
Commodity-Based 2PC for Arithmetic Circuits?

Ivan Damg̊ard, Helene Haagh, Michael Nielsen, and Claudio Orlandi

Department of Computer Science, DIGIT, Aarhus University
{ivan,orlandi}@cs.au.dk

Abstract. We revisit the framework of Commodity-based Cryptogra-
phy presented by Beaver (STOC’97) with a focus on updating the frame-
work to fit with modern multiparty computation (MPC) protocols. We
study the possibility of replacing the well-known preprocessing model
with a commodity-based setting, where a set of independent servers
(some of which may be corrupt) provide clients with correlated ran-
domness. From this, the clients then distill correct and secure correlated
randomness that they can use during the online phase of the MPC pro-
tocol. Beaver showed how to do OT with semi-honest security in the
commodity setting. We improve on Beaver’s result as follows: In a model
where one of two clients and a constant fraction of the servers may be
maliciously corrupted, we obtain unconditionally secure multiplication
triples and oblivious linear evaluations (OLEs) such that the amortized
communication cost of one triple/OLE is a constant number of field ele-
ments (when the field is sufficiently large). We also report on results from
an implementation of the OLE protocol. Finally, we suggest an approach
to practical realization of a commodity based system where servers need
no memory and can be accessed asynchronously by clients, but still a
maliciously corrupt client cannot get data he should not have access to.

Keywords. Secure Two-Party Computation, Information Theoretic Se-
curity, Oblivious Linear Evaluation, Commodity-based Cryptography.

1 Introduction

In commodity-based cryptography as defined in [Bea97], we have a set of clients
(typically 2) and a set of servers. The clients want to use the servers to help them
implement some cryptographic primitive in a way that is faster or more secure
than if the clients were on their own – even if some of the servers and clients
are corrupted. The primitive we focus on here is secure function evaluation, or
primitives that are complete for this purpose, such as creation of random Beaver
triples or oblivious linear evaluations (OLEs) (see more details on these below).

While the client-server model has been used multiple times to improve perfor-
mances of MPC protocols (e.g. [BLW08,BCD+09,JNO14]), the commodity-based

? Research funded by: the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement
No 669255 (MPCPRO), No 803096 (SPEC) and No 731583 (SODA); the Danish
Independent Research Council under Grant-ID DFF-6108-00169 (FoCC);

model is significantly different. In particular, what sets the commodity-based
model apart from other client-server models are the requirements made on the
communication between servers and clients (we recall the formal definition in
Appendix B.2):

– Each server should be oblivious to the existence, identities and number of
other servers, so no communication takes place between servers.

– The interaction between client i and server j should take the form of a 2-
message protocol where the client sends a request qi,j and the server returns
a response ri,j .

– qi,j should be independent of the client’s input (apart from its length) and
of any previous communications with the servers.

The idea behind the commodity-based model is that it should be easy for a
server to set up a business where it provides resources to anyone who is willing
to pay, and on the other hand clients can decide to access as many servers as
they see fit in order to gain confidence that at least some fraction of the material
received is securely and correctly generated.

In [Bea97] it was shown how to do 2-party OT and hence 2-party secure
computation in the commodity model, assuming only passive corruption of one
client and a minority of the servers.1 Note that in [Bea97] it is also claimed that
the protocol can be modified to tolerate active corruptions, but no full protocol
description nor security proof is provided. Since then, no work seems to have
appeared in the commodity model 2. Recently, in [ST19], Smart et al. present
a protocol for secure computation by multiple clients that is “almost” in the
commodity model, in the sense that the servers need to interact prior to serving
the clients, but not during the actual protocol.

In this paper, we revisit the commodity-based model and improve on Beaver’s
original result in several ways.

We present two protocols: one that produces batches of OLEs for two clients
over any field. The protocol has statistical security against a bounded number of
maliciously corrupted servers and 1 maliciously corrupted client. This improves
on Beaver’s result since: we can deal with arbitrary fields, the mechanism for
dealing with active security is more efficient and (crucially) proven secure and,
we modify the protocol so that it allows to produce batches of OLEs at the price
of tolerating fewer corruptions, thus allowing for meaningful security-efficiency
tradeoff. Our second protocol produces multiplication triples over any field for
two clients with statistical security against a bounded number of maliciously
corrupted servers or 1 maliciously corrupted client. While the security guaran-
tees of this protocol are weaker than the first one, the protocol is more efficient

1 This corruption bound is clearly optimal for information theoretic security: if one of
the two clients and half the servers could be corrupt, then we would immediately get
a 2-party information theoretically secure OT which is well known to be impossible.

2 In 2015, Tonicelli et al. [TND+15] proposed a protocol which they claim to be in
the commodity-based model. However, their construction assumes that the servers
are trusted, as opposed to our constructions and the original paper by Beaver.

2

and therefore it could provide an interesting security-efficiency tradeoffs in some
application. In Appendix A we illustrate how our constructions fit in the bigger
picture of performing secure 2-party computation. Furthermore, we suggest an
approach to practical realization of a commodity-based system where servers can
be fully stateless and can be accessed asynchronously by clients.

Constructing Commodity-based OLEs. Our first contribution (in Section 2)
is a novel protocol that produces batches ofmOLEs3 over any field for two clients
with statistical security against t maliciously corrupted servers and one client
assuming that there are n = 2t + 2m + 1 servers. This protocol works in the
commitment hybrid model. We also show how to do without commitments if
we assume n = 2t + 2m + 3 servers. Thus, we can achieve essentially the op-
timal corruption threshold by setting the batch size to be m = 1, while if one
is willing to assume a larger number of honest players it is possible to achieve
higher amortized efficiency. When the underlying field is large (of size expo-
nential in the security parameter), our protocol requires each server to supply
just one OLE to the clients, and sending a constant number of field elements
between the clients. This means that we can set both t and m to be Θ(n) and
obtain an amortized communication cost per OLE corresponding to a constant
number of field elements while still tolerating a constant fraction of corrupted
servers. The computational work is dominated by polynomial interpolation, so
by standard FFT techniques the computational complexity for m ∈ Θ(n) OLEs
is n · polylog(n) elementary field operations.

We emphasize that the protocol between the clients and each individual
server is independent of n, t and m. Thus the clients can collect data from any
number of servers and later decide on the fly how many OLE’s they think it
will be secure to extract. Concretely, the clients may agree on number of servers
n and corruption threshold t which determine the maximum m by our main
theorem. Now, to obtain a total of M OLEs, the clients run l = M/m parallel
instances of the whole protocol, which is secure by parallel UC composition.

Although the goal of our protocol is OLE, we construct an equivalent but
randomized version, called ROLE. This randomized primitive outputs to the
clients random a, b as well as cA and cB where ab = cA+ cB (see Appendix B.4).
This is sufficient for 2-party computation with good concrete efficiency: ROLE
trivially implies passively secure multiplication. But we can also use the ROLEs
to produce authenticated multiplication triples allowing us to achieve malicious
(and information theoretic) security.

In [DGN+17], it was shown that actively secure 2-party computation can be
built from actively secure OLE at an amortized price of 22 OLEs per multiplica-
tion. It was recently announced that this has been now improved to 144. Using
our protocol, this translates to asking for 14 ROLEs from each server per secure
multiplication (Given our ROLE protocol, it is also possible to implement secure

3 The OLE (Oblivious Linear Evaluation) primitive is defined as follows: Alice inputs
values a and b in some field F and Bob inputs x ∈ F. Alice learns nothing and Bob
learns y = ax+ b.

