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SIKE’d Up: Fast Hardware Architectures for
Supersingular Isogeny Key Encapsulation
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Abstract

In this work, we present a fast parallel architecture to perform supersingular isogeny key encapsulation (SIKE). We propose
and implement a fast isogeny accelerator architecture that uses fast and parallelized isogeny formulas. On top of our isogeny
accelerator, we build a novel architecture for the SIKE primitive, which provides both quantum and IND-CCA security. We
synthesized this architecture on the Xilinx Artix-7, Virtex-7, and Kintex UltraScale+ FPGA families. Over Virtex-7 FPGA’s,
our constant-time implementations are roughly 14% faster than the state-of-the-art with a better area-time product. At the NIST
security level 5 on a Kintex UltraScale+ FPGA, we can execute the entire SIKE protocol in 15.3 ms. This work continues
to improve the speed of isogeny-based computations and also features all parameter sets of the SIKE round 2 specification,
with results applicable to NIST’s post-quantum standardization process.
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I. INTRODUCTION

Although it is unclear when large-scale quantum computers will be available, it is very clear that such an event will have
huge ramifications on today’s public-key cryptosystems. Notably, Shor’s algorithm [1] could be used in conjunction with a
quantum computer to break factorization, discrete logarithm, and elliptic curve discrete logarithm problems which are the
security foundation for RSA, Diffie-Hellman, and elliptic curve cryptography, respectively. These quantum computer fears
have existed for decades and inspired a new domain of cryptography: post-quantum cryptography (PQC). PQC focuses on
cryptographic algorithms that are resistant to attackers armed with both classical and quantum computers.

However, the use of elliptic curves in public-key cryptography is not dead. Isogeny-based cryptography relies on the
difficulty to compute isogenies between elliptic curves. Rather than finding a secret point with a secret point multiplication,
the objective of isogeny-based cryptography is to find a secret elliptic curve isomorphism class by performing a secret
walk on an isogeny graph. For large finite fields, it is difficult to construct an isogeny between two distant isomorphism
classes of isogenous curves. This supersingular isogeny problem is related to the claw problem, which is hard even in the
quantum sense.

The use of isogenies for a cryptosystem was first proposed in independent works by Couveignes [2] and Rostovtsev
and Stolbunov [3] that were first published in 2006. This isogeny-based key-exchange was protected by the difficulty to
compute isogenies between ordinary elliptic curves. In 2009, Charles et al. further explored this problem and designed
an isogeny-based hash function [4]. In 2010, Childs, Jao, and Soukharev [5] proposed a quantum algorithm to compute
isogenies between ordinary elliptic curves in subexponential time. Then, in 2011, Jao and De Feo [6] proposed a different
isogeny-based cryptosystem that was instead protected by the difficulty to compute isogenies between supersingular elliptic
curves. This was called the supersingular isogeny Diffie-Hellman (SIDH) key exchange and is based on the supersingular
isogeny problem, for which there is no known quantum attack in subexponential time. In addition to the standard SIDH
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primitive, the supersingular isogeny problem has also been used to create digital signatures [7], [8] and undeniable signatures
[9].

At PQCrypto 2016, NIST announced a standardization process for post-quantum algorithms [10]. Among the primary
quantum-resilient candidates, there is no clear winner. There are various tradeoffs in underlying quantum security, key
sizes, and efficiency. Isogeny-based cryptography sticks out as a strong candidate because it features the smallest key sizes
of known PQC algorithms. Small key sizes reduce transmission cost and storage requirements. At NIST security level
5, the public keys in supersingular isogeny Diffie-Hellman (SIDH) key exchange are approximately 576 bytes and key
compression [11], [12] further reduces this to 336 bytes. However, the primary downsides to SIDH are that static keys
cannot be reused (as malicious public keys can reveal bits of a user’s private keys [13]) and that it is slow.

The supersingular isogeny key-encapsulation (SIKE) scheme [14] was submitted to NIST’s standardization process as
an isogeny-based key exchange alternative to SIDH that can safely support static keys. This scheme resembles SIDH in
computations, but also adds additional hashing operations to provide indistinguishability under chosen ciphertext attack
(IND-CCA). Over a public channel at NIST security level 5, a 564 byte public key and 596 byte ciphertext are exchanged
and a 24 byte shared secret is computed. SIKE is currently in the second round of the NIST PQC standardization process,
featuring the smallest public key sizes of known PQC key encapsulation algorithms.

On the efficiency side, much research has gone into bringing SIDH and isogeny computation times down. Notably, faster
isogeny arithmetic [15], [16], double-point multiplication schemes [17], and large-degree isogeny parallelization [18] have
improved the performance of isogeny computations. On the software side at NIST security level 2, the SIDH protocol on
a high-performance processor has dropped from the order of 1.3 s [6] to 10 ms [14]. Other software implementations have
improved the isogeny computation time on smaller ARM processors [19], [20]. On the hardware side at NIST security
level 2, the SIDH protocol on a high-performance FPGA has dropped from 34 ms [21] to 14 ms [22].

Contribution. In this paper, we improve upon the high-performance isogeny accelerator presented in [22] and present a
fast FPGA SIKE implementation that continues to push isogeny-based computations faster. In this SIKE architecture, we
have proposed new optimizations to the field adder, field multiplier, field arithmetic unit architecture, scheduler, and full
interface between an isogeny accelerator and Keccak accelerator to accomplish SIKE computations. We have also utilized
new, faster isogeny formulas over an optimized scheduling methodology. Our constant-time implementation performs
isogeny-based primitives 14% faster than the previous fastest known FPGA implementation with a better area-time product.
On Xilinx Artix-7, Virtex-7, and UltraScale+ FPGA boards, we implemented all SIKE round 2 parameter sets, SIKEp434,
SIKEp503, SIKEp610, and SIKEp751, which conservatively provide NIST security levels 1, 2, 3, and 5 over large
finite fields of 434, 503, 610, and 751 bits, respectively.

Organization. Our paper is organized as follows. In Section 2, we review isogeny-based cryptography preliminaries. In
Section 3, we present design choices in our finite field accelerator and scheduling that achieve faster isogeny acceleration
than the previous state-of-the-art. In Section 4, we describe our architecture to encapsulate all SIKE functionalities on top
of our isogeny accelerator. In Section 5, we present our FPGA results and compare to the previous state-of-the-art. Lastly,
in Section 6, we conclude this paper.

II. PRELIMINARIES

Here, we review some preliminaries of isogeny-based cryptography that are necessary for SIKE. We point the reader to
[23] for a more in-depth review of isogeny fundamentals.

A. Isogeny-Based Cryptography

Elliptic curve cryptography deals with the study of elliptic curves over finite fields with many useful applications to
public-key cryptography. An elliptic curve over a finite field Fq is the collection of all points (x, y) as well as the point at
infinity that satisfy the short Weierstrass form:

E/Fq : y2 = x3 + ax+ b
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where a,b, x, y ∈ Fq . The set points form an abelian group over addition [24]. Consider a point P = (x, y). We can perform
consecutive point addition and doublings to compute an elliptic curve point multiplication, Q = kP where k ∈ Z and
P,Q ∈ E. Scalar point multiplication forms the basis for the elliptic curve discrete logarithm problem, for as the abelian
group becomes very large (such as 2256 points), it becomes infeasible to find k given Q and P . However, this is only
in a classical security model. Shor’s algorithm [1] will break the elliptic curve discrete logarithm problem by computing
discrete logarithms in polynomial time on a quantum computer.

