
Post-Quantum UC-Secure Oblivious Transfer in the
Standard Model with Adaptive Corruptions

Olivier Blazy?, Céline Chevalier??, and Quoc Huy Vu? ? ?

Abstract. Since the seminal result of Kilian, Oblivious Transfer has proven to be
a fundamental primitive in cryptography. In such a scheme, a user is able to gain
access to an element owned by a server, without learning more than this single
element, and without the server learning which element the user has accessed.
This primitive has received a lot of study in the literature, among which very few
schemes are based on lattices. The recent NIST call for post-quantum encryption
and signature schemes has revived the interest for cryptographic protocols based
on post-quantum assumptions and the need for a secure post-quantum oblivi-
ous transfer scheme. In this paper, we show how to construct an oblivious trans-
fer scheme based on lattices, from a collision-resistant chameleon hash scheme
(CH) and a CCA encryption scheme accepting a smooth projective hash function
(SPHF). Note that our scheme does not rely on random oracles and provides UC
security against adaptive corruptions assuming reliable erasures.
Keywords. Post-Quantum Cryptography, Lattices, Commitments, Smooth Pro-
jective Hash Functions, CCA encryption, Oblivious Transfer, UC Framework.

1 Introduction

With the development of cloud services, sharing data securely and efficiently has never
been so important. Oblivious Transfer was introduced in 1981 by Rabin [Rab81] and
has proven to be a fundamental primitive in cryptography since the results on the com-
pleteness of oblivious transfer for multi-party computation, starting with the seminal
work of Kilian [Kil88]. It is for example needed for every bit of input in Yao’s proto-
col [Yao86] as well as for Oblivious RAM ([WHC+14] for instance), for every AND
gate in the Boolean circuit computing the function in [GMW87] or for almost all known
garbled circuits [BHR12]. It has been widely used and studied in the community.

In its classical 1-out-of-N version, an OT protocol allows a user to ask access to a
single line of a database (containing N lines of data) owned by a server. This exchange
is oblivious in two ways: First, the privacy of the receiver is preserved in the sense that
the sender learns no information on which element of the database has been asked for.
Then, the privacy of the database is ensured in the sense that the user only gains access
to the element he asked for and no information is linked on the others.

For practical purposes, there is undoubtedly a need for post-quantum instantiations
of cryptographic protocols. While the recent call of the NIST mainly focuses on post-
quantum encryption and signatures, we believe it is important to extend post-quantum
? Université de Limoges, XLIM, Limoges, France. olivier.blazy@unilim.fr
?? CRED, Université Panthéon-Assas, Paris, France. celine.chevalier@ens.fr

? ? ? DIENS, École normale supérieure, CNRS, INRIA, PSL University, Paris, France.
quoc.huy.vu@ens.fr

research to two-party protocols and in particular oblivious transfer, which is an essential
primitive that can be combined to fulfill important cryptographic tasks.

Building Blocks. In order to compose such bricks, the natural security model which
arises is the universal composability framework proposed in [Can01]. In a nutshell, in
the UC framework, security for a specific kind of protocol is captured by an ideal func-
tionality (in an ideal world). A protocol is then proven secure if, given any adversary
to the protocol in the real world, one can construct a simulator of this adversary in the
ideal world, such that no environment can distinguish between the execution in the ideal
world and the execution in the real world in a non-negligible way.

An additional difficulty arises when one wants to ensure adaptive security, which
means that the adversary can corrupt the players at any moment during the execution
of a protocol. In such situations, the usual trick is to use commitments with very strong
properties. Commitment schemes are two-party primitives (between a committer and
a receiver) divided into two phases. In the first commit phase, the committer gives the
receiver an analogue of a sealed envelope containing a value m, while in the second
opening phase, the committer reveals m in such a way that the receiver can verify that
it was indeed m which was contained in the envelope. It is required that the commit-
ter cannot change the committed value (binding property) and that the receiver cannot
learn anything about m before the opening phase (hiding property). It is impossible
to perfectly achieve both properties (rather than computationally or statistically) at the
same time. ElGamal [ElG84] or Cramer-Shoup [CS02] encryptions are famous exam-
ples of perfectly binding commitments, and Pedersen encryption [Ped92] is the most
well-known example of perfectly hiding commitments. When speaking about UC adap-
tive security, the two additional properties are extractability (meaning that a simulator
can recover the value committed to thanks to a trapdoor) and equivocability (meaning
that a simulator can open a commitment to a value m′ different from the value m it
committed to thanks to another trapdoor).

Furthermore, in cases such as oblivious transfer in which the secrecy of the mes-
sage (the number of the line required by the user) forbids the opening of the commit-
ment, one has to use implicit decommitment. The now classical way to achieve this goal
[CF01,ACP09,ABB+13] is to combine these commitments with a smooth projective
hash function (SPHF). They have been initially defined by Cramer and Shoup [CS02]
and their first applications (to PAKE schemes) date back to [GL03,CHK+05]. The out-
puts of these hash functions can be computed in two different ways if the input belongs
to a particular subset (called the language), either using a private hashing key or a pub-
lic projection key along with a private witness ensuring that the input belongs to the
language. The hash value obtained is indistinguishable from random in case the input
does not belong to the language (smoothness) and in case the input does belong to the
language but no witness is known (pseudo-randomness).

Related Work. Since the original paper [Rab81], several instantiations of OT proto-
cols have appeared in the literature [NP01,CLOS02], including proposals in the UC
framework. Some instantiations try to reach round-optimality [HK07], and/or low com-
munication costs [PVW08]. Choi et al. [CKWZ13] proposed a generic method and

2

an efficient instantiation secure against adaptive corruptions in the CRS model with
erasures, but it does not scale to 1-out-of-N OT, for N > 2. Recent schemes like
[ABB+13,BC15,BC16,BCG17] manage to achieve round-optimality while maintain-
ing a small communication cost.

However, among these articles, only the schemes from [PVW08] (an ad-hoc con-
struction based on lattices) and [BC15] (a generic construction relying on [KV09] for
the instantiation based on lattices) offer post-quantum security. Unfortunately, the first
construction only fulfills static security. The second one offers adaptive security, but
relies on the only standard-model lattice-based SPHF construction [KV09], which has
the main drawback of defining the language of the SPHF as the set of all the ciphertexts
such that at least one integer multiple is close to the public lattice rather than the set
of valid standard LWE ciphertexts. A consequence is that the decryption procedure is
very costly (about q trapdoor inversions) and forbids the use of superpolynomial mod-
ulus q. This is obviously not the same with classical SPHFs in a group-based setting,
which can handle classical ElGamal or Cramer-Shoup encryption schemes, without any
modification of the decryption procedure.

Our contributions. We describe in this paper an oblivious transfer scheme which is
post-quantum (based on LWE), UC-secure, and deals with adaptive corruptions assum-
ing reliable erasures. To the best of our knowledge, this is the first post-quantum OT
scheme with such a high level of security. Our methodology relies on the generic con-
struction of [BC15]. In order to instantiate the necessary building blocks, we replace
the use of the SPHF construction of [KV09] by a chameleon hash function and an IND-
CCA2 and an SPHF construction from [BBDQ18]. This allows us to give an SPHF-
friendly commitment scheme based on LWE, which can be seen as a side contribution
of the paper. Furthermore, we propose concrete parameters and an implementation of
our scheme, which is, to the best of our knowledge, the first proof of concept of a post-
quantum oblivious transfer scheme.

Roadmap of the Paper. In a preliminary section (Section 2 and Appendix A for de-
tails), we give all necessary definitions and properties of the primitives we use. Then we
recall the lattice-based constructions needed for our instantiations in Section 3, which
lead to our constructions of post-quantum SPHF-friendly commitment and OT scheme,
presented in Sections 4 and 5 (the generic construction being recalled in Appendix B
for completeness). Finally, concrete parameters are presented in Appendix C and a pro-
totype will be made publicly available.

2 Notations and Definitions

Notations. Let κ ∈ N be the security parameter. We say that a function is negligible in
κ, and we denote it by negl(κ), if it is a f (κ) = κ−ω(1). When sampling uniformly at
random the value a from the set U , we employ the notation a $← U . When sampling the
value a from the probabilistic algorithm χ, we employ the notation a← χ. For a, b ∈ R,
[a, b] = {x ∈ R | a ≤ x ≤ b} and Ja, bK = {x ∈ Z | a ≤ x ≤ b} will denote the closed

3

real and integer interval with endpoints a and b, bac, dae, bae will respectively denote
the floor, ceiling and rounding function. The cardinal of a finite set S is denoted |S|.

