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Abstract. An established ingredient in the security evaluation of cryptographic devices is leakage
detection, whereby physically observable characteristics such as the power consumption are measured
during operation and statistically analysed in search of sensitive data dependencies. However, depending
on its precise execution, this approach potentially suffers several drawbacks: a risk of false positives,
a difficulty interpreting negative outcomes, and the infeasibility of covering every possible eventuality.
Moreover, efforts to mitigate for these drawbacks can be costly with respect to the data complexity of
the testing procedures. In this work, we clarify the (varying) goals of leakage detection and assess how
well-geared current practice is towards meeting each of those goals. We introduce some new innovations
on existing methodologies and make recommendations for best practice. Ultimately, though, we find
that many of the obstacles cannot be fully overcome according to existing statistical procedures, so
that it remains to be highly cautious and to clearly state the limitations of the methods used when
reporting outcomes.

1 Introduction

Ever since Kocher et al. [27] raised awareness of the vulnerability of ‘provably secure’ cryptogra-
phy to attacks exploiting auxiliary information not accounted for in traditional security models –
information such as the power consumption or other measureable characteristics of cryptographic
devices – designers and certification bodies have been increasingly concerned with ensuring and
evaluating the physical security of cryptographic implementations. Given the difficulty of appropri-
ately modelling the full range of physical threats so as to build perfect theoretic security into the
algorithms themselves [52], it typically remains to subject actual products to experimental testing
in a laboratory setting. One option is to run ‘all’ the best known attacks developed in the side-
channel literature to date, which becomes costly given the growing number of such strategies and
the difficulty of determining a priori which are the most pertinent to a particular scenario (see e.g.
[11,50]). An increasingly preferred option is to rely on leakage detection testing along the lines of
the Test Vector Leakage Assessment (TVLA) framework first proposed by Cryptography Research,
Inc. (now Rambus) [22].

Rather than aim at the successful extraction of sensitive information from side-channel mea-
surements, as an attack-based evaluation would do, leakage detection simply seeks evidence (or
convincing lack of evidence) of sensitive data dependencies in the measured traces. TVLA does this
via a suite of Welch’s t-tests targeting mean differences in carefully chosen partitions of trace mea-
surements. For example, the fixed-versus-random test looks for a statistically significant difference
between a trace set associated with a fixed plaintext input and another trace set associated with
randomly varying inputs. Alternatively, the leakage associated with a specific intermediate value
(such as an S-box output) can be targeted by comparing a trace set that has been partitioned into
two according to the value of that bit or byte. Both the ‘specific’ and the ‘non-specific’ type tests
are univariate and are performed on each point in a trace set separately in order to draw conclusions
about the overall vulnerability of the implementation. So called ‘higher order’ tests exist to target



leakage of more complex functional form that does not present via differences in the mean but can
be found in higher order (joint) statistical moments; these typically entail pre-processing the traces
before performing the same univariate point-wise test procedures [45].

Detection methodologies outside of the TVLA framework use other quantities such as the mutual
information [7,8,32] or the correlation [15] between measured traces and known intermediates, and
the F -statistic for the classes imposed on a measured trace by the values of a known intermediate
[4]. Crucially, though, all of these approaches are essentially statistical hypothesis tests, regardless
of whether the statistical formalities have been understood and observed or not.

A short-falling of leakage detection in practice has been a lack of transparency about what the
tests do or don’t show, which is essential for responsible and meaningful interpretation of outcomes,
and especially for ensuring that conclusions are ‘fair’ from one evaluation to another – a key priority
for the purposes of certification. In particular, it is seldom clear what to think or how to proceed if
a test ‘fails’ to find leakage, or how to ensure like-for-like rigour across different target devices and
between different lab settings.

To an extent, this can be addressed by revisiting the often-overlooked formalities of the un-
derlying methodologies. Classical statistics places a strong emphasis on informed test design and
awareness and control of error rates. In this work, we seek to better understand the tools available
and their application to the goal of leakage detection.

But first, it is necessary to clarify what that goal ultimately is. We note that it is different in
different settings, and delineate four broad possibilities ranging in degree of ambition (see Section 2).
The task is then to explore the statistical formalism of the various leakage detection tests available
(overviewed in Section 3) in order to assess how well they are able to meet each of the four goals,
and how (if at all) they can be adapted in order to meet them better (see Sections 4 and 5). We
also examine the related issue of coverage – how to measure and improve the extent to which test
strategies can be considered comprehensive relative to the full range of possible vulnerabilities (see
Section 6).

Unfortunately, we find that existing procedures are extremely limited in their scope to fulfil even
the most modest of detection goals. Since many of the obstacles arise from the impact of multiple
testing on error rates (and on the easy analysis of error rates) we explore the possibility to bypass
these particular issues via a multivariate approach. Drawing on recent work [34] advocating the use
of the Hotelling’s T 2 test to detect leaks in whole traces or (by way of compromise) trace segments,
we experiment with the idea of clustering trace points so as to reduce the number of (multivariate,
arguably independent) tests to perform (see Section 7). Such an approach is not suitable for all
possible evaluation goals, and is found to be unreliable, or at least highly sensitive to configuration
decisions.

We conclude from our investigations that the challenge faced by evaluators is really not trivial:
considerable breakthroughs are yet to be made in the wider statistics literature that would enable
the types of ideal solution needed to produce truly fair and like-for-like comparison across target
devices and analysis scenarios. We attempt, in the light of this lack, to provide sound advice
about the best known approaches towards each goal and how to interpret and present results with
appropriate caution (see Section 8).

2 The Goal of Leakage Detection

Leakage detection is typically carried out as part of an exercise to evaluate the security of a cryp-
tographic device. It might be performed by an evaluation laboratory with the aim of providing
security certification for when the device goes on sale, or it might be an in-house effort during



the development process in order to highlight and fix potential problems prior to formal external
evaluation.

Either way, it is helpful to recognise that the particular goal of a detection attempt can vary,
and that the approach taken needs to be chosen with the desired end result in mind. We have
identified four different possible intentions:

Certifying vulnerability: Find a leak in at least one trace point. In such a case it is especially
important to avoid false positives (that is, concluding there is a leak where there isn’t one).

Certifying security: Find no leaks having tested thoroughly. Here false negatives (failure to find
leaks that are really there) become a concern. As we will see, the statistical methods used for
leakage detection cannot ‘prove’ that there is no effect, they can at best conclude that there is
evidence of a leak or that there is no evidence of a leak. Hence it is especially important to design
tests with ‘statistical power’ in mind – that is, to make sure the sample size is large enough to
detect a present effect of a certain size with reasonable probability (see Section 4.1). Then, in
the event that no leak is discovered, these constructed features of the test form the basis of a
reasoned interpretation. A further, considerable challenge implicit to this goal is the necessity
to be convincingly exhaustive in the range of tests performed – that is, to target ‘all possible’
intermediates and all relevant higher-order combinations of points. (This suggests analogues
with the idea of coverage in code testing, which we discuss in Section 6).

Demonstrating an attack: Map a leaking point (or tuple) to its associated intermediate state(s)
and perform an attack. Typically it is of interest to report attack outcomes and/or projections
derived from those outcomes, such as the number of traces required for key recovery, and/or
the global key rank for a given sample size. False positives are undesirable as they represent
wasted effort in the attack phase.

Highlighting vulnerabilities: Map all exploitable leakage points to their associated intermediate
states in order to guide designers seeking to secure the device. This has something in common
with certifying security, as both require an ‘exhaustive’ analysis, and something in common
with demonstrating an attack, as both require being able to locate the source of the leakage.
False negatives are of greater concern than false positives as they represent vulnerabilities that
will remain unfixed.

3 Existing Methods for Leakage Detection

Most leakage evaluation procedures, regardless of their ultimate goal, are essentially statistical
hypothesis tests or informal adaptations thereof.

3.1 Statistical Hypothesis Tests

A statistical hypothesis test begins with the formulation of a null hypothesis and an alternative
hypothesis about some random process or population of interest. Testable hypotheses have been
considered key to the process of learning from empirical evidence since (at least) the emergence of
modern science in the 17th century, and the particular choices made dictate the information you
are able to derive from the observed data.

It then typically entails the computation of a test statistic with a known or derivable (e.g.
through randomised resampling) distribution under the null hypothesis. If the observed value is
‘extreme’ – i.e., the probability of such a value occurring under the null hypothesis is smaller than
some fixed probability of false rejection α – then the null is rejected. Otherwise the null is ‘not
rejected’. Crucially, this is not the same as ‘accepting’ the null. For example, there may simply not



be enough data to provide conclusive evidence against it. This is why it quickly becomes important
to understand the concept of statistical power : the probability of rejecting the null in the case that
the alternative hypothesis is correct, which, for a given α, depends on the magnitude of the effect
as well as the sample size. We expand on the notion of power, α, effect size and sample size in
Section 4.1.

There are many different ways of constructing hypothesis tests, depending on the question that
you seek to answer. For example, they be used to make informed judgements about the sameness of
two populations, as characterised by particular parameters (e.g. in the case of the t-test [23], which
forms the basic component of the TVLA framework [22]), by frequency tabulations (e.g., Pearson’s
χ2 test for discrete distributions [36]), or by the empirical distribution function (e.g. two sample
Kolmogorov–Smirnov [28,49]). Alternatively, they can be used to decide if a particular parameter
or quantity is larger or smaller than (or different to, in the case of ‘two-sided’ tests) a hypothesised
value (often zero). Hypothesis tests are needed because estimates computed on sampled data can
only ever acquire the true underlying parameters up to a certain precision, so that whether or not
there is a match with the null cannot be decided on the basis of exact equality but on how large
the disparity between them is relative to certain distributional expectations.

In the case of leakage detection, the null hypothesis is often that two sets of trace measurements
associated with different (known) intermediate values have the same distribution, with the alterna-
tive hypothesis being that the distributions are different. Another (less common) approach is to test
the null hypothesis that some measure of correspondence between the data and the trace measure-
ments (e.g. the mutual information [7,8,32] or the correlation [15]) is zero, versus the alternative
hypothesis that it is non-zero.

3.2 Typical Detection Strategies

Any dependency of the measured side-channel on sensitive data presents a potential vulnerability
to an attacker. An ‘ideal’ test would therefore be one that simply seeks to reject the null hypothesis
that the side-channel and the sensitive data are independent, in favour of the alternative hypothesis
that they are related in some arbitrary way.

On the other hand, when the goal goes beyond finding or not finding leakage, to mapping, un-
derstanding, exploiting and/or addressing leakage, arbitrary detection (to the extent it is possible)
suffers drawbacks: it is typically difficult to translate a non-specific vulnerability into a successful
exploitation, or even to tie it to a particular operation. For the third and fourth goals it might
therefore be preferable to use specific tests, targeting particular intermediate values. This facili-
tates the mapping of the leakage – although, at the expense of an increased number of separate
tests needing to be performed in order to be confident of covering all eventualities.

In the following two subsections we formalise and discuss a range of arbitrary and specific tests,
most of which exist in some form in the SCA literature.

Detecting Arbitrary Leaks Two variables A and B are statistically independent if and only
if their joint distribution FA,B is identical to the product of their marginal distributions FA, FB:
FA,B = FA ·FB. In side-channel terms, the question of whether or not trace measurements Y reveal
information about (i.e. are dependent on) the key (or plaintext) X can be formalised as a hypothesis
test via this definition:

H0 : FX,Y = FX · FY vs. Halt : FX,Y 6= FX · FY (1)



Unfortunately, mathematical theory does not always translate neatly into statistical practice.
Performing a hypothesis test requires the formulation of a test statistic that can be computed
from the data sample and that has a known distribution under the null hypothesis. (Meanwhile,
as we shall see in Section 4, evaluating the statistical power of the test requires also knowing the
distribution under the alternative hypothesis).

If both X and Y were discrete variables, a χ2 test could be used to decide between the above
two hypotheses. However, side-channel measurements are strictly non-categorical. Alternatives for
quantitative data include the Kolmogorov–Smirnov test [28,49] (adopted in [57,59] for side-channel
attacks but, as far as we know, as-yet unused to directly test for independence in a detection
setting), or tests based on distance correlation [53] (as-yet unused in any side-channel setting, as
far as we know), all of which are non-parametric in nature. Being non-parametric means that they
do not rely on assumptions about the functional forms of the distributions of A, B, and (A,B).
Often (but not necessarily) this also implies that they compare based on general distributional
‘shapes’, rather than summary measures such as distributional moments. Thus they are potentially
capable of detecting arbitrary leaks, as opposed to just those that manifest in particular moments.
However, genericness comes at a cost: the number of observations required to draw statistically
significant conclusions tends to be much higher for non-parametric tests than for parametric ones.

In order to arrive at more efficient tests, two approaches can be taken: rephrasing the problem
or making additional assumptions.

Rephrasing the Problem Rather than purely attempting to detect an information leak (i.e. a data-
dependency), one can attempt to quantify an information leak and decide whether it is non-zero.
This approach has led to the development of robust mutual information tests for continuous and
discrete data (CMI and DMI), of which the former has been shown to be suitable for typical power
leakage traces [32].