Isogeny-based cryptography on the other hand, deals with the relationships between elliptic curves. We define an elliptic
curve isogeny over Fq , φ : E → E′ as a non-constant rational map from E(Fq) to E′(Fq) that preserves the point at
infinity. This can be thought of as a mapping of points from one elliptic curve to another. The j-invariant of a curve
acts as its unique identifier for an elliptic curve isomorphism class. We can compute a unique isogeny by using Vélu’s
formulas [25] over a kernel, φ : E → E/〈ker〉. The degree of an isogeny is its degree as a rational map. We can compute
large-degree isogenies of the form `e by chaining e isogenies of degree `.

In this work, we are particularly interested in supersingular elliptic curves rather than ordinary elliptic curves as Childs et
al. [5] have proposed a quantum subexponential attack on ordinary curves. The non-commutative nature of a supersingular
curve’s endomorphism ring renders the quantum attack in [5] useless. Thus, for supersingular elliptic curves, q = p2 and
there are approximately p/12 isomorphism classes.

Isogeny-based cryptography relies on the difficulty to compute isogenies between elliptic curves. For φ : E → E′ where
φ is given as a product of small-degree isogenies, it is simple to perform an isogeny from E to E′, but it is difficult to find
an isogeny from E to E′. This problem can be visualized as a walk on an isogeny graph where each node represents an
isomorphism class and the edges are isogenies of degree `. Considering a specific `, this is a complete graph where each
node has `+ 1 unique isogenies up to isomorphism of degree `. We point the reader to [26] for an analysis of best-known
classical computer attacks and [27] for an analysis of the best-known quantum computer attacks.

B. Supersingular Isogeny Diffie-Hellman

The supersingular isogeny Diffie-Hellman (SIDH) key-exchange [6] protocol utilizes the supersingular isogeny problem
for two parties to securely agree on a shared secret. The idea behind the protocol is that Alice and Bob have secret isogeny
walks on their respective isogeny graphs. They each perform their secret walk over public parameters, exchange them, then
perform their secret walk on the public keys. Alice and Bob each perform two secret walks, but in a different order. The
end result is that both parties end up at a secret isomorphism class where the j-invariant can be used as a shared secret.

To perform this protocol, Alice and Bob first agree on a prime p of the form `eAA `eBB ± 1, where `A and `B are small
primes and eA and eB are positive integers. They then agree on a supersingular elliptic curve E0(Fp2) and find torsion
bases {PA, QA} and {PB , QB} that generate E0[`eAA ] and E0[`eBB ], respectively. Lastly, Alice chooses a private scalar key
nA ∈ Z/`eAA Z and Bob likewise chooses a private scalar key nB ∈ Z/`eBB Z.

To perform a secret isogeny walk, Alice and Bob separately generate a secret kernel by performing a double-point
multiplication, R = P + nQ and computing a unique isogeny over that kernel φ : E → E/〈R〉. SIDH is composed
of two rounds of isogenies. In the first round, Alice computes the isogeny φA : E0 → EA = E0/〈PA + [nA]QA〉 and
also projects Bob’s basis points under the new curve, {φA(PB), φA(QB)} ⊂ EA. Bob likewise computes the isogeny
φB : E0 → EB = E0/〈PB + [nB ]QB〉 and projects Alice’s basis points under the new curve, {φB(PA), φB(QA)} ⊂ EB .
Alice’s public key is the tuple {EA, φA(PB), φA(QB)} and Bob’s public key is the tuple {EB , φB(PA), φB(QA)}. For the
second round, Alice and Bob perform their secret isogeny walk over the public keys from the other party. Alice computes
her isogeny φ′A : EB → EAB = EB/〈φB(PA) + [nA]φB(QA)〉 and Bob computes his isogeny φ′B : EA → EBA =
EA/〈φA(PB) + [nB ]φA(QB)〉. The curves EAB and EBA reside in the same isomorphism class, so the j-invariant can be
used as the shared secret.
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Public Parameters

prime p = `eAA `eBB ± 1
supersingular curve E0/Fp2 with order (`eAA `eBB )2

torsion basis {PA, QA} for E0[`
eA
A ]

torsion basis {PB , QB} for E0[`
eB
B ]

Key Generation

1. sB ∈R [0, 2blog23
eB c − 1]

2. φB : E0 → EB =
E0/〈PB + [sB ]QB〉

3. pkB = {EB , φB(PA), φB(QA)}
4. s ∈R {0, 1}k

Key Encapsulation

1. m ∈R {0, 1}k
2. r = G(m,pkB)mod 2eA

3. φA : E0 → EA =
E0/〈PA + [r]QA〉

4. pkA = {EA, φA(PB), φA(QB)}
5. φ′A : EB → EAB =

EB/〈φB(PA) + [r]φB(QA)〉
6. c = F (j(EAB))⊕m
7. ciphertext (ct) = {pkA, c}
8. ssA = H(m,pkA, c)

Key Decapsulation

1. φ′B : EA → EBA =
EA/〈φA(PB) + [sB ]φA(QB)〉

2. m′ = F (j(EBA))⊕ c
3. r′ = G(m′,pkA)mod 2eA

4. φ′′A : E0 → E′
A =

E0/〈PA + [r′]QA〉
5. pk′A = {E′

A, φA(PB), φA(QB)}
6. if pk′A == pkA, then ssB =
H(m′,pkA, c)
7. else ssB = H(s,pkA, c)

Bob Alice

pkB

{pkA, c}

Figure 1. Supersingular isogeny key encapsulation protocol [14].

C. Supersingular Isogeny Key Encapsulation

The SIKE protocol is an IND-CCA variant of SIDH. Since this is a key encapsulation mechanism, SIKE produces a
random shared secret that is encrypted and broadcast over an open channel. This was created by applying the Hofheinz,
Hövelmanns, and Kiltz transform [28] to the supersingular isogeny public-key encryption scheme first proposed by Jao and
De Feo [6]. This protocol consists of three phases: generate keys, encapsulate key, and decapsulate key. Figure 1 shows
the full SIKE protocol. Let F,G,H be hashing functions.

Similar to SIDH as described in the previous section, Alice and Bob first agree on a prime p of the form `eAA `eBB ± 1,
where `A and `B are small primes and eA and eB are positive integers. They then agree on a supersingular elliptic curve
E0(Fp2) and find torsion bases {PA, QA} and {PB , QB} that generate E0[`eAA ] and E0[`eBB ], respectively. However, in
contrast to SIDH, it is only Bob that chooses a private scalar key sB ∈ Z/`eBB Z. The security properties of SIKE allow
Bob to safely reuse any of his public keys.

To illustrate the SIKE protocol, let us assume that Alice and Bob want to agree on a shared secret. Bob starts by choosing
public parameters (similar to SIDH) and broadcasts a public key with the key generation phase. For this step, Bob computes
the secret isogeny, φB : E0 → EB = E0/〈PB + [sB ]QB〉. Bob publishes his public key, pkB = {EB , φB(PA), φB(QA)},
and also generates a hidden key of length k bits, s =R {0, 1}k.