Throughout this paper, we will work in a lattice-based setting. Here we describe the
notations that will be used (see below for more definitions and details on lattices). We
denote by n and m the rank and the dimension of a lattice, respectively. For simplic-
ity, throughout this paper we use the base-2 logarithm, denoted by log. Let ω(

√
log n)

represent a fixed function that asymptotically grows faster than
√

log n 1.
Column vectors will be denoted by bold lower-case letters, e.g., x, and matrices

will be denoted by bold upper-case letters, e.g., A. If x is a vector and A is a matrix,
xt and At will denote their transpose. We use [A|B] for the horizontal concatenation
of matrices, and [A;B] =

[
At|Bt

]t
for the vertical concatenation. Unless otherwise

stated, the norm ‖·‖ considered here is the `2 norm. We denote by 〈x,y〉 the canonical
inner product between vectors x and y, and by d (x,y) = ‖x− y‖ their distance.

Cryptographic Primitives.

Definition 1 (Commitments). A non-interactive labelled commitment scheme C is de-
fined by three algorithms:

– SetupCom(1κ) takes as input the security parameter κ and outputs the global pa-
rameters, passed through the CRS ρ to all other algorithms;

– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ), where
C is the commitment of x for the label `, and δ is the corresponding opening data
(a.k.a. decommitment information). This is a probabilistic algorithm.

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and the
opening data δ and outputs 1 (true) if δ is a valid opening data for C, x and `. It
always outputs 0 (false) on x = ⊥.

The basic properties required for commitments are correctness (for all correctly
generated CRS ρ, all commitments and opening data honestly generated pass the ver-
ification VerCom test), the hiding property (the commitment does not leak any infor-
mation about the committed value) and the binding property (no adversary can open a
commitment in two different ways).

A commitment scheme is said equivocable if it has a second setup SetupComT(1κ)
that additionally outputs a trapdoor τ , and two algorithms

– SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a pair
(C, eqk), where C is a commitment and eqk an equivocation key;

– OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a message x,
an equivocation key eqk, and outputs an opening data δ for C and ` on x.
Finally, a commitment scheme C is said extractable if it has a second setup algo-

rithm SetupComT(1κ) that additionally outputs a trapdoor τ , and a new algorithm
– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label
`, and outputs the committed message x, or ⊥ if the commitment is invalid.
We give an informal overview of the useful properties in Appendix A.1 in order to

help the unfamiliar reader (formal definitions and results can be found in [ABB+13]).

1 By “fixed function”, we mean that f = ω(
√

logn) always refers to the very same function.

4

Definition 2 (Verifiable Chameleon Hash).
A verifiable Chameleon Hash Function is defined by five algorithms CH = (KeyGen,

VKeyGen,CH,Valid,Coll):
– KeyGen(κ): Outputs the chameleon hash key ck and the trapdoor tk;
– VKeyGen(ck): Outputs the chameleon designated verification key vk and the trap-

door vtk. This trapdoor can be empty or public if the chameleon hash is publicly
verifiable.

– CH(ck, vk,m; r): Picks a random r, and outputs the chameleon hash a as well as
the witness d, i.e. the corresponding data needed to verify a.

– Valid(ck, vk,m, a, d, vtk): Allows to check that the sender knows how to open a
Chameleon Hash a to a specific value m for the witness d. The verification can be
public if vtk is empty or public, or specific to the receiver otherwise.

– Coll(ck, vk,m, r,m′, tk): Takes as input the public keys, the trapdoor tk, a start
message m and randomness r and a target message m′ and outputs a target ran-
domness r′ such that if CH(ck, vk,m; r) = (a, d), then CH(ck, vk,m′; r′) = (a, d′).

The security notions needed for verifiable CH are collision resistance, uniformity
and soundness for the verification (see Appendix A.3 for details).

Definition 3 (Digital Signature Scheme [DH76,GMR88]).
A digital signature scheme allows a signer to produce a verifiable proof that he in-

deed produced a message. It is described through four algorithms (Setup,KeyGen,Sign,
Verify):

– Setup(1κ) where κ is the security parameter, generates the global parameters
param of the scheme, for example the message space;

– KeyGen(param), outputs a pair of (sk, vk), where sk is the (secret) signing key, and
vk is the (public) verification key;

– Sign(sk,M ;µ), outputs a signature σ(M), on a message M , under the signing key
sk, and some randomness µ;

– Verify(vk,M, σ) checks the validity of the signature σ with respect to the message
M and the verification key vk. And so outputs a bit.

In the following we expect the scheme to fulfill correctness and strong one-time
unforgeability under chosen message attacks. We recall this property and the transfor-
mation from chameleon hash to strong one-time signature in Appendix A.4.

Definition 4 (Labelled Encryption Scheme). A labelled public-key encryption scheme
E over a set of messagesM is defined by four algorithms:

– Setup(1κ), where κ is the security parameter, generates the global parameters
param of the scheme;

– KeyGen(param) generates a pair of keys, the public encryption key ek and the
private decryption key dk;

– Encrypt`(ek,m; r) produces a ciphertext c on the input messagem ∈M under the
label ` and encryption key ek, using the random coins r;

– Decrypt`(dk, c) outputs the plaintext m encrypted in c under the label `, or ⊥ for
an invalid ciphertext.
and satisfies the following property:

5

– Correctness: for all security parameter κ, with overwhelming probability over the
key pair (ek, dk), for any label `, all random coins r and all messages m, we have
Decrypt`(dk,Encrypt`(ek,m; r)) = m.

The IND-CCA2 and tag-IND-CCA2 security notions are defined in Appendix A.5,
as well as the method to convert a tag-IND-CCA2 encryption scheme into IND-CCA2.

Definition 5 (Approximate Smooth Projective Hash Functions [KV09]). Denote
L̃ ⊆ L ⊆ X the languages of ciphertexts defined by

L̃ = {(`, C,M)|∃ρ, C = Encrypt(ek, `,M ; ρ)}
L = {(`, C,M)|Decrypt(dk, `, C) = M}

where (Setup,KeyGen,Encrypt,Decrypt) is a labelled encryption scheme and the wit-
ness relation is implicitly defined if and only if C = Encrypt(ek, `,M ; ρ). An approx-
imate smooth projective hash function (SPHF) for these languages is defined by four
probabilistic polynomial-time algorithms:

– HashKG(L, param) generates a hashing key hk for the language parameter param;
– ProjKG(hk, (L, param),W) derives a projection key hp from the hashing key hk,

the language parameter param, and the word W ;
– Hash(hk, (L, param),W) outputs a hash value H ∈ {0, 1}ν (for some positive

integer ν = Ω(n)) from the hashing key hk, for the word W ∈ X and the language
parameter param;

– ProjHash(hp, (L, param),W,w) outputs a projected hash value H ′ ∈ {0, 1}ν
from the projection key hp, and the witness w, for the word W ∈ L̃ and the lan-
guage parameter param;

We describe in Appendix A.2 the properties of approximate correctness and smooth-
ness, as well as how to obtain an approximate SPHF from an Approximate Bit-PHF.

Security Notions. Throughout this paper, we assume basic familiarity with the uni-
versal composability framework [Can01]. A quick introduction, as well as the ideal
functionality for oblivious transfer are given in Appendix A.6.

Lattice-Based Assumptions.

LATTICES. Anm-dimensional lattice Λ is a (non-zero) discrete subgroup of Rm. A ba-
sis of Λ is a linearly-independent set of vectors whose Z−span is Λ. Equivalently, if
B ∈ Rm×n is a basis of Λ then we can write Λ = {Bs | s ∈ Zn} where n ≤ m. In
this work, we are mostly concerned with full-rank integer lattices, i.e. Λ ⊆ Zm with
n = m.

We define the dual lattice of Λ as Λ∗ = {x ∈ SpanR (Λ) | ∀y ∈ Λ, 〈x,y〉 ∈ Z}.
Let A ∈ Zm×nq be arbitrary and define the following full-rankm-dimensional q-ary

lattices:
Λ (A) = {As | s ∈ Znq }+ qZm

Λ⊥ (A) = {h ∈ Zm | htA = 0t mod q}.

6

It is easy to see that up to a scaling factor, Λ (A) and Λ⊥ (A) are dual of each other:
Λ (A) = q ·Λ⊥ (A)

∗. For any u ∈ Znq admitting an integral solution to Ax = u mod q,
we define the coset of Λ⊥ (A) as Λ⊥u = {h ∈ Zm | htA = ut mod q} = Λ⊥ (A) + x.

When there is no confusion about which matrix A is used, we will simply denote
these lattices Λ, Λ⊥, and Λ⊥u respectively.

GAUSSIANS. For σ > 0 and c ∈ Rm, we define the Gaussian weight function on Rm:
ρσ,c = x 7→ exp

(
−π ‖x− c‖2 /σ2

)
.

