 and Lemma 6, we can bound the distance between the
least squares estimator s̃ and the actual solution s in the infinity norm to obtain
the inequality of the form (7) with very high probability. The formal theorem is
given below.

Theorem 2. Suppose that there exists a common constant τe such that for all

a, χ
(a,s)
e is a τe-subgaussian vector, and (A,As + e) is sampled from the FS-

ILWE distribution for some s ∈ Zn where rows of A are sampled from Bh
independently. There exist constants C1, C2 > 0 such that for all η ≥ 1, if

m ≥ 4n(C1n+ C2η)/h and m ≥ 32
nτ2e
h

log(2n)

then the least squares estimator s̃ = (ATA)−1 ·Ab satisfies ‖s̃− s‖ < 1/2, and
hence bs̃e = s, with probability at least 1− 1

2n − 2−η.

Proof. Applying Theorem 1 with β = 1/2 and the same constants C1, C2 as
introduced in the statement of that theorem, we obtain that for m ≥ 4n(C1n+
C2η)/h, we have

Pr[λmin(ATA) <
mh

2n
] < 2−η

We have shown above that s − s̃ is a τ̃ -subgaussian random vector with τ̃ =

τe/
√
λmin(ATA). Applying Lemma 6 with t = 1/2, we have:

Pr[‖s− s̃‖∞ > 1/2] ≤ exp(log(2n)− mh

16nτ2e
)

Thus, if we assume that m ≥ 32
nτ2
e

h log(2n), it follows that:

Pr[‖s− s̃‖∞ > 1/2] ≤ exp(log(2n)− 2 log(2n)) =
1

2n
.
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It is worth noting that the cost of solving FS-ILWE problem using the least
squares method equals to the complexity of computing (ATA)−1ATb and the
matrix A consisting of c is a sparse matrix, so the complexity of the problem is
at most O(h2 ·m+ n3). It can be very efficient in practice.

3.4 Probabilistic Randomness Bit of Leakages

All the theoretical analysis above is based on an implicit assumption that an
adversary is capable of obtaining the required randomness bit with certainty,
which is a strict condition, because many practical issues will definitely affect the
success rate of the required randomness bit on a real signature implementation.
In this section we show that our attack still works with probabilistic randomness
bit. We consider the leakage position to be l + 1, and other high-order bits are
similar.

Denote by κ the leakage probability of the randomness bit and κ ∈ (0.5, 1].
Note that κ = 0.5 means that there is no extra information about the secret
key s, thus we cannot recover s in this case. Similar to the case of deterministic
randomness bit, we can also obtain an FS-ILWE sample bκ thus a new FS-ILWE
problem. Intuitively, for any κ ∈ (0.5, 1], the expectation of bκ = [z]2l ± dκ · 2l
should be related to the leakage probability κ, so the variable bκ − E(bκ) is also
subgaussian. Next, we’ll prove we can use the same method to solve this new
FS-ILWE problem, and the only difference is that we must multiply the least
squares estimator s̃ by a correction coefficient before rounding to recover s in the
last step. Here we also consider the distribution of [z]2l as a uniform distribution
over (−2l, 2l) ∩ Z and 〈s, c̄〉 ∈ (−2l−1, 2l−1).

In practice, the leakage probability κ is larger than 0.5, but according to
symmetry, we extend the domain of κ to [0, 1]. Set the probability density func-
tion of bκ as φκ = κφ1 + (1− κ)φ0, where φ1 and φ0 represents the probability
density function of b1 and b0 respectively. When κ = 1, we can obtain all the
correct samples, namely, b1 = [z]2l ± d1 · 2l = [y]2l + 〈s, c̄〉 = 〈s, c̄〉+ e1. Then b1
follows a distribution over (−2l + 〈s, c̄〉, 2l + 〈s, c̄〉) ∩ Z.

Another extreme case is κ = 0. In this case d0 = 1−d1, then13 φ0(x) = 1
2l+1−3

when x ∈ ((−3·2l−1,−2·2l−1+〈s, c̄〉)
⋃

(−2l−1, 2l−1)
⋃

(2·2l−1+〈s, c̄〉, 3·2l−1))∩Z,
otherwise φ0(x) = 0. Since E(b0) = −〈s, c̄〉, we can rewrite b0 as b0 = 〈−s, c̄〉+e0.
Finally, we conclude that the result of solving b0 by the least squares method
is −s as the distribution of e0 can be approximately regarded as subgaussian
(similar to e1 in Section 3.3) and the variance of e0 is no more than 2.5 times
that of e1.

In general case, the expectation of bκ is (2κ−1)〈s, c̄〉. Then the equation bκ =
[z]2l ±dκ ·2l can be turned into bκ = (2κ−1)〈s, c̄〉+ eκ, where eκ approximately
follows subgaussian and its variance is no larger than (2.5 − 1.5κ)D(e1). As a
result, the expectation of the least squares estimator in the new FS-ILWE is
E(s̃) = (2κ− 1)s. That is, the correction coefficient is 1

2κ−1 .

13 For brevity, we omit the detailed process of solving the numerical characteristics of
random variables.
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What remains is how many signatures are needed to recover s. According

to Theorem 2, the lower bound of signatures is m ≥ 32
nτ2
e

h log(2n) where we
treat τe as the standard deviation of eκ. In such case, the bound of s̃ should be
transformed to ‖s− 1

2κ−1 s̃‖∞ < 1/2 because of the correction coefficient. Hence

the number of signatures required in this case is no more than D(eκ)
D(e1)(1−2κ)2 <

5−3κ
2(1−2κ)2 times that in the case of κ = 1.

4 Two Cases of Study: Dilithium and qTESLA

Our randomness leakage attack applies to most known lattice-based Fiat-Shamir
signatures. In this section, we show Dilithium and qTESLA are vulnerable.

4.1 Attacks on Dilithium

The Dilithium scheme is built via the “Fiat-Shamir with abort” structure [28,29]
and includes several optimizations on top of the Bai-Galbraith scheme [5]. The
security of Dilithium is based on the hardness of Module-LWE and Module-SIS
problems, a flexible generalization of Ring-LWE and Ring-SIS problems. The
signing algorithm is given by Algorithm 4 and we defer the whole description of
Dilithium to Appendix D.