Alice wants to engage in secure communications with Bob. Upon receiving Bob’s public key, Alice performs key
encapsulation by first generating a random message of length k bits, m =R {0, 1}k. She finds a secret scalar by hashing
the random message with Bob’s public key, r = G(m, pkB). With this secret scalar, Alice performs two secret isogenies,
one over the public parameters, φA : E0 → EA = E0/〈PA + [r]QA〉 and another over Bob’s public key: φ′A : EB →
EAB = EB/〈φB(PA) + [r]φB(QA)〉. Alice’s public key is pkA = {EA, φA(PB), φA(QB)}. Following the supersingular
isogeny public-key encryption, Alice hashes her secret curve’s j-invariant, h = F (j(EAB)), and XORs this with her
random message, c = h ⊕ m. Alice then computes the shared secret by hashing her random message with her public
key and encrypted j-invariant, ssA = H(m, pkA, c). Lastly, Alice broadcasts her ciphertext which is her public key and
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Table I
SUMMARY OF ROUND 2 SIKE PUBLIC PARAMETERS [14]. EACH OF THE NIST SECURITY LEVELS ARE BASED ON THE DIFFICULTY TO BREAK

EXISTING CRYPTOSYSTEMS PROPOSED IN [26]. FOR INSTANCE, AES DIFFICULTY IS BASED ON EXHAUSTIVE KEY SEARCH AND SHA DIFFICULTY IS
BASED ON COLLISION SEARCH. NOTE THAT SIKEp434= 22163137 − 1, SIKEp503= 22503159 − 1, SIKEp610= 23053192 − 1,

SIKEp751= 23723239 − 1.

Curve: E0/Fp2 : y2 = x3 + 6x2 + x (All sizes in bytes).

Parameter Set NIST Security Public Cipher Shared
Level Key Text Secret

SIKEp434 1 (AES128) 330 346 16
SIKEp503 2 (SHA256) 378 402 24
SIKEp610 3 (AES192) 462 486 24
SIKEp751 5 (AES256) 564 596 32

encrypted j-invariant, ct = {pkA, c}.
To decapsulate Alice’s secret scalar, Bob decrypts the random message by computing his secret isogeny walk over

Alice’s public key, φ′B : EA → EBA = EA/〈φA(PB) + [sB ]φA(QB)〉. Using this secret curve’s j-invariant, Bob
can recover the random message, m′ = F (j(EBA)) ⊕ c. To ensure nothing went wrong with the key encapsulation,
Bob performs the first step of encapsulation to check if the public keys match. He recalculates Alice’s secret scalar,
r′ = G(m′, pkB) and recomputes Alice’s secret isogeny walk, φ′′A : E0 → E′A = E0/〈PA+[r′]QA〉. If the resulting public
key, pk′A = {E′A, φ′′A(PB), φ′′A(QB)}, matches Alice’s public key then the key encapsulation was performed correctly (as
well as honestly) and Bob can finalize the protocol by computing the shared secret, ssB = H(m′, pkA, c). If for any reason
the public key validation fails, Bob instead uses his hidden key to compute an invalid shared secret, ssB = H(s, pkA, c).

The instantiated version of SIKE uses a similar set of public parameters as SIDH. Notably, the SIKE round 2 specification
lists four sets of public parameters: SIKEp434, SIKEp503, SIKEp610, and SIKEp751. These are intended to give
a low, medium-low, medium, and high assurance of quantum security, respectively. The public primes are chosen with
`A = 2 and `B = 3 and the hash functions F,G,H are each SHAKE256, the SHAKE function based on the Keccak
sponge construction [29]. We summarize the security levels, key sizes, and ciphertext sizes in Table I. In particular, we
implement SIKEp434, SIKEp503, SIKEp610, and SIKEp751, for which the SIKE proposal also provides optimized
software implementations [14].

In the NIST PQC competition, each parameter set is assigned a NIST security level. The NIST security levels are based
on the difficulty to break existing cryptosystems on a scale from 1-5. NIST security level 1 represents the difficulty to break
AES128 with exhaustive key search and NIST level 2 represents the difficulty to break SHA256 by finding a collision. This
difficulty goes in the order AES128, SHA256, AES192, SHA384, and AES256. Initially, the first round SIKE submission
used the security levels 1 and 3 for schemes SIKEp503 and SIKEp751, respectively. More exploration of the problem
revealed that this estimate may have been too conservative. A work by Adj et al. [30] suggested that a 434-bit prime
gives 128-bit classical security (NIST level 1) and subsequent work by Jaques and Schanck [27] supported this proposition
and gave further insights into quantum attacks on SIDH/SIKE. Lastly, a new cryptanalysis paper by Costello et al. [26]
proposed that the parameter set SIKEp751 is sufficient for NIST security level 5 and provided metrics that SIKEp503 is
approximately NIST security level 2. The results of these cryptanalytic works were addressed as part of the SIKE team’s
round 2 submission:
• SIKEp934 was removed.
• SIKEp503 and SIKEp751 were updated to NIST security levels 2 and 5. Their corresponding public key, ciphertext,

and shared secret sizes were also updated.
• Two additional parameter sets, SIKEp434 and SIKEp610, were added at NIST security levels 1 and 3, respectively.
• Instantiated hash functions F,G,H were changed from cSHAKE256 to SHAKE256.
• The starting curve was changed from Montgomery curve coefficient A = 0 to A = 6. Torsion bases are now defined

over Fp2 , which slows down the first round kernel generation.
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Figure 2. Proposed field arithmetic unit. This design centers on isolated field addition (left side) and multiplication (right side) pipelines. In this work,
we implement over SIKEp434, SIKEp503, SIKEp610 and SIKEp751.

• An additional implementation including key compression was added.

III. A FAST ISOGENY COMPUTATION ACCELERATOR

Here, we present our architecture to accelerate supersingular isogeny computations. Our methodology revolves around
fast finite field arithmetic units and highly parallelized fast isogeny formula for a high performance implementation. We
utilize constant-time finite-field arithmetic, constant-time isogeny and elliptic curve formulas, and constant-time ladders
and large-degree isogeny algorithms, resulting in an implementation that will perform SIKE in the same amount of time,
regardless of any secret inputs.

A. Fast Finite Field Arithmetic

At the lowest level of computations, elliptic curve and isogeny arithmetic is based on operations over finite fields.
Specifically, since we are working on various supersingular elliptic curves, we define all arithmetic over the quadratic
extension field Fp2 . For isogeny-based computations, we are interested in finite field addition, subtraction, multiplication,
squaring, and inversion. At an even lower level, we can build each of these operations from just addition and multiplication
over Fp. The field arithmetic unit is shown in Figure 2. The general idea is to have two separate pipelines, one for finite
field addition and the other for finite field multiplication. At the top, we use a dual-port RAM block to hold the registers
to feed in operands.

Single-cycle addition/subtraction unit.
Our addition/subtraction unit implements the carry-compact addition scheme from [31] to achieve a higher frequency

for large additions. The carry-compact adder (CCA) greatly shortens the adder’s critical path by compacting some bits of
the addends which reduces the number of bits entering the carry chains. The parameters in this scheme are H (hierarchy
level) and L (length of carry chain).

The first parameter H is the maximum compaction level allowed in the design. At compaction level i, 2i bits of each
addend are compacted together before being pushed into the carry chain. At compaction level 0, the bits are not compacted,
and the design looks exactly like a regular ripple-carry adder. Going beyond compaction level 3 will significantly increase
the design complexity of the compaction circuit which in turn increases the routing delay. Therefore, we stick to a maximum
compaction level of 3.
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Table II
COMPARISON OF SYSTOLIC MONTGOMERY MULTIPLIER WITH VARYING RADIX SIZES ON A VIRTEX-7 FPGA. BASED ON THE MULTIPLIER FROM
[21]. INCREASING THE RADIX SIZE INCREASES THE SIZE OF MULTIPLICATIONS WITHIN A PROCESSING ELEMENT (PE). A SINGLE DSP48E CAN

COMPUTE A 17X17 UNSIGNED MULTIPLICATION, TWO DSPS CAN COMPUTE A 24X24 UNSIGNED MULTIPLICATION, AND FOUR DSPS CAN COMPUTE
A 34X34 UNSIGNED MULTIPLICATION. OUR SELECTED RADIX SIZES ARE BOLDED.