4 Personal communication.

3

computation for more than two parties, by having each pair of parties construct-
ing the necessary number of ROLEs with the help of the commodity servers).
The construction from [DGN+17] works by building authenticated multiplica-
tion triples from OLE. Such a triple consists of random values x, y, z with xy = z
as well as additive sharings among Alice and Bob of the three values. Moreover,
the shares are authenticated using an unconditionally secure MAC scheme to
prevent cheating.

In more details, our protocol for ROLE works as follows: the clients ask each
server for a ROLE (ai, bi, cA,i, cB,i), where Alice holds (ai, cA,i) and Bob holds
(bi, cB,i). Alice and Bob then create two polynomials A(X) and B(X) of degree
d by using some of the ai’s and bi’s. Then they jointly create two polynomials
CA(X) and CB(X) of degree 2d by using some of the cA,i’s and cB,i’s, and to get
the rest of the points they use the remaining unused ROLEs from the servers to
multiply A(X) and B(X). If every party behaved honestly, then Alice and Bob
will now hold four polynomials that satisfy the following equation:

A(x) ·B(x) = CA(x) + CB(x) for all x ∈ F.

However, if one of the servers provided a bad ROLE or one of the clients behaved
inconsistently during the protocol, then some of the polynomials might not be
well defined, and hence the input/output is not be well defined either. To be
able to detect cheating, we introduce a check phase, where each client chooses
a random challenge (a random field element), where the other client must prove
that the equation holds when evaluating the polynomials on the challenge value.
The non-trivial part of our proof is to show that just one such check in each
direction is sufficient to ensure that well-defined polynomials exist for a corrupt
client (whenever the protocol does not abort). If the protocol does not abort, then
the clients can output a valid ROLE by computing A(σ) ·B(σ) = CA(σ)+CB(σ)
where σ is a predefined and unused field element. The check for dealing with
active adversaries, as well as its analysis, are the main changes we introduce to
the original protocol by Beaver, which was only proved to be passive secure.

Implementation of Commodity-based OLEs. We experimentally validate
our OLE protocol in Section 3, by implementing it and testing it on Amazon
Cloud. The servers were spread over different locations (5 different continents).
We give detailed timings for different settings of parameters. As an example,
when we want to tolerate 5 corrupt servers and hence involve 13 servers in total,
the latency for generating an OLE is about 1 msec. The amortized time for one
OLE ranges from 0.02 msec to 0.5 msec when the field size in bits ranges from 32
to 2048. Note that a growth in wall clock time when the field size grows is to be
expected: although the number of field elements to send is constant in the field
size, we need to send and process more bits when the field size is larger. These
timings are for the case where each instance of the protocol runs with m = 1, so
we can increase m and decrease t and get better amortized times. For instance,
if we are willing to assume at most 1 corrupted server out of 13, one instance of
the same protocol can produce batches of 5 OLEs at the time and the amortized
times instead vary between 0.004 and 0.1 msec.

4

With the known reductions from multiplication triples to OLE, our perfor-
mance numbers show that we can preprocess a secure multiplication triple in
amortized time between 0.08 and 0.4 msec for a field size of 128 bits, depending
on the assumed corruption threshold. For a very rough comparison, the recent
“Overdrive” protocol [KPR18], which does the same task using only communi-
cation between the two clients, takes roughly 0.03 msec per multiplication in a
LAN setting. We emphasize that it does not make sense to compare the timings
directly because the hardware set-ups are different and the achieved types of
security are different: computational security in the “Overdrive” protocol versus
unconditional security assuming an honest server majority in our protocol. Nev-
ertheless, we believe the numbers show that our protocol is indeed applicable in
a practical setting.

Constructing Commodity-based Multiplication Triples. As an additional
contribution (in the full version [DHNO19]) we present a novel protocol for
constructing multiplication triples directly (instead of producing OLE first and
then using known reductions). For malicious (and information theoretic) security
the standard goal is to produce authenticated multiplication triples. So it may
seem natural to ask the servers for such triples and try to extract a secure triple
from what we get. However, this does not work: the authentication in a triple
involves unconditionally secure MACs and a server will of course know the MAC
keys involved in its own triples. If this server as well as, say, Alice is corrupt,
then Alice can cheat with those MACs. This problem can be solved in a weaker
corruption model where either some servers or a client can be corrupt (but not
both).

The high-level idea of the triple protocol closely follows the structure of
the OLE protocol with some variation. The clients obtain random triples au-
thenticated under different global keys from the servers, which means that the
triples cannot be combined. To solve this, we observe that the MACs are key-
homomorphic, which allows the clients to adjust the global MAC key with one
round of interaction. Once the MACs are adjusted to use the same key, the
clients can combine the triples in a similar manner as the OLE protocol.

Allowing Servers to be Memoryless. As a final contribution, we suggest an
approach for the practical realization of a commodity based system. For the sake
of presentation, we assume in most of the paper that there are secure channels
between each pair of client and server. Also, we allow servers to remember which
clients they talked to and what was sent (so that output to different clients
can be properly correlated). Those assumptions are inconvenient in practice and
therefore, in Appendix D, we show how to get rid of both requirements. It will
clearly be an advantage if the servers do not need memory in the sense that they
do not have to remember who they talked to or what was sent. This would mean
that a server will not have to administrate identities and log-in credentials, and
could simply generate the required data on the fly, say, against payment in some
cryptocurrency.

5

An obvious problem with this goal is that the data sent to two clients Alice
and Bob must be correlated and a memoryless server cannot make this happen
on its own. We solve this by letting Alice and Bob interact before talking to the
severs, in order to choose a common nonce nAB . Then Alice can send (“Alice”,
nAB) to the server who will use this and a private PRF key to generate Alice’s
data. We can do something similar for Bob. However, this is not secure: if Alice
is corrupt, she can send both (“Alice”, nAB) and (“Bob”, nAB) to each honest
server, get Bob’s data and break the protocol. We show how this can be solved
by generating the nonce such that Alice and Bob each know different secrets
relating to the nonce and hence cannot impersonate the other party towards the
server.

Alternatives to the Commodity Model. The commodity model has not
received much attention since its introduction, but a very large amount of work
has been done on secure computation in general. So we should of course ask our-
selves, if some of this work has made the model redundant. Now, if two clients
want to do secure computation, two obvious alternatives are well known that
allow the clients to do it themselves: first, one could use garbled circuits. This
will be constant round, but introduces an overhead on communication that de-
pends on security parameter and also grows with the size of the underlying field
(if the goal is arithmetic computation). A second alternative is to do GMW
style arithmetic computation using authenticated multiplication triples that the
clients generate themselves. If the underlying field is not too large, the triples
can be built very efficiently using OT extension [KOS16], but we get an over-
head that grows linearly with the bit-size of a field element. Another recent
approach generates OLEs from noisy encoding-style assumptions with constant
overhead [ADI+17], but only with passive security. For specific applications that
use scalar-vector multiplication with long vectors, one may consider the gen-
eration of vector-OLE5 as in [ADI+17] obtaining rate 1/3. This primitive was
recently improved to rate 1/2 using compression [BCGI18], that utilize function
secret-sharing to enable a small “sparse” vector-OLE to be locally expanded to
larger width.