Algorithm 2 Sign(sk = (ρ, s1, s2, t), µ ∈M)

1: A ∼ Rk×lq := Sam(ρ)
2: t1 := Power2Roundq(t, d)
3: t0 := t− t1 · 2d
4: r← {0, 1}256
5: y ∼ Slγ1−1 := Sam(r)
6: w := Ay
7: w1 := HighBitsq(w, 2γ2)
8: c := H(ρ, t1,w1, µ)
9: z := y + cs1

10: (r1, r0) := Decomposeq(w − cs2, 2γ2)
11: if ‖z‖∞ ≥ γ1 − β or ‖r‖∞ ≥ γ2 − β or r1 6= w1 then
12: goto 4
13: end if
14: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
15: if ‖ct0‖∞ ≥ γ2 or the number of 1’s in h is greater than ω then
16: goto 4
17: end if
18: return σ = (z,h, c)

In Fiat-Shamir signature schemes, the random oracle used to compute the
challenge is implemented by a hash function. We require the entropy of the
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challenge is as small as the security parameter. Hence, the challenge set can be
seen as a subset of the n-dimension ring R and satisfies the following equation

ChSet = {c ∈ R|‖c‖∞ = 1 and 2h
(
n
h

)
≥ 2λ}

where λ is the security parameter. In Dilithium, n = 256 and the challenge set
consists of 60 non-zero coefficients, denoted as B60.

In Dilithium, although the secret keys consist of s1 and s2, the signature z
is only related to s1 and the proof of knowledge of s2 is completely removed to
significantly decrease the signature size. Therefore, we cannot recover s2 via our
partial randomness leakage attack. Besides, due to the public key compression,
we cannot even recover s2 by the public key t = As1 + s2. But the work [13,40]
showed that just knowing s1 is sufficient for existential forgery attack.

Obviously, recovering s1 by leaking the (l + 1)-th bit of any coefficient of y
is exactly an FS-ILWE problem. For example, in the FS-ILWE problem that is
obtained in the key recovery attack on Dilithium-III, a is the coefficient vector
of a 256-degree polynomial with exactly 196 zeros, and the bound l = 7 which
implies ‖sc‖∞ ≤ 26 except 1% and the distribution of e is approximated to
subgaussian over a bounded interval (−27, 27). What remains is to solve some
256-dimension FS-ILWE problems by the least squares method to recover s1.
Note that since Dilithium is a signature based on MLWE, the secret key can be
represented by a matrix (for example, a 256 × 4 matrix in Dilithium-III) and
each column of it is an independent vector. In order to recover the secret key, we
need to solve 4 independent FS-ILWE problems. Taking advantage of parallel
computing, the time needed in this attack is the same as the time needed in a 256-
dimensional FS-ILWE problem, however, we need 4 bits of leakages per signature
to recover 4 polynomials in the secret key s1. Experiments on other parameters
are performed and the detailed results are described in the experimental section.

4.2 Attacks on qTESLA

Similarly, the qTESLA scheme is also built via the “Fiat-Shamir with aborts”
structure and can be seen as a variant of the Bai-Galbraith scheme with a tight
security reduction. The main difference between Dilithium and qTESLA is the
mathematical structure: Dilithium is based on the hardness of Module-LWE and
Module-SIS problems, while qTESLA is based on the hardness of Ring-LWE
problem in Zq[x]/(xn + 1). We defer the description of qTESLA to Appendix E.

Compared with Dilithium, our randomness leakage attack can be adapted
to qTESLA directly because there is only one polynomial in s due to the ring
structure and we only need one bit per signature to recover the secret key s1.
Moreover, since the public key of qTESLA is not compressed, another component
of the signing key e can be recovered easily after s is known.

Besides, in an ideal lattice or module lattice based Fiat-Shamir signature
scheme, the signature is z = y + sc and z,y, s, c are all polynomials. That is
to say, we can obtain at most n FS-ILWE samples z = y + 〈s, c̄〉 per signature
by leaking one bit of n coefficients of y. Obviously, if the required number of
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FS-ILWE samples is determined, the number of signatures required for attacking
with one bit of leakage is n times of the number with n bits of leakages. Hence,
although our attack in Section 3.1 describes how to recover the secret key with
only one bit of leakage per signature, for efficiency, we instead leak more than
one bit in actual attacks on Dilithium and qTESLA. We will show the number
of FS-ILWE samples required in two cases is almost equal in the experimental
section.

5 Experimental Results

In the section, we present experimental results of randomness leakage attacks
on Dilithium and qTESLA. Specifically, we first describe key recovery attacks
on Dilithium and qTESLA by leaking the (l + 1)-th bit of any coefficient of
randomness in Section 5.2, then taking Dilithium as an example, we show how
to perform such attack with leakages from other positions in Section 5.3, and
with probabilistic leakages in Section 5.4.

5.1 The Leakage Bound l in Dilithium and qTESLA

As discussed in Section 3.1, we need to determine the leakage bound l before
attacks. The parameter l is the bound of infinity norm of sc and is actually given
in the parameter sets of Dilithium and qTESLA. However, in order to guarantee
that the probability of ‖sc‖∞ ≥ 2l is negligible, the given bound l is large. In
fact, we can lower l as long as it can bound most of ‖sc‖∞ in our attack. The
smaller l is, the less signatures are required to recover the secret key. Hence,
we find a suitable l by studying the probability of ‖sc‖∞ < 2l on different l
statistically for Dilithium and qTESLA.

For Dilithium, Table 1 shows four parameter sets for different security levels.
For each set, we randomly choose 10, 000 signatures (corresponding to 2, 560, 000
coefficients of sc) and compute the probability of ‖sc‖∞ within the interval
(−2l, 2l) when l = 5, 6, 7, 8, 9 respectively. The results are displayed in Table
2. In our partial randomness leakage attack, we require that the probability of
‖sc‖∞ < 2l−1 is more than 99%. Based on this, the leakage bound l is set to
8, 8, 7, 7 for Dilithium-I, Dilithium-II, Dilithium-III and Dilithium-IV.