Radix t #PEs w #DSPs Mult Freq Time
(cc) (MHz) (ns)

SIKEp503
16 32 64 100 207 483
17 30 60 94 198 475
22 23 92 73 169 432
23 22 88 70 171 409
24 21 84 67 167 401
34 15 120 49 105 467

SIKEp751
16 48 96 148 202 734
23 33 132 103 166 620
24 32 128 100 167 600
29 26 208 82 123 667
34 23 184 73 122 600

The second parameter L determines how many bits to reduce the carry chain at each compaction level. On compaction
level i = 0, 1, 2, . . . , (i+ 1)× L positions from the MSB side and iL positions from the LSB side are used for the carry
chain computation. At L = 40 and H = 2, for example, 40 MSB bits of the addends are not compacted (compaction level
0) and pushed to the carry chain. Then, the next 2× 40 = 80 MSB bits and 80 LSB bits of the addends are compacted at
compaction level 1 and pushed to the carry chain. Finally, the remaining bits of the addends are compacted at compaction
level 2 and pushed to the carry chain since that is the maximum compaction level chosen.

According to [31], the CCA is highly susceptible to differences in routing delay depending on the parameter values
chosen. Therefore, an optimal (maximum frequency for maximum performance) set of parameters is not possible without
a trial and error approach. Preußer et al. mention that the optimal value of L is usually around 30 for every input size they
have tested which narrows down the set of values to test. Since they do not go beyond 480 bits in their paper, we increased
the upper bound of the values of L to test. Over the Virtex-7 FPGAs, we tested L ∈ [25, 55] and H ∈ [1, 3] and found
{L,H} pairs of {38, 3}, {39, 3}, {41, 3}, and {43, 3} as the fastest results for SIKEp434, SIKEp503, SIKEp610 and
SIKEp751, respectively.

This addition scheme allowed us to perform a full 751-bit addition or subtraction in a single cycle, in contrast to 3 cycles
in [22]. To perform Fp addition/subtraction, we cascade two adder/subtractor units in our “addition” pipeline and take the
correct result modulo 2p. By separating the addition and conditional subtraction portions for Fp addition, we isolate their
computations rather than scheduling them on the same adder unit. Thus, this results in faster modular additions and less
demand for resources from a scheduling point of view.

Similar to hardware architectures for elliptic curve cryptography, the critical field arithmetic unit choice is the modular
multiplier. A simple multiplication between two Fp elements will produce an element that is twice as long as the inputs (i.e.
if a, b are log2 p bits long, then a×b is 2 log2 p bits long), requiring a reduction. The two major algorithms to perform this
reduction are Montgomery and Barrett reduction. There have been new proposed Barrett reduction methods for SIKE primes
[32], [33], but here we primarily focused on evaluating various architectures for the well-known Montgomery multiplication
[34] algorithm. Montgomery multiplication is fast and efficient because it converts expensive division operations to shift
operations, which are very cheap in hardware. The only caveat to Montgomery multiplication is that both inputs must
be in the Montgomery domain, which requires a few extra multiplications at the beginning and end of an algorithm. For
isogeny-based operations, there are many multiplication and addition operations, so this cost is negligible.
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Table III
LATENCY OF ARITHMETIC OPERATIONS IN OUR ARCHITECTURE ON A VIRTEX-7 FPGA. WE COMPARE OUR RESULTS WITH THAT OF KOZIEL et al.
[22]. WE NOTE THAT ALTHOUGH OUR OPERATIONS GENERALLY REQUIRE FEWER CYCLES THAT OUR OPERATING FREQUENCY IS LOWER. SEE THE

IMPLEMENTATION RESULTS IN SECTION V-B FOR A FULL COMPARISON.

Prime
Max Latency (cc) Latency (ns)
Freq. Fp Add Fp Multiplication Fp Add Fp Multiplication

(MHz) Mult. Interleave Mult. Interleave
SIDH Implementation by Koziel et al. [22]

SIKEp503 202.1 4 100 69 19.8 495 341
SIKEp751 203.7 6 148 101 29.5 727 496

Our SIKE implementation with the same primes
SIKEp503 171.2 2 70 49 11.7 409 286
SIKEp751 167.4 100 69 11.9 597 412

Higher radix and faster Montgomery multiplier. Our modular multiplier follows the interleaved systolic architecture
from [22]. This systolic architecture computes the high-radix Montgomery product Sm+3 = A×B×R−1 mod M , where
A and B are inputs, R−1 is a Montgomery constant, and M is the modulus. We break this down to computing multiple
products Si+1 = (Si + qiM̄)/2t + aiB, where M̄ is a Montgomery constant based on the modulus, ai is the i-th t-bit
chunk of A, and qi = Si mod 2t. However, rather than compute the product aiB in one go, we compute each of its partial
products over many cycles, t-bits at a time. Each processing element has its own t-bits chunk of B, so each processing
element computes Si+1,j = (si + qim̄j)/2

k + aibj . Thus, each processing element is composed of two parallel radix t-bit
multiplications followed by four 2t-bit additions.

There are w = d log2 p
t e processing elements in this systolic architecture. It takes w+ 2 cycles for a single t-bit chunk of

the result to be computed as there is an initialization cycle. Since there are additional feedback and computation cycles to
compute the reduction, the total computation takes 3w+ 4 cycles for the entire modular multiplication to be performed. In
this architecture, we shift in t-bits of the input every other cycle. With careful management of the internal registers, we can
actually simultaneously fit two modular multiplications in parallel with a single multiplier. We start one multiplication on
an “even” cycle and the other on an “odd” cycle. Furthermore, once the inputs are consumed in the systolic architecture’s
pipeline, we can interleave a new multiplication in the “even” or “odd” cycle slot, this happens after 2w + 5 cycles. With
a strong choice of radix t, this scalable multiplier provides high-performance and high throughput.

However, rather than use radix t = 16 for each processing element as was done in [22], we experimented with various
radices to find the best choice for performance, resulting in performance gains in exchange for more DSPs. The t-bit
multiplications were optimized by using Xilinx FPGA’s DSP48E1. A single DSP can compute a 17 × 17 bit unsigned
multiplication, but we can also combine multiple DSPs for larger multiplications. In particular, two DSPs can compute
a 24 × 24 bit unsigned multiplication and four DSPs can compute a 34 × 34 bit unsigned multiplication. In general, the
larger the radix t, the fewer number of processing elements in the systolic architecture, resulting in smaller latencies. We
focused our efforts on finding the sweet spot where latency and frequency produced the best performance.

In our experiments (SIKEp503 and SIKEp710 shown in Table II), we found that t = 22, t = 23, t = 24, and
t = 24 were optimal for SIKEp434, SIKEp503, SIKEp610, and SIKEp751 architectures, respectively. We note that
for SIKEp503, t = 23 is approximately the square root of 503. We chose t = 23 instead of t = 24 as our subsequent
scheduling over those parameters found a 1% improvement in performance for the full SIKE protocol. For SIKEp751,
there was a signficant performance hit when moving from 2 DSPs per multiplication to 4 DSPs per multiplication. However,
for larger parameters we expect that 4 DSPs per processing unit will feature the greatest performance as there will be a
large enough reduction in latency to counteract the critical path hit. We compare the latency of our finite-field architectures
with that of Koziel et al. [22] in Table III.