H0 : I(X;Y ) = 0 vs. Halt : I(X;Y ) 6= 0 (2)

The CMI test has been shown to be capable of detecting arbitrary leaks, with the drawback
that it naturally requires more leakage traces to do so than a parametric test [32]. Thus in a setting
where normality cannot be guaranteed, and it is not known in which moments we expect to see
leakage (nor indeed whether the distribution can be fully characterised by its moments), CMI is,
to the best of our knowledge, the only leakage test able to provide some guarantees of capturing
all possible (univariate) dependencies. (Finding multivariate dependencies is considerably more
computationally and data intensive, though some efforts have been made in this direction [42]).
However, analysts should be reluctant to interpret the estimated magnitude of the MI beyond the
reject/don’t reject outcome of the test: the bias of MI estimators and their unknown convergence
properties [35] make the actual values estimated unreliable as quantitative measures, particularly
as the sample size needed for quality estimates will inevitably be much larger than that needed to
reject the null.

Making Additional Assumptions Whilst the previous rephrasal preserves the fully general scope of
the detection test, any introduction of additional assumptions inevitably compromises this. How-
ever, if the assumptions are reasonable then they can lead towards tests which, though less robust,
are more efficient with respect to the sample size required to draw statistically significant conclu-
sions. It is commonplace in the literature to suppose that the non-deterministic part of the trace
measurements (the noise) is Gaussian distributed. In the case of ‘raw’ traces this is typically true.



The further assumption that it is of the same magnitude for all inputs1 gives rise to the method
of ANalysis Of VAriance (ANOVA) for detecting data-dependency. This was proposed by Bhasin
et al. under the name Normalised Inter-Class Variance (NICV) [4]. If the possible values for X are
{x1, . . . , xm} the NICV can be understood as the following hypothesis test:

H0 : E[Y |X = x1] = E[Y |X = x2] = . . . = E[Y |X = xm]

vs. Halt : E[Y |X = xi] 6= E[Y |X = xj ] for some i, j ∈ {1, . . . ,m}, i 6= j.

This can be achieved by computing

F =

1
m−1

m∑
i=1

ni(yi· − y··)2

1
N−m

m∑
i=1

ni∑
j=1

(yij − yi·)2

where yi· is the mean of all observations such that x = xi, yij is the jth observation such that x = xi
(there are ni in total), and y·· is the mean of all observations for all values of x. Under the null
hypothesis the statistic follows an F -distribution with degrees of freedom (m− 1, N −m).

NICV is closely related to the correlation test as proposed by Durvaux et al. [15], which also
looks at the explanatory power of group means at each point in the trace but does so via Fisher’s
z-transform of the correlation which has an approximate standard normal distribution under the
null hypothesis of zero correlation. Suppose M(·) maps each plaintext/key X to its corresponding
average leakage for the trace point to be tested2, the method from [15] essentially amounts to an
hypothesis test of the following form:

H0 : Corr(M(X), Y ) = 0 vs. Halt : Corr(M(X), Y ) 6= 0. (3)

Note that this implicitly assumes that (M(X), Y ) can be approximated by a bivariate Gaussian
distribution, so that zero correlation implies (and is implied by) independence between them.

Since the F -statistic and the correlation need to be estimated across the entire input space, and
since (at least, in software implementations) each clock cycle typically depends on only a portion
of the state, the usual practice is to take X to be a byte of plaintext/key as opposed to the entire
plaintext/key, and to perform the test in turn for each byte separately. Note that neither of these
methods are suitable to detect dependencies that emerge after bytes have been effectively ‘mixed’
(at least, not without computing and testing for those later intermediates explicitly).

An alternative ‘non-specific’ method which partitions on the full input manages to do so by
settling for a single fixed input to produce one of the partitions whilst letting the input vary at
random to produce the other. This is known as the ‘fixed-vs-random’ test and is part of the popular
TVLA framework of Goodwill et al. [22], employing the t-test for difference-of-means [23] to decide
between the following hypotheses:

H0 : E[Y |X = c] = E[Y |X ← R] vs. Halt : E[Y |X = c] 6= E[Y |X ← R]. (4)

Despite the appeal and widespread adoption of this approach, a drawback is that it inevitably
only covers a small part of a very large sample space, especially with respect to the ‘fixed’ input
acquisition. The ‘fixed-vs-fixed’ variant of the test [15], designed with data efficiency in mind, does
indeed have greater power but covers an even tinier fraction of the total sample space: failure to

1 It can vary by time point as long as it doesn’t vary within time point for different inputs.
2 Note that this mapping implicitly incorporates the intermediate function of X on which the leakage depends.



find a leak merely gives an assurance about the indistinguishability of the two chosen fixed inputs
(one pair of every possible 22×B, where B is the block size), and not of the data non-dependency of
the implementation in general. We discuss this among a range of coverage challenges in Section 6.

Notice that, in stark contrast to the tests we looked at initially, all three of the NICV, the
correlation test and the fixed-versus-random DoM can only detect leaks that are present in the first
(univariate) moment. Existing publications overcome this deficiency by applying pre-processing of
various forms (potentially combining multiple points) to the raw traces, ‘forcing’ distributional dif-
ferences into the first moment. Whilst generally effective given ‘enough’ traces, this work-around
undermines the statistical formalism of the tests which (as we shall explain in Section 4) has trou-
bling, typically unacknowledged consequences for an evaluator’s ability to meet the goals described
in Section 2.

Detecting Leaks Related to Specific Intermediate Values The strategies above do not test
intermediate values specifically, but seek to find arbitrary associations between the key or plaintext
and the (univariate) distributions at each point in the trace. Assuming the chosen test attains
this ideal functionality, such an approach minimises the number of different tests needing to be
performed as well as the requirement for detailed knowledge of the implementation. An alternative
strategy, which loses these advantages but avoids the computational complexity of the CMI test
whilst gaining insight over the non-specific fixed-vs-random test, is to compute specific intermediate
values (and relevant combinations thereof, in the case that the device is suspected to leak transitions
between intermediate states) and look for associations between these and the measured leakages.
The TVLA framework [22] proposes, for example, to perform t-tests on partitions constructed
around known intermediate bits:

H0 : E[Y |X[b] = 0] = E[Y |X[b] = 1] vs. Halt : E[Y |X[b] = 0] 6= E[Y |X[b] = 1], (5)

or around known intermediate bytes, in a ‘one value versus all other values’ manner:

H0 : E[Y |X = c1] = E[Y |X = c2] vs. Halt : E[Y |X = c1] 6= E[Y |X = c2]. (6)

The NICV and correlation tests described above can be easily adapted to this ‘specific test’
setting, reducing the number of different tests needing to be performed in order to get reasonable
coverage of the many potentially leaking states. (For example, in the latter case one F -test readily
replaces 28 separate t-tests, and is more statistically rigorous – although it cannot distinguish
between intermediates that are effectively permutations of each other, such as the input and the
output of an S-box).

Note that all of these tests are once more only able to capture data-dependencies that exhibit
in the first moment of the trace distribution, and that they all depend to a greater or lesser extent
on the assumption of normality. The same pre-processing ‘tricks’ exist to capture higher-order (and
multivariate) dependencies as are used for non-specific tests (in the case of correlation this entails
applying a corresponding transformation to the power model M(·)), with the same degradation of
statistical rigour.

In the next three sections we identify a number of ways in which leakage detection, as commonly
practised, falls short of the goals listed in Section 2. We discuss existing attempts to overcome these
shortcomings, and propose some possible new options, but perhaps most importantly we seek to
clarify the limitations of such efforts and the implications for the reliability of leakage detection as
an evaluation tool.



4 Shortcoming 1: Difficulty Interpreting Negative Outcomes

Formally, a statistical hypothesis test either rejects the null hypothesis in favour of the alternative,
or it ‘fails to reject’ the null hypothesis. It does not ‘prove’ nor even ‘accept’ the null hypothesis.
Moreover, it does this with a certain probability of error.

Recall the significance level α (also known as Type I error rate). This is the probability of
rejecting the null when it is true, i.e. concluding that there is a leak when there isn’t. Because it
is chosen as part of the test design it is fully transparent to the evaluator (as long as it is chosen
correctly). However, the Type II error (usually denoted β) – the probability of not rejecting the null
when the alternative is true, i.e. concluding that there is no leak when there is – is opaque to the
evaluator without further effort. If this error is very high (equivalently, we say that the ‘statistical
power’ 1− β is low) then the failure of the test to detect an effect really doesn’t mean very much
at all.

If a test fails to reject the null of ‘no leakage’ in the context of an evaluation, at the very least
a certifier (especially one with the second goal of ‘certifying security’ in mind) needs to be able to
argue that the device was given a fair trial. That is, there needs to be some set of criteria to ensure
that tests are comparable across targets and measurement set-ups. Otherwise, one device may pass
as secure, and another fail to pass, simply because the latter was subjected to a more aggressive
testing procedure.

Since all evaluations are inevitably subject to budget and time constraints, it may seem natural
to fix the overall effort invested and to make comparisons on that basis. However, a number of
factors – differing levels of expertise, quality of equipment, availability of a priori information
from evaluations of similar targets – undermine the apparent ‘fairness’ of such an approach. In
pursuit of a more objective framework we instead turn to the tools of statistical power analysis. We
first explain the general methodology and then show how it can be applied in the case of leakage
evaluation.

4.1 Statistical Power Analysis

Since the estimate of a test statistic is itself an observation of a random variable (with a sampling
distribution of its own) conclusions drawn from statistical tests are subject to error. The decision
to reject a null hypothesis when it is in fact true is called a Type I error (a ‘false positive’). In the
side-channel setting this corresponds to finding leakage when in fact there is none. An hypothesis
test seeks to control this error rate at a significance level α. A Type II error is a failure to reject
the null when it is in fact false (a ‘false negative’), corresponding to failing to find leakage which is
in reality present. The Type II error rate of an hypothesis test is denoted β and the power of the
test is 1−β, that is, the probability of correctly rejecting a false null in favour of a true alternative.
The two errors can be traded-off against one another, and mitigated (but not eliminated) by:

– Increasing the sample size N , intuitively resulting in more evidence from which to draw a
conclusion.

– Increasing the minimum effect size of interest ζ, which in our case implies increasing the
magnitude of leakage that one would be willing to dismiss as ‘negligible’.

– Choosing a different statistical test that is more efficient with respect to the sample size.

For a given test (i.e. leaving aside the latter option) the techniques of statistical power
analysis are concerned with the mutually determined relationship between α, 1 − β, ζ and N .
Appendix B gives a worked-through example for the simple case of a t-test with equal sample sizes



and population variances σ1 and σ2 and arrives at this expression for the minimum (total) sample
sample required:

N = 2 ·
(zα/2 + zβ)2 · (σ12 + σ2

2)

ζ2
(7)

where ζ = µ1 − µ2 is the true difference in means between the two populations. Note that Equa-
tion (7) can be straightforwardly rearranged to alternatively compute any of the significance level,
effect size or power in terms of the other three quantities. This becomes useful in the event that,
for example, the sample size is constrained in practice and the analyst wishes to know the power
of the test to detect the effect size of interest, or the minimum effect size that could be detected
with a satisfactory power.

Ideally, such an analysis is performed even before data collection as an aid to experimental
design; this is known as a priori power analysis and can help to ensure (e.g.) the collection of
a large enough sample to detect data-dependencies of the expected magnitude with the desired
probability of success [32]. If the desired probability of success is not achievable by a given test
within a feasible number of traces there is simply no point in performing the test, as failures to
find leakage will have no meaningful interpretation. Power analysis can be performed after data
collection in order to make statements about the power to detect a particular effect size of interest,
or the minimum effect size that the test would be able to detect with a certain power. This can be
especially useful when it comes to responsibly interpreting the non-rejection of a null hypothesis.
However, it is crucial that the effect sizes are chosen independently of the test, based on external
criteria, as it has been shown that attempts to estimate ‘true’ effect sizes from the test data produce
circular reasoning. In fact, there is a direct correspondence between the p-value and the power to
detect the observed effect, so that ‘post hoc power analysis’ merely re-expresses the information
contained already in the test outcome [24].

This requirement for information about the data sample which cannot be estimated from the
data sample is the main obstacle to statistical power analysis. The choice of effect sizes for the
computations can be guided by previous experiments (e.g., in our case, leakage evaluation on a
similar device with a similar measurement set up) or (ideally) by some rationale about the practical
implications of a given magnitude (e.g. in terms of loss of security). Note that we always eventually
need some rationale of this latter type: what is ultimately of interest is not just whether we are able
to detect effects but whether the effects that we detect are of practical concern. With a large enough
sample we will always be able to find ‘arbitrarily small’ differences; the question then remains, at
what threshold do they become ‘arbitrary’?

Also needed in order to perform statistical power analysis are the population standard deviations
of the partitioned samples, which may or may not be the same. These are usually assumed to
have been obtained from previous experiments and/or already-published results, which can be
especially tricky when approaching a new target for evaluation. Various rules-of-thumb exist, for
example, dividing the expected range of values by 5 [10,46]. This reduces the reliance on a priori
knowledge (at the cost of lower accuracy) but still requires expert input in the form of a meaningful
approximation of the range. Whatever the information available, it is generally preferred to choose
conservative estimates for the standard deviation (e.g. the largest among those previously observed)
as underestimates will lead to overestimates of the power, risking a false sense of security.