Since it is clear that any solution involving only the two clients must be based
on some intractability assumption, such solutions are incomparable to the com-
modity model with respect to security: we are replacing trust in a computational
assumption by trust in some fraction of the servers. But even if we ignore this
issue, what we can do in the commodity model seems to be competitive because
our protocol has active security and the overhead of doing a secure multiplica-
tion is constant as the field size grows. We do not know any solution with these
properties that the clients could execute themselves.

The commodity model is somewhat related to the idea of combiners: for
instance, an Oblivious Transfer (OT) combiner [HIKN08,HKN+05] is a protocol
that gets (black-box) access to a number of OT implementations, some of which
may be faulty, and the goal is now is to build a secure OT. One may think of

5 In the width-w vector-OLE primitive, Alice inputs a, b ∈ Fw and Bob x ∈ F. Alice
learns nothing and Bob learns y = ax+ b

6

the given OT implementations as corresponding to the servers in the commodity
model. However, the models are incomparable: on one hand, the combiner model
is more restrictive since its “servers” are assumed to only implement a certain
primitive. On the other hand, a combiner may make many correlated calls to
the “servers”.

2 Commodity-based Oblivious Linear Evaluation

In this section, we present a commodity-based protocol for ROLE, which will
combine commodities in the form of ROLE’s from n servers into a secure ROLE
(see Appendix B.4 for the formal definition). We consider the setting where one
client and up to t of the servers are maliciously corrupt. The protocol is pre-
sented in the commitment-hybrid model. In Appendix C, we show as a corollary
a protocol that does not use commitments, at the expense of slightly worse pa-
rameters. In the appendix, we furthermore discuss the concrete efficiency of the
protocol and how to deal with smaller fields.

The high-level idea of the protocol is to first obtain the ROLE commodities
from each server. The clients will use d+ 1 of these to fully define two degree d
polynomials A(X) and B(X) held by each party respectively and define points on
two degree 2d polynomials C1(X) and C2(X), which shall form a secret sharing
of A(X) ·B(X). The clients will use the remaining ROLEs to securely compute
A(X) · B(X) on agreed upon points until we have obtained enough points to
fully define C1(X) and C2(X). After constructing these polynomials, the clients
perform a check that with high probability reveals whether the polynomials are
valid, that is the equation A(γ) · B(γ) = C1(γ) + C2(γ) holds for all γ ∈ F.
The resulting ROLEs of the protocol will be defined by a fixed set of points
σ1, ..., σm ∈ F on these polynomials:

u = (A(σ1), ..., A(σm)) v = (B(σ1), ..., B(σm))
w1 = (C1(σ1), ..., C1(σm)) w2 = (C2(σ1), ..., C2(σm))

Here, one client will output u,w1 ∈ Fm and the other v,w2 ∈ Fm such that
u ∗ v = w1 + w2. The complete protocol πrole is presented in Protocol 1.

Theorem 1. Assume that n = 2t + 2m + 1 and that |F| is exponential in the
security parameter. Then protocol πmrole is an implementation of Fmrole in the
Fcommit-hybrid model with statistical UC-security. The protocol tolerates a static
adversary corrupting one client and at most t ≤ n−2m−1

2 servers. The simulation
is perfect unless an error event occurs, which has probability at most n

|F|−(n+m) .

Protocol πm
role

Public: Let d = t+m and n = 2d+ 1 and let U = {γ1, . . . , γn}, V = {σ1, ..., σm}
be sets of publicly known distinct points in F. Let {S1, . . . , Sn} be the servers and
{Alice, Bob} the clients.

7

Output: Alice gets u,w1 ∈ Fm and Bob get v,w2 ∈ Fm such that u ∗ v =
w1 + w2.

Protocol:
Stateless oblivious RPC:
1. Alice and Bob: send a request to each server Si for i ∈ [n];
2. Server Si for i ∈ [n]:

– creates a ROLE (ai, bi, c1,i, c2,i)
$←F4 such that ai · bi = c1,i + c2,i;

– sends (ai, c1,i) to Alice and sends (bi, c2,i) to Bob;

Computation phase:
3. Alice:

– interpolates polynomial A of degree d by setting A(γi) = ai for i ∈ [d+1];
– prepares polynomial C1 of degree 2d by setting C1(γi) = c1,i for i ∈ [d+1];

4. Bob:
– interpolates polynomial B of degree d by setting B(γi) = bi for i ∈ [d+1];
– prepares polynomial C2 of degree 2d by setting C2(γi) = c2,i for i ∈ [d+1];

5. For i = d+ 2, . . . , n
a. Alice: sends ki = A(γi)− ai to Bob;
b. Bob:

• sends `i = B(γi)− bi to Alice;
• sets C2(γi) = c2,i +B(γi) · ki;

c. Alice: sets C1(γi) = c1,i +A(γi) · `i − ki · `i;
6. Alice: interpolates polynomial C1 by the 2d+ 1 defined points;
7. Bob: interpolates polynomial C2 by the 2d+ 1 defined points;

Check phase:

8. Alice: draw tA
$←F\(U ∪ V) uniformly at random and send tA to Bob;

9. Bob:
– draw tB

$←F\(U ∪ V) uniformly at random;
– Execute commit(B(tA), C2(tA)) and send tB to Alice;

10. Alice: once commitment has been done, send (A(tB), C1(tB)) to Bob;
11. Bob:

– check if A(tB) ·B(tB) = C1(tB) + C2(tB) and abort if not;
– execute open(B(tA), C2(tA));

12. Alice:
– receive (B(tA), C2(tA)) from the opening of the commitment, abort if

nothing is received;
– check if A(tA) ·B(tA) = C1(tA) + C2(tA) and abort if not;

Output phase:
13. Alice: output u = (A(σ1), ..., A(σm)) and w1 = (C1(σ1), ..., C1(σm));
14. Bob: output v = (B(σ1), ..., B(σm)) and w2 = (C2(σ1), ..., C2(σm)).

Protocol 1: Protocol for commodity-based ROLE

Proof. The environment corrupts one client and a subset of the servers C ⊂ [n]
with |C| ≤ t. Thus, the environment learns at most t points on all polynomials,
and one extra from the check phase. After seeing these points, the environment

8

still cannot distinguish whether it is interacting with the ideal world or the real
world – that is, the output of the computation (which is m extra points on
the polynomial) is compatible with the points that it already received from the
simulator (which does not learn the output of the honest party). In other words,
a necessary condition for being able to prove unconditional security is to set the
degree to d = t + m (since a random such polynomial has t + m + 1 random
coefficients). The protocol uses 2d + 1 ROLEs in total and thus we need the
number of servers to be at least n ≥ 2d + 1 = 2t + 2m + 1. In other words, we
have that t ≤ n−2m−1

2 .
The protocol is essentially symmetric, i.e. the only difference is that in the

proof for corrupt Bob we need to exploit that Bob has to commit to his answer to
Alice’s challenge before he sees A(tB), and hence a corrupt Bob also knows only
t points of Alice’s polynomial. Thus, in the following we prove security against
corrupt Alice.

Let C ⊂ [n] denote the set of corrupt servers and H ⊆ [n] the set of honest
servers. For these sets it hold that |C| ≤ t, C ∪ H = [n], and C ∩ H = 0. Note
that the servers play two different roles in the protocol: the first d + 1 servers
are used to define the polynomials A(x) and B(x), and the last n−d− 1 servers
are used to compute the remaining points on C1(x) and C2(x).