Similarly, if Λ is an m-dimensional lattice, we define the discrete Gaussian distri-
bution over Λ, of parameter s and centered in c by:

∀x ∈ Λ,DΛ,σ,c (x) =
ρσ,c(x)
ρΛ,c(x) .

When c = 0, we will simply write ρσ and DΛ,σ .
An important quantity associated to a lattice is its smoothing parameter, introduced

by Micciancio and Regev [MR04]: for a lattice Λ and any ε ∈ (0, 1), the smoothing pa-
rameter of Λ, denoted ηε(Λ), is defined as the smallest s > 0 such that ρ1/s (Λ∗ \ 0) ≤
ε. In particular, we recall the bound of the smoothing parameter of Zm.

Lemma 1. [BBDQ18, Lemma 2.5] For all integer m > 1, ε ∈ (0, 1/2), the smoothing
parameter of Zm satisfies ηε(Zm) ≤ C

√
log (m/ε) for some universal constantC > 0.

CRYPTOGRAPHIC ASSUMPTIONS.

Definition 6 (Short Integer Solution (SIS)). Let q ≥ 2, β > 0, and some m =
poly (n). The Short Integer Solution problem SISq,β consists in, given uniformly ran-
dom A ∈ Zn×mq , finding a relatively short nonzero z ∈ Λ⊥ (A) such that:

Az = 0 mod q and ‖z‖ ≤ β.

In [Ajt96], Ajtai showed that for q ≥ β
√
n · ω(

√
log n), SISq,β is at least as hard as

solving worst-case SIVP to within Õ (β
√
n) factors.

Definition 7 (Learning with Errors (LWE)). Let q ≥ 2 and χ be a distribution over
Z. The Learning with Errors problem LWEχ,q consists in, given polynomially many
samples, distinguishing the two following distributions:

– (a, 〈a, s〉+ e), where a is uniform in Znq , e ← χ, and s ∈ Znq is a fixed secret
chosen uniformly,

– (a, b) where a is uniform in Znq , and b is uniform in Zq .

In [Reg05], Regev showed that for χ = DZ,σ , for any σ ≥ 2
√
n, and q such that

q/σ = poly (n), LWEχ,q is at least as hard as solving worst-case SIVP for polynomial
approximation factors. We recall that there are (quantum) reductions from SIS to LWE
[Reg05,SSTX09] and that LWE is at least as hard as SIS.

TRAPDOOR FOR LWE. We present here the Micciancio-Peikert trapdoors introduced in
[MP12], to build our public matrix A. Let gA (s, e) = As + e, define the parity-check
matrix G as G = In⊗gt ∈ Zn×nkq , where gt =

[
1, 2, . . . , 2k−1

]
and k = dlog qe, and

let H ∈ Zn×nq be invertible.

Lemma 2 ([BBDQ18, Lemma 2.8]). There exists two PPT algorithms TrapGen and
g−1

(·) with the following properties assuming q ≥ 2 and m ≥ Θ(n log q):

7

– TrapGen (1n, 1m, q) outputs (T,A0), where the distribution of the matrix A0 is
at negligible distance from uniform in Zm×nq , and such that TA0 = 0, where
s1 (T) ≤ O (

√
m) and where s1 (T) is the operator norm of T, which is defined

as maxx6=0 ‖Tx‖ / ‖x‖.
– Let (T,A0)← TrapGen (1n, 1m, q). Let AH = A0 + [0;GH] for some invertible

matrix H called a tag. Then, TAH = GH. Furthermore, if x ∈ Zmq can be written
as AHs + e where ‖e‖ ≤ B′ := q/Θ (

√
m), then g−1

AH
(T,x,H) outputs (s, e).

More precisely, [MP12] describes two types of TrapGen instantiations:
– Statistical instantiation. We sample a uniform Ā ∈ Zm̄×nq where m̄ = m − nk =

Θ (n log q), and some R ← Dnk×m̄, where the distribution Dnk×m̄ assigns prob-
ability 1/2 to 0, and 1/4 to ±1.

– Computational instantiation. We sample a uniform Â ∈ Zn×nq and let Ā =
[
I; Â

]
∈

Zm̄×nq where m̄ = 2n, and some R ← Dnk×m̄
Z,σ for some σ = αq, where α > 0 is

an LWE relative error rate.
In both instantiations, we output T = [−R|Ink] along with A0 =

[
Ā;RĀ

]
. Then,

given a tag H, we have T (A0 + [0;GH]) = GH. Furthermore, the authors of [MP12]
show how to use a trapdoor for efficient Gaussian pre-image sampling for q-ary lattices
Λ, denoted SampleD (see [MP12] and references therein).

3 Lattice-based Building Blocks

Chameleon Hash. We present here a Chameleon Hash constructed from the SIS as-
sumption, following the chameleon hash given in [CHKP10] but using the Micciancio-
Peikert trapdoor generation [MP12]. We here only present the scheme, since the secu-
rity proof comes directly following the proof of Lemma 4.1 in [CHKP10]. We consider
message m ∈ {0, 1}`.

Let k = dlog qe and m = O(nk). Let D = DZm̄×nk,ω(
√

logn) be the Gaussian
distribution over Zm̄×nk with parameter ω(

√
log n) and let σ = O(

√
nk) be a Gaussian

parameter. Let the randomness space be defined as R = DZm,σ·ω(
√

logn). Then, the
Chameleon Hash is defined as follows:

– KeyGen(κ): choose a random matrix A0
$← Zn×`q .

Sample (R1,A1)
$← TrapGen(1n, 1m, q). Define ck = (A0,A1) and tk = R1.

– VKeyGen(ck): Outputs vk = ⊥, vtk = ⊥.
– CH(ck, vk,m; r): choose a vector r from the randomness spaceR: r← DZm,σ·ω(

√
logn).

Compute the chameleon hash value c = A0m+A1r. Return the chameleon hash c
and the opening information r (which we will later commit using a CCA2 scheme).

– Coll(tk, (m0, r0),m1): compute u = (A0m0 + A1r0)−A0m1 and sample r1 ∈
Zm according to DΛ⊥u (A1),σ·ω(

√
logn): r1

$← SampleD(R1,A1,u, σ).
– Verify(ck, vtk,m, c, r): accept if ‖r‖ ≤ σ ·ω(

√
log n) ·

√
m and c = A0m+A1r;

otherwise, reject.
It should be noted, that the trapdoor allows to recover not only a collision, but also

a preimage if need be.

8

Labelled TAG-IND-CCA2 Encryption Scheme. Following A.5, in order to construct
an IND-CCA2 labelled encryption scheme for messages of 2K bits, one simply has to
use a TAG-IND-CCA2 scheme for bits, use the same label in all the encryptions, and
then add a one-time signature, built for example by using the previous chameleon hash.
Two candidate encryption schemes have been proposed in [KV09] and [BBDQ18]. In
order to avoid a blow-up in parameters and running time, we use the latter one, that we
recall here.

For this scheme, we assume q to be an odd prime. We set an encoding function for
messages Encode(µ ∈ {0, 1}) = µ ·(0, . . . 0, dq/2e)t ∈ Zmq . Note that 2 ·Encode(µ) =
(0, . . . , 0, µ)t mod q.

Let R be a ring with a subset U ⊂ R× of invertible elements, of size 2n, and with
the unit differences property: if u1 6= u2 ∈ U , then u1 − u2 is invertible inR. Let h be
an injective ring homomorphism fromR to Zn×nq (see [MP12, Section 6.1 and 6.3] for
an explicit construction). Note that if u1 6= u2 ∈ U , then h(u1 − u2) is invertible, and
thus an appropriate tag H = h(u1 − u2) for the trapdoor.

Let (T,A0) ← TrapGen(1n, 1m, q). The public encryption key is ek = A0, and
the secret decryption key is dk = T. For all bits µ[i], i ∈ |µ|:

– Encrypt(ek = A0, u ∈ U , µ[i] ∈ {0, 1}) encrypts the message µ under the public
key ek and for the tag u, as follows: Let Au = A0 + [0 ; Gh(u)]. Pick s ∈ Znq ,
e ← Dm

Z,t where t = σ
√
m · ω(

√
log n). Restart if ‖e‖ > B, where B def= 2t

√
m.2

Output the ciphertext c = Aus + e + Encode(µ) mod q.
– Decrypt(dk = T, u ∈ U , c ∈ Zmq) decrypts the ciphertext c for the tag u using

the decryption key dk as follows: Output{
µ if g−1

Au
(T, 2c, h(u)) = 2e + (0, . . . , 0, µ) where e ∈ Zm and ‖e‖ ≤ B′ ,

⊥ otherwise.3

Since dq/2e is the inverse of 2 mod q, we have
µ′ def= Decrypt(T, u, c) 6= ⊥ ⇐⇒ d(c− Encode(µ′), Λ(Au)) < B′ .