The main configuration option for our architecture is how many replicated multipliers to include. Our addition unit is
fully pipelined so it can accept a new modular addition or subtraction operation every cycle. However, our multiplier is
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Algorithm 1 Right-to-left ladder to compute x(P + [k]Q) [17]. Note that additions indicate differential point addition.

Input: k, a v-bit scalar, x(P ), x(Q), x(Q− P ) ∈ E(Fq)
Output: x(P + [k]Q)
1. R0 = x(Q), R1 = x(P ), R2 = x(Q− P )
2. for i in 0 to v − 1 do

3. if ki = 1, then
4. R1 = R0 +(R2) R1

5. else
6.R2 = R0 +(R1) R2

7. end if
8. R0 = [2]R0

9. end for
10. return R1 = x(P + [k]Q)

not fully pipelined and takes many more cycles. Based on the finite field scheduling methodology we discuss in the next
section, we found the best balance between area and timing results at 3 dual-multipliers for SIKEp434, SIKEp503, and
SIKEp610 and 4 dual-multipliers for SIKEp751.

B. Fast Parallelized Isogeny Formulas

Next comes the design of a controller that can efficiently issue instructions to the field arithmetic unit to perform the
isogeny-related computations fast. To achieve this, our controller reads from a program ROM to control our addition and
multiplication pipelines. We utilized a dual-port block RAM (BRAM) as our register file. This contains up to 256 registers
for parallelized isogeny computations.

Montgomery curve arithmetic. For SIKE and SIDH, the top-level isogeny computations involve generating a secret
kernel, R = P +[n]Q, (n is the private key) and then performing a large-degree isogeny over that kernel, φ : E → E/〈R〉.
To perform these computations efficiently, we utilize state-of-the-art formulas over Montgomery curves [35]. Montgomery
curves are well-known for their extremely fast differential doubling and addition point arithmetic on the Montgomery
powering ladder where the y-coordinate is not needed.

Fast kernel generation. Previously, the best known algorithm for computing R = P + [n]Q was from Jao and De
Feo [15] and required two diffierential point additions and one point doubling per bit in n. However, a new algorithm
from Hernandez et al. [17] sped this up to roughly the same complexity as the Montgomery ladder. This is shown in
Algorithm 1. By performing a right-to-left ladder, a step of the three-point differential ladder only requires one differential
point addition and one point doubling. This ladder operates in constant-time, so the same number of steps will be taken,
regardless of any secret inputs.

Fast inversion-free projective isogeny formulas. For isogeny-based computations, the fast differential point arithmetic
and absence of y-coordinate also produce extremely fast isogeny formulas. The primary targets for optimization have
been for `A = 2 and `B = 3 since they scale well for exponentially large isogenies. We opted for the fast projective
isogeny formulas for degree ` = 3, 4 from Costello and Hisil [36]. These are the fastest formulas in the literature. Since
the SIKE parameters have even eA, we can perform base isogenies of degree 22 = 4 to reduce the number of isogeny
computations. These formulas take a point of order `2A = 4 and `B = 3 to compute a mapping from one elliptic curve to a
4- or 3-isogenous curve, respectively. Originally proposed in [16], these formulas change up the “affine” representation of
Montgomery curves, E(a,b) : by2 = x3 +ax2 +x, to a “projective” representation: E(A: B: C) : By2 = Cx3 +Ax2 +Cx,
where C is a “projective” curve coefficient such that a = A/C and b = B/C. This is similar to moving from affine curve
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coordinates (x, y) to projective curve coefficients (X : Y : Z), where x = X/Z and y = Y/Z. In both cases, the goal is
to avoid many expensive field inversions. Projective curve coefficients allow us to compute a large number of isogenies in
sequence and then compute an expensive inversion at the end of a protocol operation. There are no conditional branches
in these formulas, so this architecture’s constant-time field arithmetic unit will always finish these formulas in the same
number of clock cycles.

Large-Degree Isogeny Computation. The most expensive computation in SIKE and SIDH is the large-degree isogeny
computation. Given some large-isogeny of degree `e, we can chain together isogenies of degree ` by computing isogenies
over specific representations of the secret kernel point. For a base curve E0 and kernel point R0 = R of order `e we
compute e isogenies of degree ` as follows:

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri) (1)

This computation can be represented as traversing an acyclic graph in the shape of a triangle starting from the kernel point
(R0) to each of the leaves (`e−i−1Ri). To traverse this graph, moving left requires a point multiplication by ` and moving
right requires an isogeny evaluation of degree `. Two simple strategies to compute this are the multiplication-based and
isogeny-based strategies with complexity O(e2) [6]. A much more efficient strategy comes from the insight that an optimal
strategy can be composed from two optimal sub-strategies [15]. Thus, by comparing the cost of a point multiplication by
` and an isogeny evaluation of degree `, we can find a traversal path of least cost to efficiently compute the large-degree
isogeny with complexity O(e log e). This requires saving multiple pivot points, but the reduced complexity greatly brings
the total computation time of large-degree isogenies down. For this implementation, we used optimal strategies found with
the ratio 2:1, where a point multiplication by ` is twice as expensive as an isogeny evaluation by `. By forcing the serial
point multiplications to be more expensive, we emhasize performing more isogeny evaluations which can be effectively
parallelized. Once an optimal strategy is found, this can large-degree isogeny can always be performed in the same order of
point multiplications and isogeny evaluations. Since our implementation features constant-time field arithmetic and isogeny
formulas, this algorithm operates in constant-time.

We note that for SIKEp610, eA is an odd-power so we cannot directly compute a large-degree 4eA/2 isogeny. We must
first perform a 2-isogeny by computing eA − 1 point doublings, computing the 2-isogeny, and pushing the original kernel
point through the 2-isogeny. Next, we can proceed as normal with an optimized strategy of degree (eA − 1)/2 over base
degree ` = 4. This odd power of 2 is the primary reason that encapsulation is slower than decapsulation for SIKEp610
in our results in Table VI in Section V.

Isogeny evaluation loop unrolling. Similar to [22], we performed isogeny computations (finding a new mapping
between curves) serially and isogeny evaluations (pushing a point through the new map) in parallel. By unrolling the
isogeny evaluation loop up to twelve times and balancing our resource utilization, we can ensure close to maximum
utilization of our memory and arithmetic pipelines. The order in which we perform the unrolled operations is determined
by the availability of resources and data dependencies as determined by our scheduler. With our many registers we can
balance each of the computations necessary in multiple isogeny evaluations to perform it much faster than a naive serial
implementation.

Greedy scheduler. To schedule these isogeny-related computation blocks, we utilized an external scheduling script over
our custom Fp assembly code to generate a program ROM that our hardware would read. We utilized a greedy algorithm
that would track available resources each cycle. As soon as data dependencies were fulfilled and the memory and arithmetic
pipelines were available we could schedule an instruction. We simply unrolled all Fp2 arithmetic into basic Fp operations
and allowed our compiler to fit each instruction based on available resources. The order of our assembly code dictated
which instructions would have priority to our architecture’s resources. There are no conditional loops in this assembly
code.