We start by presenting some facts about the protocol.

Definition 1. For an honest server i ∈ H, Alice gets ai from the server and
(if i ≥ d + 2) sends a value ki to Bob. Note that if Alice follows the protocol,
then the values {ai}i∈H,i≤d+1 and {ki + ai}i∈H,i≥d+2 are all consistent with a
polynomial of degree at most d (namely A(x) if Alice was honest). We say that
Alice behaves consistently if such a polynomial A∗(x) of degree at most d exists.

Lemma 1. If Alice is corrupt, but behaves consistently, then from her interac-
tion with honest servers and Bob, one can compute a uniquely defined view for
Alice and all corrupt servers that is consistent with them having followed the
protocol up to (but not including) the check phase. This includes polynomials
A∗(x), C∗1 (x) of degree at most d and 2d respectively, where if Alice is honest we
have A∗(x) = A(x) and C∗1 (x) = C1(x).

Proof. Since Alice behaves consistently this uniquely defines a polynomial A∗(x)
of degree at most d, by the above definition. Now we define a view (ai, bi, c1,i, c2,i)
for each corrupt server i ∈ C: The server sent bi, c2,i to honest Bob, so these are
fixed. Then if 1 ≤ i ≤ d + 1, there is no interaction between Alice and Bob so
we set ai = A∗(γi) and c1,i = aibi − c2−i. If d + 2 ≤ i ≤ n, Alice sent ki and
received `i from Bob. So we set ai = A∗(γi) − ki, and c1,i = aibi − c2−i. This
gives a view for each corrupt server which is consistent with A∗(x) and honest
behaviour. Each honest server i, has sent ai, c1,i to Alice and (if i ≥ d + 2) she
has received a value `i from Bob and has sent ki to Bob.

In particular, c1,i is now defined for all i and ki, `i are defined for i ≥ d+ 2.
Therefore we can define the polynomial C∗1 (x) by simply following the speci-
fication of the protocol, namely we set C∗1 (γi) = c1,i for 1 ≤ i ≤ d + 1 and

9

otherwise C∗1 (γi) = c1,i +A∗(γi)`i − ki`i, and finally we interpolate C∗1 (x) from
these values. ut

Lemma 2. If Alice is corrupt and does not behave consistently, then the protocol
aborts in the check phase except with probability at most n

|F|−(m+n) .

Proof. Consider the values Q = {ai}i∈H,i≤d+1∪{ki+ai}i∈H,i≥d+2 (see Definition
1). Since Alice does not behave consistently these values are not all consistent
with a polynomial of degree at most d. We nevertheless define a polynomial
A′(x) by interpolating from the first d + 1 values in Q.6 For all the remaining
values in Q, we define δi by

ki + ai = A′(γi) + δi.

Note that, by assumption, there exists an index j ∈ H and j > d + 2 such
that δj 6= 0. To simplify the notation, let H1 be the first d + 1 indexes of the
honest servers, i.e. those used for defining polynomial A′(x), and let H2 be the
remaining honest servers.

On the other hand, for the corrupt servers, one can always fix a view that is
consistent with A′(x) and with the interaction with (honest) Bob, exactly as in
the proof of the previous lemma. Thus we assume (for notational convenience)
that ai for i ∈ C is defined this way such that A′(γi) = ai.

Now, from the communication in the computation phase, for each index i
the outcome for Alice and Bob consists of two field elements C1(γi) and C2(γi)
(of course, corrupt Alice does not necessarily store the C1(γi)’s, all we mean to
say is that they can be computed from the adversary’s view). Now, from our
definition of A′(x) and δi and the protocol specification, it is easy to see that
C1(γi) + C2(γi) = A′(γi)B(γi) if i ∈ C ∪ H1, and otherwise C1(γi) + C2(γi) =
(A′(γi)+δi)B(γi) = A′(γi)B(γi)+δiB(γi) if i ∈ H2. For notational convenience,
we will define δi = 0 for i ∈ C ∪ H1, so we have

C1(γi) + C2(γi) = A′(γi)B(γi) + δiB(γi) for i ∈ [n]

We can now interpolate polynomials of degree at most 2d from the C1(γi)’s,
the C2(γi)’s and the C1(γi) + C2(γi) = A′(γi)B(γi) + δiB(γi)-values. Because
interpolation is linear, this results in polynomials C1(x), C2(x) such that

C1(x) + C2(x) = A′(x)B(x) +∆(x), where ∆(γi) = B(γi)δi for i ∈ [n].

In the test phase, Bob sends a point tB and Alice returns two field elements,
that are “supposed to be” A′(tB) and C1(tB). We can always write what she
actually sends as α + A′(tB) and β + C1(tB), for some α, β that the adversary
can compute. Bob will check the equation

(β + C1(tB)) + C2(tB) = (α+A′(tB))B(tB)

6 The choice to interpolate from the first d + 1 values is completely arbitrary, the
following argument will work no matter the choice of subset.

10

which easily simplifies to β +∆(tB) = αB(tB).
So what we need to argue is that the adversary can guess α, β satisfying

this equation with only negligible probability. This will turn out to be because
he does not have sufficient information about the polynomial B(x). Note that
the adversary has seen t values of B(x) from Bob’s interaction with the corrupt
servers (B(tA) has been committed to but is not revealed yet). Since the degree
is d = t+m and m ≥ 1, the adversary is at least 2 points short of being able to
determine B(x). We can therefore assume that the values B(tB) and B(γj) are
independent and uniform in the view of the adversary, namely γj is the index
of an honest server and tB is chosen such that it is never the index of a corrupt
server. To emphasize that the values are unknown, we will write X = B(tB) and
Y = B(γj).

We can imagine giving the adversary extra points so he knows exactly d− 1
points on B(x), this can only help him. Therefore, using the formulas of interpo-
lation, the adversary can write any value of B(x) as an affine linear combination
of X and Y with known coefficients. In particular, this means there exist field
elements ωi, ηi, σi such that ∆(γi) = B(γi)δi = ωiX + ηiY +σi. From the values
ω1, ..., ωn we can interpolate exactly one polynomial of degree at most 2d, which
we call F (x). Likewise we interpolate G(x) from the ηi’s and H(x) from the σi’s.
This immediately implies that

∆(x) = F (x)X +G(x)Y +H(x)

The meaning of this equation is that the polynomials F (x), G(x) and H(x) are
fixed in the sense that they do not depend on the choice of B(x) (and hence of
X,Y). So in the adversary’s view, the polynomial ∆(x) depends linearly on the
two (random) values X,Y as described by the equation.

