
A Formal Treatment of Deterministic Wallets
Poulami Das∗1 Sebastian Faust†1 Julian Loss‡ 2

1 TU Darmstadt, Germany

2 Ruhr University Bochum, Germany and University of Maryland, USA

Abstract
In cryptocurrencies such as Bitcoin or Ethereum, users control funds via secret keys. To transfer

funds from one user to another, the owner of the money signs a new transaction that transfers the
funds to the new recipient. This makes secret keys a highly attractive target for attacks and has led to
prominent examples where millions of dollars worth in cryptocurrency were stolen. To protect against
these attacks, a widely used approach are so-called hot/cold wallets. In a hot/cold wallet system, the
hot wallet is permanently connected to the network, while the cold wallet stores the secret key and is
kept without network connection. In this work, we propose the first comprehensive security model for
hot/cold wallets and develop wallet schemes that are provably secure within these models. At the
technical level, our main contribution is to provide a new, provably secure ECDSA-based hot/cold
wallet scheme that can be integrated into legacy cryptocurrencies such as Bitcoin. Our scheme makes
several subtle changes to the BIP32 proposal and requires a technically involved security analysis.

Keywords: Wallets; cryptocurrencies; foundations

1 Introduction
In decentralized cryptocurrencies such as Bitcoin or Ethereum, the money mechanics (e.g., who owns
what and how money is transferred) are controlled by a network of miners. To this end, the miners agree
via a consensus protocol about the current balance that each party has in the system. Changes to these
balances are validated by the miners according to well-specified rules. In most cryptocurrencies, balance
updates are executed via transactions. A transaction transfers money between addresses, which is the
digital identity of a party and technically is represented by a public key of a digital signature scheme.1 For
better illustration, consider the example where Alice wants to send some of her coins – say 1 BTC – from
her address pkA to Bob’s address pkB. To this end, she creates a transaction txAB that informally says:
“Transfer 1 BTC from pkA to pkB”. To ensure that only Alice can send her coins to Bob, we require that
txAB is accompanied by a valid signature of H (txAB). Since only the owner of the corresponding skA – here
Alice – can produce a valid signature, control over skA implies full control over the funds assigned to pkA.
This makes secret keys a highly attractive target for attacks. Unsurprisingly, there are countless examples
of spectacular hacks where the attacker was able to steal millions of dollars by breaking into a system
and extracting the secret key [Ske18, Blo18]. According to the cryptocurrency research firm CipherTrace,
in 2018 alone, attackers managed to steal more than USD 1 billion worth in cryptocurrency [Bit18].

One reason for many of these attacks is that large amounts of funds are often controlled by so-called
hot wallets. A hot wallet is a piece of software that runs on a computer or a smart phone and has a
direct connection to the Internet. This make hot wallets very convenient to use since they can move
funds around easily. On the downside, however, their permanent Internet connection often makes them
an easy target for attackers, e.g., by exploiting software vulnerabilities via malware or phishing. Thus, it
∗Email: poulami.das@crisp-da.de
†Email: sebastian.faust@cs.tu-darmstadt.de
‡Email: julian.loss@ruhr-uni-bochum.de. Work done while author was at Ruhr-University Bochum, Germany.
1To be more precise, in Bitcoin funds are assigned to the hash of a public key, and not to the public key itself.

is generally recommended to store only a small amount of cryptocurrency on a hot wallet, while larger
amounts of money should be transferred to a cold wallet. A cold wallet stays disconnected from the
network most of the time and may in practice be realized by a dedicated hardware device [Wik18b], or
by a paper wallet where the secret key is printed on paper and stored in a secure place.

A simple way to construct a hot/cold wallet is to generate a key pair (pkcold, skcold) and store the
secret key skcold on the cold wallet, while the corresponding public key pkcold is kept on the hot wallet (or
published over the Internet). A user can then directly transfer money to the cold wallet by publishing a
transaction on the blockchain that sends money to pkcold. As long as the owner of the cold wallet does
not want to spend its funds, the cold wallet never needs to come online. This naive approach has one
important drawback. Since all transactions targeting the cold wallet send money to the same public key
pkcold, the cold wallet may accumulate, over time, a large amount of money. Moreover, all transactions
are publicly recorded on the blockchain, and thus pkcold becomes an attractive target for an attack the
next time the wallet goes online (which will happen at the latest when the owner of the wallet wants to
spend its coins).