Scheduling for all SIKE parameter sets. In this work, we primarily optimized for one particular parameter set per
implementation. Each of the isogeny formulas are identical across the parameter sets. The multiplication and addition units
are generic and can be used across parameter sets so long as the controls are slightly altered. Thus, by including a large
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Figure 3. Proposed SIKE architecture. The architecture moves data in chunks of 64-bits to facilitate each SIKE function. The four main components are
isogeny register file, secret scalars, Keccak function, and message buffer.

multiplier/adder we can support each of the smaller parameter sizes. To optimize the performance for these parameter sets,
we would include a scheduling block rather than a cycle-by-cycle program ROM. This scheduling block would schedule
resources on-the-fly, but would most likely not be as optimized.

IV. UPGRADING AN ISOGENY ACCELERATOR TO A SIKE ARCHITECTURE

Here, we describe how we expand our isogeny accelerator to include all components necessary for supersingular isogeny
key encapsulation. The goal of this architecture was to encapsulate all isogeny, hashing, and storage functionalities needed
to independently perform SIKE operations.

A. Proposed SIKE Architecture

To implement a SIKE architecture, we require a Keccak hash function and extra registers to handle the encrypted message
and hidden key. Thus, we now have four different object entities to interact with: isogeny register file, secret scalars, Keccak
function, and message buffer. To handle interactions between these entities, we implemented an addressing mode for the
input and output of each entity, which is shown in Figure 3. This approach allowed us to move data in chunks of 64 bits
from each object entity to any object entity.

Keccak sponge function. Since our isogeny accelerator already performs all necessary isogeny functions, the emphasis
was on interfacing with our Keccak block. For the Keccak implementation, we reused the high-performance module provided
by the Keccak team [29]. We modified it, however, for SHAKE256, which required a rate of 1088 bits per permutation.
Keccak “absorbs” data in chunks of 1088 bits and then “squeezes” out data also 1088 bits at a time. For an output of
size d bits, SHAKE256 provides a collision resistance of min(d

2 , 256) bits. Each value in Fp was 55, 63, 77, and 94 bytes
for SIKEp434, SIKEp503, SIKEp610, and SIKEp751, respectively. These are awkward divisors, so we decided to
shift all values into our Keccak input buffer byte by byte. When the buffer was full, an XOR with the current state would
trigger a new run of Keccak permutations.
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We utilized two different approaches to pushing data to our Keccak block: (a) specifying a specific byte or (b) loading
a 64-bit value from some other module (i.e., from register file or ciphertext) and sequentially shifting each byte. Pushing
specific bytes was necessary for customization strings and 64-bit values were pushed to hash the public keys. The results
from the Keccak block were then pushed to their consumer, such as the secret scalar for key encapsulation or secret hash
to encrypt the random message.

Secret buffer. The secret buffer was simply 3k registers where k = 128, k = 192, k = 192, and k = 256 bits for
SIKEp434, SIKEp503, SIKEp610, and SIKEp751, respectively. We used one chunk of k bits to hold Bob’s hidden
key if decapsulation failed and the other two k-bit chunks to hold Alice’s random message in plaintext and ciphertext form.
We converted between plaintext and ciphertext by XORing the first k-bit chunk with the first k-bit chunk from our Keccak
block, as is described in SIKE.

SIKE controller. On top of the isogeny accelerator, Keccak, and secret message block, we implemented an additional
controller. The primary purpose of this controller is to drive data to the Keccak block and call the isogeny accelerator
functions with the correct inputs. Our SIKE control unit included a number of simple functionalities such as reading
multiple consecutive words to heavily reduce the total number of instructions. For SIKEp434, SIKEp503, SIKEp610,
and SIKEp751, respectively. we had a program ROM of 103, 103, 105, and 107 instructions, respectively. This also
included support for producing invalid shared secrets on failed key decapsulations.

B. Additional Complexity for SIKE

To transform an isogeny accelerator to SIKE, we required a Keccak unit, secret buffer registers, and SIKE controller. If
this accelerator interacted with a CPU or device that already had a SHAKE256 block, then this overhead would be greatly
reduced.

The largest of these additions is the Keccak hash function. Based on the implementation from the Keccak team, our
Keccak block required 1,600 registers for the Keccak state, 1,088 registers for shifting in new data, and other logic for the
Keccak permutations. When synthesizing on a Virtex-7, we found no problems running the Keccak block at 200 MHz after
place and route, despite performing a single Keccak permutation each clock cycle. The Keccak synthesis required 3,747
LUTs and 2,703 flip-flops on a Xilinx Virtex-7 FPGA. If the Keccak block contained the critical path, 1,600 additional
registers could be placed after the ρ block, which is approximately half-way through a Keccak permutation.

For the SIKE controller, we fit all SIKE functionality in 107 32-bit instructions, thus fitting well within a 1KB ROM
block. Ignoring any isogeny costs, key generation took 7 cycles, key encapsulation took 1,799 cycles, and key decapsulation
took 1,813 cycles for SIKEp503. Compared to around a million cycles for isogeny computations, these costs are extremely
small.
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Table IV
AREA RESULTS OF SIKE ROUND 2 ARCHITECTURES ON TARGETED FPGAS. NOTE THAT ARTIX-7 AND VIRTEX-7 PLATFORMS UTILIZE SLICES AND

ULTRASSCALE+ PLATFORMS UTILIZE CLBS. FPGA RESOURCE UTILIZATION APPEARS ON THE SECOND ROW FOR AN IMPLEMENTATION.
SIKEp751 SUPPORTS 8 PARALLEL MULTIPLICATIONS WHILE ALL OTHER IMPLEMENTATIONS SUPPORT 6 PARALLEL MULTIPLICATIONS.

Prime
Area

# # # # #
FFs LUTs Slices DSPs BRAMs

Xilinx Artix-7

SIKEp434
24,328 21,946 8,006 240 26.5
9.09% 16.40% 23.93% 32.43% 7.26%

SIKEp503
27,759 24,610 9,186 264 33.5
10.37% 18.39% 27.46% 35.68% 9.18%

SIKEp610
33,198 29,447 10,843 312 39.5
12.41% 22.01% 32.42% 42.16% 10.82%

SIKEp751
49,982 40,792 15,794 512 43.5
18.68% 30.49% 47.22% 69.19% 11.92%

Xilinx Virtex-7

SIKEp434
23,819 21,059 8,121 240 26.5
2.75% 4.86% 7.50% 6.67% 1.80%

SIKEp503
27,609 23,746 8,907 264 33.5
3.19% 5.48% 8.22% 7.33% 2.28%

SIKEp610
33,297 28,217 10,675 312 39.5
3.84% 6.51% 9.86% 8.67% 2.69%

SIKEp751
50,079 39,953 15,834 512 43.5
5.78% 9.22% 14.62% 14.22% 2.96%

Xilinx Kintex UltraScale+

SIKEp434
23,881 21,657 5,237 240 26.5
3.50% 6.35% 12.28% 6.80% 3.56%

SIKEp503
27,783 24,255 4,601 264 33.5
4.07% 7.11% 10.79% 7.48% 4.50%

SIKEp610
33,193 28,758 5,404 312 39.5
4.86% 8.43% 12.67% 8.84% 5.31%

SIKEp751
50,143 40,700 7,726 512 43.5
7.35% 11.93% 18.11% 14.51% 5.85%

V. SIKE ON FPGA RESULTS

In this section, we describe our SIKE implementation results on Artix-7, Virtex-7, and Kintex UltraScale+ FPGAs.
We synthesized the SIKE core with Xilinx Vivado 2019.2 to a Xilinx Artix-7 xc7a200tffg1156-3 device, Xilinx Virtex-7
xc7vx690tffg1157-3 device, and Xilinx Kintex UltraScale+ xcku13p-ffve900-3-e device. All results were obtained after
place-and-route.