Note that for i = j, we have δjB(γj) = δjY = ωjX + ηjY + σj which can
only be true for random X and Y if ωj = σj = 0 and ηj = δj 6= 0. So this implies
that G(x) is not the 0-polynomial. Hence the above equation that the adversary
must try to satisfy becomes:

β + F (tB)X +G(tB)Y +H(tB) = αX

Which can be rewritten as (F (tB)− α)X +G(tB)Y + β +H(tB) = 0.
Note that we can think of the experiment done as follows: first we choose tB

at random from a set of size |F| − (m+ n), then the adversary chooses α, β and
then we choose X,Y independently and uniformly at random in F. It is then
clear that if (F (tB) − α) 6= 0 then the left-hand side is uniformly random and
so is 0 with probability 1/|F|. On the other hand, if (F (tB) − α) = 0, we can
use the fact that G(x) is non-zero and has degree at most 2d to conclude that
G(tB) = 0 with probability at most 2d/(|F| − (m+ n)). But if G(tB) 6= 0, then
again the left-hand side is uniformly random and is 0 with probability 1/|F|. We
conclude that the equation is satisfied with probability at most

2d

|F| − (m+ n)
+

1

|F|
≤ n

|F| − (m+ n)

ut

11

Having proved the lemmas, we present a simulator SA (see Simulator 1) which
provides statistically indistinguishable simulation of the protocol πrole against
a malicious adversary that corrupts Alice and t servers. The simulator basically
runs its own instance of the protocol with corrupt Alice and servers, playing
honestly for Bob and the honest servers. There is, however, an important differ-
ence: During the check phase, the simulator aborts under a different condition
than in the real protocol: While an honest Bob in the real protocol aborts only
if the values sent by Alice do not satisfy the right relation with the polynomials
held by Bob, the simulator will also abort if Alice does not behave consistently.
Now, there two cases to consider:
1. Alice behaves consistently: in this case, the simulator follows the protocol

until the end, so it is clear that simulation of the adversary’s view of the
protocol is perfect. Furthermore, it follows by Lemma 1 that the simulator
extracts the only possible candidate for Alice’s output shares, given the in-
teraction with honest players, so what it sends to the functionality is correct.
Hence the only difference between the real and the ideal process is that in the
real process, Bob’s output is extracted from his view of the protocol, whereas
in the ideal process it is chosen by the functionality (but consistently with
Alice’s shares). This makes no difference: Alice has seen t+ 1 points on the
polynomial B(x) and since the degree is d = t + m this leaves m degrees
of freedom which means that the values B(σ1), ..., B(σm) are random and
independent of the adversary/environment’s view of the protocol. So in this
case, the real and ideal process are perfectly indistinguishable.

2. Alice does not behave consistently: in this case the ideal process always
aborts, but by Lemma 2 the real process does the same, except with negli-
gible probability. Thus in this case, the processes are statistically indistin-
guishable. ut

Simulator 1: Simulator SA against corrupt Alice

The simulator starts by initializing copies of the code for the honest servers, for
honest Bob, and for Fcommit. Then the simulation proceeds as follows:

Stateless oblivious RPC and Computation phase:
1. Let the simulator’s copies of the honest servers and Bob interact with corrupt

Alice and the corrupt servers (which are controlled by the environment).
2. When the computation phase is done, check whether Alice has acted consis-

tently (see Definition 1).
3. If Alice has not acted consistently, set a flag will-abort = true. Else (Alice

has acted consistently), do as follows:
(a) Compute polynomials A∗(x), C∗

1 (x) as guaranteed by Lemma 1.
(b) Compute û = (A∗(σ1), ..., A∗(σm)). ŵ1 = (C∗

1 (σ1), ..., C∗
1 (σm)).

Send (corrupt, A, (û, ŵ1)) to the ideal functionality Fm
role;

Check phase:
1. Let the simulator’s copies of Bob and Fcommit do the check phase with corrupt

Alice. If the test done by Bob fails, set the flag will-abort = true.
Output phase:

12

1. If will-abort = true, abort the protocol.
Else, send (deliver, A) and (deliver, B) to the ideal functionality Fm

role.

3 Implementation

We implement and measure timings for the commodity-based OLE protocol.7

The two clients Alice and Bob are set up on a basic LAN and will connect to
some number of servers around the world. Since the experiments are identical up
to the output for different tradeoff choices of t and m, we implement the setting
of generating one OLE m = 1 with maximum adversarial threshold t ≤ n−3

2 .

Instantiations. We use a basic OpenSSL (version 1.1.0) setup to implement
a public key infrastructure for the clients to authenticate servers. Our setting
consists of a single root certificate authority, trusted by each client, and who have
signed certificates to each server. This setup is easily used in the real world, as
two clients can simply agree on some domain name and rely on root certificates
already included in the system to do hostname validation.

All finite fields are implemented using GNU Multiple Precision Arithmetic
Library and when testing a b-bit prime field, we refer to Zp for the largest p < 2b.
We instantiate the hash function H as SHA256. For sampling random numbers,
we construct a PRG by using the AES instruction set in counter mode. This
PRG takes a seed s of arbitrary length and set the AES key to be the 128 first
bits of H(s). To generate a random field element from Zp, we sample b = dlog2 pe
random bits from the PRG repeatedly until it represents a valid element.

We fix the polynomial evaluation points γ1, . . . , γn to be 1, . . . , n, and set the
extraction point σ1 = 0. We use the following preprocessed variant of Lagrange
interpolation to fast8 evaluate f(x) where f is a degree d polynomial represented
by d + 1 points y1, . . . , yn and yi = f(i). First preprocess δij = (i − j)−1 and
λij = j · δij for i, j ∈ [d+ 1], and then compute the point f(x) as:

f(x) =

d+1∑
i=1

yi

d+1∏
j=1
j 6=i

xδij − λij

Set-up and results. The two clients are tested on a basic LAN setup consisting
of two identical machines each with a i7-3770K CPU running at 3.5GHz, 32GB
of RAM and connected via 1GbE with a 0.15ms delay. The servers are set up
on Amazon Cloud using m4.large instances with 2 vCPUs and are spread
across five continents namely North America (N. Virginia), South America (São
Paulo), Europe (Ireland), Asia (Mumbai) and Australia (Sydney). The Internet

7 The sources used for the benchmark implementation are available at [source hidden

for anonymity]
8 Fast in practice for low-degree polynomials, but theoretically inferior to the Fast

Fourier Transform.

13

connection for all servers and clients was measured to vary between 200-500
Mbps up and down at the time of testing.

We test the protocol with different field sizes ranging from 32 to 2048 bit
and tolerating up to 1, 5 or 10 malicious servers colluding with one malicious
client. This implies the number of servers used in each setting being 5, 13 and 23
respectively. Both clients run a producer-consumer program where the producer
is connected to all servers and produce batches of shares from each server to be
used for the protocol. The consumer is connected to the other client and con-
sumes a batch by running the protocol in parallel for each OLE to be corrected.
All measurements are done as an average over 30 seconds.