It is convenient (and bypasses some of the reliance on prior information) to express effect sizes
in standardised form. Cohen’s d is defined as the mean difference divided by the pooled standard



deviation of two samples of (univariate) random variables A and B:

d =
a− b√

(nA−1)s2A+(nB−1)s2B
nA+nB−2

where a, b are the sample means, s2A, s2B are the sample variances and nA, nB are the sample
sizes. Notice that this is essentially a measure of signal-to-noise ratio (SNR), closely related to
(and therefore tracking) the various notions that already appear in the side-channel literature. The
most common definition is the variance of the characterised data-dependent part of the leakage
(for example, the Hamming weight, or a linear regression model) divided by the residual variance
(i.e., the noise). This is not identical to d – which corresponds to a ‘signal’ that arises from the
construction of the test, e.g. the difference between the partitioned means – but for a given leakage
characterisation and partition the one can be determined from the other. The formula for the sample
size required for the t-test can be expressed in terms of the standardised effect size as follows:

N = 4 ·
(zα/2 + zβ)2

d2
(8)

Cohen [9] proposed that effects of 0.2 or less should be considered ‘small’, effects around 0.5 are
‘medium’, and effects of 0.8 or more are ‘large’. Sawilowsky [43] expanded the list to incorporate
‘very small’ effects of 0.01 or less, and ‘very large’ and ‘huge’ effects of over 1.2 or 2.0 respectively.
The relative cheapness of sampling leakage traces (and subsequent large sample sizes) compared
with studies in other fields (such as medicine, psychology and econometrics), as well as the high
security stakes of side-channel analysis, make ‘very small’ effects of more interest than they typically
are in other statistical applications.

This helps to put the analysis on a like-for-like footing for all implementations. But of course
acquisitions vary greatly in the standardised effects they are prone to exhibit, so it doesn’t remove
the need for knowledge of the particulars of the device in order for meaningful interpretation.

4.2 Statistical Power Analysis for Leakage Detection

In order to apply the principles of statistical power analysis to evaluation design we need to decide
what makes a test procedure ‘fair’. Some options include:

Fixed sample size: The idea of a sample size threshold bears some similarity to that of a fixed
overall ‘effort’, as the acquisition and processing of the trace measurements determines much
of the time and computational complexity of the analysis. As a basis for fairness it has an
intuitive appeal which bypasses the requirement to understand the technicalities of statistical
power analysis. However, the power of the test will vary depending on the variance and the scale
of the effects likely to be exhibited by a particular DUT. Applying tests of different power to
different DUTs could be considered unfair; moreover, the power remains opaque to the analyst
unless an explicit attempt is made to ascertain it, potentially covering up habitual shortfallings
in chosen test procedures.

Fixed power: If an expected effect size for the target implementation can be stated, then the test
can be designed to achieve a desired power 1− β for the given probability of false detection α.
However, this essentially amounts to working harder to attack a device that you suspect to be
less vulnerable – in effect penalising security! Clearly, if one target requires fewer traces than
another to detect with the same probability, this should be interpreted as an indicator of greater
vulnerability.



Fixed effect size: Fixing the raw effect size is difficult/ill-advised as trace measurements can be
differently scaled depending on the measurement apparatus and pre-processing. However, it
is quite possible to fix the standardised effect size (e.g. Cohen’s d, as in Section 4.1 above),
and derive the required sample size to detect this effect with a power of 1 − β. Of course, the
actual effect sizes present in each case differ substantially, as does (consequently) the power to
detect these. But it could be argued that this is precisely what makes one device more or less
secure than another, and therefore that detection success should be allowed to depend on this
difference.

We take this latter view – namely, that boosting tests against targets with smaller effects in
order to achieve equal power is unfair and that tests should instead be designed to be capable of
detecting the same (standardised) effect size. Then, if target A is found to be vulnerable while
target B is not, at least there is a sound basis for reasoning that B is ‘more secure’ than A.

Of course, it is important to choose the standardised effect size carefully. It needs to be con-
servatively small in terms of what one expects to see and what would constitute a concerning risk.
Expectations can be gauged by observing the effect magnitudes exhibited by a range of previous
acquisitions; risk severity can be reasoned about on the basis of worst-case adversarial resources.
We discuss each of these considerations in turn.

Observed effect sizes It is not straightforward to ‘simply’ observe magnitudes in existing acqui-
sitions. This is because all differences will be non-zero, regardless of whether they represent actual
leakage, and deciding which ones are ‘meaningful’ essentially corresponds to the task of detection
itself. Choosing ‘real’ effects based on the outcomes of t-tests, and then using the magnitudes of
those effects to make claims about ‘detectable’ effect sizes, amounts to circular reasoning, and de-
pends on the choice of significance criteria. Fortunately the end goal of leakage detection provides
us with a natural, slightly more objective, criterion for identifying ‘real’ effects, via the outcomes
of key recovery attacks. That is, if leakage detection is geared towards identifying (without having
to perform attacks) points in the trace which are vulnerable to attack, then an effect size which is
‘large enough’ to be of interest is one that can be successfully exploited.

We take this approach, and perform distance-of-means attacks on all 128 bits of the first round
SubBytes output for three AES acquisitions, taken on an ARM board, an 8051 microcontroller
and an RFID device. We also compute the sample effects for each of those bits, which enables us
to report estimated effect sizes of interest. Two remaining draw-backs are 1) especially for small
effects (i.e. those with a low SNR), the sample sizes may not be large enough for the estimates to
be precise; and 2) more points may become vulnerable to attack given even larger samples (which
is always the case). So smaller effect sizes may be important to evaluators concerned with more
powerful adversaries.

Since there are only 256 subkey candidates, among thousands of distance-of-means attacks a
proportion will inevitably rank the correct key first purely by chance (approximately 1

256 of those on
irrelevant points, i.e. where there is zero data-dependency). Adapting from [55], we take measures to
confirm the stability of an attack outcome before classifying a point as ‘interesting’. Our approach
involves repeating the attack on 99% of the full sample and retaining only those points where the
correct subkey is ranked first in both instances. (Even then the length of the traces makes it likely
that some of the retained points will be ‘false positives’, a problem that affects multiple statistical
tests in general, as we discuss in the next section).

Figure 1 shows the raw (top) and standardised (bottom) observed effect sizes (i.e. mean differ-
ences associated with an S-box bit) of first round AES traces measured from an ARM board, an
8051 microcontroller and an RFID device respectively. As expected, because of the different scales



of the measurements (arising from different pre-processing, etc), the raw effects are not necessarily
useful to compare. The ARM effects range up to about 0.8, while effects on the 8051 and the RFID
implementation range up to 3 and 2 respectively. The standardised effects are much more compa-
rable (≈ 0.6 and ≈ 1 for ARM and 8051 respectively; ≈ 0.4 for the RFID, although this is for the
second rather than the first S-box as the latter is less ‘leaky’ in this instance). 3
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Fig. 1. Difference of means (top) and standardised equivalent (bottom) associated with the first bit of the first S-
box of two software AES implementations and the first bit of the second S-box of one hardware implementation
(chosen because the first S-box is not very ‘leaky’ in that particular acquisition). Red circles denote points where a
distance-of-means attack achieves stable key recovery.

Table 1 summarises the standardised and raw effect sizes associated with distance-of-means key
recoveries over all bits of all S-boxes. The smallest standardised effect detected is 0.0413 for the
8051 microcontroller; the ARM and RFID smallest effects are in a similar ballpark. One might
therefore choose 0.04 as a minimum effect of interest – although, as we have warned, larger samples
will reveal ever-smaller effects, if present. This motivates approaching the question with a ‘worst
case’ adversary in mind, rather than relying only on the data we have access to ourselves.

Implementation Proportion Standardised Raw
interesting Min Max Median Min Max Median

ARM 0.0226 0.0444 0.9087 0.1155 0.0388 1.0265 0.1073
8051 0.0150 0.0413 1.4265 0.1670 0.0254 5.3808 0.1469
RFID 0.0049 0.0624 0.3935 0.0933 0.2272 3.4075 0.3836

Table 1. Summary of effect magnitudes associated with stable distance-of-means key recovery attacks.

3 In a non-specific fixed-versus-random experiment (and even more so in a fixed-versus-fixed setting) the differences
depend on more than a single bit so, depending on the value of a given intermediate under the fixed input, can
potentially be several times larger (see e.g. [45]) – or they can be smaller (e.g. if the leakage of the fixed intermediate
coincides with the average case, such as the (decimal) value 15 in an approximately Hamming weight leakage
scenario). It is typically assumed in the non-specific case that, as the input propagates through the algorithm, at
least some of the intermediates will correspond to large (efficiently detected) class differences [15].



Adversary resources By considering a ‘worst case’ adversary with a certain number of traces
one can determine the minimum standardised effect size that could be detected with the desired
α and β, and use this to set the criteria. Of course, this becomes self-defeating if the envisaged
adversary has more resources than a typical evaluator, as the effect will then be too small to detect
reliably in an evaluation setting. So the minimum standardised effect size we can actually test for
is necessarily additionally constrained by feasibility – that is, the number of traces available to an
evaluator. If the smallest effect of interest is not testable for, at least an evaluator will be able to
supply the appropriate caveats in their reported results.

Table 4.2 reports the standardised effect sizes detectable with balanced errors (i.e. power equal
to 1−α) for a range of sample sizes and significance levels. For example, an adversary with 100,000
traces can, with power 0.99999, detect a standardised effect of 0.055 at a significance level of
0.00001 (the significance level implied by the threshold recommended for TVLA). We will revisit
(and adjust) these computations in the next section, when we come to consider the implications of
the fact that tests are not typically performed singly but multiple times against different points in
the same trace. In any case, though, note that we have come around full circle to a solution very
like fixing the sample size, albeit in order to derive a standardised effect size. In the absence of any
objective criteria (e.g. a mechanism for converting quantifiable security losses into effect sizes), a
degree of circularity is inevitable in the attempt to ‘bootstrap’ a useful solution. (Researchers in
other disciplines have also acknowledged this limitation [29]).

α Number of traces
102 103 104 105 106

0.05 0.721 0.228 0.072 0.023 0.007
0.01 0.980 0.310 0.098 0.031 0.010
0.00001 1.736 0.549 0.174 0.055 0.017

Table 2. Some example standardised effect sizes detectable with balanced error rates for different values of α and
different sample sizes.

4.3 Discussion

– We have here proposed deriving an effect size of interest from an evaluator’s best knowledge
about the resources of a typical adversary. However, the sample size required for detection does
not necessarily give any indication of the sample size required for an attack [51]. In particular,
it is in the interests of coverage (see Section 6 below) to use test strategies that are as generic
as possible; by contrast, an attacker is likely to have a specific target in mind, and may have
some knowledge of the form of the leakage and/or the capability to choose inputs in a tailored
way, all of which could considerably refine the data efficiency of an attack. Freed from the
burden of comprehensive testing they might also be more willing to redirect resources towards
more computationally costly methods such as mutual information (although this is not typically
considered to be more data efficient, at least in most relevant scenarios [39]).

– It is relatively straightforward to derive power/sample size formulae for the t-test under the nor-
mality assumption (see Appendix B). However, since statistical power analysis requires charac-
terising the test statistic distributions under both the null and a specific alternative hypothesis,
it is non-straightforward in most other cases. Sample size and power derivations for quantities
such as mutual information typically rely on methods such as randomised resampling [32], which



can provide useful (and hopefully transferable) insights, but do not permit the type of quick
and cheap preliminary computations that incorporate neatly into automated procedures.

– As hinted in Section 3, the preprocessing steps by which higher order and/or joint data de-
pendencies are ‘shifted’ into first order moments to be exploited by t-tests (and potentially
correlation tests and F -tests) cause the assumptions underlying those tests to be considerably
violated.(See Appendix A for some indicative analysis of this). This compromises the validity
of any formal statistical inferences made, and therefore undermines the types of power analysis-
based arguments we are relying on if we want to make a case for security out of the failure of
a test to detect leakage. For example, t-tests are understood to be fairly level -robust to small
deviations from assumptions (that is, Type I error rates are not hugely affected) and, even in
the case of large deviations of the types produced by high order preprocessing, the means tend
towards normality under the Central Limit Theorem (CLT) – a fact that has been used to
justify the continued use of the TVLA t-test approach [16]. However, a) the rate of this con-
vergence varies considerably depending on the underlying distributions (by the Berry–Esseen
theorem for independent observations this is somewhat determined by the degree of skewness);
and b) power and sample size computations become meaningless in both settings, even after
convergence (as they still derive from the false assumption that the processed observations are
themselves normal, not just the mean), so that nothing can be stated conclusively in the case
that such a test fails to detect leakage.

5 Shortcoming 2: Unreliability of Positive Outcomes

Statistical hypothesis testing is generally introduced (as it is above) under the implicit assumption
that a single null/alternative pair is up for consideration. Unfortunately, the conclusions of the test
are no longer formally supported in the case that multiple tests are performed without modification
as part of the same experiment. This is because each test has, by design, a probability α of falsely
rejecting the null hypothesis when it is in fact true. Hence, the probability of rejecting at least one
true null hypothesis across all N tests (that is, the overall false positive rate as opposed to the
per test rate) might be as high as αoverall = 1 − (1 − αper−test)N if those tests are independent.
(Otherwise, the rate will be lower but will depend on the form of the dependencies).

Most evaluation procedures operate on trace measurements acquired during the execution of
a code sequence. These can be many thousands of data points in length with no (or only rough)
a priori knowledge of where a particular leak is likely to manifest. Hence a test for a particular
vulnerability is typically repeated multiple times. Ding et al. [13] point out that the detection
threshold of 4.5 recommended by the TVLA framework [22], which implies a per-test false positive
rate of ≈ 0.00001, corresponds to an overall rate of 0.0068 for 1,000 independent tests, 0.0661 for
10,000 tests, 0.4957 for 100,000 tests, and 0.9987 for 1,000,000. (Note, though, that the serial nature
of trace acquisitions mean that the tests are unlikely to be independent in practice, so the true
overall rates could be lower).