Suppose that m ≥ Θ(n log q). Note that d(Encode(1), Λ(Au)) > B′ simultane-
ously for all u with overwhelming probability over the randomness of TrapGen (using
a union bound, as in [GPV08, Lemma 5.3] for instance). Then the scheme is correct as
long as B ≤ B′, or equivalently σm3/2 · ω(

√
log n) ≤ q.

Theorem 1. Assume m ≥ Θ(n log q). The above scheme is tag-IND-CCA2 assuming
the hardness of the LWEχ,q problem for χ = DZ,σ .

Smooth Projective Hash Function. A natural approach to define an approximate bit-
PHF on the former encryption scheme E is the following, given in [BBDQ18]:

– HashKG(LE ,A) outputs hk = h← Dm
Z,s;

– ProjKG(h, (LE ,A)) outputs hp = p = Ath;
– Hash(h, (LE ,A), c) outputs H = R(〈h, c〉);

2 This happens only with exponentially small probability 2−Θ(n).
3 Note that the inversion algorithm g−1

(·) can succeed even if ‖e‖ > B′, depending on the ran-
domness of the trapdoor. It is crucial to reject decryption nevertheless when ‖e‖ > B′ to
ensure CCA2 security. We also recall that B′ def= q/Θ(

√
m).

9

– ProjHash(p, (LE ,A), c, (s, e)) outputs H ′ = R(〈p, s〉);
whereR is a rounding function to be chosen later and s > 0 is a parameter to be chosen
later too. Let r], r[be two q-periodic defined on [−q/2, q/2] by:

∀x ∈
[−q

2 ,
q
2

]
, r](x) =

{
1 if |x| ∈ [−q/4, q/4) ,

0 otherwise,
and r[(x) =

{
1

2T if |x| ≤ T,
0 otherwise.

We denote � the convolution of q-periodic functions. The following theorem guar-
antees the statistical correctness of the construction when we instantiate it with a well-
defined rounding function R.

Theorem 2. Suppose q = O(2n) is superpolynomial in n, m = Θ(n log q). Set pa-
rameters:
1. T such that T/q and q/T 2 are both negligible in n (using T = q2/3 for instance),
2. k = Θ(n), and
3. s ≥ Θ(

√
n) such that s/q = negl(n) and s = Ω(mk

2q2

T 2), which exists by construc-
tion of T .

Define a probabilistic rounding function R : Zq → {0, 1} such that Pr[R(x) = 1] =
(r] � r[)(x). Then the bit-PHF achieves (1/3 + o(1))-universality and statistical cor-
rectness.

Proof. The theorem follows from [BBDQ18] using:
1. N = kq/T (in which case NCm is negligible in n), and
2. δ = q

√
m
s .

APPROXIMATE SPHF BASED ON LWE. First, we instantiate the described approximate
bit-PHF scheme with a concrete rounding function R(x) = 1

2 + cos(2πx/q)
2 and the

parameter s = Θ(m). Then the approximate SPHF is defined as follows:
– HashKG(LE ,A) generates a hashing key hk = (hk1, . . . , hkν) by sampling ν times
hki

$← Dm
Z,s, where ν = Ω(κ).

– ProjKG(hk, (LE ,A)) derives a projection key hp from the hashing key hk, by com-
puting hpi = Athki (for i ∈ J1, νK) and setting hp = (hp1, . . . , hpν).

– Hash(hk, (LE ,A), c) outputs a hash value H ∈ {0, 1}ν , by computing the various
hash values Hi = R(〈hki, c〉) (for i ∈ J1, νK) and concatenating the outputs:
H = H1‖ . . . ‖Hν .

– ProjHash(hp, (LE ,A), c, (s, e)) outputs a projected hash value H ′ ∈ {0, 1}ν ,
by computing the projected hash values H ′

i = R(〈hki, s〉) (for i ∈ J1, νK) and
concatenating them: H ′ = H ′

1 ‖ . . . ‖H ′
ν .

4 SPHF Friendly Commitment based on LWE

Having recalled in the former sections the necessary building blocks based on lattice
assumptions, we now describe how to construct the main ingredient for oblivious trans-
fer, which is SPHF-friendly commitment schemes, following the methodology given
in [ABB+13] and [BC15] and recalled in Appendix B for completeness. The correct-
ness and security directly follow from the generic theorem [BC15] since the chameleon

10

hash is publicly verifiable and collision-resistant and the encryption scheme is IND-
CCA2 secure and accepts an SPHF on the language of valid ciphertexts.

In our construction, we select the parameters q and n in order to achieve the desired
level of security for the LWE-based schemes, and the remaining parameters are instan-
tiated using the computational instantiation of the trapdoor with m = n(k + 2). Let σ
be the Gaussian parameter for the trapdoor sampling TrapGen. Furthermore, we denote
t = |N | where N is the number of lines of the database.

Let E = (Setup,KeyGen,Encrypt,Decrypt) and C = (KeyGen,CH,Coll,Verify)
denote the LWE-based instantiations of the TAG-IND-CCA2 encryption scheme and
the Chameleon Hash described in Section 3, respectively.

The concrete construction for the SPHF Friendly Commitment is given in Figure 1.

– Setup: SetupComT(1κ)

• Generate a public key ek for the encryption scheme: ek = AE
$← E .KeyGen(1κ).

• Generate a hash key ck for the chameleon hash scheme: ck = (AC0 ,A
C
1)

$←
C.KeyGen(1κ).

• Generate various parameters param for E (for example, the subset U with the unit
differences property): param← E .Setup(1κ).

• Output (ek, ck, param).
– Commit: Com`(m), for m = (mi) ∈ {0, 1}t and a label `.
• For each i ∈ J1, tK, commit to mi to get a hash value ai ∈ Zm and an opening

information di,mi ∈ Zm: (ai,di,mi)
$← C.CH(ck,mi). Then sample at random

di,1−mi
$← DZm,σ·ω(

√
logn). We denote as a = (a1, . . . ,at) and d the concatena-

tion of (di,j)i∈J1,tK,j∈{0,1}.
• Encrypt the opening information d as follows. We suppose that each entry of d can

be represented as a ν-bit string (dµ)µ∈J1,νK without loss of generality.
(a) Generate a signature key sk and an associated verification key vk: run C.KeyGen

twice, and get cki, tki for i ∈ {0, 1}. Set (z0, r0)
$← C.CH(ck0, 0), (z1, r1)

$←
C.CH(ck1, z0)). Set vk = (ck0, ck1, z1), sk = (tk0, tk1, r0, r1, z0).

(b) Map the verification key vk to a random element of the set U of E by using an
injective mapH.

(c) For each i ∈ J1, tK, j ∈ {0, 1} and µ ∈ J1, νK, compute ci,j to be the concate-
nation of cµ

$← E .Encrypt(ek,H(vk),dµi,j) and set si,j to be the concatenation
of all sampled secret sµi,j ∈ Zm.

(d) Sign (c1, . . . , ct̄, vk, `) under the secret key sk: get r′0
$←

C.Coll(tk0, 0, r0, (c1, . . . , ct̄, vk, `)) where t̄ = 2t.
(e) Set b = (c1, . . . , ct̄, vk, [r0|r′0]) and s = (si,j)i∈J1,tK,j∈{0,1}.

• Output the commitment C = (a,b), and the opening information δ =
(s1,m1 , . . . , st,mt).

Fig. 1. SPHF Friendly Commitment based on LWE

11

5 Oblivious Transfer based on LWE

Notations and Building Blocks. We denote by DB = (DB1, . . . ,DBN) the database
of the server containing N = 2t lines, and j the line requested by the user in an oblivi-
ous way. We assume the existence of

– a Pseudo-Random Generator (PRG) F with input size equal to the plaintext size,
and output size equal to the size of the messages in the database: None of the
PRGs suggested for cryptographic use would be affected by quantum computers,
other than perhaps the O(

√
n) factor incurred by Grover’s algorithm. Thus, we

can simply use AES in counter mode as a PRG, taking advantage of AES-NI in-
structions when available for the implementation. As a general rule, for 128 bits of
post-quantum security, one can safely use key sizes of 256 bits.

– an IND-CPA encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa)
with plaintext size at least equal to the security parameter: We can take the con-
structions from the literature (for example, [NAB+17], etc.), or we can reuse the
construction of the TAG-IND-CCA2 scheme described in Section 3 with a fixed
tag (for example, the tag H = I), then the resulting construction will be IND-CPA
secure.

– an SPHF-friendly commitment scheme: We construct it as described in Section 4
from the compatible CCA-encryption and chameleon hash from Section 3 (the lan-
guage L is defined from the encryption scheme as in Definition 5).