For qTESLA, the authors specify two parameter sets named qTESLA-p-I and
qTESLA-p-III, which are displayed in Table 3. With some minor modifications,
the experiments apply to qTESLA. From the statistical results in Table 4, the
leakage bound l in qTESLA is set to 8, 9 and is larger than l in Dilithium.

5.2 Attacking Dilithium and qTESLA

Having determined the leakage bound l, we perform key recovery attacks on
Dilithium and qTESLA by leaking the (l+ 1)-th bit of randomness. Our attack
consists of three steps: generating signatures with the (l + 1)-th bit of leak-
ages, then reducing our attack to an FS-ILWE problem and finally solving the
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Table 1. Parameters for Dilithium

description
I II III IV

weak medium recommended high

n dimension 256 256 256 256
q modulus 8,380,417 8,380,417 8,380,417 8,380,417
h weight of c 60 60 60 60

γ1 ‖yi‖∞ ≤ γ1 − 1
523,776 523,776 523,776 523,776
< 219 < 219 < 219 < 219

(k, l) module parameters (3, 2) (4, 3) (5, 4) (6, 5)
η ‖si‖∞ ≤ η 7 6 5 3
β ‖s1,2c‖∞ ≤ β 375 325 275 175

classical security 58 100 138 174
quantum security 53 91 125 158

Table 2. The probability of ‖s1c‖∞ ≤ 2l in Dilithium

l = 5 l = 6 l = 7 l = 8 l = 9 leakage bound l

Dilithium-I 0.65127 0.94175 0.99988 1 1 8
Dilithium-II 0.72163 0.97151 0.99999 1 1 8
Dilithium-III 0.80157 0.99078 0.99999 1 1 7
Dilithium-IV 0.95885 0.99997 1 1 1 7

Table 3. Parameters for qTESLA

description qTESLA-p-I qTESLA-p-III

n dimension 1,024 2,048
q modulus 343,576,577 856,145,921
h weight of c 25 40
B ‖yi‖∞ ≤ B 219 − 1 221 − 1
σ sk std. dev. 8.5 8.5
LS ‖sc‖∞ ≤ LS 554 901

classical security 150 304
quantum security 139 279

Table 4. The probability of ‖s1c‖∞ ≤ 2l in qTESLA

l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 leakage bound l

qTESLA-p-I 0.86942 0.99762 1 1 1 1 8
qTESLA–p-III 0.77011 0.984125 0.99999 1 1 1 9
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FS-ILWE problem using the least squares method. We run the Dilithium and
qTESLA C codes submitted to NIST to obtain signatures and leakage bits in the
first step, then use methods presented in Section 3.1 to obtain FS-ILWE sam-
ples. Experiments of the first two steps are conducted using C/C++ languages
on a single core of an Intel Core(TM) i7-4790 CPU at 3.6GHz. The last step is
essentially solving a linear system using the least squares method. Due to the
efficient matrix operation in Matlab, we carry out the last step using Matlab
R2014b on a desktop with 3.60GHz processor and 12GB memory.

Another point to note is that we leak more than one bit in actual attacks.
Taking Dilithium-III as an example, we show the number of FS-ILWE samples
required in the case of leaking one bit of randomness per signature and the num-
ber in the case of leaking one bit of each coefficient of randomness per signature
is almost equal. Fixing sk, we measure the minimum value of m to solve the
FS-ILWE problem and the results are displayed in Table 5, which gives the min-
imum, lower quartile, interquartile mean, upper quartile and maximum numbers
of required samples in our 12 trials. As shown in Table 5, the difference of in-
terquartile mean is about 6.32%, meaning that the number of FS-ILWE samples
in two cases is not very different. Therefore, to reduce the time of generating
signatures, we leak one bit of every coefficient of the randomness polynomial y
in follow-up experiments.

Table 5. Numbers of samples required to recover the secret key of Dilithium-III with
different number of leakage bits

leakage bits# Min LQ IQM UQ Max

1 1,055,232 1,152,640 1,432,576 1,524,608 1,583,616
256 849,664 1,011,584 1,342,080 1,453,184 1,716,224
DIF 19.48% 12.24% 6.32% 4.68% -8.37%

Due to the special structure of c, our attack requires a large number of
FS-ILWE samples (i.e. signatures). In other words, our attack may run out of
memory because we need to solve a linear system with noise consisting of m
equations where m is mostly on the order of millions. Some tricks are available
to avoid the problem. Since c is a sparse polynomial with h coefficients ±1,
multiplication by c can be transformed into an iterated sum over those indices
corresponding to the ones. Hence, the complexity of computing ATA and ATb
is reduced from O(mn2) and O(mn) to O(mh2) and O(mh). Moreover, instead
of computing ATA and ATb directly, we use the block matrix strategy and
compute block by block to avoid memory overflow.

Now we turn to experiments on Dilithium and qTESLA. For Dilithium, we
perform 12 trails for each set, and our results are displayed in Table 6. Note
that n times the given number is the number of FS-ILWE samples or the actual
number of signatures required in the case of leaking only one bit per signature.
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Not only that, the numbers in Table 6 is the minimum value of m required to
recover all coefficients of the secret key polynomial. However, in practice, less
signatures are enough since we can recover most of coefficients and then recover
the entire secret key by brute force.

Table 6. Numbers of signatures required for attacking Dilithium

Min LQ IQM UQ Max

Dilithium-I 10,240 13,191.5 16,066 17,081.5 22,543
Dilithium-II 10,046 11,945.5 14,367.5 16,109.5 17,838
Dilithium-III 3,319 3,951.5 5,242.5 5,676.5 6,704
Dilithium-IV 3,532 3,634.5 3,976 4,127 4,373

Interesting enough, we conclude that the difficulty of our attack is opposite
to the difficulty of lattice reduction. The higher the security level is claimed, the
less FS-ILWE samples are required and the easier our attack is. The difficulty
order of our attack on Dilithium is Dilithium-I > Dilithium-II > Dilithium-
III > Dilithium-IV and is consistent with the theoretical results. According to

Theorem 2, m ≥ C
nτ2
e

h log n, where n, h are the same for all parameter sets
and τe is determined by the leakage bound l. When the number of non-zero
coefficients of c is fixed, l is positively related to the value of the secret key s.
From Dilithium-I to Dilithium-IV, the secret key is getting smaller and smaller.