First we measure sequential timings for protocol, namely how long time a
single consumer (thread) takes to compute a corrected ROLE given the raw
material. We test this in two versions, one where the clients are only interested
in a single ROLE and another where they want a batch of 1000. The first version
may be interesting in a real-world application where clients wants a single OLE
for say a commitment, and serves well as a baseline for OLE protocol comparison.
The second version on the contrary shows what to expect, if our protocol is to
be used in a subsequent protocol requiring 1000 OLEs. Here, one would expect
a batch of 1000 to take 1000 times as long – however the numbers show that
this vary between roughly 200 to 900 depending on the field size and number
of servers, which is partly due to less network delay. Finally, amortized timings
for the protocol are measured. These timings show how many ROLEs we can
generate per second. We simply let the machines generate as many ROLEs as
possible by turning up the number of consumers. Note that our tests was done on
a university network and on shared cloud nodes, which meant inconsistency in
available resources. This, together with different parameter choices to maximize
parallization (number of threads and batch size), means that we can expect to
see jumps in the amortized table, for example for 23 servers and b = 256 and
b = 512.

n = 5 n = 13 n = 23

t = 1 t = 5 t = 10

b = 32 0.301ms 0.460ms 0.930ms

b = 64 0.317ms 0.465ms 1.162ms

b = 128 0.333ms 0.803ms 1.294ms

b = 256 0.980ms 1.388ms 2.311ms

b = 512 1.372ms 1.891ms 3.301ms

b = 1024 1.491ms 2.625ms 5.228ms

b = 2048 1.856ms 4.252ms 9.311ms

Table 1. Sequential timings for one
OLE

n = 5 n = 13 n = 23

t = 1 t = 5 t = 10

b = 32 13.450ms 86.103ms 370.984ms

b = 64 13.356ms 136.978ms 405.691ms

b = 128 15.334ms 171.623ms 468.540ms

b = 256 24.716ms 317.403ms 829.741ms

b = 512 51.997ms 410.123ms 1792.491ms

b = 1024 151.008ms 858.411ms 2820.248ms

b = 2048 371.269ms 2188.804ms 7970.499ms

Table 2. Sequential timings for batch
of 1000 OLEs

14

n = 5 n = 13 n = 23

t = 1 t = 5 t = 10

b = 32 3.570µs 23.657µs 89.055µs

b = 64 5.801µs 23.362µs 105.628µs

b = 128 16.867µs 28.201µs 106.868µs

b = 256 33.101µs 56.197µs 191.985µs

b = 512 69.297µs 115.180µs 2160.664µs

b = 1024 118.353µs 230.487µs 4938.348µs

b = 2048 249.018µs 516.934µs 7709.943µs

Table 3. Amortized timing for generating one OLE

Using the tradeoff, one can increase m and decrease t to get a protocol with
same sequential running time, but with higher throughput i.e. lower amortized
timings. For example, the second column for the amortized timings represent
n = 13, t = 5 and m = 1 – but we can get a five time increase in throughput
by running the protocol with n = 13, t = 1 and m = 5. Likewise, for the case of
m = 2, one can decrease t by one to obtain a column with half the amortized
timings.

In the case of 128-bit fields, existing protocols providing computational se-
curity like the “Overdrive” LowGear protocol [KPR18] achieve a secure 128-bit
multiplication in roughly 0.03 msec. To compare our protocol roughly, one can
set n = 13 and assume a 14 times overhead by using the optimized9 TinyOLE
variant, we can compute roughly a secure multiplication between 0.4 and 0.08
msec with a choice of (t = 5,m = 1) and (t = 1,m = 5) respectively. We stress
the difference between the models used by us and “Overdrive”: ours provide
unconditional security (assuming ≤ t malicious servers colluding) rather than
computational security - and we believe these numbers show that our protocol
is indeed applicable in a practical setting.

References

ADI+17. Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen, and Lior
Zichron. Secure arithmetic computation with constant computational over-
head. In CRYPTO (1), volume 10401 of Lecture Notes in Computer Science,
pages 223–254. Springer, 2017.

BCD+09. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In Financial Cryptography

9 Which requires 14 OLEs to produce a secure multiplication, by personal communi-
cation

15

and Data Security, 13th International Conference, FC 2009, Accra Beach,
Barbados, February 23-26, 2009. Revised Selected Papers, pages 325–343,
2009.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compress-
ing vector OLE. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 896–912, 2018.

Bea97. Donald Beaver. Commodity-based cryptography (extended abstract). In
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 446–455, 1997.

BLW08. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A frame-
work for fast privacy-preserving computations. In Computer Security - ES-
ORICS 2008, 13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings, pages 192–206, 2008.

Can01. Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In FOCS, pages 136–145, 2001.

DGN+17. Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and
Roberto Trifiletti. Tinyole: Efficient actively secure two-party computa-
tion from oblivious linear function evaluation. In CCS, pages 2263–2276.
ACM, 2017.

DHNO19. Ivan Damg̊ard, Helene Haagh, Michael Nielsen, and Claudio Orlandi.
Commodity-based 2pc for arithmetic circuits. Cryptology ePrint Archive,
Report 2019/705, 2019. https://eprint.iacr.org/2019/705.

HIKN08. Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-
combiners via secure computation. In Theory of Cryptography, Fifth Theory
of Cryptography Conference, TCC 2008, New York, USA, March 19-21,
2008., pages 393–411, 2008.

HKN+05. Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On
robust combiners for oblivious transfer and other primitives. In Advances
in Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Den-
mark, May 22-26, 2005, Proceedings, pages 96–113, 2005.

IKM+13. Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. On the power of correlated randomness in secure com-
putation. In Theory of Cryptography - 10th Theory of Cryptography Confer-
ence, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pages 600–
620, 2013.

JNO14. Thomas P. Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi. A frame-
work for outsourcing of secure computation. In Proceedings of the 6th edition
of the ACM Workshop on Cloud Computing Security, CCSW ’14, Scotts-
dale, Arizona, USA, November 7, 2014, pages 81–92, 2014.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster mali-
cious arithmetic secure computation with oblivious transfer. In ACM Con-
ference on Computer and Communications Security, pages 830–842. ACM,
2016.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ
great again. In EUROCRYPT (3), volume 10822 of Lecture Notes in Com-
puter Science, pages 158–189. Springer, 2018.

NP99. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 245–254, 1999.

16

https://eprint.iacr.org/2019/705

Rab05. Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR
Cryptology ePrint Archive, 2005:187, 2005.

ST19. Nigel P. Smart and Titouan Tanguy. Taas: Commodity MPC via triples-as-
a-service. In CCSW@CCS, pages 105–116. ACM, 2019.

TND+15. Rafael Tonicelli, Anderson C. A. Nascimento, Rafael Dowsley, Jörn Müller-
Quade, Hideki Imai, Goichiro Hanaoka, and Akira Otsuka. Information-
theoretically secure oblivious polynomial evaluation in the commodity-based
model. Int. J. Inf. Sec., 14(1):73–84, 2015.

A Our Constructions in the Big Picture

In this section we present a graphical overview of how our constructions fits in
the bigger picture of performing secure 2-party computation.

Fig. 1. An overview of how our constructions (the blue boxes with dashed lines) fits
in the bigger picture of performing secure 2-party computation.

Construction 1: Commodity-based OLEs. We construct commodity-based
OLEs in the commitment-hybrid model with active, statistical security and in
the standard model with active, information theoretic security (with slightly
worse parameter). In this construction we allow a corrupt client to collude with
a minority of the servers. Using the result from [DGN+17], we can use the
commodity-based OLEs to construct authenticated multiplication triples, which
are complete for multiparty computation.

Construction 2: Commodity-based Multiplication Triples. We construct
commodity-based authenticated multiplication triples in the standard model
with active, information theoretic security. This construction has a slightly weaker
corruption model: we do not allow collusion between clients and servers. Thus,
the adversary can corrupt either one client or a minority of the servers.

17

B Preliminaries

Let [n] be the set of integers {1, . . . , n}. Denote a field of size q as Fq and the
set of all polynomials over such field as Fq[X]. All variables and operations
are over Fq unless stated otherwise. v denotes a vector with entries in Fq, the
entries are usually denoted v1, v2... If u,v are vectors of the same length, say m,
then v ∗ u denotes the vector containing the coordinate-wise products, v ∗ u =
(v1u1, v2u2, ..., vmum). As a shorthand, we denote F to be a field of arbitrary
size.