Construction. We follow the generic construction proposed in [ABB+13,BC15], giv-
ing the protocol presented on Figure 2, instantiating the primitives needed by the build-
ing blocks based on LWE described above. Since the commitment scheme is con-
structed from a secure publicly-verifiable chameleon hash and a secure CCA encryp-
tion scheme admitting an SPHF on the language of valid ciphertexts, as described in
Section 3, the proof of the following security theorem thus directly follows from the
theorem of the generic construction given in [BC15].

Theorem 3. The oblivious transfer scheme described in Figure 2 is UC-secure in the
presence of adaptive adversaries, assuming reliable erasures and authenticated chan-
nels, under LWE assumption.

Acknowledgments

We would like to thank the anonymous reviewers for detailed comments. This work
was supported in part by the French ANR projects IDFIX (ANR-16-CE39-0004) and
CryptiQ (ANR-18-CE39-0015).

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David
Pointcheval. SPHF-friendly non-interactive commitments. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 214–234.
Springer, Heidelberg, December 2013.

12

CRS: ρ = (ek, ck, param)
$← SetupCom(1κ), paramcpa

$← Setupcpa(1κ).

Pre-flow:
1. Server generates a key pair (ekcpa, dkcpa)

$← KeyGencpa(paramcpa) for E , stores dkcpa

and completely erases the random coins used by KeyGen

2. Server generates a verification key pair (vk, vtk)
$← VKeyGen(ck) for CH, stores vtk and

completely erases the random coins used by VKeyGen
3. Server sends ekcpa and vk to User

Index query on j:
1. User chooses a random value J , computes R← F (J) and encrypts J under ekcpa:
c

$← Encryptcpa(ekcpa, J)

2. User computes (C, δ)
$← Com`(j) with ` = (sid, ssid, Pi, Pj)

3. User stores δ,R and completely erases J and the random coins used by Com and
Encryptcpa and sends C and c to Server

Database input (DB1, . . . ,DBN):
1. Server decrypts J ← Decryptcpa(dkcpa, c) and then R← F (J)

2. For s = 1, . . . , N : Server computes hks
$← HashKG(L, param),

hps ← ProjKG(hks, (L, param), (`, C)), Ks ← Hash(hks, (L, param), (`, C)),
and dbs ← R⊕Ks ⊕ DBs

3. Server erases everything except (hpsdbs)s=1,...,N and sends them over the secure channel

Data recovery:
Upon receiving (hps, dbs)s=1,...,N , User computes
Kj ← ProjHash(hpj , (L, param), (`, C), δ) and gets DBj ← R⊕Kj ⊕ dbj .

Fig. 2. UC-Secure 1-out-of-t OT from an SPHF-Friendly Commitment (for Adaptive Security)

[ACFP14] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret. Algebraic
algorithms for LWE. Cryptology ePrint Archive, Report 2014/1018, 2014. http:
//eprint.iacr.org/2014/1018.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing
for conditionally extractable commitments. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 671–689. Springer, Heidelberg, August 2009.

[AFG14] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solv-
ing LWE by reduction to unique-SVP. In Hyang-Sook Lee and Dong-Guk Han, edi-
tors, ICISC 13, volume 8565 of LNCS, pages 293–310. Springer, Heidelberg, Novem-
ber 2014.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume
6755 of LNCS, pages 403–415. Springer, Heidelberg, July 2011.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th ACM STOC, pages 99–108. ACM Press, May 1996.

[Alb17] Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus Nielsen, edi-
tors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 103–129. Springer,
Heidelberg, April / May 2017.

13

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learn-
ing with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[BBDQ18] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. Hash proof
systems over lattices revisited. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part II, volume 10770 of LNCS, pages 644–674. Springer, Heidelberg,
March 2018.

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of UC-secure oblivious
transfer. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis
Polychronakis, editors, ACNS 15, volume 9092 of LNCS, pages 65–86. Springer, Hei-
delberg, June 2015.

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective hashing.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 339–369. Springer, Heidelberg, December 2016.

[BCG16] Olivier Blazy, Céline Chevalier, and Paul Germouty. Adaptive oblivious transfer and
generalization. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 217–247. Springer, Heidelberg, December
2016.

[BCG17] Olivier Blazy, Céline Chevalier, and Paul Germouty. Almost optimal oblivious trans-
fer from QA-NIZK. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, edi-
tors, ACNS 17, volume 10355 of LNCS, pages 579–598. Springer, Heidelberg, July
2017.

[BFRLS18] Pauline Bert, Pierre-Alain Fouque, Adeline Roux-Langlois, and Mohamed Sabt.
Practical implementation of ring-SIS/LWE based signature and IBE. In Tanja Lange
and Rainer Steinwandt, editors, Post-Quantum Cryptography - 9th International
Conference, PQCrypto 2018, pages 271–291. Springer, Heidelberg, 2018.

[BG14] Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE. In
Willy Susilo and Yi Mu, editors, ACISP 14, volume 8544 of LNCS, pages 322–337.
Springer, Heidelberg, July 2014.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled cir-
cuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages
784–796. ACM Press, October 2012.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange
secure against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 139–155. Springer, Heidelberg, May 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally
composable security for standard multiparty computation. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
3–22. Springer, Heidelberg, August 2015.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg,
August 2001.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie.
Universally composable password-based key exchange. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Heidelberg,
May 2005.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 523–552. Springer, Heidelberg, May / June 2010.

14

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient,
adaptively secure, and composable oblivious transfer with a single, global CRS. In
Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS,
pages 73–88. Springer, Heidelberg, February / March 2013.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May
2002.

[DDN03] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
review, 45(4):727–784, 2003.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of
LNCS, pages 10–18. Springer, Heidelberg, August 1984.

[GJS15] Qian Guo, Thomas Johansson, and Paul Stankovski. Coded-BKW: Solving LWE
using lattice codes. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 23–42. Springer, Heidelberg,
August 2015.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenti-
cated key exchange. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 524–543. Springer, Heidelberg, May 2003. http://eprint.iacr.org/
2003/032.ps.gz.

[GM18] Nicholas Genise and Daniele Micciancio. Faster gaussian sampling for trapdoor lat-
tices with arbitrary modulus. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 174–203. Springer, Hei-
delberg, April / May 2018.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May 1987.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,
editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008.

[Gt18] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 6.1.2 edition, 2018. http://gmplib.org/.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in
two rounds. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
111–129. Springer, Heidelberg, August 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31. ACM Press, May 1988.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-
based authenticated key exchange from lattices. In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 636–652. Springer, Heidelberg, De-
cember 2009.

15

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages
319–339. Springer, Heidelberg, February 2011.

[Moh11] Payman Mohassel. One-time signatures and chameleon hash functions. In Alex
Biryukov, Guang Gong, and Douglas R. Stinson, editors, SAC 2010, volume 6544 of
LNCS, pages 302–319. Springer, Heidelberg, August 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April 2012.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press,
October 2004.

[NAB+17] Michael Naehrig, Erdem Alkim, Joppe Bos, Leo Ducas, Karen Easterbrook,
Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher
Peikert, Ananth Raghunathan, and Douglas Stebila. Frodokem. Technical report,
National Institute of Standards and Technology, 2017. available at https:
//csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao
Kosaraju, editor, 12th SODA, pages 448–457. ACM-SIAM, January 2001.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
129–140. Springer, Heidelberg, August 1992.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report
TR81, Harvard University, 1981.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93.
ACM Press, May 2005.

[Sho01] Victor Shoup. Ntl: A library for doing number theory. 2001. http://www.
shoup.net/ntl/.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public
key encryption based on ideal lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 617–635. Springer, Heidelberg, December 2009.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi.
SCORAM: Oblivious RAM for secure computation. In Gail-Joon Ahn, Moti Yung,
and Ninghui Li, editors, ACM CCS 14, pages 191–202. ACM Press, November 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Details and Formal Definitions

A.1 Commitments

A commitment scheme is said equivocable if the following properties are satisfied: trap-
door correctness (all simulated commitments can be opened on any message), setup
indistinguishability (one cannot distinguish the CRS ρ generated by SetupCom from

16

the one generated by SetupComT) and simulation indistinguishability (one cannot dis-
tinguish a real commitment (generated by Com) from a fake commitment (generated by
SCom), even with oracle access to fake commitments), denoting by SCom the algorithm
that takes as input the trapdoor τ , a label ` and a message x and which outputs (C, δ)

$←
SCom`(τ, x), computed as (C, eqk)

$← SimCom`(τ) and δ ← OpenCom`(eqk, C, x).
A commitment scheme C is said extractable if the following properties are satisfied:

trapdoor correctness (all commitments honestly generated can be correctly extracted:
for all `, x, if (C, δ)

$← Com`(x) then ExtCom`(C, τ) = x), setup indistinguishability
(as above) and binding extractability (one cannot fool the extractor, i.e., produce a com-
mitment and a valid opening data to an input x while the commitment does not extract
to x).