Table 7. Average running time for attacking Dilithium

Time for FS-ILWE
samples (ms)

Time for ATA and
ATb (s)

The total time (s)

Dilithium-I 3.95 17.08 17.084
Dilithium-II 3.51 15.32 15.324
Dilithium-III 1.20 5.54 5.541
Dilithium-IV 0.74 3.50 3.500

In Table 7, we present the running time for our attack on Dilithium. Since
the time of generating signatures highly depends on concrete implementations
and can be computed given the number of required signatures, we omit it here.
Moreover, the running time of solving a linear system consisting of n equations
is constant if the dimension n is fixed and negligible14 and we also omit it. The
total time of recovering the secret key of Dilithium is in seconds, making our
attack rather practical. The most time-consuming operation is computing ATA

14 Solving a linear system consisting of 256, 1024 and 2048 equations takes about 0.49,
10.5 and 73.2 ms respectively using Matlab.
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and ATb in the third step due to the large dimension m, covering 99.97% of the
running time.

Similarly, we perform our attack on qTESLA. For each parameter set, we
perform 12 trails. Results about the minimum number of required samples and
corresponding running time are displayed in Table 8 and 9. The total time for
recovering the secret key of qTESLA is within thousands of seconds. We notice
that attacks on qTESLA are more difficult than Dilithium, mainly because of
the larger dimension n, the sparser polynomial c and even the larger secret key
s. Besides, the sparsity of c is affected by the dimension n. In general, we can
choose a sparser c when n is larger. Therefore, we may conclude that at the
same security level, module lattices are more vulnerable to our attack than ideal
lattices because the dimension of its underlying ring is generally smaller. The
experimental results also verify that.

Table 8. Numbers of signatures required for attacking qTESLA

Min LQ IQM UQ Max

qTESLA-p-I 50,660 84,109.5 108,415.5 152,844 200,463
qTESLA-p-III 94,476 124,692.25 138,652 162,276.75 181,228

Table 9. Average running time for attacking qTESLA

Time for FS-ILWE
samples (ms)

Time for ATA and
ATb (s)

The total time (s)

qTESLA-p-I 125.64 108.49 108.62
qTESLA-p-III 397.75 1845.05 1845.45

In table 10, we provide numbers of required leakage bits and signatures to
attack DSA, ECDSA, Dilithium and qTESLA. It can be seen that lattice-based
Fiat-Shamir signatures are easier to attack because less signatures are required
when leaking one bit of randomness at almost the same security level. In addition,
attacks on DSA and ECDSA take hours, while only a few seconds are required
for Dilithium and qTESLA in our attacks.

5.3 Attacking Dilithium by Leaking High-Order Bits

In this section, we perform attacks on Dilithium to show how to recover the
secret key with leakage bits of any position between l+1 and k of any coefficient
of y. For the sake of simplicity, we assume that the leakage positions in all
signatures are the same, but our attack applies to the case where signatures leak
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Table 10. Numbers of leakage bits and signatures to recover the secret key of
(EC)DSA, Dilithium and qTESLA

Classical
security

Leakage bits Signatures Work

DSA 160 2 100 [27]
DSA 160 log 3 ≈ 1.58 222 [10]

ECDSA 160 1 233 [3]
Dilithium 174 1 220 our work
qTESLA 150 1 227 our work

at different but known positions. According to Section 5.1, for four parameter
sets in Dilithium, the leakage bound l is 7 or 8, hence, we measure the minimum
value of m required to recover the secret key for l = 7, ..., 11. Here we do not
consider larger l, because there is a positive correlation between m and l and
larger l requires much more signatures, more memory and longer running time.
Experimental results are given in Figure 1.

Fig. 1. Number of signatures with high-order bit of leakages

The results in Figure 1 indicate that the value m of required samples for
four parameter sets are close when leakage happens at the same position. The
results are consistent with the theoretical results. Fixing the dimension n and
the number of non-zeros coefficients of c, m is only affected by τe, which depends
on the leakage bound l. Note that Figure 1 does not contain the result of l = 11
for Dilithium-IV because the result of experimental example exceeds 1, 000, 000,
the maximum value of signatures we set in advance. Another conclusion that
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can be drawn from Figure 1 is that when the leakage position is shifted to
the left by one, the number of signatures required becomes two to five times.
Therefore, for Dilithium where t = 19, we conjecture that the number of required
signatures with leaking the t-th bit is at most 106 × 58 ≈ 239 (or 247 in the case
of leaking only one bit per signature), which is less than 264, the maximum
number of signatures that adversaries can obtain by NIST [33]. In other words,
our attack is theoretically applicable to the case of leaking the highest order bit
of y, however, it is not feasible in practice due to memory and time limits.

5.4 Attacking Dilithium with Probabilistic Bits

Section 3.4 shows that, our key recovery attack against lattice-based Fiat-Shamir
signatures still holds as long as the probability that an adversary obtains the
randomness bit is larger than 0.5. In this section, we validate our method by
attacking Dilithium-IV using randomness bit with different probability, since
Dilithium-IV is the easiest to attack as shown in Table 6. Besides, for simplicity,
we assume that leakage occurs at the (l+1)-th bit (i.e. the 8-th bit for Dilithium-
IV).

Table 11. Numbers of signatures required for attacking Dilithium-IV using probabilis-
tic randomness bits

probability Min LQ IQM UQ Max

1 3,532 3,634.5 3,976 4,127 4,373
0.9 4,300 5,512 6,576 7,878.5 9,011
0.8 8,659 11,740 13,943.5 15,942.5 17,323
0.7 23,980 27,238 30,084.5 34,933.5 46,931
0.6 107,797 124,579 142,574.5 162,517 168,280

For one bit, the leakage probability 0.5 can be regarded as no leakages since
it is equivalent to random guessing, thus 0.6 is a fairly low and practical prob-
ability. Hence, we set the leakage probability to be 1, 0.9, 0.8, 0.7, 0.6. For each
probability, we perform 12 trails. The minimum value of required signatures to
recover the secret key is displayed in Table 11. For example, even if the leakage
probability is as low as 0.6, less than two hundred thousand signatures are suf-
ficient to recover the secret key of Dilithium-IV, which is almost 40 times the
number of signatures required when the leakage probability is 1.