Thus, unless adjustments are made for trace length, a device producing long traces is more
likely to be assessed as vulnerable than an equally secure device producing short traces, or where
more a priori information is available to help select only the relevant part of the traces. Clearly,
this is undesirable in a certification procedure. In Section 5.1 we explain some available options
for conducting multiple tests and in Section 5.2 we explore the challenges of applying these in a
leakage detection setting.



5.1 Multiplicity Corrections

There are two main approaches to correcting for multiple tests: controlling the family-wise error
rate (FWER) and controlling the false discovery rate (FDR). Both of these were discussed and
evaluated in the context of leakage detection by Mather et al. [32].

FWER-based methods work by adjusting the per-test significance criteria in such a way that
the overall rate of Type I errors is no greater than the desired α level. For example:

– The Bonferroni correction [14] which simply derives a per-test significance level by dividing the
desired overall significance level by the number of tests m, i.e. αper−test = α

m . This controls
the FWER for the ‘worst case’ scenario that the tests are independent, and is conservative
otherwise.

– The Šidák correction [58] is able to be slightly less stringent by explicitly assuming indepen-

dence, and that all null hypotheses are false, and setting αper−test = 1 − (1 − α)
1
m . (These

assumptions are not really appropriate in a leakage evaluation setting).

– The Holm procedure [25] gains power over the Bonferroni correction by adjusting the significance
levels of each individual test in a ‘step up’ manner: having ordered the tests according to p-value
(smallest to largest), it sets a criteria of αi = α

m−i+1 for the ith test.

It should be clear that any such downward adjustment to the per-test Type I error rates (in
order to avoid concluding that there is a leak when there isn’t) inevitably increases the rate of Type
II errors (the probability of missing a leak which is present). Erring on the “safe side” with respect
to the former criterion may not be at all “safe” in terms of the cost to the latter. The relative
undesirability of the two error types depends on the goals of the evaluation and must be carefully
considered. In particular, the Bonferroni correction may be simplest to implement and to analyse
(by substituting αper−test for α in the power analysis formulae) but as the most conservative option
it is the most costly in terms of the amount of additional data required to retain adequate power.

FDR-based methods take a slightly different approach which is more relaxed with respect to
Type I errors and subsequently less prone to Type II errors. Rather than minimise the probability of
any false positives they instead seek to bound the proportion of total ‘discoveries’ (i.e. rejected nulls)
which are false positives. Mather et al. [32] reasoned that this was well-suited to the task of leakage
detection, where individual false positives can be tolerated as long as some of the discovered points
are truly ‘leaky’. Of course, this may be more or less the case depending on the particular evaluation
goal, which should be borne in mind when reporting outcomes. The main FDR-controlling method,
and the one that we will consider in the following, is the Benjamini–Hochberg procedure, which
(like the Holm correction) operates in a ‘step up’ manner as follows:

1. For the ordered (small to large) p-values p(1), . . . , p(m), find the largest k such that p(k) ≤ k
mα.

2. Reject the null hypothesis for all tests i = 1, . . . , k.

A recent proposal [13] takes an alternative third way, whereby the decision to collectively reject
or not reject a set of null hypotheses is based on the distribution of the p-values output by the
tests performed separately. Their method appears to be more powerful than tests using the Šidák
correction, but the authors did not provide a comparison with tests controlling for the FDR.
Moreover, the test is unable to conclude which of the null hypotheses are untrue, just that at least
one of them is, so does not identify the location of the leakage. It also relies on the assumption
that the tests are independent, which we would like to avoid. (As such, we omit this method from
further analysis and focus only on the three FWER-based and one FDR-based methods described
above).



In addition to the inevitable loss of power associated with all of the above adjustments, a sub-
stantial obstacle to their use in an evaluation setting is the difficulty of analysing (and controlling)
the power which, as discussed in Section 4, is essential if we want to draw meaningful and compa-
rable conclusions from test outcomes. In cases where a single per-test significance level αper−test is
derived (e.g. Bonferroni and Šidák), this can simply be substituted into the power analysis formulae
to gain the per-test power. However, consensus is lacking when it comes to performing equivalent
computations for the FDR-controlling procedures deemed more suitable for evaluation (compare,
e.g., [5,17,30,38,56]). Moreover, multiple testing scenarios give rise to other notions than per-test
power, the computation of which require a priori knowledge of the number of true effects and the
correlation structure of the tests, which are typically unknown and can only be guessed at. (This is
regardless of whether correlation is actively taken into account by the adjustment procedure, which
isn’t straightforward to achieve and is outside the scope of this current study). Porter [37] presents
some of these different notions and describes a way of approximating them by simulating test statis-
tics under certain assumptions about the underlying processes producing them. We discuss these
in Section 5.4 after first looking at the impact of multiplicity adjustments in a leakage evaluation
setting (Section 5.2) and comparing this with the TVLA’s more ad-hoc solution for minimising
false positives (Section 5.3).

5.2 Multiplicity Corrections for Leakage Detection

We consider the ARM board implementation of AES (partially) depicted in Figure 1. The top
left corner of Figure 2 shows the mean of the power consumption (which has been mean-centred
and reduced to one point per clock cycle). It is quite easy to visualise the rounds, so an analyst
might choose to run a detection test targeting the output of the first S-box in the first round only
(see bottom row of Figure 2). This implies much shorter traces and therefore fewer tests. We are
interested in the consequences of this truncation for the error rates of the evaluation. The RHS of
Figure 2 depicts the t-statistics when the data are partitioned by the least significant bit (LSB)
of the first S-box output. Orange dots denote points that are significant at a 5% level without
correction; yellow circles are those which remain significant after a simple Bonferroni correction;
purple crosses are those significant under the Benjamini–Hochberg (BH) procedure for controlling
the FDR. (The Šidák and Holm corrected tests closely align with the Bonferroni, and have been
omitted to avoid cluttering the figure). It is clear that the FDR-controlling procedure retains more of
the detected points than the FWER-controlling one. However, some of the points flagged as leakage
look intuitively questionable given our a priori expectations (in particular, in the top figure the
BH-adjusted test concludes that a trace point in a later round depends on the first round S-box).

Green dots (which cover over but always coincide with an orange dot) depict points that are
significant at the TVLA-implied level of α = 0.00001. In this instance, this set coincides exactly
with the 20 points found significant in the truncated traces at an αoverall = 0.05 level using the
Bonferroni correction (one of which loses significance under Bonferroni when the full trace is taken
into consideration). In fact, it is reasonable to suppose (though the original paper does not make
this explicit) that the TVLA threshold criteria has been chosen with multiple comparisons in mind:
for a trace length of 5,000, setting αper−test = 0.00001 is equivalent to setting αoverall = 0.05 and
making the Bonferroni correction. This suggests that the stringent TVLA criteria should perhaps
be considered an alternative to multiplicity corrections, rather than applied in addition to them.
Whether or not it is a good alternative is another question: recall that fairness requires being able to
analyse and control the error rates from one test to another, which is better achieved by beginning
with a more liberal significance level and adjusting according to the actual length of a given trace
set.



Recall that the attack-based analysis in Section 4.2 found 30 ‘exploitable’ S-box 1, bit 1 effects
in the (truncated) dataset. By comparison, this hypothesis test-based analysis finds 113 when no
correction is made, 20 when the FWER-controlling correction is made, and 34 when the FDR-
controlling correction is made. There is no objective way of knowing which is closest to the ‘true’
set of leaky points as the attacks could also include false positives; however, it seems reasonable to
suppose that there are at least 20 and possibly as many as 30 effects of size 0.04 or larger.
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Fig. 2. Mean leakage and t-statistics for the full AES algorithm and the first round. Orange dots denote t-tests that
are significant at the 0.05 level without adjustment; yellow circles denote t-tests that are significant at the 0.05 level
with Bonferroni correction; purple crosses denote t-tests that are significant at the 0.05 level under the Benjamini–
Hochberg procedure for controlling the FDR; green dots denote t-tests that are significant at the 0.00001 level without
adjustment.

Figure 3 shows the number of detections as the sample size increases, for both the full and the
truncated traces. As well as testing for the LSB of the S-box output, we also test for a random
partition to show how the test behaves for a leak which isn’t present. The top row relates to a
significance level of 0.05, typical in the wider statistical literature. The left panel shows that the
number of false detections of ‘no leak’ in the full traces is about level with the number of true
plus false detections of the LSB leak when no adjustment is made for multiplicity. In the truncated
traces there is a clearer margin between these two numbers – a difference of 45, which we might be
tempted to read as a ball-park indicator of the number of true positives. Either way, the comparison
suggests that the majority of the detected leaks are false.

Once adjustments are made (top middle and right panels) the detection rates go down consider-
ably for both the full and the truncated traces and are still increasing as the sample size reaches the
maximum available. Meanwhile, ‘detections’ in the no-leak scenarios are almost entirely eradicated.
We can therefore be relatively confident that the discovered leaks are real, but less confident that we
have found them all. Indeed, the fact that the FDR-controlling procedure finds considerably more
vulnerabilities in the truncated dataset than in the full one, and more than the FWER-controlling
procedure finds in either, demonstrates the superior power of that approach but also its sensitivity
to the number of tests (for a fixed number of false nulls), which may be undesirable.

The bottom row relates to a significance level of 0.00001, chosen to correspond approximately
to the recommended TVLA threshold. We can see from the left panel that this extremely small



choice effectively takes multiple comparisons into account without adjustment, and (in this case)
without discernible penalty for the lack of flexibility with respect to trace length. The detection
rates for the full and truncated traces now track each other perfectly, and attain the same maximum
number of detections (20) observed for an adjusted overall significance level of 0.05. ‘Detections’ in
the no-leak case are again nearly entirely eradicated. When corrections are applied to the already
very small significance level (bottom middle and right) we lose around a quarter of the (believed
true) detections. It is interesting to note that, under these stricter significance criteria, the FDR-
controlling procedure performs comparably to the FWER-controlling one.

At least in our example scenario, the TVLA recommendation (without further adjustment)
turns out to be a reasonable choice for controlling error rates, relative to a standard correction
procedure. However, the original TVLA paper also proposes another measure for avoiding false
positives, which we look at next.
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Fig. 3. Number of (false and true) detections made as the sample size increases.

5.3 Experiment Repetition

An often-overlooked recommendation of the original TVLA paper is to repeat the leakage detection
on two independent samples (without adjusting the significance criteria), only retaining the points
that are detected in both instances. Of course, this supposes perfect alignment between the two
acquisitions. But practical challenges aside, this strategy of repetition can be very effective in
reducing the risk of false positives.

If the per-test significance level is αper−test, then the probability of observing at least one false
positive might be as large as αoverall = 1− (1− αper−test)N (where N is the number of points in a
trace) if the tests are independent. The probability of observing at least one false positive in each
of a pair of independent experiments is then (1− (1−αper−test)N )2, or (1− (1−αper−test)N )× (1−
(1− αper−test/2)N ) if the direction of the effect is required to match (since this is fixed by the first
test and random differences in either direction are equally likely in the repeated step). However,



the probability of observing two false positives in the same position (and in the same direction) is

αrepeat = 1− (1− α2
per−test

2 )N , which grows much slower as N increases.
Figure 4 shows the implications of this in practice. When the per-test significance level is

controlled at 0.05, as per popular practice in the statistics literature, the probability of at least one
false detection in each experiment is not much reduced relative to that of the single experiment
(under a simplifying assumption of independence). However, it takes about 40 times as many traces
to falsely observe a leakage at the same index with near certainty (although the probability of at
least one coinciding detection is over a half once the length of the trace reaches 600). By contrast,
under the original TVLA recommendations (which imply αper−test ≈ 0.00001), the probability of
a coinciding detection is close to zero even for traces that are millions of points long. (Only once
the number of points is on the order of 1010 do coinciding false detections become non-negligibly
probable).
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Fig. 4. Overall probability of a false positive as the length of the trace increases, for two different per-test significance
levels.

At first glance, this may seem like ‘problem solved’ but actually there is a substantial trade-off
with power that is not immediately obvious. The requirement to repeat the experiment effectively
halves the total maximum resources (sample size, computational effort) obtainable to perform the
evaluation (that is, because one needs to collect traces and perform the computations twice). On
top of that, the stricter criteria imposed by the double-checking procedure of course impacts on
true positives too: if the individual power to detect a true leak (of a particular magnitude) is 1− β
then the probability of detecting it twice is (1− β)2 < 1− β.

The blue and red lines in Figure 5 compare the power for a single experiment with the power
for a repeat experiment for two values of α and a fixed effect size as the total sample size increases.
That is, in the case of the repeat experiment the two separate acquisitions add up to the sample
size for a single experiment. The impact on the power for a given sample size is substantial. For
a significance level of 0.05, a total sample size sufficient to achieve a power of 80% (≈ 20, 000) if
one test outcome suffices has only 26% probability of identifying a true positive in both of two
tests when it is required to confirm the results with the same overall amount of resources. For a
significance level of 0.00001 (requiring ≈ 70, 000 in the single experiment case), the probability
drops even lower, to around 6%. Over twice as many traces total are needed to achieve the same
power when the experiment is repeated. For comparison, we also show the power attained when
the Bonferroni correction is applied to the traces (see yellow, green and purple lines).4 When the
overall significance level is large (0.05) the power of the Bonferroni strategy is close to that of the
repeated experiment for a short (100 point) trace; for longer traces it drops below it. For the very

4 The formulae do not readily extend to FDR controlling procedures, but in this context it is anyway more informative
to compare with the most conservative of the tested options.



small significance level, the traces have to be much longer (on the order of 100,000,000) before the
repeated experiment becomes the more powerful option.