A.2 Smooth Projective Hash Functions

An approximate SPHF as defined in Section 5 should satisfy the following properties:

– Approximate correctness. For any n ∈ N, with overwhelming probability over the
randomness of Setup, for anyW ∈ L̃ (and associated witnessw), the value H out-
put by Hash(hk, (L, param),W) is approximately determined by ProjKG(hk, (L, param),W)
relative to the Hamming metric. More precisely, writing HW(a, b) the Hamming
distance between two strings a, b ∈ {0, 1}ν , the SPHF is ε-correct, if:

Pr
hk

[HW(Hash(hk, (L, param),W),ProjHash(hp, (L, param),W,w)) > ε · ν] = negl(n) ,

where the probability is taken over the choice of hk ← HashKG(param) and the
random coins of Hash and ProjHash.4

– Smoothness. For any n ∈ N, with overwhelming probability over the randomness
of Setup, for all W ∈ X \ L the following distributions have statistical distance
negligible in n:{

(param,W, hp,H)|hk← HashKG(L, param), H ← Hash(hk, (L, param),W),

hp = ProjKG(hk, (L, param),W)

}
,{

(param,W, hp,H)|hk← HashKG(L, param), H ← {0, 1}ν ,
hp = ProjKG(hk, (L, param),W)

}
.

We now recall how to obtain an approximate SPHF from an Approximate Bit-PHF.
In the following, we are going to start from the [BBDQ18] bit-SPHF. In order to use
it, as a proper SPHF, we need to increase the size of the output of the hash function,
by sampling several independent hash keys hk, and concatenating the output of all the
corresponding Hash results.

Lemma 3. Let (HashKG′,ProjKG′,Hash′,ProjHash′) be an ε-correct approximate bit-
PHF. Then the SPHF (HashKG,ProjKG,Hash,ProjHash) defined as follows is an (ε+
ε′)-correct approximate SPHF, for any constant ε′ > 0.

4 Contrary to previously known SPHFs, some of our SPHFs have randomized algorithms Hash
and ProjHash.

17

– HashKG(1κ) generates a hashing key hk = (hk1, . . . , hkν) by running ν times
HashKG′(1κ), where ν = Ω(n);

– ProjKG(hk, hk, (L, param),W) derives a projection key hp from the hashing key hk,
by computing hpi = ProjKG′(hki, hk, (L, param),W) (for i ∈ {1, . . . , ν}) and
setting hp = (hp1, . . . , hpν).

– Hash(hk, hk, (L, param),W) outputs a hash value H ∈ {0, 1}ν , by computing the
various hash values Hi = Hash(hki, hk, (L, param),W) (for i ∈ {1, . . . , ν}) and
concatenating the outputs: H = H1‖ . . . ‖Hν;

– ProjHash(hp, hk, (L, param),W,w) outputs a projected hash value H ′ ∈ {0, 1}ν ,
by computing the projected hash values H ′

i = ProjHash′(hpi, hk, (L, param),W,w)
(for i ∈ {1, . . . , ν}) and concatenating them: H ′ = H ′

1 ‖ . . . ‖H ′
ν ;

Proof. Approximate correctness. We have for every i:

Pr
hki

[Hash′(hki, hk, (L, param),W) = ProjHash′(hpi, hk, (L, param),W,w)] ≥ 1− ε .

Hence, the property on the concatenation, using the Hoeffding bound.
Smoothness. This follows from a classical hybrid argument by considering intermedi-
ate distributions ∆i where the first i values Hi are random, and the others are honestly
computed, as each SPHF is independent and smooth.

A.3 Chameleon Hash

A Chameleon Hash Function is traditionally defined by three algorithms CH = (KeyGen,CH,Coll):

– KeyGen(κ): Outputs the chameleon hash key ck and the trapdoor tk;
– CH(ck,m; r): Picks a random r, and outputs the chameleon hash a.
– Coll(ck,m, r,m′, tk): Takes as input the trapdoor tk, a start message and random-

ness pair (m, r) and a target message m′ and outputs a target randomness r′ such
that CH(ck,m; r) = CH(ck,m′; r′).

The standard security notion for CH is collision resistance, which means it is in-
feasible to find (m1, r1), (m2, r2) such that CH(ck,m1, r1) = CH(ck,m2, r2) and
m1 6= m2 given only the Chameleon hash key ck. Formally, CH is (t, ε) − coll if
for the adversary A running in time at most t we have:

Pr

[
(ck, tk)

$← KeyGen(κ); ((m1, r1), (m2, r2))
$← A(ck)

∧ CH(ck,m1; r1) = CH(ck,m2; r2) ∧m1 6= m2

]
≤ ε.

However, any user in possession of the trapdoor tk is able to find a collision using Coll.
Additionally, Chameleon Hash functions have the uniformity property, which means
the hash value leaks nothing about the message input. Formally, for all pair of messages
m1 and m2 and the randomly chosen r, the probability distributions of the random
variables CH(ck,m1, r) and CH(ck,m2, r) are computationally indistinguishable.

We need here the hash value to be verifiable, so that we add two VKeyGen and
Valid algorithms (executed by the receiver) and we modify the existing algorithms as
described in Definition 2.

18

Once again, we expect the chameleon hash to be collision resistant on the first
part of the output, which means it is infeasible to find (m1, r1), (m2, r2) such that
CH(ck, vk,m1, r1) = (a, d1) and CH(ck,m2, r2) = (a, d2) and m1 6= m2 given only
the Chameleon public keys ck and vk.

We expect the verification to be sound, which means that, given a tuple (m, a, d)
satisfying Valid(ck, vk,m, a, d, vtk), there always exists at least one tuple (r, d′) such
that CH(ck, vk,m; r) = (a, d′).

A.4 One-Time Signatures

The properties of a digital signature scheme can be defined as follows:

– Correctness: For every pair (vk, sk) generated by KeyGen, for every message M ,
and for all randomness µ, we have Verify(vk,M, Sign(sk,M ;µ)) = 1.

– Strong One-Time Unforgeability under Chosen Message Attacks. Even after query-
ing a valid signature σ on chosen messages M , an adversary should not be able to
output a fresh valid signature (possibly on M). To formalize this notion, we define
a signing oracle OSign:
• OSign(vk,m): This oracle outputs a signature onm valid under the verification

key vk. The resulting pair (m,σ) is added to the signed pair set S ′.

Expst−ot−ufS,A (κ)

1.param← Setup(1κ)
2.(vk, sk)← KeyGen(param)
3.(m∗, σ∗)← A(vk,OSign(vk, ·))
4.b← Verify(vk,m∗, σ∗)
5.IF (m∗, σ∗) ∈ S ′ OR #(S) > 1 RETURN 0
6.ELSE RETURN b

The probability of success against this game is denoted by

Succst−ot−ufS,A (κ) = Pr[Expst−ot−ufS,A (κ) = 1]

Succst−ot−ufS (κ, t) = max
A≤t

Succst−ot−ufS,A (κ).

Our scheme requires the use of Strong One-Time Signature. Such primitive can
naturally be built from chameleon hashes as was shown in [Moh11]. We remind the
transformation here. Given a Chameleon Hash (CH.KeyGen, CH.CH, CH.Coll), one
can define a Strong One-Time Signature in the following way:

– Sign.KeyGen: Runs CH.KeyGen twice, and get cki, tki for i ∈ {0, 1}. Samples
random ri ∈ {0, 1}κ. Sets z0 = CH.CH(ck0, 0, r0), z1 = CH.CH(ck1, z0, r1)).
Set vk = (ck0, ck1, z1), sk = (tk0, tk1, r0, r1, z0).

– Sign.Sign(sk,m): Gets r′0 = CH.Coll(tk0, 0, r0,m) and publishes σ = r′0, r1.
– Sign.Verify(vk,m, σ): Computes z′0 = CH.CH(vk0,m, σ0) and checks whether
vk2 = CH.CH(vk1, z

′
0, σ1).

19

A.5 Labelled Encryption Schemes

Definition 8 (IND-CCA2 Security).
An encryption scheme E = (Setup,KeyGen,Encrypt,Decrypt) is IND-CCA2 if

the advantage of any polynomial-time adversary A in distinguishing Expind-cca−0
E,A (κ)

from Expind-cca−1
E,A (κ) is negligible in the security parameter κ, where the experiment

Expind-cca−b
E,A (κ) is depicted in Figure 3. The adversary A transfers some internal state

state between the various calls FIND and GUESS, and makes use of the oracle ODecrypt:

– ODecrypt`(c): This oracle outputs the decryption of c under the label ` and the
challenge decryption key dk. The input queries (`, c) are added to the list CT .