To mitigate this attack, it is common practice in the cryptocurrency community to use each key
pair only for a single transaction. Hence, we may generate a “large number” of fresh key pairs
(sk1, pk1), . . . , (sk`, pk`). Then, the ` public keys are sent to the hot wallet, while the correspond-
ing ` secret keys ski are kept on the cold wallet. While this approach keeps individual transactions
unlinkable, it only works for an a-priori fixed number of transactions, and requires storage on the hot/cold
wallet that grows linearly with `.

Fortunately, in popular cryptocurrencies such as Bitcoin, these two shortcomings can be solved by
exploiting the algebraic structure of the underlying signature scheme (e.g., the ECDSA signature scheme
in Bitcoin). In the cryptocurrency literature, this approach is often called deterministic wallets [But13]
and is standardized in the BIP32 improvement proposal [Wik18a].2 At a high level, a deterministic wallet
consists of a master secret key msk together with a matching master public key mpk and a deterministic
key derivation procedure. At setup, the master public key is given to the hot wallet, whereas the master
secret key is kept on the cold wallet. After setup, the hot and cold wallet can independently generate
matching session keys using the key derivation procedure and their respective master keys. Using this
approach, we only need to store a single (master) key on the hot/cold wallet in order to generate an
arbitrary number of (one-time) session keys.

Informally, a deterministic wallet should offer two main security guarantees. First, an unforgeability
property, which ensures that as long as the cold wallet is not compromised, signatures to authenticate new
transactions can not be forged, and thus funds are safe. Second, an unlinkability property, which guarantees
that public keys generated from the same master public key mpk are computationally indistinguishable
from freshly generated public keys. Despite the widespread use of deterministic wallets (e.g., they are
used in most hardware wallets such as ledger or TREZOR, and by common software wallets such as Jaxx),
only limited formal security analysis of these schemes has been provided (we will discuss the related work
in Section 1.3). The main contribution of our work is to close this gap.

1.1 Deterministic hot/cold wallets
Before we outline our contribution, we recall (a slightly simplified version of) the BIP32 wallet construction
as used by popular cryptocurrencies. We emphasize that for ease of presentation, we abstract from some of
the technical details of the BIP32 scheme. In particular, we focus in this work on the (conceptually cleaner)
deterministic wallets ignoring the “hierarchical” component of BIP32 (see [Med18] for a full specification).
We leave it as an important open problem to also develop a formal model for hierarchical wallets
(see Section 7 for a more detailed discussion). In the following description we focus on ECDSA-based
wallets as ECDSA is the underlying signature scheme used by most popular cryptocurrencies.

Let G denote the base point of an ECDSA elliptic curve. The deterministic ECDSA wallet uses an
ECDSA key tuple as its master secret/public key pair, denoted by (msk = x,mpk = x ·G). The master
secret key msk is stored on the cold wallet, while the corresponding master public key mpk is kept on the
corresponding hot wallet. In addition, the hot wallet and the cold wallet both keep a common secret
string ch which is called the “chaincode”. To derive a new session public key with identifier ID, the hot

2BIP32 stands for Bitcoin improvement proposal. The same approach is also used for other cryptocurrencies such as
Ethereum or Dash.

2

wallet computes w ← H (ch, ID) , pkID ← mpk + w ·G and the cold wallet computes the corresponding
session secret key as w ← H (ch, ID) , skID ← msk + w. As argued, e.g., in [MB18], this construction
satisfies both unlinkability and unforgeability as long as the chaincode and all derived secret keys remain
hidden from the adversary.

Unfortunately, hot wallet breaches happen frequently, and hence the assumption that the chaincode
stays secret is rather unrealistic. When ch is revealed, however, the unlinkability property is trivially
broken since the adversary can derive from mpk and ch the corresponding session public key pkID for any
ID of its choice. Even worse, as we discuss in Section 4.1.2 (and as already suggested in [MB18]), a hot
wallet security breach may in certain cases even break the unforgeability property of the wallet scheme.