Our accelerator interacts with a host as is shown in Figure 4. The host initializes any isogeny inputs (values x(Q), x(Q−
P ), x(P ), key k) which are directly accessible from the SIKE multiplexer selects when the SIKE accelerator is not running.
We verified our architecture by using the Known Answer Tests (KATs) from the SIKE submission team [14]. Specifically,
our testbench acted as the host CPU, initialized the input registers, ran a command, and checked that the public key,
ciphertext, and shared secret matched the KAT specifications.

A. Implementation Results

Our area results are shown in Table IV and our timing results are shown in Tables V and VI. To achieve a high
performance with a reasonable amount of resources, we targeted 6 and 8 multipliers in our arithmetic unit (3 and 4 dual-
multipliers, respectively). More multipliers means that more multiplications can be performed in parallel, but at diminishing
returns as data dependencies become the bottleneck. We chose 6 multipliers for SIKEp434, SIKEp503, SIKEp610 and
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Table V
TIMING RESULTS OF SIKE ROUND 2 ARCHITECTURES ON TARGETED FPGAS. NOTE THAT SIKE TOTAL TIME INCLUDES KEY ENCAPSULATION AND

DECAPSULATION.

Prime
Time

# Freq. Latency Total SIKE/s
Mults. (MHz) (cc× 106) time (ms)

Xilinx Artix-7
SIKEp434

6
132.2 1.91 14.4 69.3

SIKEp503 129.9 2.35 18.1 55.4
SIKEp610 125.3 3.59 28.6 34.9
SIKEp751 8 127.0 4.55 35.8 28.0

Xilinx Virtex-7
SIKEp434

6
168.4 1.91 11.3 88.3

SIKEp503 165.9 2.35 14.1 70.7
SIKEp610 165.8 3.59 21.6 46.2
SIKEp751 8 163.1 4.55 27.8 35.9

Xilinx Kintex UltraScale+
SIKEp434

6
299.4 1.91 6.4 157.0

SIKEp503 305.3 2.35 7.7 130.2
SIKEp610 300.1 3.59 12.0 83.6
SIKEp751 8 296.9 4.55 15.3 65.4

Table VI
LATENCY OF SIKE OPERATIONS ON OUR SIKE ACCELERATOR. NOTE THAT THE LATENCY IS IDENTICAL FOR ARTIX-7, VIRTEX-7, AND KINTEX

ULTRASCALE+. TABLE V CONTAINS THE CORRESPONDING FPGA FREQUENCIES.

Latency (cc× 106)

Scheme KeyGen Encaps Decaps total (Encaps + Decaps)

SIKEp434 0.53 0.93 0.98 1.91
SIKEp503 0.64 1.14 1.20 2.35
SIKEp610 0.90 1.81 1.78 3.59
SIKEp751 1.25 2.21 2.34 4.55

8 multipliers for SIKEp751 as our best balance point between performance and area. As our timing results indicate, we
only require a few million cycles for the SIKE scheme. For our SIKEp751 Artix-7 results, the DSP was the most utilized
resource at 69.19%.

When analyzing the scaling of our architecture, the area and timing results appear to scale quadratically with the prime
size. Moving from SIKEp503 with 6 multipliers to SIKEp751 with 8 multipliers (approximately 1.5 times larger public
parameters) almost doubles all resources except for BRAMs. This area scaling can primarily be attributed to the quadratic
area scaling of the Montgomery multiplier. Likewise, the latency increase can be derived from the superlinear latency scaling
of the Montgomery multiplier (O(m log m), where m = log2 p) as well as the superlinear scaling of the large-degree
isogeny (O(e log e)).

In Table VII, we include a breakdown of the area consumption of our major components for our SIKEp503 implemen-
tation with 3 dual-multipliers (6 total multipliers). As can be seen, the field arithmetic unit consumes about 78% of total
flip-flops and 71% of total LUTs. This is to be expected as there are multiple large multipliers that accelerate the many
needed finite-field multiplications. The Keccak-1088 block was added to support fast hashing for SIKE and consumed
about 10% of total flip-flops and 16% of total LUTs. In terms of memory elements, the isogeny program ROM and register
file consumed about 96% of total block RAM units.

In our latency results shown in Table VI, the SIKE total latency is simply the sum of the key encapsulation and
decapsulation operations. This is consistent with the methodology in the SIKE proposal [14]. Generally, for a set of SIKE
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Table VII
AREA BREAKDOWN OF MAJOR COMPONENTS IN OUR SIKEp503 IMPLEMENTATION. THE CRITICAL PATH OF THIS IMPLEMENTATION IS THE

MULTIPLIER.

Component #FFs #LUTs #DSPs #BRAMS
Field Arithmetic Unit 21,504 16,905 264 0

Dual-Multiplier 5,660 2,966 88 0
Adder/Subtractor 1,520 2,453 0 0

Keccak-1088 2,703 3,747 0 0
Isogeny Program ROM 0 0 0 18
Register File 0 0 0 14
Top-Level Interface 2,978 3,094 0 1
Total 27,609 23,746 264 33.5

Table VIII
AREA COMPARISON OF ISOGENY ARCHITECTURES ON A VIRTEX-7 AT APPROXIMATELY NIST SECURITY LEVEL 5 (SIKEp751).

Work Scheme # # # # #
FFs LUTs Slices DSPs BRAMs

Koziel et al. [18] SIDH 46,857 32,726 15,224 376 45.5
Koziel et al. [22] SIDH 48,688 34,742 14,447 384 58.5

Jao et al. [14] SIKE R1 51,914 44,822 16,756 376 56.5
Roy et al. [37] SIKE R1 62,124 49,099 18,711 294 22.5

Massolino et al. [38] (128) SIKE R2 7,132 10,937 3,415 57 21
Massolino et al. [38] (256) SIKE R2 13,657 21,210 7,408 162 38

This work SIKE R2 50,079 40,700 15,834 512 43.5

parameters, Bob needs to only generate a public key once. Any parties that want to exchange secrets with Bob can transmit
their encapsulated keys and Bob can decapsulate them with his private key.

We chose to include the Kintex UltraScale+ results as a way to showcase progress in FPGA products for our architecture.
The Virtex-7 family was released in 2010 and the Kintex UltraScale+ family first appeared in 2016 as Xilinx’s mid-range
family. Despite being a mid-range family, our SIKE implementation is approximately 70% faster in the Kintex UltraScale+
FPGA. Since the Kintex UltraScale+ family was released at about the same time as the NIST Round 2 optimized SW
platform, Intel i7-6700, we chose to compare the total time to perform SIKE Round 2 key encapsulation and decapsulation
in Table X. This FPGA implementation is about the same performance over the NIST security level 1 parameter set
SIKEp434, but achieves a speedup of 1.69 over the NIST security level 5 parameter set SIKEp751. This is to be
expected as the Intel computer architecture is limited to its internal register size and arithmetic units, whereas a full
hardware implementation can expand its internal registers and arithmetic modules as needed.

B. Comparison to Other Isogeny Works

In Tables VIII and IX, we compare our architecture results to other Virtex-7 FPGA implementations [22], [18], [37], [38]
as well as the SIKE submission [14]. Each of these works except for [38] target high-performance FPGA architectures. We
note that the SIKE submission hardware implementation [14] is similar to the Koziel et al. [22] SIDH implementation, but
includes the additional Keccak hash function and registers. Our implementation is about 14% faster than the other fastest
architecture from Roy and Mukhopadhyay [37]. Our architecture also achieves the best area-time product of any of the
implementations by optimizing finite field addition and multiplication, simplifying the field arithmetic unit architecture,
and incorporating faster elliptic curve and isogeny formulas.