Informally, this notion states that an adversary should not be able to efficiently
guess which message has been encrypted even if he chooses the two original plaintexts,
and can ask several decryption of ciphertexts as long as they are not the challenge one.

Expind-cca-b
E,A (κ)

param
$← Setup(1κ)

(ek, dk)
$← KeyGen(param)

(`∗,m0,m1, state)← AODecrypt·(·)(FIND : ek)
c∗ ← Encrypt`

∗
(ek,mb)

b′ ← AODecrypt·(·)(state,GUESS : c∗)
If ((`∗, c∗) ∈ CT)
Return 0

Else
Return b′

Fig. 3. Security Experiment for IND-CCA2 Security

This IND-CCA2 notion can be relaxed into a weaker tag-IND-CCA2 security no-
tion.

Definition 9 (Tag-IND-CCA2 Security). An encryption scheme E = (Setup,KeyGen,Encrypt,
Decrypt) is tag-CCA2-secure if the advantage of any polynomial-time adversary A in
distinguishing Exptag-cca−0

E,A (κ) from Exptag-cca−1
E,A (κ) is negligible in the security param-

eter κ, where the experiments Exptag-cca−b
E,A (κ) are defined as the experiments Expind-cca−b

E,A (κ)
depicted in Figure 3, except that:

– The line
If ((`∗, c∗) ∈ CT)

is replaced by
If ((`∗, ·) ∈ CT)

20

In other words, the adversary is not allowed to query the decryption oracle on a
ciphertext with the same label ` (also called a tag and denoted u in this context) as
the challenge one.

– In addition the adversary chooses the label `∗ before seeing ek, i.e. the two lines
(ek, dk)

$← KeyGen(param)
(`∗,m0,m1, state)← AODecrypt·(·)(FIND : ek)

are replaced by
(`∗, state0)

$← A(1κ)

(ek, dk)
$← KeyGen(param)

(m0,m1, state)← AODecrypt·(·)(state0,FIND : ek)

Finally, we recall that the weaker IND-CPA security notion is defined similarly as
the IND-CCA2 or tag-IND-CCA2 security notion, except that the adversary is not given
access to the decryption oracle ODecrypt. If the tag of a tag-IND-CCA2 encryption
scheme is fixed to some public constant, then the resulting scheme is IND-CPA.

We can convert a tag-IND-CCA2 encryption scheme (Setup′,KeyGen′,Encrypt′,Decrypt′)
with message space {0, 1} and label (a.k.a., tag) space {0, 1}κ into an IND-CCA2 en-
cryption scheme (Setup,KeyGen,Encrypt,Decrypt) with message space {0, 1}ν (for
some ν polynomial in κ) and label space {0, 1}∗, using [DDN03].

Concretely, we suppose that we have a strongly unforgeable one-time signature
scheme and we define:

– Setup(1κ), where κ is the security parameter, uses Setup′(1κ) to generate the
global parameters param of the scheme;

– KeyGen(1κ) outputs (ek, dk)← KeyGen′(1κ);
– Encrypt`(ek,m), with ` ∈ {0, 1}∗ and m ∈ {0, 1}ν , generates a signature key
skσ and an associated verification key vkσ (for the strongly unforgeable one-time
signature, we suppose that vkσ can be represented as a κ-bit string without loss
of generality), computes for 1 ≤ i ≤ ν, ci ← Encrypt′ vkσ (ek,mi), and outputs
c def= (c1, . . . , cν , vkσ, σ), where σ is a signature under skσ of (c1, . . . , cν , vkσ, `);

– Decrypt`(dk, c), with ` ∈ {0, 1}∗, parses c as (c1, . . . , cν , vkσ, σ), abort (i.e., return
⊥) if σ is not a valid signature of (c1, . . . , cν , vkσ, `) under vkσ , otherwise computes
for 1 ≤ i ≤ ν, mi = Decrypt′ vkσ (dk, ci), and output the bit string m ∈ {0, 1}ν
corresponding to the concatenation of m1, . . . ,mν .

In the following, in order to supersede the decryption by an implicit decommitment,
we require the encryption to admit an efficient implicit decommitment. We will call an
SPHF-friendly encryption, an encryption where there exists an SPHF for the Language
of valid ciphertexts of a message m using as sole witness the randomness used in the
encryption.

A.6 Security Notions

UC Framework The goal of the UC framework [Can01] is to ensure that UC-secure
protocols will continue to behave in the ideal way even if executed in a concurrent way

21

in arbitrary environments. It is a simulation-based model, relying on the indistinguisha-
bility between the real world and the ideal world. In the ideal world, the security is
provided by an ideal functionality F , capturing all the properties required for the proto-
col and all the means of the adversary. In order to prove that a protocol Π emulates F ,
one has to construct, for any polynomial adversary A (which controls the communica-
tion between the players), a simulator S such that no polynomial environment Z can
distinguish between the real world (with the real players interacting with themselves
and A and executing the protocol π) and the ideal world (with dummy players interact-
ing with S and F) with a significant advantage. The adversary can be either adaptive,
i.e. allowed to corrupt users whenever it likes to, or static, i.e. required to choose which
users to corrupt prior to the execution of the session sid of the protocol. After corrupting
a player, A has complete access to the internal state and private values of the player,
takes its entire control, and plays on its behalf.

Simple UC Framework Canetti, Cohen and Lindell formalized a simpler variant
in [CCL15], that we use here. This simplifies the description of the functionalities for
the following reasons (in a nutshell): All channels are automatically assumed to be au-
thenticated (as if we worked in theFAUTH-hybrid model); There is no need for public de-
layed outputs (waiting for the adversary before delivering a message to a party), neither
for an explicit description of the corruptions. We refer the interested reader to [CCL15]
for details.

Oblivious Transfer The ideal functionality of an Oblivious Transfer (OT) protocol
was given in [Can01,CKWZ13,ABB+13]. We recall it in simple UC in Figure 4 using
the functionality introduced in [BCG16]. Note that the BPR model [BPR00] given for
PAKE protocols can be adapted to give a game-based security model for OT schemes
but this is well beyond the scope of this paper.

The party Pi is the sender S, while the party Pj is the receiver R. The former is
provided with a database consisting of a set of n lines (L1, . . . , Ln), while the latter is
querying a particular line Ls (with s ∈ {1, . . . , n}). Since there is no communication
between them (the functionality deals with everything), it automatically ensures the
oblivious property on both sides (the sender does not learn which line was queried,
while the receiver does not learn any line other than Ls).

B Generic Construction For SPHF Friendly Commitment

We here give the generic SPHF-friendly commitment scheme from [ABB+13] and [BC15],
which is useful to obtain our concrete construction in Section 4.

B.1 Generic Construction

As before, (Setup,KeyGen,Encrypt,Decrypt) denotes an IND-CCA2 encryption scheme
and (KeyGen,VKeyGen,CH,Coll,Valid) a chameleon hash scheme. It should be feasi-
ble to compute a CCA-encryption of the opening value of the chameleon hash. We also

22

The functionality F(1,N)-OT is parametrized by a security parameter κ. It interacts with an
adversary S and a set of parties P1,. . . ,PN via the following queries:

– Upon receiving an input (Send, sid, ssid, Pi, Pj, (L1, . . . , LN)) from party Pi,
with Li ∈ {0, 1}κ for all i: record the tuple (sid, ssid, Pi, Pj , (L1, . . . , LN)) and reveal
(Send, sid, ssid, Pi, Pj) to the adversary S. Ignore further Send-message with the same
ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj :
ignore the message if (sid, ssid, Pi, Pj , (L1, . . . , LN)) is not recorded. Oth-
erwise, reveal (Receive, sid, ssid, Pi, Pj) to the adversary S and send
(Received, sid, ssid, Pi, Pj , Ls) to Pj and ignore further Receive-message with the
same ssid from Pj .

Fig. 4. Ideal Functionality for 1-out-of-N Oblivious Transfer F(1,N)-OT

require the encryption to accept an SPHF on the language of valid ciphertexts, and the
chameleon-hash to be verifiable by the receiver. This requires a pre-flow, in which the
server is assumed to execute the algorithm VKeyGen to generate a verification key and
its trapdoor and send the verification key to the sender5

Theorem 4 ([BC15]). Given a verifiable collision-resistant chameleon hash and a se-
cure CCA-encryption accepting an SPHF on the language of valid ciphertexts, the con-
struction below provides a commitment scheme which is SPHF-friendly.

– Setup and simulated setup algorithms: SetupComT(1κ) (the algorithm for setup
with trapdoors) generates the various parameters param, for the setting of the SPHF-
friendly labelled CCA-encryption scheme and the chameleon hash scheme. It then
generates the corresponding keys and trapdoors: (ck, tk) for the chameleon hash
scheme and (ek, dk) for the encryption scheme.
For SetupCom(1κ) (the algorithm for setup without trapdoors), the setting and the
keys are generated the same way, but forgetting the way the keys were constructed
(such as the scalars, in a DDH-based setting), thus without any trapdoor.
The algorithms both output the CRS ρ = (ek, ck, param). In the first case, τ denotes
the trapdoors (dk, tk).