B.1 Security model

We will use the UC framework of Canetti [Can01] to prove our protocols secure.
Informally, we compare a real protocol π between the parties to a setting in
which the parties only talk with an ideal functionality F , which by definition
is secure. To model the information the adversary learns during the protocol
execution, each ideal functionality is given a leakage port on which it leaks
all the information the adversary is allowed to learn. Furthermore, to model
the adversary’s influence over the protocol and the corrupt players, each ideal
functionality is given a influence port on which it can receive messages from the
adversary. To prove the real protocol secure, we construct a simulator S such
that no adversary controlling all malicious players can make an environment
distinguish between the real protocol execution and the simulator’s transcript.
Intuitively, the adversary gains nothing from controlling the malicious players,
that he could not have simulated himself offline. In particular we use the variant
in which the environment plays the role of the adversary and will prove our
protocols secure under static corruption for malicious adversaries.

B.2 Commodity Model

Commodity-based cryptography works in a client-server model, where a group
of clients obtain some information (called commodities) from a set of servers. In
the basic setting, the clients will send a request to a server, who will reply with
a single response computed from the request, whereas other settings may extend
this to multiple rounds.

Following the work of Beaver, we define a two-tiered (c, n)-protocol π = (C,S)
as a collection of c+ n probabilistic interactive Turing machines (PTM), which
are divided into two groups: the clients C and the servers S. The clients must be
polynomial time PTM’s and are assigned a unique id i ∈ [c], and the servers are
likewise assigned a unique id j ∈ [n]. We consider the basic form of two clients
c = 2 and a variable number of servers n, with the servers being polynomial
time PTM’s. Other settings, which we shall not consider, may include a variable
number of clients, computationally unbounded servers, multiple rounds between
clients and servers or even allowing communication between servers.

18

Definition 2 (Stateless Oblivious RPC, [Bea97]). Given a two-pass pro-
tocol between client Ci ∈ C and server Sj ∈ S, where the Ci sends a request
qi,j to the Sj, who send back the response ri,j. This protocol is called a state-
less oblivious remote procedure call (RPC) if qi,j is independent of Ci’s input
xi (apart from the length) and of any previous communications with Sj or any
other servers (apart from including tags for identifying and authenticating Ci
and Sj).

Definition 3 (Commodity-based Protocol, [Bea97]). A two-tiered proto-
col π is commodity-based if
1. No communication between servers is necessary.
2. Servers do not need to know the identities, numbers of, or existence of other

servers.
3. For each client Ci ∈ C and server Sj ∈ S, Ci interacts with Sj only through

stateless oblivious RPC’s.

B.3 Commitments

Some of our protocol make use of a UC-secure commitment scheme, which is
modelled by an ideal functionality Fcommit. Committing to a value x is denoted
commit(x) and means that the committer sends x to the commit functionality
which notifes the other party that the commitment has been made. Opening
is denoted open(x) and means the committer sends an open command to the
functionality which then sends x to the other party. In a practical implemen-
tation, Fcommit can be implemented using a random oracle (it is well known,
and trivial to prove, that applying a random oracle to the string to commit to,
concatenated by random coins, gives a UC-secure commitment scheme).

B.4 Oblivious Linear Evaluation

An oblivious linear evaluation (OLE) over the finite field F is a primitive in which
Alice inputs a, b ∈ F and Bob inputs x ∈ F. Alice learns nothing and Bob learns
y = ax + b. This primitive can be seen as a natural generalization of Oblivious
Transfer (OT) [Rab05] for the case F = F2 or as a special case of Oblivious
Polynomial Evaluation (OPE) [NP99] for the case of degree 1 polynomials. The
ideal UC-functionality Fmole is defined in Figure 2. It implements m OLEs in
parallel.

A variant called random oblivious linear evaluation (ROLE) is a similar prim-

itive, but where Alice receives random values u,w1
$←F and Bob v, w2

$←F such
that uv = w1 + w2. The ideal UC-functionality Fmrole is defined in Figure 3.
We show that a random oblivious linear evaluation (ROLE) is equivalent to an
oblivious linear evaluation (OLE) in the same way oblivious transfer is shown to
be equal to a random oblivious transfer. We define a protocol πmole that realizes
Fmole with access to Fmrole. This protocol (which is folklore) is formally given in
Figure 4 and can be proven secure as stated in the following:

19

Functionality Fm
ole

1. Upon receiving message (inputA, a, b) from Alice with a, b ∈ Fm: if there al-
ready is a stored tuple from Alice, then ignore the message. Otherwise, store a
and b and send message (inputA) on leakage port.

2. Upon receiving message (inputB,x) from Bob with x ∈ Fm: if there already is
a stored tuple from Bob, then ignore the message. Otherwise, store x and send
message (inputB) on leakage port.

3. Upon receiving message (deliver, A) on influence port: if a, b and x have been
stored, then send (delivered) to Alice. Otherwise, ignore the message.

4. Upon receiving message (deliver, B) on influence port: if a, b and x have been
stored, then set y = a ∗ x + b and send (output,y) to Bob. Otherwise, ignore
the message.

Fig. 2. Ideal functionality Fm
ole for Oblivious Linear Evaluation (OLE).

Functionality Fm
role

1. Upon receiving message (init) from both Alice and Bob, store init = true
and send message (init) on leakage port.

2. Upon receiving message (corrupt, A, (u,w1)) on influence port with u,w1 ∈
Fm: if no values for u,w1 have been stored, draw and store uniformly random
v ∈ Fm and compute and store w2 := u ∗ v −w1.

3. Upon receiving message (corrupt, B, (v,w2)) on influence port with v,w2 ∈
Fm: if no values for v,w2 have been stored, draw and store uniformly random
u ∈ Fm and compute and store w1 := u ∗ v −w2.

4. Upon receiving message (deliver, A) on influence port, if init = true: if no
values for u,v,w1 and w2 have been stored, draw and store uniformly random
u,v,w1 ∈ Fm and compute and store w2 := u∗v−w1. Send (output, (u,w1))
to Alice.

5. Upon receiving message (deliver, B) on influence port, if init = true: if no
values for u,v,w1 and w2 have been stored, draw and store uniformly random
u,v,w1 ∈ Fm and compute and store w2 := u∗v−w1. Send (output, (v,w2))
to Bob.

Fig. 3. Ideal functionality Fm
role for Random Oblivious Linear Evaluation (ROLE).

It chooses random outputs for the parties, but lets a corrupt party choose his own
outputs.

Lemma 3. The protocol πmole UC-realizes Fmole in the Fmrole-hybrid model.

Correctness of the protocol can be trivially checked. Security can be proven
similarly to other protocols in the correlated randomness model [IKM+13]: if
Bob is corrupted, the simulator emulates the ROLE by picking random v,w2,
extracts x from e and v and feeds it to the ideal functionality to receive y. Finally
the simulator chooses a random s and computes d = v−1 ∗ (y −w2 − s), thus
producing a view which is distributed identically as in the real world. Here, v−1

20

means the vector with entries v−11 , v−12 , ... In the case where Alice is corrupted,
the simulator emulates the ROLE by picking random u,w1 and sends a random
e. Then, upon receiving d and s the simulator extracts a = d + u and b =
s−w1 − a ∗ e and feeds them to the ideal functionality.