0 2 4 6 8 10 12

Total sample size #104

0

0.2

0.4

0.6

0.8

1

In
di

vi
du

al
 p

ow
er

Power when d = 0.04 and ,  = 0.05

Single experiment
Repeat experiment
Bonferroni (N = 100)
Bonferroni (N = 100000)
Bonferroni (N = 100000000)

0 0.5 1 1.5 2 2.5 3

Total sample size #105

0

0.2

0.4

0.6

0.8

1

In
di

vi
du

al
 p

ow
er

Power when d = 0.04 and ,  = 1e-05

Single experiment
Repeat experiment
Bonferroni (N = 100)
Bonferroni (N = 100000)
Bonferroni (N = 100000000)

Fig. 5. Power to detect a standardised effect of size 0.04, for two different per-test significance levels, using a fixed
total quantity of traces.

So far, we have only considered the ways that measures to avoid the inflation of false positive
rates when multiple tests are performed impact on the individual power of each test to detect a
real leak (of a certain minimum effect size) if present. In the next section, we explore the idea that
multiple testing also gives rise to alternative notions of power that, depending on the goal of an
evaluation, may in fact be more relevant.

5.4 Different Notions of Power

Just as multiple tests raise the notion of an ‘overall’ Type I error which is not equal to the per-test
error, so we need to consider the ‘overall’ Type II error, and what precisely we mean by that. We
have seen above that multiplicity corrections reduce the per-test power – the probability of detecting
a true effect wherever one exists. Porter [37] describes this as ‘individual’ power, and contrasts it
with the notion of ‘r-minimal’ power5 – the probability of detecting at least r true effects. The
relevant notion varies depending on the goal of the leakage evaluation: mapping the leakage or
certifying the security (i.e. by finding no leaks having tested thoroughly) requires conserving the
individual power of each test, while controlling the 1-minimal power may well be sufficient for
certifying leakage or finding an attack, when what is important is that some leaks are found, not
that all leaks are found.

In the case that the tests are independent, the probability of detecting all true effects (the
‘complete power’) is the product of the individual powers. (In a leakage scenario, we don’t really
expect independence so the product is likely to be conservatively low). The r-minimal power is
naturally greater than or equal to this quantity. In particular, the 1-minimal power can actually
be higher in a multiple testing scenario than in a single test – as long as the true number of false
positives is greater than 1, each such test represents an additional opportunity to find an effect.
So the situation for leakage detection, at least in the case that it is sufficient to simply show the
existence of leakage, may not be as disheartening as the impact of multiplicity adjustments on
individual power would imply.

We take the scenario observed in Sections 4.2 and 5.2 where there appeared to be around 30 true
leakage points in an (AES software implementation) trace of length 12,000, and we assume that
the TVLA repeat experiment method is used to guard against false positives. Figure 6 presents the
individual power, the power to detect all 30 leaks (under a simplifying independence assumption),

5 Porter uses the terminology d-minimal; we use r instead of d to avoid confusion with Cohen’s d.



and the r-minimal power for r = 1 and r = 10. For α = 0.05 the sample size required to map leakage
(i.e. find all leakage points, with a probability of at least 95%) is around 12 times the sample size
required to certify vulnerability (i.e. conclude that there is leakage with the same probability). For
α = 0.00001 the sample sizes are all considerably larger, but the number of traces to map leakage
is only around 4 times the number needed to certify leakage.
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Fig. 6. Different notions of power to detect a standardised effect of size 0.04, for two different per-test significance
levels, where the TVLA recommendations are followed. As per Sections 4.2 and 5.2 we suppose that there are 30
‘true’ effects in a trace set of length 12,000.

Porter suggests a way to approximate the different types of power by simulating large numbers
of test statistics under a suitable alternative hypothesis, performing the multiplicity adjustments
and simply counting the proportion of instances where 1, r, or all the false nulls are rejected (for
the 1-, r-minimal and complete powers) as well as the total proportion of false nulls rejected (for
the average individual power) [37]. The considerable limitation of this approach is that it requires
a lot of information about the leakage scenario, which we do not typically have in a real evaluation.
However, based on the dataset analysed in Sections 4.2 and 5.2 we construct a realistic set of null
and alternative hypotheses and show how the different notions of power evolve as the sample size
increases.

Suppose the t-statistics corresponding to a trace set of length 1,400 have the same correlation
structure as the observed ARM traces, characterised by the covariance matrix Σ. The null hypoth-
esis is that none of the points leak; the alternative is that there are 30 effects of standardised size
0.04, located as per the analysis presented in Figure 1, where T denotes the set of indices of suc-
cessful attacks. Under the null hypothesis, for a large enough trace set (which we need anyway to
detect such a small effect) the joint distribution of the t-statistics under the alternative hypothesis
can be approximated by a multivariate normal with mean µ = [µ1, . . . , µ1400] such that µt = 0.04
for all t ∈ T and µt = 0 for all t /∈ T , and covariance matrix Σ. By drawing repeatedly from
this distribution and noting which of the (individual) tests, with and without correction, reject the
null hypothesis and which do not, we can estimate the power and the error rates for tests in this
particular scenario.

We performed the analysis for two different significance levels (α = 0.05 and αTV LA = 0.00001)
and six different methods: no correction, Bonferroni, Šidák and Holm corrections to control the
FWER, the Benjamini–Hochberg procedure to control the FDR, and the experiment repetition (for
a given overall sample size) as per TVLA recommendations. Figure 7 shows what we consider to be
the most relevant results, based on 5,000 random draws from the distribution under the alternative
hypothesis. (In particular, the three FWER-controlling corrections perform near-identically, and
so we only present a single representative, whilst previous analysis has indicated that the TVLA
recommendations to use a very small αTV LA and repeat the experiment are best viewed as an



alternative to formal corrections rather than an additional measure). It is clear that the different
approaches have substantially different characteristics in practice.

– For a significance level of 0.05, it takes 2.5 times as many traces to achieve 95% average power
using the Bonferroni correction as it does using no correction at all. It takes less than twice as
many using the BH procedure. The TVLA significance level of 0.00001 is slightly lower than the
Bonferroni adjusted level when αoverall = 0.05, and has fractionally lower power accordingly.
Requiring the experiment to be repeated (at the TVLA-recommended significance level) more
than doubles the total sample size of that needed to achieve 95% power in a single experiment.

– For a significance level of 0.05, it takes nearly twice as many traces to achieve 95% complete
power as it does to achieve 95% average power using no correction. It takes twice as many again
using Bonferroni, but only one and half times as many using the BH procedure. The TVLA
significance criteria again has a complete power slightly below the Bonferroni correction; with
the repetition step the complete power remains negligibly close to zero for traces of length below
180,000.

– For a significance level of 0.05 it takes just over 3,500 traces to achieve 95% 1-minimal power
using no correction. (This is below the presented range and was computed in a separate ex-
periment). Interestingly, the two correction procedures closely coincide for this type of power,
each requiring about 9 times as many traces as the uncorrected tests to achieve 95% 1-minimal
power. The repetition step requires over twice as many traces as the unadjusted test at the
TVLA-recommended significance level.

– When no correction is used with a significance level of 0.05 (the blue line) there are false positives
throughout the tested range, as we would expect. (We anticipate on average one false positive
in every 20 tests). By contrast, with a TVLA-inspired significance level of 0.00001, the rate of
false positives stays close to zero (and naturally stays as such when the experiment is required
to be repeated). Bonferroni controls overall false positives at the α level, by design, but the BH
procedure allows some. The rate increases as the sample size increases and seems to roughly
stabilise at about 0.75 for 50,000 or more traces.

– The false discovery rate with no corrections is again close to zero under the TVLA criteria,
but high for a significance level of 0.05, decreasing as the sample size increases and seeming to
stabilise at around 0.75 for sample sizes of 25,000 or more. The BH procedure, as we would
hope, successfully controls the false discovery rate at the α level. The Bonferroni correction,
which is stricter about avoiding false positives altogether, has an even lower false discovery rate.

We repeated the experiment with a larger standardised effect (0.2) and observed very consistent

outcomes, with the required sample sizes reduced to 25 (=
(

0.2
0.04

)2
) times smaller across the board.

We also repeated the experiment assuming independence between the tests, and found that
it made very little difference to either error rate. This is not to say that taking the dependence
structure into account in the tests themselves would not improve the performance of the tests, but
it does imply that (at least in this instance) a power analysis which assumes independence need
not give a misleading account of the capabilities of the chosen tests.

5.5 Discussion

– We have seen that the strict TVLA threshold already corresponds loosely to a more liberal
significance criterion coupled with a (conservative) multiplicity correction, so that it does not
seem advisable to apply a correction on top of the TVLA recommendations. That said, for
realistic acquisition lengths, even conservative multiplicity adjustments retain more power than
the recommendation to repeat a test, so that actually, unless an evaluator is handling traces of
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length on the order of 100,000,000, further corrections remain preferable to dividing resources
between two independent experiments.

– More sophisticated methods for controlling overall errors are harder to analyse with respect to
power and sample size, at least without considerable a priori knowledge of the joint distribu-
tion of the trace measurements. This prompts the suggestion that, for the same data complexity
implied by test repetition, a two-stage exploratory/confirmatory analysis could instead be per-
formed. The first acquisition could be used to learn about the covariance structure of the traces
and the possible locations, sources and nature of leaks. This information could then be used
to perform a pared-down confirmatory analysis, in which fewer and more carefully-formulated
hypotheses are tested (so reducing the inflation of Type I errors) and insights about the data
are used to make more tailored adjustments and to analyse them accordingly. We leave this as
an avenue for further work.

6 Shortcoming 3: Impossibility of Achieving Exhaustive Coverage

As discussed previously, ideally an evaluator would like to rule out any possible sensitive dependency
– of all distributional forms, for all points and tuples of points jointly, via all target functions and
intermediate states – before judging a target device secure. In practice, no fully arbitrary single
test has been proposed to this end. It is therefore important to understand the limits of each
individual test, the best way of combining tests and organising experiments in order to cover as
many eventualities as possible, and the limitations that remain even after such a best effort has
been made. (It is trivial to note that only vulnerabilities that are tested for have a chance of being
found).

6.1 Code Coverage

Coverage is a term from code testing referring (loosely speaking) to the extent to which everything
that could be tested has been tested [33]. Typical metrics in this setting include code coverage (have
all lines of code been touched by the test procedure?), function coverage (has each function been



reached?), and branch coverage (have all branches been executed?) [1]. In a hardware setting one
might alternatively (or additionally) test for toggle coverage (have all binary nodes in the circuit
been switched?) [54]. The appropriate choice of coverage metric can also depend on whether one
assumes white- or black-box testing. The given examples all stem from white-box testing as they
evidently assume access to the code. In black-box testing, lacking knowledge of and access to the
source code, coverage tends to be defined in functional terms.

6.2 Side-Channel Coverage

In the context of side-channel evaluation there are different concepts of coverage that we might
consider:

– Have all possible intermediates been tested? (Including via non-specific tests that aim to cover
a class of intermediates all at once).

– Have all possible leakage forms been taken into account? For example, some circuits might leak
in function of the intermediate values; some in function of the transitions between certain inter-
mediate values (with the combinations not necessarily known a priori); some in combination
of both. Some tests only capture differences in the means, while in reality the leakage might be
present in higher order moments or best detected by comparing distributions.

– Have all possible locations in the trace been tested (with each intermediate and leakage form
in mind)? This includes not just univariate points but tuples of trace points in the case where
higher order leakage of protected intermediates is of concern. (In the case where a DUT has a
claimed order of security, it may not be required to test for effects above that order).

– What proportion of the input space has been sampled? I.e. a single fixed-versus-random test
might give very non-representative results. Or some keys might be more or less leaky than
others, so the typical DPA-inspired approach which assumes a fixed key might be misleading.
Moreover, depending on the attacker’s capabilities, chosen combinations of inputs might produce
more pronounced (and therefore more easily exploited) leakages for a given fixed sample size.
With a total possible input space of, e.g. (in the case of AES-128) 2128 × 2128 = 2256 (key,
plaintext) pairs, and all the possible distributions on those pairs, it is unavoidable that one
can only test a tiny fraction. It is important to be able to articulate the assumptions under
which the test outcomes can be supposed to generalise to the wider population. (E.g., that each
byte of the total state leaks similarly independently of its position, and/or that the leakage of
pairs after key mixing has happened depends only on the output of the mixing function (the
XOR between them in the case of AES; see the ‘Equal Images under different Subkeys (EIS)’
assumption [44])).

– Statistical power analysis as explained in Section 4.1 can itself be thought of as a matter of
coverage: has the population been adequately sampled to detect the types of effects that are
interesting if present?