– Pre-flow (verification key generation algorithm): playerQ executes VKeyGen(ck)
to generate the chameleon designated verification key vk and the trapdoor vtk and
sends vk to the sender P .

– Targeted commitment algorithm: Com`(M;Q) from player P to player Q, for
M = (Mi)i ∈ {0, 1}t and a label `, works as follows:

• For i ∈ J1, tK, it chooses ri,Mi at random and computes CH(ck, vk,Mi; ri,Mi)
to obtain the hash value ai and the corresponding opening value di,Mi

. It sam-
ples at random the values ri,1−Mi

and di,1−Mi
. We denote as a = (a1, . . . , am)

the tuple of commitments and d = (di,j)i,j .

5 This makes the commitment not completely non-interactive, but this pre-flow will be merged
with the first flow of our OT.

23

• For i ∈ J1, tK and j = 0, 1, it gets b = (bi,j)i,j = Encrypt`
′

ek(d; s), where s is
taken at random and `′ = (`,a).

The commitment is C = (a,b), and the opening information is the m-tuple δ =
(s1,M1

, . . . , st,Mt
).

– Verification algorithm: VerCom`(vtk, C,M, δ) first checks the validity of the ci-
phertexts bi,Mi with randomness si,Mi , then extracts di,Mi from bi,Mi and si,Mi ,
and finally checks the chameleon hash ai with opening value di,Mi , for i ∈ J1, tK,
via the algorithm Valid(ck, vk,Mi, ai, di,Mi

, vtk).

– Simulated targeted commitment algorithm: SimCom`(τ ;Q) from the simulator
to playerQ, takes as input the equivocation trapdoor, namely tk, from τ = (dk, tk),
and outputs the commitment C = (a,b) and equivocation key eqk = s, where

• For i ∈ J1, tK, it chooses ri,0 at random, computes (ai, di,0) = CH(ck, vk, 0; ri,0),
and uses the equivocation trapdoor tk to compute ri,1 used to open the chameleon
hash to 1 such that CH(ck, vk, 1; ri,1) is equal to (ai, di,1). This leads to a
and d, making di,j the opening value for ai,j for all i ∈ J1, tK and j = 0, 1.

• b is built as above: b = (bi,j)i,j = Encrypt`
′

ek(d; s), where eqk = s is taken at
random and `′ = (`,a).

– Equivocation algorithm: OpenCom`(eqk, C,M) simply uses part of the equivo-
cation key eqk (computed by the SimCom algorithm) to obtain the opening infor-
mation δ = (s1,M1

, . . . , st,Mt
) in order to open to M = (Mi)i.

– Extraction algorithm: ExtCom`(τ, vtk, C) takes as input the extraction trapdoor,
namely the decryption key dk, from τ = (dk, tk), the verification trapdoor vtk and
a commitment C = (a,b). For i ∈ J1, tK and j = 0, 1, it first extracts the value
di,j from the ciphertext bi,j , using the decryption key dk. Then, for i ∈ J1, tK, it
checks the chameleon hash ai with opening values di,0 and di,1 with the help of
the algorithm Valid(ck, vk, j, ai, di,j , vtk) for j = 0, 1. If only one opening value
di,j satisfies the verification equality of the chameleon hash, then j = Mi. If this
condition holds for each i ∈ J1, tK, then the extraction algorithm outputs (Mi)i.
Otherwise (either if b could not be correctly decrypted, or there was an ambiguity
while checking a, with at least one chameleon hash ai with two possible opening
values di,0 and di,1), it outputs ⊥.

B.2 Building Blocks based on LWE

We now explain which building blocks are necessary to implement such an SPHF-
friendly commitment scheme based on LWE, giving the explicit construction described
in Section 4.

Chameleon Hash One simply uses the scheme described in Section 3. Recall that this
scheme is based on SIS assumption. Since LWE is harder than SIS (see Section 2), this
scheme is secure under LWE assumption as well.

24

2t-labelled multi LWE-based Encryption Scheme One starts by using the TAG-IND-
CCA2 encryption scheme described in Section 3, which is secure under the hardness
of the LWE assumption. One then uses the technique described in Section A.5. The
strongly unforgeable one-time signature scheme needed will simply be instanciated by
the above chameleon hash, using the technique described in Section 3.

Smooth Projective Hash Function Finally, the SPHF needed for each bit of the en-
cryption will be obtained by first considering the approximated bit SPHF described in
Section 3 and amplifying it as described in Section A.2 in order to obtain an approxi-
mate SPHF.

C Implementation

C.1 Parameter Choices

In our construction, we select the parameters q and n in order to achieve the desired level
of security for the LWE-based schemes. In particular, the modulus q is chosen to be an
odd prime. We take advantage of Albrecht’s estimator6 [APS15] which, at present, cov-
ers the following attacks: meet-in-the-middle exhaustive search, coded-BKW [GJS15],
dual-lattice attack and small/sparse secret variant [Alb17], lattice reduction with enu-
meration [LP11], primal attack via uSVP [AFG14,BG14], Arora-Ge algorithm [AG11]
using Gröbner bases [ACFP14].

Once q and n are chosen, we instantiate the remaining parameters using the com-
putational instantiation of the trapdoor with m = n(k + 2).

– We take a “randomized-rounding parameter” r ≈
√

ln (2/ε) /π, where ε is a de-
sired bound on the statistical error introduced by each randomized-rounding oper-
ation for Z. Concretely, we use a parameter of r = 4.5 for Z, which corresponds to
statistical error of less than 2−90 for each operation [MP12].

– Certain Gaussian parameters are supported by reductions from worst-case lattice
problems to LWE. The Gaussian parameter σ for the trapdoor sampling was orig-
inally stated as σ = 2

√
n to ensure that the LWE instance of parameters n, q and

σ is hard. In addition, the correctness of the TAG-IND-CCA2 encryption scheme
is guaranteed on condition that σm3/2 · r ≤ q. However, for efficiency reasons
we follow the methodology as in [NAB+17] to estimate the security level of our
proposed parameters. In particular, if the Gaussian parameter αq of the LWE error
sufficiently exceeds

√
ln(N)/(2π) where N is the number of discrete Gaussian

samples, then the corresponding LWE problem is plausibly hard. Concretely, the
threshold for Gaussian parameters αq corresponding to an extremely large bound
N ≤ 2256 is ≈ 5.314.

– We have two different Gaussian parameters in the Chameleon Hash scheme, σ
for the TrapGen’s distribution and s for the randomness space’s distribution. By
[CHKP10], we use s = σr.

6 https://bitbucket.org/malb/lwe-estimator

25

PARAMETERS SET. We combine all the conditions to obtain the following set of pa-
rameters, used in our implementation. We ran the LWE security estimator [APS15] to
find the lowest security levels for the uSVP, decoding, and dual attacks and selected
the least value of the number of security bits κ for all 3 attacks on classical/quantum
computers based on the estimates for the BKZ (quantum) sieve reduction cost model.
Some possible choices of parameters are reported in Table 1.

Table 1. Security estimates for different choices of parameter sets (δ is the Root Hermite factor).

security level κ q n m σ δ

quantum classical

medium 128 138 2147494753 976 33184 41 1.004226
129 138 2147493889 1024 34816 25.5 1.004234

high 192 209 2147493889 1536 52224 21 1.002954

C.2 Implementation

Lattice-based constructions are known to be highly parallelizable. Therefore, we build
our library so that it could be simultaneously called from concurrent threads. To this
end, we make use of NTL’s built-in thread pool. All floating-point computations are
performed using double-precision arithmetic, as in [GM18].

The main bottleneck in the implementations is the Gaussian pre-image sampling op-
eration, which is used the One-Time Signatures construction. Particularly, the sampling
algorithm SampleD of [MP12] consists of two stages:

– an off-line stage, which generates perturbation vectors with covariance matrix de-
fined by the trapdoor transformation T,

– an on-line stage which generates Gaussian samples from a primitive (easy to sam-
ple) lattice Gn.

We leverage the recent techniques described in [GM18,BFRLS18] to improve the com-
plexity of the on-line stage, which is far more critical in applications. The dimension of
the lattice was chosen n = 976, corresponding to the “medium” security level displayed
in Table 1.

Our implementation was carried out in plain C++11, using the library NTL [Sho01]
version 11.3.1 and the library GMP version 6.1.0 [Gt18] for handling generic number
theory, and it is available at https://github.com/vqhuy/lwe-ot.

26