At face value, the architecture presented in this work utilizes a similar amount of resources as the SIKE submission [14]
(as large multipliers dominate the area), but features a lower latency, resulting in 19.5% faster computation times despite
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Table IX
TIMING COMPARISON OF ISOGENY ARCHITECTURES ON A VIRTEX-7 AT APPROXIMATELY NIST SECURITY LEVEL 5 (SIKEp751). NOTE THAT

SIKE TOTAL TIME INCLUDES KEY ENCAPSULATION AND DECAPSULATION. THE AREA-TIME (AT) PRODUCT IS INCLUDED BASED ON THE NUMBER
OF SLICES AND PROTOCOL TIME FOR EACH IMPLEMENTATION.

Work Scheme Freq. Cycles Total Time AT Product
(MHz) (cc× 106) (ms) (#Slices×s)

Koziel et al. [18] SIDH 182.1 7.74 42.5 647
Koziel et al. [22] SIDH 203.7 6.86 33.7 487

Jao et al. [14] SIKE R1 198 6.60 33.4 560
Roy et al. [37] SIKE R1 225.7 7.12 31.6 590

Massolino et al. [38] (128) SIKE R2 152.2 27.3 179.6 613
Massolino et al. [38] (256) SIKE R2 142.2 8.6 60.8 450

This work SIKE R2 163.1 4.54 27.8 440

Table X
TIMING COMPARISON OF THIS WORK TO SIKE SUBMISSION’S OPTIMIZED SOFTWARE IMPLEMENTATION.

Work Platform SIKE (encap + decap) time (ms)
SIKEp434 SIKEp503 SIKEp610 SIKEp751

Jao et al. [14] Intel i7-6700 6.3 9.0 16.8 25.8
This work Kintex UltraScale+ 6.4 7.7 12.0 15.3
Speedup - 0.98 1.17 1.40 1.69

the lower maximum frequency. In terms of area, this work requires about 36% more DSPs, but also requires 23% fewer
block RAMs. We emphasize that these are all a result of our design choices. By performing a higher radix Montgomery
multiplication, we can perform a modular multiplication with less latency for a small hit to the frequency. Our simplification
of the finite field arithmetic unit to a single Fp addition and Fp multiplication pipeline simplifies the greedy scheduling
algorithm as there are only two simple operations that also reduces the number of memory calls (rather than addition,
subtraction, reduction, etc. over a single adder as is the case in [14], [22]). Simpler scheduling brings the 23% reduction
of RAM.

When comparing the area results of the implementations in [14] and [22], we note that the number of flip-flops increased
by about 6.6% and the number of LUTs increased by 29%. We can attribute this uptick in LUTs primarily to the Keccak
and multiplexer interface created by converting SIDH to SIKE, as this is a great amount of combinatorial logic.

The implementation by Massolino, Longa, Renes, and Batina [38] features a compact and scalable design. This hard-
ware/software co-design does not target performance at all. Rather, this uses a software co-processor to issue field arithmetic
and features the flexibility to run any of the four NIST SIKE Round 2 parameter sets. Since the design methodology is
vastly different than our performance optimization target, a fair comparison is difficult. Our implementation does feature
a better area-time product, but these implementation targets are on different ends of the spectrum.

C. Comparison to Other NIST Round 2 Candidates

Since SIKE is a Round 2 candidate in NIST’s post-quantum standardization process, we compare our hardware results
with the results of other candidates in Table XI. For code-based cryptography, we included hardware results for the BIKE
[39] and Classic McEliece [40] schemes. For lattice-based schemes, we included hardware results for FrodoKEM [42],
[41] and NTRU HPS [42] schemes.

Table XI only gives a rough estimate of hardware complexity for these quantum-resistant schemes. Different foundational
problems, design rationales, FPGA platforms, and target NIST security level make a fair comparison among these hardware
architectures difficult. The performance of isogeny-based key encapsulation and decapsulation operations are a few times
slower than the BIKE schemes with several times more area (disregarding the difference in FPGA platforms). Classic
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Table XI
HARDWARE COMPARISON OF ROUND 1 PQC SUBMISSIONS THAT HAVE MOVED ON TO ROUND 2. BIKE MEASURES TOTAL TIME WITH KEY

GENERATION AND ENCAPSULATION. ALL OTHERS MEASURE TOTAL TIME WITH KEY ENCAPSULATION AND DECAPSULATION.

PQC Submission Device
NIST Public Area Total

Security Key Size # # # # # Time
Level (Bytes) FFs LUTs Slices DSPs BRAMs (ms)

BIKE1 [39] Artix-7 1 2,541 2,886 5,465 1,559 0 13 10.2
McEliece2 [40] Virtex-7 5 1,044,992 111,299 66,615 - 0 492 1.43

FrodoKEM4[41] Artix-7 5 21,520 5,335 14,528 4,020 16 0 1.3
FrodoKEM5[42] Zynq UltraScale+ 5 21,520 6,610 7,015 1,215 32 17.5 4.6
NTRU HPS5[42] Zynq UltraScale+ 3 1,230 21,410 29,389 5,913 821 2.5 0.59

SIKEp434 (this work)

Virtex-7

1 330 23,819 21,059 8,121 240 26.5 11.3
SIKEp503 (this work) 2 378 27,609 23,746 8,907 264 33.5 14.1
SIKEp610 (this work) 3 462 33,297 28,217 10,675 312 39.5 21.6
SIKEp751 (this work) 5 564 50,079 39,953 15,834 512 43.5 27.8
1. BIKE-1 (CPA security) with 2 optimization levels + hash
2. mceliece6688128 with area and time balanced
3. Key generation takes about 120 ms

4. Hardware and timing results are for decapsulation only
5. Implementation uses a hardware-software design approach

McEliece is much faster for encapsulation and decapsulation, but the key generation takes about 120 ms, public keys are
over a MB, and much more FPGA area is consumed. Lattice-based schemes appear to require a quarter of the hardware
resources and are about 5 to 30 times faster, with a moderate increase to public key size.

SIKE’s primary advantage is that it has the smallest public keys, which we highlight in Table XI. Considering that
currently deployed public keys are 32 bytes for X25519, any of these quantum schemes will raise the bar for establishing
secure communications on the internet. Minimizing public key sizes are critical for reducing transmission and storage
requirements. There is no clear winner among any of the NIST PQC candidates, but having significantly smaller public
keys while still having competitive performance are compelling arguments for the SIKE scheme.

VI. CONCLUSION

In this work, we presented a fast and secure implementation of the SIKE protocol. Our design choices push isogeny-based
computations 14% faster than the previous fastest FPGA results. We implemented fast field arithmetic units for large SIKE
primes, fast isogeny arithmetic over Montgomery curves, and optimized our controller for fast isogeny formulas. Our SIKE
architecture features a Keccak-centered methodology to perform key encapsulation and decapsulation in constant-time.
The SIKE protocol is an IND-CCA key encapsulation mechanism featuring the smallest keys in the NIST post-quantum
standardization project. This work continues to push the total time of isogeny-based computations lower in hopes that it
will be standardized in the future.

One major goal of this research has been to find methods to accelerate hardware-based implementations of isogeny
computations. The optimizations and architectures showcased in this work serve as a baseline for later ASIC implementations
of SIKE which have the potential to save large amounts of power and energy.
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