– Have all possible side-channels been tested?! With most of the literature typically focused on
power (and sometimes EM radiation [21,40]) it is easy to forget that other physically observable
characteristics (timing [26], temperature [6], light [19,48] and sound [2,47] emissions) also exist
and have been shown to be vulnerable. Narrow focus on particular channels risks not only
overlooking other problems but maybe even creating them if the corrective measures taken lead
to unintended side-effects in untested spaces (for example, asynchronous logic has been found
to flatten out power leakage but at the same time to increase EM exploitability [20]).

The first three of these considerations imply huge numbers of different tests as part of the same
evaluation. This further exacerbates the multiplicity problems addressed in Section 5.1. Where



corrections have been made they have typically related to a single test as performed on multiple
trace points. However, it is also the case that performing lots of different tests (i.e. with different
hypothesis pairs) on those same trace points also inflates the overall probability of false positives.

The priorities of coverage also incentivise the use of more ‘comprehensive’ methodologies such
as CMI. An added advantage of limiting the number of tests needing to be performed is that it helps
to mitigate for the multiplicity problem (i.e. it reduces the risk of false positives). But a downside
is an increased difficulty of interpreting negative results, as CMI presents considerable challenges in
terms of statistical formalism relative to the far simpler t-test (power analysis can only be achieved
experimentally as far as we are aware [32]).

Another downside of CMI and other non-specific tests is that they do not provide any ultimate
indication of exploitability. For example, Diehl et al. [12] observe an implementation which fails
against a fixed-versus-random t-test in such a way that is demonstrably not revealing of any sensitive
information.

Example of Inadequate Coverage Our example is based on a ‘toggle count’ power model,
derived by counting the number of bit flips in a hardware implementation of the AES SubBytes
operation. It has been used in the literature before [31], and is a good representative of potentially
highly-nonlinear functions which nonetheless exhibit some amount of first order leakage [32].

We simulate a leakage scenario in which the twice-masked output of AES SubBytes leaks in
parallel with the two masks, with all intermediates taking this functional form. We model the noise
as Gaussian such that the signal-to-noise ratio relative to the total exploitable variance arising from
all three intermediates is 10. (This is high in order to keep the experimental effort within reasonable
bounds, but it is fundamental to statistical power analysis (see Section 4.1) that t-test outcomes
scale in a well-understood manner as the standardised effect size changes). Figure 8 presents the
detection rates of tests targeting the first and second bits of the S-box output as the order of the
test and the number of traces increases.

The top left panel on the left hand side confirms our expectation that the first two moments do
not leak in either case. The top right shows that bit 2 is detectable within a million traces, but that
the most effective moment to target is the 6th one, rather than the 3rd one as we might expect.
Bit 1 is not detectable within this range, either targeting the 3rd or any other moment (see also
the bottom left panel). However, increasing the sample size ten-fold confirms that tests targeting
the higher moments (especially the 8th one) are on an upward trajectory even if the detection rate
remains low within the tested region.

This experiment illustrates the sensitivity of the testing procedure to the choice of target and the
configuration of the test. It is plain that the S-box output under this leakage scenario is vulnerable,
but the vulnerability could easily be missed if only the first bit were tested. Moreover, the ‘most
leaky’ moment is not in this case the one we would expect given the known masking order, implying
that leakage might be missed if an evaluator stopped after testing at the order of one greater than
the number of masks, or at least that more data and work would be required than for a fortuitously
chosen higher order test.

6.3 Discussion

The challenge of achieving coverage highlights the mutually detrimental impact of gains along one
dimension of evaluation, due to the inflation of Type I errors when so many tests are performed,
the degradation of power when multiplicity corrections are subsequently applied, and the increased
difficulty of statistical formalism. Some types of leakage (e.g. higher order data dependencies)
require larger datasets to detect than others, while jointly leaking tuples can only be searched with



substantial increase in computational effort (exponential, as the size of the tuple increases). This
again implies the need for a revised approach.

7 Leakage Detection as a Multivariate Problem

Up until now we have been treating the tests against different points in a trace as separate and (for
the most part) independent. However, methods exist to test a single multivariate null hypothesis via
a single test statistic that takes into account the dependency structure of the sample data. Recent
work by Bronchain et al. [34] proposes the use of Hotelling’s T -squared test to decide whether or
not to reject the hypothesis that none of the points in a trace depend on the sensitive data versus
the hypothesis that at least one of them does.

The T 2-test is a multivariate extension of Student’s t-test which compares vectors of means
between samples of joint (i.e. vector) random variables A and B.

T 2 =
nAnB
nA + nB

(a− b)′Σ̂−1(a− b)

nA + nB − p− 1

(nA + nB − 2)p
T 2 ∼ Fp,nA+nB−p−1,

where p is the dimension of the cluster, nA and nB are the sizes of the samples from the two
distributions, Σ̂ is the pooled covariance matrix estimate, and Fp,nA+nB−p−1 is the CDF of the
F -distribution with degrees of freedom (p, nA+nB−p−1). In the univariate case, T 2 is the square
of the t statistic and the test is equivalent.

It is useful to introduce the Mahalanobis distance – the multivariate extension of Cohen’s d,

defined as D =
√

dΣ̂−1d′, where d = A−B is the vector of mean differences.
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Fig. 8. Left: Comparison between t-tests against the first and second bits of the masked S-box output leaking in
parallel with the two uniform random masks according to the ‘toggle count’ leakage model of Mangard et al. [31].
Right: Evolution of the bit 1 t-tests as the sample size increases further.



For the balanced case nA = nB = n
2 the power of the T 2 test to detect an effect of size

D = Dalt > 0 (relative to a null distribution of d = 0⇒ D = 0) can be computed as follows:

1− β = 1− Fp,n−p−1;λ
(
n− p− 1

(n− 2)p
× (n− 2)p

n− p− 1
F−1p,n−1−p(1− α)

)
(9)

where λ = n
4D

2
alt is the non-centrality parameter of the F distribution under the specific alternative

hypothesis. (See Appendix C for details).

Note that the distributions involved in this expression depend on n, so that it is not possible to
rearrange it into a neat analytical formula for the sample size in function of the power and effect
size. However, sample sizes for scenarios of interest can be obtained numerically by computing the
power for increasing values of n and identifying the threshold at which it attains the desired level.
When p = 1 this equates to exact expression for the power of the t-test, although as we have seen
above, in the univariate case it is convenient to take advantage of the normal approximation which
enables computing the sample size directly.

Hotelling’s T 2 as a tool for leakage detection can be seen to correspond far more directly than
the t-test with goals 1 and 2, and with the prospect of bypassing all the problems presented by
multiple comparisons. We note, though, that it is not a useful solution for either of goals 3 or 4, as
it does not conclude on the location of the leakage without further analysis.

However, even for goals 1 and 2 the strategy is not without its limitations. Bronchain et al. [34]
find that:

– When leaky points are dense in the traces, a multivariate approach detects with fewer traces
than the t-test, and this advantage grows with the length of the traces. However, as leakage
becomes sparser (for example, in protected implementations, or in the case where specific inter-
mediate functions are targeted as opposed to fixed-versus-random or fixed-versus-fixed leakages)
the multivariate approaches lose power until the t-test becomes the more efficient option.

– Statistical power analysis of the tests (in order to provide guarantees about the outcomes of an
evaluation) requires a priori knowledge of the density, as well as the effect sizes and covariance
structure.

– When leakage points are independent, the test statistic for the multivariate approach reduces
to the sum of the squared individual t-statistics, simplifying the analysis. However, when they
are not independent, the t-test is overly conservative w.r.t. false positives (thereby increasing
the data complexity), the simplified multivariate approach leads to inflated false positives, and
the proper Hotelling’s test often cannot be implemented due to the non-invertibility of the high
dimensional covariance matrices.

The authors suggest to reduce the sparsity as much as possible by dimensionality reduction such
as peak extraction, and (if computationally feasible) to break up the traces into manageable chunks
to be tested with a series of T 2 tests adjusting αper−test accordingly (which is more conservative
than a single T 2 test would be, but still less so than a higher-dimensional series of t-tests with a
similar but more punishing adjustment).

We propose a methodology to build on this approach by attempting to cluster trace points
into ‘similarly leaking’ groups (instead of equal sized blocks of adjacent points) before applying
the T 2 tests. Our rationale is that implementations (particularly in software) comprise sequences
of related operations, with values often recurring as the inputs or outputs to several instructions.
It is therefore natural to suppose that power measurements at different points in a trace will have
shared characteristics, such as proportional data-dependent leakage. Depending on the quality (i.e.
the within group similarity and between group dissimilarity) of the cluster arrangement, it might be



expected that one can, in this way, (a) reduce the number of (T 2) tests to be performed relative to
the t-test approach, thereby reducing the costs entailed by multiplicity corrections; and (b) minimise
the dependency between the tests, so that simple corrections suffice and statistical power analysis
can be performed.

In the remainder of this section, we introduce the methodology, present some experimental
results, and reason about the power (and the challenges of assessing the power) of our approach
relative to that of the standard univariate approach with multiplicity adjustments.

7.1 Detecting Leaky Clusters

Clustering is an unsupervised machine learning process that seeks to group related variables in
multi-dimensional datasets. Imagine, for example, that we want to find points in a trace that
are strongly cross-correlated with each other. We could set a correlation threshold above which
points are considered ‘related’ – but this quickly gets more complicated than it sounds: e.g. what
happens if two points that are not sufficiently correlated with each other are both correlated with
a third point? This is essentially a hierarchical clustering problem; fortunately, algorithms exist to
(heuristically) solve these. Agglomerative clustering incrementally links close singletons and clusters
until all are grouped together; divisive clustering operates in the other direction, beginning with
the whole group and incrementally dividing until all are separated. A decision is then made – based
either on the desired number of clusters, or on some desired characteristic or quality metric – as to
which level in the resulting tree (called a ‘dendrogram’) to treat the groups as distinct.

Unfortunately, clustering may be systematic, but it’s far from objective. The resulting arrange-
ment is highly dependent on user-specified parameters such as the linkage criteria and the nature
and level of the threshold. The best parameters, and the outcomes they produce, differ from dataset
to dataset, and there is no guarantee of arriving at ‘neat’ clusterings (rather than, e.g., a couple
of really big groups and a large number of singletons). Thus, whilst we believe that a clustering
approach is an informative avenue to explore, our theoretical analysis necessarily relies on simpli-
fying assumptions about the form of the clusters, while our experimental results should be taken
as indicative rather than conclusive.

Theoretical Performance We return to our running example scenario of the first round of
an AES software implementation with 1,400 points-long traces, of which 30 points leak sensitive
information. Note that this is much less dense than the fixed-versus-fixed leakage scenarios which
were the primary focus of [34]. There is no a priori way of ‘knowing’ the features of the cluster
arrangement necessary for performing statistical power analysis – the size and number of the found
groups, the density of leakage within the groups, and the effect sizes and covariance structures –
all of which could be envisaged in a number of ways.

For the purposes of this analysis we characterise the effects of interest via the Mahalanobis
distance D, thus avoiding the need to separately specify the covariance structure and density of
the discovered clusters and producing a standardised measure comparable to the d values used
for the univariate analysis. A downside of this approach is that it defies direct comparison with
the results of [34], which fixed the individual SNR of the points and varied the covariances and
densities. However, the covariance scenarios were devised under the assumption that the groups for
multivariate analysis were comprised of contiguous blocks of traces, which does not apply in the
case of clustered data. Many more assumptions would be required in order to adapt the assumptions
of [34] to our purposes; the use of a D value is easier to justify and more naturally generalises. We
suppose that the number of leaks to be detected approximately scales relative to the number of



clusters, so that 30 of the 1,400 individual points leak, 3 of the 140 size 10 clusters and 2 of the 70
size 20 clusters.

Figure 9 shows the individual, complete and 1-minimal power of T 2 tests against trace point
clusters with the same multivariate effect size D = 0.04, using the Bonferroni correction to control
the overall false positive rate.6 As the cluster size increases while D stays the same, the power to
detect a leaky cluster goes down, in spite of the decreasing cost of multiplicity adjustments when
fewer tests are performed. The concentration of false nulls in fewer tests means that the complete
power can actually be higher for the cluster-based data than the raw traces, but for the same
reason the 1-minimal power is considerably higher in the latter case. The individual, complete and
1-minimal power coincide in the case of a single Hotelling’s T 2 test against the full trace set, but
this power is very low due to the substantially increased dimension to effect size ratio.
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Fig. 9. Different types of power for Bonferroni-adjusted Hotelling’s tests as the size of the clusters varies; effect size
is fixed at D = 0.04.

Whether or not it makes sense to compare different sized clusters holding the effect size fixed
is open to question. If the quality of the clustering is good, the addition of more leaky points
potentially contributes to the multivariate effect size, but conversely the non-independence of the
grouped points potentially detracts from it (as you are no longer adding ‘new’ information, per se).
See Appendix D for further discussion, including an analysis of the covariance structures envisaged
in [34] (which however, we note, do not naturally correspond to the types of relationships we would
expect to see in clustered data).

Experimental Results We now test our idea against the real ARM traces, specifying that we
want the 1,400 trace points relating to the first round of an AES implementation to be grouped
into 200 clusters (Matlab’s hierarchical clustering procedure either takes the desired number of
clusters as input or a sensitivity threshold). We choose the correlation for our distance distance
(as motivated by our original intuition) and average linkage (as seeming to give the best results).
Table 7.1 summarises the cluster sizes produced by these parameters. As expected, the resulting
clusters are of different sizes, meaning the true power of the Hotelling’s tests will vary.