6 A Proof-of-Concept Practical Experiment

In previous sections, we focus on mathematical techniques to exploit randomness
leakage to recover the secret key. In this section, we perform a non-profiled power
analysis attack to show how to come up with the required bit of randomness in
practice.
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6.1 Available Randomness Bits in Lattice-based Fiat-Shamir
Signatures

As said in Section 3.1, the randomness y is much larger than 〈s, c̄〉, and the
signature z is the sum of a large number y and a small number 〈s, c̄〉. Denote the
(k− l) MSBs of randomness y by MSBl(y) = (y− [y]2l)/2

l where k is the length
of y, and MSBl(z) = (z−[z]2l)/2

l. Suppose that Pr[|〈s, c̄〉| < 2l−1] ≈ 1. Thus, we
have MSBl(y) = MSBl(z) if no overflow occurs when computing [y]2l+〈s, c̄〉, oth-
erwise MSBl(y) = MSBl(z)+1. That is, the high-order bits of some randomness
of y are available, which are revealed by the signature z. With this interesting
observation, we may wonder: which randomness bits are available? And can we
exploit these available randomness bits to break the signature schemes?

For the former, we note that if no overflow occurs when computing [y]2l +
〈s, c̄〉, or even if there is an overflow, but we can decide how many locations
are affected, those high-order randomness bits of unaffected locations are known
according to the signature z. Take z > 0 as an example. For the (l + 1)-th bit
of y (denoted by yl+1), since carry may occur if zl = 0 and borrow may occur
if zl = 1, we cannot infer yl+1 from zl+1. However, for yl+2, if zl,l+1 6= 00 or
11, there will definitely be no overflow and yl+2 = zl+2. And so on, for yl+c
where c ≥ 2, if zl,...,l+c−1 6= 0 . . . 0 or 1 . . . 1, we have yl+c = zl+c. Similar
conclusion holds for z < 0. Hence, Pr[yl+c is available] = 1 − 1

2c−1 . Note that
Pr[yl+c is available] 6= Pr[yl+c = zl+c].

Now we turn to the second question: can these available randomness bits
be exploited? From the theoretical perspective, available randomness bits are
determined according to the signature, and the adversary cannot obtain addi-
tional information other than the signature from available randomness. Hence,
the theoretical security of a provably secure signature scheme is unaffected. To
be clear here, although it seems that available randomness bit is exactly the
required high-order randomness bit in our attack, only these available random-
ness bits come from signatures are not enough for our attack, since rejection
sampling technique fundamentally eliminates such statistical attacks. In other
words, those randomness bits cannot be inferred from z are critical for our at-
tack, and that is why we can bypass the rejection sampling technique to recover
the secret key.

However, from the practical perspective, available randomness may affect
the practical security of lattice-based Fiat-Shamir signatures. First, suppose M
leakage bits are required when leaking the (l+c)-th bit of y (c ≥ 2) in our attack,
now only 1

2c−1 of M bits need to leak by SCAs, and the rest are available. More
importantly, available randomness can be exploited in practical leakage attacks
to obtain information of randomness. In the following part, we show how to
recover the required randomness bit by a non-profiled attack with the help of
available randomness bits.

6.2 A Non-Profiled Power Attack on Polynomial Addition

Our attack is described in Figure 2, in which I denotes the sensitive data in
target device and L denotes the collected power traces from this device. The
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adversary sends a number of messages msg to the target device (step 1©), which
sends back the corresponding signature sig but also leaks some information L
physically (step 2©). In the analysis step 3©, these power traces can be divided
into two groups through the signature sig (which has been shown in 6.1): in
one group, the sensitive data (high-order bits of the randomness y) are avail-
able, and the sensitive data and corresponding power traces of this group are
denoted by Iavailable and Lavailable respectively. However, the sensitive data of
the other group are still uncertain, these data and their power traces are denoted
by Iuncertain and Luncertain. Next, the adversary is able to build a profiled model
T for each high-order bit of y using Iavailable and Lavailable. Thus, Iuncertain can
be recovered utilizing the obtained model T and power traces Luncertain. Com-
bining Iavailable and Iuncertain, the adversary could obtain all high-order bits of
randomness y.

Although the profiling is utilized, we believe that our attack belongs to non-
profiled attacks due to the way of obtaining the profiled data and the time
to profile: (1) How to obtain the profiled data. Despite the profiling is
mounted in our attack, the sensitive data used to profile is obtained through
public signatures, and the profiling device is not needed in our attack. (2) When
to profile. The profiling is mounted in step 3©, which implies the profiling phase
is a step in the analysis. Namely, our attack just makes use of the idea and
procedure of profiled attacks, but the power of the adversary is totally the same
with that in non-profiled attacks.

available available,I L

① msg

② sig, L

Our Attack

③-3. Sensitive Data I

③-1. Classifying L according to sig

③-2. Profiled Model T

Profiling Attack

③

①-②

Target DeviceAdversary

availableI

uncertainL

uncertainI

Fig. 2. Overview of Proof-of-the-Concept Real-World Attack (which also explains why
it belongs to non-profiled attacks).

This attack has a main advantage: Powerful. It belongs to non-profiled
SCAs, but its idea and procedure are similar with profiled attacks. Thus, it can
be much more powerful than other non-profiled attacks.
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The target process of our attack is the addition operation z = y + sc in
the signing algorithm of Dilithium. In the Dilithium software, the addition z =
y+〈s, c̄〉 is implemented as z+2q = (y+q)+(〈s, c̄〉+q). Although the magnitude
of y+q and 〈s, c̄〉+q is the same, high-order bits of some y+q still can be inferred
from z+ q. Here the MSBs of y+ q and z+ q are the same if no overflow occurs
when computing [y]2l + 〈s, c̄〉+ [q]2l . In this section, we take Dilithium-II (where
l = 8) as an example to show how to obtain 1 bit information of y + q through
power traces and there are available randomness bits when the leakage position
t ≥ 10. Note that in order to be consistent with previous sections, we still use y
and z instead of y + q and z + q below.