Protocol πm
ole

Input: Alice inputs a, b ∈ Fm and Bob inputs x ∈ Fm

Output: Bob outputs y such that y = a ∗ x + b

Protocol:
1. Both run Fm

role such that Alice gets u,w1 and Bob v,w2

2. Bob computes and sends e = x− v;
3. Alice computes and sends d = a− u and s = w1 + a ∗ e + b;
4. Bob returns y = w2 + x ∗ d− d ∗ e + s.

Fig. 4. Protocol for OLE in the Fm
role-hybrid model.

C More Details on Commodity-based OLE

Concrete Efficiency. We remark on the overall communication of the OLE
protocol: For a single OLE instance, the oblivious RPC’s consist of one tuple F2

sent from each server to each client totaling 4n log2 |F| bits. In the computation
phase, both parties send to each other one field element for each evaluation
point from d + 2, . . . , n, which totals 2(n − (t + m + 2) + 1) field elements as
d = t+m. In the check phase, each party sends 3 field elements to the other, and
in addition we send a commitment (and its decommitting information). Let κ
be the security parameter (e.g., if SHA256 is used for the commitment κ = 256).
Then, the overall communication complexity (including the communication from
the servers to the clients, and the communication between the two clients) for
generating m OLEs using n servers tolerating up to t corruptions boils down to

2(3n− t−m+ 2) log2 |F|+ 2κ .

Doing Without Commitments. The only reason we use a commitment is that
if Bob would immediately send B(tA) to Alice, the proof of Lemma 2 would break
down because Alice would now know t+ 1 and not t points on B(x), at the time
where she has to answer Bob’s challenge. Therefore, in the view of Alice, there
is only 1 degree of freedom for B(x) instead of 2, as we need in the proof. We
can even show that there is an attack on the protocol in this case.

However, this is easy to fix, we just set the degree of polynomials A(x), B(x)
to be d = t+m+ 1 instead of t+m, and change the protocol such that in the
Check Phase, Bob sends B(tA), C2(tA) in the clear along with tB . Alice can now
do her check immediately and return her answer A(tB), C1(tB) to Bob. We can

21

prove the equivalent of Lemma 2 for the modified protocol using the same proof:
even if Alice now learns B(tA) before she has to answer she is still at least 2
points short of being able to determine B(x), and this is the crucial property
that makes the proof go through. The simulation for the modified protocol and
the proof that it works is the same as before. The price we pay for this is that
we need n = 2d + 1 = 2t + 2m + 3, so we need 2 servers more than before. In
summary, we have

Corollary 1. Assume that n = 2t+2m+3 and that |F| is exponential in the se-
curity parameter. Then protocol πmrole is an implementation of Fmrole with statis-
tical UC-security. The protocol tolerates a static adversary corrupting one client
and at most t ≤ n−2m−3

2 servers. The simulation is perfect unless an error event
occurs, which has probability at most n

|F|−(n+m) .

Smaller Fields. The protocol can be modified to work even with small fields
where |F| is not exponentially large in the security parameter: the argument that
the check phase makes a mistake with probability a most n/(|F|−(m+n)) holds
for any field. In particular, we will get at most constant error probability p as
long as |F| > n/p + m + n. Then we can get negligible error probability if we
repeat the check phase κ times where κ is the security parameter. This will give
error probability at most pκ.

D Allowing Servers to be Memoryless

We now look at practical aspect of the commodity model. As mentioned in the
introduction, it will clearly be an advantage if the servers in our model do not
need memory in the sense that they do not have to remember who they talked to
or what was sent. This would mean that a server will not have to administrate
identities and log-in credentials, and could simply generate the required data on
the fly, say, against payment in some cryptocurrency. An obvious problem with
this goal is that the data sent to two clients Alice and Bob must be correlated
and a memoryless server cannot make this happen on its own. We now infor-
mally sketch a solution to this: We will assume that clients can communicate
with servers such that clients can authenticate the identity of servers, but not
necessarily the other way around (in practice, one may think of 1-way TLS here.)

We also assume that Alice and Bob interact before talking to the servers –
indeed this is necessary to create any correlation if the servers have no memory.
We assume a 2-way authenticated channel for this, indeed this seems necessary
if there are several clients, otherwise an honest Alice could not know with whom
she is doing secure computation. Alice and Bob would then agree on a common
nonce nAB , as well as a parameter par specifying what they will request from
the server, as well as the identity id of the server. For the case of our protocol,
we would have par = (F, s, id) where F is the field to use for the OLEs, s is the
number of OLEs to request and id is the server identifier.

In a naive solution, Alice would send (“A”, par, nAB) to the server who will
use this and a private PRF key K to generate Alice’s data, and something similar

22

is done for Bob. However, this is clearly not secure: if Alice is corrupt, she can
send both (“A”, par, nAB) and (“B”, par, nAB) to each honest server, get Bob’s
data and break the protocol.

We solve this by generating the nonce such that Alice and Bob each know
different secrets relating to the nonce and hence cannot impersonate the other
party towards the server. In the simplest case where a nonce is used for only one
server, a straightforward way to do this is to make use of a one-way function
f : {0, 1}k 7→ {0, 1}k where k is a security parameter. Then Alice chooses xA ∈
{0, 1}k at random, similarly Bob chooses xB and we let nA,B = f(xA)||f(xB)
where || denotes concatenation.

Now, party P ∈ {A,B} would send (“P”, par, xP , nAB). The server checks
that xP is correct with respect to nAB and only then will it send data to P . In
this case we can instantiate f efficiently using a hash function, for instance.

For the security of this solution, note that we just need to make sure that
the data sent from an honest server to an honest client is secure, since all other
data is known and can be modified by the adversary anyway. So assume Alice is
honest and agrees on nonce nAB and par with corrupt Bob, and let dA be the
data that honest server S will returns to Alice. Now, if Bob sends any request to
S that contains something different from par, nAB then S will return something
that is (pseudo)uncorrelated to dA. If the request does contain par, nAB , then S
may return either nothing or the data Bob is allowed to get, which is fine. It will
only return dA if the request contains xA, and this happens only with negligible
probability since f is one-way.

It is also possible to use one nonce for all servers. In that case we cannot let
Alice simply reveal a preimage to the server. If the server is corrupt it can send xA
to Bob who can then do the same attack as before on honest servers. Instead we
can let Alice generate a public key vkA for a secure signature scheme, while Bob
generates vkB . Now, the request sent by Alice will be of form (“A”, par, σA, nAB),
where σA is a signature on nAB and par, and where par = (F, s, id, vkA, vkB) The
server only sends back data if the signature verifies under the public key found
in par, and if its own name occurs in par. Note that this last checks prevents a
corrupt server from replaying a request to an honest server, and hence security
can be argued in a similar way as before.

We remark that a practical implementation of any information theoretically
secure MPC needs to implement the secure channels using encryption and (usu-
ally) a PKI, which is only computationally secure. We are in a similar situation,
only we consider also the authentication aspect: if we assumed ideal authentic
channels, the servers could generate data based on the ID’s of the parties they
know they are talking to. If we do not assume this, we have to use computational
assumptions.

23

	Commodity-Based 2PC for Arithmetic Circuits