Figure 10 depicts the result of testing the individual points using Welch’s t-test (LHS) and the
clusters using Hotelling’s T 2-test (RHS) for leakage of the first bit of the first S-box output. The
dotted line on the LHS panel shows the threshold for the tests to be significant at a Bonferroni-
corrected overall level of αoverall = 0.05. It is the same for all trace points as the tests are all of
the same dimensionality. The red circles depict the 11 trace points that are clustered together with

6 Whilst it would be preferable to to extend the whole of Figure 7 to the T 2 test, this would require simulating
draws from a multivariate F -distribution, which is much harder than the multivariate normal approximations made
previously.



Mean Min 25th percentile Median 75th percentile 99th percentile Max # Singletons # Large % Large

7.0 1.0 4.0 6.0 10.0 19.0 21.0 10.0 2.0 2.9

Table 3. Summary of cluster structure (ARM data, 200 clusters).

the largest peak. Only five of these are above the threshold, implying that the cluster contains
a mixture of leaky and non-leaky points in spite of the within-group similarity aimed for by the
cluster procedure. Four of the points below the line are adjacent to the significant t-statistics,
suggesting that the clustering has captured some serial relationship as we might expect. Two are
completely separated, hinting towards the somewhat unreliable nature of clustering methods, which
are highly sensitive to the choice of parameters and component processes and do not necessarily
produce results that ‘make sense’. (Our experiments were not able to substantially improve upon the
arrangement we have chosen to report, while many attempts produced less coherent arrangements).

The threshold on the RHS panel decreases as the size of the cluster increases (cluster labels
have been allocated in ascending size order). The cluster with the largest T 2 peak is the one that
contains the individual point with the largest t value (though we do not advise attaching too much
meaning to the magnitude of a test statistic). But 9 other clusters also contain evidence of leakage
of the targeted bit, implicating all the individual points in each cluster, since the T 2 test
does not produce separate conclusions for each component point. The ‘leaky’ clusters are of varying
sizes.
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Fig. 10. Welch’s t and Hotelling’s T 2 tests for leakage of the first bit of the first S-box output, using the Bonferroni
correction to control the overall significance level at αoverall = 0.05.

We repeated the detection procedure for all 128 bits of the state after the first round SubBytes.
Figure 11 summarises the distribution of the leaky intermediates across the 200 clusters. All 16
bytes are detected (via one or more bit) in at least 20 clusters, one in as many as 41. Over 120
clusters are associated with at least one of the 16 bytes; most of them with more than one (two
clusters produce significant tests for as many as 11 of the 16 bytes). This suggests that our chosen
clustering method is limited in its success at concentrating the leakage into a small number of
clusters, and also at separating different intermediates into different clusters. It is quite possible
that other clustering methods would produce more consistent and clear-cut results. However, the
process of achieving an improved cluster arrangement becomes increasingly subjective, with the
‘optimal’ approach likely to vary substantially from one scenario to another.
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each cluster (RHS) over all first round S-box output bytes.

Another question we can ask is the extent to which the univariate and the multivariate ap-
proaches discover the same leaks. Table 4 cross-tabulates the points implicated by the t-test and
those implicated by the T 2 test (over all 128 bits of the state after the first round SubBytes). The
latter flags whole clusters as ‘leaky’ without any inbuilt facility to single out the individual points
responsible for the leakage. Hence all the points in a leaky cluster are considered individually vul-
nerable, resulting in a larger number of individual detections (14,566) than those discovered by the
t-test (3,894). If the clustering was more successful at separating leaky from non-leaky points then
this excess of discoveries would be reduced. Meanwhile, 297 of the trace points implicated by the
t-test are not detected via the T 2-test, suggesting perhaps that their influence is ‘diluted’ by their
association with non-leaky points. (That is, the Mahalanobis distance for the cluster is smaller
than the Cohen’s d effect size of some of the points within it). This implies that the cluster-based
approach cannot be relied upon to achieve the same coverage as the univariate approach, even while
producing a number of redundant discoveries via the flagging of whole clusters.

T 2-test
No detection Detection Total

t-
te

st No detection 164,337 10,969 175,306
Detection 297 3,597 3,894

Total 164,634 14,566

Table 4. Cross-tabulation of the leaks identified via the T 2-test (taking all points within a leaky cluster to leak all
detected intermediates) and those identified via the t-test.

We conclude that the appeal of the clustering approach – namely, the possibility to reduce the
number of tests to perform whilst simplifying the assumptions required for multiplicity corrections
– is, on the whole, outweighed by the difficulty of arriving at meaningful assumptions for the
purpose of a priori power analysis and the extreme sensitivity to parameter and algorithm choice
of the method in practice. That said, if more reliable clustering methods could be found, able to
consistently separate leaky from non-leaky points (without supervision), then perhaps it would be
an interesting avenue for further exploration.



8 Implications and Recommendations

We have shown that leakage detection tests, as typically applied, are limited in their capability
to conclusively answer the questions posed by an evaluator. It has been a recurring theme that
measures to help resolve one shortcoming typically serve to exacerbate another. Careful rigour is
needed in order to reason convincingly that any of the identified goals have been met; some are
more challenging to fulfil than others. We summarise the particular challenges and priorities for
each below.

8.1 Implications and Recommendations for Certifying Vulnerability

This is the easiest goal to achieve (which is not to say that it is easy). Most important is that the
test design provides assurances against false positives – the key challenge being that, for a given
per-test rate of false positives, the overall rate can get very large as the length of the evaluated
traces increases.

The TVLA recommendations (a very low implicit per-test false positive rate, plus the require-
ment to repeat the full test on a second independent sample) are very effective at minimising
the Type I error rate, but very costly in terms of the Type II error rate. Methods to control the
false discovery rate are unsuitable, as even just one false positive would compromise the goal of
certifying vulnerability. Clustering the data prior to detection would help reduce the number of
tests and increase the independence between them in the ideal case that the resulting clusters are
well-separated, but this requirement is difficult to achieve. Our best recommendation is therefore
to perform individual tests whilst controlling the family-wise error rate – not ideal, as the most
popular (and easy to analyse) methods (e.g. the Bonferroni or Šidák corrections) are known to be
over-conservative.

Fortunately, comprehensive coverage is not required for certifying vulnerability: judicious focus
on likely targets is sufficient in the case that at least one of them is truly vulnerable. In the event
that none of the likely targets evidence leakage, the task may shift towards certifying security, at
which point more effort will be required, as we describe next.

8.2 Implications and Recommendations for Certifying Security

Certifying security is considerably more challenging as, in addition to protecting against false
positives, the analyst must be able to reason convincingly that the non-detection of a vulnerability
indicates that no vulnerability is present. From an error controlling perspective this means paying
careful attention to the 1-minimal power of a test, using the tools of statistical power analysis. It
is necessary to quantify a minimum effect size of interest: since it is not known how to translate
effect sizes into security losses, we recommend choosing a ‘very small’ (according to Sawilowsky
[43]) standardised effect of 0.01. Even then, it is possible that an adversary who is better resourced,
more strategic, and/or ‘luckier’ than the evaluator would be able to exploit a smaller effect.

For simple t-test based evaluations we have shown how to compute the 1-minimal power to detect
a‘very small’ effect under particular assumptions about the number of leaks and the relationships
between the tests. If the tests fail to find leakage then such an analysis can be used to argue that
it was not simply down to the inadequacy of the method or sample size. However there are many
caveats to this as a ‘solution’ to the goal of certifying security:

– Such a priori knowledge about the dependency structure and number of expected leaks (if leaky)
is hard to obtain or test, and the analysis is sensitive to the correctness of these assumptions
so that the certification is highly provisional at best.



– Pre-processing traces in order to perform higher-order detection via “t-tests” typically causes
the distributional assumptions on which statistical power analysis depend to become invalid,
and the conclusions untrue, making it impossible to ‘certify’ higher-order security (by known
means).

– The simple formulae enabling easy analysis of t-tests do not exist for other evaluation methods
such as those based on MI, or for carefully targeted attack strategies which (as hinted above)
may prove more powerful than detection for a given amount of data.

– In addition to statistical rigour, coverage is crucial: arguing that everything possible has been
done to find leakage requires testing for a comprehensive range of possible targets using all
appropriate methodologies. This is not feasible in practice, therefore it is essential to report
what has been covered and clarify what hasn’t – as thoroughly as possible – as part of the
conclusions of any evaluation.

In short, truly certifying security is not an attainable goal in practice. The best that can be
achieved is to provide a sound theoretical basis for the design of the statistical tests (which should
be made demonstrably consistent from one evaluation to another), and full transparency about the
limitations of their scope.

8.3 Implications and Recommendations for Demonstrating an Attack

This shares many of the same constraints and requirements as the goal of certifying vulnerability,
with two key differences:

1. On the one hand, it is ‘easier’ in the sense that the detected effect need not meet a formal sta-
tistical criteria for significance: what ultimately matters is the evaluator’s success in exploiting
it for key recovery or information extraction.

2. Meanwhile, it is ‘harder’ in the sense that the evaluator needs to be able to trace the point(s)
selected in the detection step of the attack to a particular intermediate value and (at the very
least) some a priori knowledge about the form of the data-dependency. Therefore, specific rather
than non-specific leakage detection tests are preferable in this setting.

In terms of coverage, it is not so much the breadth of coverage that is interesting as the type
of leaks which are under consideration, which ideally should be carefully chosen to produce the
most effective attack strategies. Clustering trace points would not be desirable in this instance
as multivariate tests implicate whole groups of indices rather than singling out those individually
responsible for leakage and thus vulnerable to attack.

We recommend to use as much prior information about the target (or similar) device(s) as
possible to search for likely (specific) candidates, and to attempt attacks against any that appear
promising. Once a suitable target has been found, repeat experiments may be necessary in order
to provide a suitable metric for attack success (e.g. guessing entropy, success rate, or global key
rank after an attack). How to proceed in the event that no attackable point is found is trickier, as
it is unclear then whether the fault is with the attack or with the detection. Verifying the presence
of leakage in the absence of a demonstrable attack then becomes equivalent to the problem of
certifying vulnerability, requiring increased statistical rigour. If no leakage at all is found we are
back in the more challenging scenario of certifying security.

8.4 Implications and Recommendations for Highlighting Vulnerabilities

Highlighting (all) vulnerabilities, e.g. so that they can be addressed by designers in the development
process, is by far the most difficult goal to achieve, as it requires high individual power. The



combined probability of missing one or more leakages is going to get huge even in very large trace
acquisitions. We say outright that analysts should temper their expectations and settle to find and
fix ‘as many as possible’, without the ambition to claim comprehensive coverage.

The key recommendation towards this end is to use specific rather than non-specific tests, as it
is essential to be able to track leaky points back to specific causal features in the implementation if
measures are to be taken to address the vulnerabilities. On a related note, the clustering approach
is not suitable, as the inability of the multivariate tests to indicate individual points within a cluster
would likewise leave the designers without the guidance necessary to take useful action.

Presumably, (a few) false positives are less of an issue in this setting, as long as false negatives are
minimised; we therefore recommend using the higher-powered FDR-controlling procedures rather
than FWER-controlling ones to deal with the problem of multiple testing. Of course, the downside
of doing so is that it may lead to ‘unfixable’ leakages which are impossible to address as they are
not really present, resulting in wasted effort on the part of the designers.
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A Degradation of Distributional Assumptions after Pre-processing

The t-test makes the assumption that the underlying data are normally distributed. In the case of
higher-order detection, where the data points are powers or products of (zero-mean) data points,
we know that this is almost certainly not the case. The questions are then: to what extent do the
resulting distributions diverge from normal? and, how much does it matter for the purposes of fair
and conclusive evaluation?

We take for illustration the simplest case of a univariate higher order test in which the (mean
centred) measurements at a single trace point are raised to a power m in order to detect data-
dependent differences in the mth moment. (A more complex scenario would be a test reducing
separate points to a univariate quantity via a combining function, typically multiplication). Suppose
further that the measurements are standardised to have a variance of 1. In practice, the decision
to test for differences in moments of 3 or above implies an expectation that, thanks to the joint
distribution of the shares of the intermediate, the partitioned distributions are not normal, as

http://theory.csail.mit.edu/~tromer/acoustic/
http://theory.csail.mit.edu/~tromer/acoustic/


otherwise there would be nothing to detect (normal distributions are fully determined by their
mean and variance). However, for the purposes of being able to say something indicative about the
impact of pre-processing we assume a normal initial distribution.

The density of Y = Zm where Z ∼ N (0, 1) is a standard normal random variable is as follows
(see, e.g., [3]):

fY (y) =


1

m
√
2π
· |y|(1/m)−1 exp

{
−1

2 |y|
2/m
}

if m is odd

2
m
√
2π
· y(1/m)−1 exp

{
−1

2y
2/m
}

I{y>0} if m is even

where I{A} is the indicator function, i.e.

I{A} =

{
0 if A is false

1 if A is true.

Figure 12 plots these densities for increasing values of m. Table 5 presents the moments. Some
things to note:

– For all powers m ≥ 2 the density has a singularity at zero.
– For even powers the density is zero for all negative values (among other things this means they

have non-zero means and are positive skewed; the skewness increases with the order). For odd
powers the density remains symmetric.

– The kurtosis increases with the power.
– All odd order standardised moments are zero for odd powers and increasing for even powers.
– All even order standardised moments are positive and increasing for all powers.
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Fig. 12. Density of a standard normal random variable raised to increasing powers.