A software platform used to implement the sensitive addition operation re-
lated to y is a microcontroller (MCU) 8051 STC89C58RD+ clocked at 11.0592MHz,
and the power traces of the device are measured by a oscilloscope (Agilent
DSO9104A). The sampling rate is set to 20MSa/s. We measured the voltage
drop over a 50Ω resistor in the GND path of MCU as the power consumption.
For one trace, there are 65,000 samples, which are around the sensitive operation.
Totally 10,000 traces are collected with a lower pass filter (BLP-90+).

We take our attack on the 10-th bit of y as an example. First, we analyze
the public signature z to find if the 10-th bit of z equals to that of y. Actually,
we get 5,171 satisfied traces, then we use the T-test to detect the leakages with
these traces, which is shown as Fig 3.
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Fig. 3. The leakages of the 10-th bit using public signature z.

In fact, leakage detection can filter out Points of Interesting (PoIs) based on
10-th bit of z. Since 10-th bit of z definitely equals to that of y, the detected
points are related to both y and z. To profile a premise template for y, it is
necessary to remove the PoIs only related to z. In fact, y is the input of this
addition operation while z is the output, and we regard the PoIs after 40,000th
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(black line in Fig 3) as leakages of outputs (i.e. z). While profiling and attacking,
we only use first 40,000 points in each trace. We profile the template with 5,171
satisfied traces, and use the obtained template to attack with the other 4,829
traces. The results show that the 10-th bit of y can be recovered with 99.63%
success rate. Other bits of y can be recovered similarly, and the results are shown
in Table 12.

Table 12. The results aiming to recover high-order bit in y.

i-th bit trace# for
profiling

trace# for
attacking

PoI# Success Rate

10 5171 4829 134 99.63%

11 7654 2346 105 100%

12 8854 1146 283 100%

13 9444 556 306 100%

14 9727 273 320 100%

15 9865 135 367 100%

16 9927 73 605 100%

17 9959 41 530 100%

18 9974 26 537 100%

19 9988 12 581 100%

It is obvious that our attack achieves perfect success rates under our experi-
mental setting. However, this experiment is too far from a practical validation.

6.3 Attacking under Artificial Noisy Setting

To make a more convincing validation of our attacking, we simulate the practical
environment by adding artificial Gaussian noise to existing traces then evaluate
our attack again. All attacking parameters (such as number of traces for profiling
and attacking, number of PoIs) are the same as those in Section 6.2. We use σ to
denote the standard deviation of Gaussian noise added. The results are shown
in Fig. 4.

It should be noted that, when σ is up to 10, the highest SNR of POIs among
these traces is 0.1938, which is relatively practical (the highest SNR of PoIs in
ASCAD dataset [39] is over 12). The results in Fig. 4 show that Success Rates
of our attack for all target bits are higher than 0.65. We have shown how to
recover the secret key under an assumption, which claims the adversary can
get high-order bits of randomness y with a leakage probability over 0.6. Hence
this additional experiment validates this assumption should be reasonable in
practice.

In this work, we just provide a method to exploit available randomness,
but we conjecture there must be other applications, making it easier to leak
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Fig. 4. The results of our attack after adding artificial Gaussian noise to existing traces.

randomness of lattice-based Fiat-Shamir signatures, and thus much easier to
recover the secret key.

7 Conclusion

In this work we presented a polynomial time attack on lattice-based Fiat-Shamir
signatures with only one randomness bit of leakage per signature. We showed
that the key recovery attack with randomness leakage can be reduced to the
FS-ILWE problem, which can be solved efficiently by the least squares method.
Our attack was experimentally validated to recover secret keys of Dilithium and
qTESLA. In addition, we showed how to obtain the required leakage bits in
practice using a non-profiled attack.

7.1 Future Work

The leakage in our key recovery attack may occur at any position of ran-
domness except the l LSBs where l is the leakage bound satisfying the condition
Pr[‖sc‖∞ < 2l−1] ≥ 99%. Namely, our attack fails with low-order leakage bits.
Although we believe that leakages of low-order bits of randomness reveal infor-
mation of the secret key, attacks exploiting these bits are still an open issue.

Note that our key recovery attack is applicable to most of lattice-based Fiat-
Shamir signatures except BLISS [17]. To improve the success rate of the rejection
sampling, BLISS uses a bimodal Gaussian distribution and the signature is z =
y + (−1)bsc where b ∈ {0, 1} is kept hidden. As a result, the linear system in
the last step of our attack contains s and −s which will cancel each other out.
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We expect to extend our attack to make it applicable to all the Fiat-Shamir
signatures over lattice including BLISS in the future.
7.2 Discussion of Possible Countermeasures

To protect against our attacks, we provide some rough ideas here. Ultimately,
both of our attacks based on leakages of randomness used in a realistic signa-
ture scheme, and side-channel leakage is the most important and common one.
Thus, we discuss the possible countermeasures borrowed from the side-channel
literature.

Since any step (such as sampling and computation) that involves the ma-
nipulation of randomness in the signing algorithm may leak the information
of randomness, a generic countermeasure against side-channel attacks is mask-
ing the whole signing algorithm. In 2018, Barthe et al. [6] proposed the first
arbitrary-order masking of the GLP signature scheme [21], which can be seen
as the ancestor of Dilithium and qTESLA. Later, this work led to the masking
schemes of Dilithium [32] and qTESLA [22]. In theory, the masked signatures are
secure against side-channel attacks. However, randomness of above three signa-
tures follow the uniform distribution. As shown in Section 1.3, the distribution
of lattice-based Fiat-Shamir signatures can also be the Gaussian distribution.
In 2019, a masking scheme for be the Gaussian distribution was proposed by
Barthe et al. [7] as well.

In addition, for signatures using the Gaussian distribution, the sampling pro-
cedure is also a potential side-channel leakage source. For such attacks, one pos-
sible countermeasure is implementing the Gaussian sampling in constant time,
such as the work [31]. Alternatively, using the uniform sampler instead of the
Gaussian sampler to generate randomness. It should be emphasized that these
countermeasures are only for variable-time Gaussian sampling and cannot pre-
vent other potential leakage sources.
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Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS decomposition,
power analysis, and attacks on ECDSA signatures with single-bit nonce bias. In
ASIACRYPT, pages 262–281, 2014.