It is clear by visual inspection and by computation of the moments that raising a (mean-centred)
normal to positive integer powers produces distinctly non-normal distributions. However, the usual



Distribution Mean Var Skew Kurt SM5 SM6 SM7 SM8

m = 1 (Normal) 0 1 0 3 0 15 0 105
m = 2 (χ2) 1 2 3 15 96 755 6.98e+03 7.44e+04
m = 3 0 15 0 46 0 1.02e+04 0 6.25e+06
m = 4 3 96 10 207 6.92e+03 3.44e+05 2.39e+07 2.2e+09
m = 5 0 945 0 733 0 7.34e+06 0 4.01e+11
m = 6 15 1.02e+04 33 3.04e+03 5.91e+05 2.1e+08 1.23e+11 1.11e+14

Table 5. Moments of distribution as power increases.

argument made in support of the t-test to detect differences in thus pre-processed distributions
is that the sampling distributions of their means tend to normal under the central limit theorem
(CLT; see, e.g. [16]) – implying that the Type I error is correctly controlled once the sample size
is ‘large enough’. One problem with this reasoning is that the rate of convergence is known to be
very variable depending on the underlying distribution.

To get a sense of the factors affecting the convergence of sample means we use the Shapiro–
Wilk test 7 (the most powerful of those tested in a 2011 study by Razali and Wah [41]) to test a
null hypothesis of normality of the sample mean as the sample size increases. As above, the initial
distributions we consider are all zero-mean normal, now allowing for the standard deviation to vary.

The Shapiro–Wilk test decides whether or not to reject a null hypothesis that the distribution
is in fact normal. Figure 13 shows the rejection rates as the sample size increases, based on 1,000
experiments each with 1,000 draws of the sample to estimate the mean. With a sample size of about
10,000 the sample means of the squared and cubed distributions, have more or less converged to the
significance level (i.e. false rejection rate) of the test which we set at 0.05. The distributions raised
to the powers of 4 and 5 take a bit longer. The skewness produced by raising the distributions to
even powers results in a slower convergence to normality than that associated with the distributions
obtained by adding 1 to the power to make it even (recall that, as per the Berry–Esseen theorem, the
constant in the convergence rate depends on the third normalised moment). Within odd and even
powers, though, the convergence is slower as the power increases. It is striking that the convergence
seems unaffected by the standard deviation, implying that in noisy scenarios where large samples
will anyway be needed, the asymptotic distributional assumptions may be sufficient for the purposes
of controlling the Type I errors for leakage detection. However, this gives no assurances with respect
to the Type II errors, as statistical power analysis (e.g. to determine the required sample size for
a given power) derives from the distributional assumptions of the raw measurements, not from the
sampling distribution of the mean. Unless and until a tailored solution can be found to derive and
control the statistical power of t-tests performed on pre-processed univariate traces, such methods
remain incapable of drawing fair and conclusive conclusions for the purposes of evaluation.

The distributions of the products of multiple normal random variables are even more complex
in form, depending also on the dependencies between the initial distributions. Further work would
be needed to ascertain the convergence of such distributions under realistic assumptions.

B Sample Size for the t-Test

We begin with a simple visual example that illustrates the concepts of α and β values and their
relationship to the sample size.

7 Implemented in Matlab as swtest(·), by Ahmed BenSäıda.
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Fig. 13. Rejection rate of the null hypothesis that the distribution of the sample mean is normal, as the number of
traces increases.

Consider the following two-sided hypothesis test for the mean of a Gaussian-distributed variable
A ∼ N (µ, σ), where µ and σ are the (unknown) parameters:

H0 : µ = µ0 vs. Halt : µ 6= µ0. (10)

Note that, in the leakage detection setting, where one typically wishes to test for a non-zero dif-
ference in means between two Gaussian distributions Y1 and Y2, this can be achieved by defining
A = Y1 − Y2 and (via the properties of the Gaussian distribution) performing the above test with
µ0 = 0.

Suppose the alternative hypothesis is true and that µ = µalt. This is called a ‘specific alter-
native’8, in recognition of the fact that it is not usually possible to compute power for all the
alternatives when Halt defines a set or range. In the leakage detection setting one typically chooses
µalt > 0 to be the smallest difference |µ1−µ2| that is considered of practical relevance; this is called
the effect size. Without loss of generality, we suppose that µalt > µ0.

Figure 14 illustrates the test procedure when the risk of a Type I error is set to α and the
sample size is presumed large enough (typically n > 30) that the distributions of the test statistic
under the null and alternative hypotheses can be approximated by Gaussian distributions. The red
areas together sum to α; the blue area indicates the overlap of H0 and Halt and corresponds to β
(the risk of a Type II error). The power of the test – that is, the probability of correctly rejecting
the null hypothesis when the alternative in true – is then 1− β, as depicted by the shaded area.

There are essentially three ways to raise the power of the test. One is to increase the effect
size of interest which, as should be clear from Figure 14, serves to push the distributions apart,
thereby diminishing the overlap between them. Another is to increase α – that is, to make a trade-
off between Type II and Type I errors – or (if appropriate) to perform a one-sided test, either
of which has the effect (in this case) of shifting the critical value to the left so that the shaded
region becomes larger. (In the leakage detection case the one-sided test is unlikely to be suitable
as differences in either direction are equally important and neither can be ruled out a priori). The
third way to increase the power is to increase the sample size for the experiment. This reduces the
standard error on the sample means, which again pushes the alternative distribution of the test
statistic further away from null (note from Figure 14 that it features in the denominator of the
distance).

Suppose you have an effect size in mind – based either on observations made during similar
previous experiments, or on a subjective value judgement about how large an effect needs to be

8 The overloading of terminology between ‘specific alternatives’ and ‘specific’ TVLA tests is unfortunate but un-
avoidable.
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Fig. 14. Figure showing the Type I and II error probabilities, α and β as well as the effect size µalt−µ0 for a specific
alternative such that µalt > µ0.

before it is practically relevant (e.g. the level of leakage which is deemed intolerable) – and you want
your test to have a given confidence level α and power 1− β. The relationship between confidence,
power, effect size and sample size can then be used to derive the minimum sample size necessary
to achieve this.

The details of the argumentation that now follows are specific to a two-tailed t-test, but the
general procedure can be adapted to any test for which the distribution of the test statistic is known
under the null and alternative hypotheses.

For the sake of simplicity (i.e. to avoid calculating effectively irrelevant degrees of freedom) we
will assume that our test will in any case require the acquisition of more than 30 observations,
so that the Gaussian approximations for the test statistics hold as in Figure 14. Without loss of
generality we also assume that the difference of means is positive (otherwise the sets can be easily
swapped). Finally, we assume that we seek to populate both sets with equal numbers n = |Y |/2 of
observed traces.

Theorem 1. Let Y1 be a set of traces of size N/2 drawn via repeat sampling from a normal dis-
tribution N (µ1, σ

2
1) and Y2 be a set of traces of size N/2 drawn via repeat sampling from a normal

distribution N (µ2, σ
2
2). Then, in a two-tailed test for a difference between the sample means:

H0: µ1 = µ2 vs. Halt: µ1 6= µ2, (11)

in order to achieve significance level α and power 1−β, the overall number of traces N needs to be
chosen such that:

N ≥ 2 ·
(zα/2 + zβ)2 · (σ12 + σ2

2)

(µ1 − µ2)2
. (12)

Note that Equation 12 can be straightforwardly rearranged to alternatively compute any of the
significance level, effect size or power in terms of the other three quantities.

C Sample Size for Hotelling’s T 2-Test

As a first step towards deriving an expression for the power (in the balanced case nA = nB = n
2 )

we first derive the threshold at which the null hypothesis is rejected:



P(T 2 > cv|H0) = α

⇒ P
(

(n− 2)p

n− p− 1
Fp,n−p−1 > cv

)
= α

⇒ P
(
Fp,n−p−1 >

n− p− 1

(n− 2)p
cv

)
= α

⇒ P
(
Fp,n−p−1 ≤

n− p− 1

(n− 2)p
cv

)
= 1− α

⇒ cv =
(n− 2)p

n− p− 1
F−1p,n−1−p(1− α)

This value of cv can then be plugged into the power computation. Under a specific alternative
hypothesis Halt such that D = Dalt > 0 (by comparison with the null H0 of d = 0 ⇒ D = 0) the
test statistic has non-central F distribution with non-centrality parameter λ = n

4D
2
alt (note that

this is particular to the nA = nB = n
2 case) [18]. Then the power can be computed as follows:

power = 1− β = P(T 2 > cv|Halt)

= P
(
T 2 > cv

∣∣∣∣T 2 ∼ (n− 2)p

n− p− 1
Fp,n−p−1;λ

)
= P

(
n− p− 1

(n− 2)p
T 2 >

n− p− 1

(n− 2)p
cv

∣∣∣∣n− p− 1

(n− 2)p
T 2 ∼ Fp,n−p−1;λ

)
= 1− P

(
n− p− 1

(n− 2)p
T 2 ≤ n− p− 1

(n− 2)p
cv

∣∣∣∣n− p− 1

(n− 2)p
T 2 ∼ Fp,n−p−1;λ

)
= 1− Fp,n−p−1;λ

(
n− p− 1

(n− 2)p
cv

)
= 1− Fp,n−p−1;λ

(
n− p− 1

(n− 2)p
× (n− 2)p

n− p− 1
F−1p,n−1−p(1− α)

)

D Evolution of D as Cluster Covariance and Density Varies

Bronchain et al. [34] consider three covariance structures for their theoretical analysis, designed to
capture increasing dependency between the trace points. These take the form Σ = (σ2i,j) ∈ Rnc×nc
where:

1. σ2i,j = 0, i 6= j (i.e., the points are independent).

2. σ2i,j = max(1− 0.1|i− j|, 0).

3. σ2i,j = max(1− 0.02|i− j|, 0).

Because we are interested in standardised (univariate) effects, d (the original authors worked in
terms of the SNR), we have that σ2i,i = 1 ∀i = 1, . . . , nc in all three cases.

The rationale for the above choices is that points closest to each other will have greater similarity
than points further away, which of course doesn’t directly translate to our setting, where the groups



are supposed to have been formed according to some similarity metric rather than according to
order in the trace. Still, we consider these scenarios for the sake of comparison with previous work.

The authors also allow the density of the effects – that is, the proportion of trace points with
non-zero leakage – to vary. However, they do this under the assumption of independence only (that
is, they do not allow the density and covariance to vary together). We consider two values for the
density of the clusters: 1 and 0.5. (Although, in the case where all trace points are jointly tested, we
cap the total number of leaky points to 30, as per our hypothetical scenario). In covarying clusters
of density < 1 we suppose that the trace points are organised such that the non-zero leaks appear
at the start, followed by the zero leaks.

Table 6 shows the D values associated with each of the scenarios. In all cases, as the number of
points increases, the effect size increases. However, for the non-independent clusters the increases
are considerably smaller. The mixed clusters (density < 1) are surprising in that, despite having
fewer leaky points, they exhibit larger D values than the fully leaky clusters when dependencies
come into play. This phenomenon is associated with the dependencies between leaky and non-
leaky points, and is reversed if the two ‘types’ of points are supposed to be independent (i.e. if
the corresponding entries in the covariance matrices are set to zero), as we show in the final three
columns of the table.

Cluster Density=1 Density=0.5

size Σ1 Σ2 Σ3 Σ1 Σ2 Σ3 Σ′1 Σ′2 Σ′3

1 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
7 0.106 0.048 0.041 0.080 0.093 0.201 0.080 0.043 0.041
20 0.179 0.068 0.044 0.126 0.096 0.201 0.126 0.054 0.042

1,400 (capped at 30 leaks) 0.219 0.217 0.278 0.219 0.217 0.278 0.219 0.079 0.047

Table 6. Multivariate effect sizes under different assumptions about the density and covariance structure of the
clusters.

Figures 15 to 20 show, by way of illustrative example, the statistical power of cluster-based
tests with the Bonferroni correction in the scenarios represented in the first three and final three
columns of Table 6.
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Fig. 15. Different types of power for Bonferroni-adjusted Hotelling’s tests as the size of the (perfect) clusters varies;
covariance scenario 1 (independent trace points).
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Fig. 16. Different types of power for Bonferroni-adjusted Hotelling’s tests as the size of the (perfect) clusters varies;
covariance scenario 2 (medium dependency).
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Fig. 17. Different types of power for Bonferroni-adjusted Hotelling’s tests as the size of the (perfect) clusters varies;
covariance scenario 3 (high dependency).
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Fig. 18. Different types of power for Bonferroni-adjusted Hotelling’s tests as the size of the (mixed) clusters varies;
covariance scenario 1’ (independent trace points).

0 50 100 150

N (1,000s)

0

0.5

1

In
di

vi
du

al
 p

ow
er

0 50 100 150

N (1,000s)

0

0.5

1

C
om

pl
et

e 
po

w
er

0 50 100 150

N (1,000s)

0

0.5

1

1-
m

in
im

al
 p

ow
er 1400 singleton clusters

200 clusters of size 7
70 clusters of size 20
1 cluster of size 1400

Fig. 19. Different types of power for Bonferroni-adjusted Hotelling’s tests as the size of the (mixed) clusters varies;
covariance scenario 2’ (medium dependency).
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Fig. 20. Different types of power for Bonferroni-adjusted Hotelling’s tests as the size of the (mixed) clusters varies;
covariance scenario 3’ (high dependency).
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