4. Lszl Babai. On lovász lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.

5. Shi Bai and Steven D. Galbraith. An improved compression technique for signa-
tures based on learning with errors. In CT-RSA, pages 28–47, 2014.
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7. Gilles Barthe, Sonia Beläıd, Thomas Espitau, Pierre-Alain Fouque, Mélissa Rossi,
and Mehdi Tibouchi. GALACTICS: gaussian sampling for lattice-based constant-
time implementation of cryptographic signatures, revisited. In CCS, pages 2147–
2164. ACM, 2019.

8. Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “ooh aah...
just a little bit” : A small amount of side channel can go a long way. In CHES,
pages 75–92, 2014.

9. Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Juliane Krämer, Patrick Longa, Harun
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Gregor Seiler, and Stehlé Damien. CRYSTALS-Dilithium. Submission to the NIST
Post-Quantum Cryptography Standardization, 2017. https://pq-crystals.org/
dilithium.

31. Daniele Micciancio and Michael Walter. Gaussian sampling over the integers:
Efficient, generic, constant-time. In CRYPTO, pages 455–485, 2017.
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A Proofs of Lemma 4 and Lemma 5

A.1 Proof of Lemma 4

Since Xi’s are independent τi-subgaussian variables, for all s ∈ R, we have:

E[exp(sX)] = E[exp(s(µ1X1 + · · ·+ µnXn))]

= E[exp(µ1sX1) . . . exp(µnsXn)] =

n∏
i=1

exp(µisXi)

≤
n∏
i=1

exp(
s2(µiτi)

2

2
) = exp(

s2τ2

2
)

with τ2 = µ2
1τ

2
1 + · · ·+ µ2

nτ
2
n are required.

A.2 Proof of Lemma 5

Fix a unit vector u0 ∈ Rm,

〈u0,y〉 = 〈ATu0,x〉 = µ〈u,x〉

where µ = ||ATu0||2, and u = 1
µATu0 is a unit vector of Rn. Since x is τ -

subgaussian, the inner product 〈u,x〉 is a τ -subgaussian variable. As a result,
〈u0,y〉 = µ〈u,x〉 is (|µ|τ)-subgaussian by Lemma 4. However, by definition of
the operator norm, |µ| ≤ ‖AT ‖op2 , and the result follows.

B Attack without Leakage

Up to now, we can recover the secret key of lattice-based Fiat-Shamir signatures
with only one bit leakage of the randomness used in the signing algorithm per
signature. A natural question we may wonder is that whether such an attack is
still applicable without leakage. Or equivalently, can we recover the secret key
only with signatures? Unfortunately, the answer is no and detailed explanations
are given from two respects blow.

As we mentioned already, the leaked (l+ 1)-th bit of y is essential to remove
the modulus in (3) and in the absence of leakage, the attack can be reduced to
another LWE variant:

[z]2l = [y]2l + 〈s, c̄〉 (mod q) (12)

where we let

a = c̄ and e = [y]2l and b = [z]2l and q = 2l.

This type of LWE has the following properties:
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– The modulus q is very small (only l bits and l = 7 or 8 for Dilithium);
– The error e has the same magnitude as the modulus q (e ∈ (−q, q));
– The dimension n may be small (n = 256 for Dilithium).

We will give a formal definition of the LWE variant with large errors (LLWE)
and show it is hard in the information-theoretic sense.

Definition 7 (LLWE). For any vector s ∈ Zn, the LLWE distribution over
Zn × Zp are of the form

(a, b) = (a, 〈a, s〉+ e (mod q))

where a← Bh, e← χ
(a,s)
e such that |〈a, s〉| < q .

It is obvious that given two vectors s, s′ ∈ Zn, the LLWE distributions Ds,Ds′

are the same if nothing is known about e, namely, it it impossible for adversaries
to distinguish Ds,Ds′ . Hence, the LLWE problem is hard in the information-
theoretic sense and our attack cannot extend to the leak-free setting.

Step back, another possible attack is reducing the whole signature to the
FS-ILWE problem:

z = y + 〈s, c̄〉 (13)

where we let

a = c̄ and e = y and b = z.

Since Fiat-Shamir signature over lattice is computed without modular reduc-
tion, the signature is exactly an FS-ILWE problem. However, we cannot recover
the secret key by solving such an FS-ILWE problem because signatures z are
filtered by the rejection sampling, which provides that z are independent from
the secret key s. Therefore, to some extent, the rejection sampling techniques
fundamentally eliminates the potential threat of statistical attacks like ours in
the leak-free setting.

In general, lattice-based Fiat-Shamir signatures are secure against attacks
using statistical approaches and leakage of randomness is the necessary condition
to recover the secret key for this type attacks.

C Remove the Heuristic Assumptions

Totally speaking, our proof is established on two heuristic assumptions: the first
is assuming we can always guess carry or borrow correctly and the second is
treating the error term as subgaussian approximately. The first is easy to remove,
because we can simply find l so that Pr[‖sc‖∞ ≤ 2l−1] ≈ 100% except negligible
probability, which is not hard to satisfy.

The idea to remove the second assumption based on the fact that the expec-

tation of the error term is E([y]2l) = − 2l−1
2γ+1−1 〈s, c̄〉, which is very small and is
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proportional to 〈s, c̄〉. Let e′ = e−E([y]2l), then E(e′) = 0 and e′ is subgaussian
obviously. Rewrite the signature as

b = [z]2l = 〈s, c̄〉+e = 〈s, c̄〉− 2l − 1

2γ+1 − 1
〈s, c̄〉+e+ 2l − 1

2γ+1 − 1
〈s, c̄〉 = 〈(1− 2l − 1

2γ+1 − 1
)s, c̄〉+e′

(14)

then b = Cs + e is equivalent to the form b = C(1 − 2l−1
2γ+1−1 )s + e′, where the

coefficient e′ of e′ satisfies the equation e′ = e+ 2l−1
2γ+1−1 〈s, c̄〉 thus subgaussian.

Let s′ = (1 − 2l−1
2γ+1−1 )s, thus the problem b = Cs′ + e′ is an FS-ILWE

problem whose error term distribution is subgaussian and can be solved by the
least squares method as shown in Section 3.3. If we can establish the bound

‖s′ − s̃‖∞ < 1/2− 2l−1
2γ+1−1‖s‖∞, then we can recover the secret key s = bs̃e. The

bound can be easily obtained by applying Lemma 6 with t′ = 1/2− 2l−1
2γ+1−1‖s‖∞

instead of t = 1/2 in Theorem 2. According to Lemma 6 and Theorem 1, if we
need m samples to recover s that satisfies ‖s̃ − s‖∞ < 1/2 with probability at
least 1− 1

2n − 2−η, then m′ = ( tt′ )
2m samples are enough to ensure ‖s̃− s′‖∞ <

1/2− 2l−1
2γ+1−1‖s‖∞ with the same probability.

In general, since 2l−1
2γ+1−1‖s‖∞ is too small 15, the FS-ILWE whose error term

distribution is χ
(a,s)
e can be solved by reducing it to an FS-ILWE with subgaus-

sian, in which we can recover s′ = (1− 2l−1
2γ+1−1 )s.

D Description of Dilithium

The Dilithium scheme is built via the “Fiat-Shamir with abort” structure [28,29]
and includes several optimizations on top of the Bai-Galbraith scheme [5]. The
security of Dilithium is based on the hardness of Module-LWE and Module-SIS
problems, a flexible generalization of Ring-LWE and Ring-SIS problems. The
Dilithium scheme is given by Algorithms 3-5.

The secret keys s1, s2 are generated by an extendable output function Sam,
a function on bit strings whose output can be extended to any desired length,
and have uniformly random coefficients in the range [−η, η]. The Power2Roundq
algorithm is used to partition each coefficient of the MLWE instance t into high-
order bits and low-order bits respectively. The public key includes a seed ρ used
to compute the matrix A by Sam and t1 associated to the dlog qe−d high-order
bits of t.

To sign a message µ, the signer firstly computes the randomness vector y
using the Sam algorithm, then computes the challenge c and finally computes
the signature candidate z. If all the checks in Line 11 and 15 pass, output the
signature z, otherwise the signing algorithm restarts until a signature is valid.
Since the public key is compressed, the signer needs to provide a “hint” for the

15 For example, in Dilithium with the recommended parameters, ‖s‖∞ ≤ 5 and
2l−1

2γ+1−1
‖s‖∞ ≤ 0.0006. Moreover, the number of required samples computing s′

is 0.24% more than that required computing s in Section 3.3.
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verifier to compute the challenge in the verification algorithm. The algorithm
MakeHintq is used to make such a hint and the algorithm UseHintq in the ver-
ifying algorithm shows how to use the hint to complete the verification. For
completeness, we also describe the verification algorithm in Algorithm 5.

Algorithm 3 KeyGen()

1: ρ, ρ′ ← {0, 1}256
2: A ∼ Rk×lq := Sam(ρ)
3: (s1, s2 ∼ Slη × Skη := Sam(ρ′)
4: t := As1 + s2
5: t1 := Power2Roundq(t, d)
6: return (vk = (ρ, t1), sk = (ρ, s1, s2, t))

Algorithm 4 Sign(sk = (ρ, s1, s2, t), µ ∈M)

1: A ∼ Rk×lq := Sam(ρ)
2: t1 := Power2Roundq(t, d)
3: t0 := t− t1 · 2d
4: r← {0, 1}256
5: y ∼ Slγ1−1 := Sam(r)
6: w := Ay
7: w1 := HighBitsq(w, 2γ2)
8: c := H(ρ, t1,w1, µ)
9: z := y + cs1

10: (r1, r0) := Decomposeq(w − cs2, 2γ2)
11: if ‖z‖∞ ≥ γ1 − β or ‖r‖∞ ≥ γ2 − β or r1 6= w1 then
12: goto 4
13: end if
14: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
15: if ‖ct0‖∞ ≥ γ2 or the number of 1’s in h is greater than ω then
16: goto 4
17: end if
18: return σ = (z,h, c)

E Description of qTESLA

Similarly, the qTESLA scheme is also built via the “Fiat-Shamir with aborts”
structure and can be seen as a variant of the Bai-Galbraith scheme with a tight
security reduction. The main difference between Dilithium and qTESLA is the
mathematical structure: Dilithium is based on the hardness of Module-LWE
and Module-SIS problems, while qTESLA is based on the hardness of Ring-
LWE problem in Zq[x]/(xn + 1). The simplified qTESLA scheme is given by
Algorithm 6-816.

16 The qTESLA scheme submitted to NIST is deterministic and for simplicity here we
present the non-deterministic version with some minor modifications.
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Algorithm 5 Verify(vk = (ρ, t1), µ ∈M, σ = (z,h, c))

1: A ∼ Rk×lq := Sam(ρ)
2: w1 := UseHintq(h,Az− ct1 · 2d, 2γ2)
3: if c = H(ρ, t1,w1, µ) and ‖z‖∞ ≤ γ1 − β and the number of 1’s in h is less than ω

then
4: return 1
5: else
6: return 0
7: end if

Algorithm 6 KeyGen()

1: seeda ← {0, 1}256
2: a ∼ Rq := GenA(seeda)
3: while s and e do not fulfill certain criteria do
4: s ∼ Rq ← Dσ, e ∼ Rq ← Dσ
5: end while
6: t = as + e mod q
7: return (vk = (seeda, t), sk = (s, e, seeda)

Algorithm 7 Sign(sk = (s, e, seeds), µ ∈M)

1: a ∼ Rq := GenA(seeda)
2: while Reject(z, v, c, s) do
3: seedy ← {0, 1}256
4: y ∼ Rq := GenY(seedy)
5: v := ay mod q
6: c := H(Round(v), µ)
7: z = y + sc
8: end while
9: return σ = (z, c)

Algorithm 8 Verify(vk = (seeda, t), µ ∈M, σ = (z, c))

1: a ∼ Rq := GenA(seeda)
2: w := az− tc
3: if c = H(Round(w), µ) then
4: return 1
5: else
6: return 0
7: end if
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