1.2 Our contributions
At the conceptual level, our main contribution is to introduce a formal comprehensive security model
to analyze hot/cold wallets. On the other hand, at the technical level, we design a new ECDSA-based
wallet scheme and prove its security within our model. The latter is achieved using a modular approach,
which shows that signature schemes exhibiting certain rerandomizability properties for the key suffice to
securely instantiate wallets in our model. Further details are provided below.
Security model for wallets. As our first contribution we provide a formal security model that
precisely captures the security properties that a hot/cold wallet should satisfy. In particular, we incor-
porate into our model hot wallet security breaches, access to derived public keys and corresponding
signatures that may appear on the blockchain. More concretely, let SWal = (SWal.MGen,SWal.SKDer,
SWal.PKDer,SWal.Sign,SWal.Verify) be a wallet scheme, where SWal.MGen denotes the master key genera-
tion algorithm, (SWal.SKDer,SWal.PKDer) are used for deriving session keys and (SWal.Sign,SWal.Verify)
represent the signing and verification algorithms of the underlying signature scheme. The security of SWal
is defined via two game-based security notions that we call wallet unlinkability and wallet unforgeability.

Our notion of unlinkability can informally be described as a form of forward security – similar in
spirit to key exchange models for analyzing TLS. It guarantees that all money that was sent to session
public keys pkID ← SWal.PKDer (mpk, ch, ID) derived prior to the hot wallet breach, can not be linked
to mpk. Notably, our unlinkability property even holds against an adversary that sees a polynomial
number of session public keys generated from mpk and signatures for adversarially chosen messages. On
the other hand, our unforgeability notion considers a natural threat model where funds on the cold wallet
remain secure even if the hot wallet is fully compromised. While at first sight it may seem that achieving
unforgeability in such a setting is straightforward, it turns out that in particular for ECDSA-based wallets,
we have to deal with several technical challenges. The main reason for this is that once the hot wallet is
breached, the session public keys are not fresh anymore (i.e., all session public keys are now related to
the master public key mpk). This hinders a straightforward reduction to the security of the underlying
signature scheme used by the cryptocurrency. Even worse, we argue that for certain naive instantiations
of wallet schemes, wallet unforgeability can be broken and an adversary may steal money from the cold
wallet without ever breaking into it.
Stateful deterministic wallets. In order to achieve our security definition of forward unlinkability,
we consider the natural notion of stateful deterministic wallets. In a stateful wallet, the hot and cold
wallet share a common secret state St that is (deterministically) updated for every new session key pair.
More concretely, the master key generation algorithm SWal.MGen outputs (together with the master key
pair (mpk,msk)) an initial state St0 that will be stored on both the hot and the cold wallet. Then, to
derive new session keys, the secret/public key derivation algorithms SWal.SKDer and SWal.PKDer take as
input additionally the current state Sti−1 and output the new state Sti, while the old state Sti−1 is erased
from the hot/cold wallet. The update mechanism for deriving the new state has to guarantee that Sti
looks random even if future states Stj (for j > i) are revealed. Together with a mechanism for deriving
new session key pairs, our scheme achieves the strong aforementioned notion of forward unlinkability. We
note that while state updates (together with secure erasures) are needed to achieve our new notion of
forward unlinkability, our notion of unforgeability might also be achievable by some of the currently used
(stateless) wallet schemes.
Modular approach for provably secure wallets. To securely instantiate our stateful deterministic
wallets, we provide a modular approach that uses digital signature schemes with rerandomizable keys.
This notion – originally due to Fleischhacker et al. [FKM+16] – extends standard digital signature schemes

3

with two additional algorithms: RandSK and RandPK. These algorithms take as input a secret key sk ,
respectively public key pk , and some randomness ρ and output fresh keys sk ′, respectively pk ′. Besides
the standard unforgeability property, signatures with rerandomizable keys guarantee that the key pair
(sk ′, pk ′) is fresh and independent of the original keys (sk , pk) from which they were generated.

Given a secure signature scheme with rerandomizable keys, we show how to generically instantiate
our wallet scheme as follows. Let St be the current state of the hot/cold wallet. The public key
derivation algorithm SWal.PKDer (mpk,St, ID) first computes (ωID,St′) = H (St, ID). Then, it derives
the new session public key pkID by running the public key rerandomizing algorithm RandPK via pkID ←
RandPK(mpk, ωID), and erases the old state St. Analogously, the cold wallet can compute skID by
computing ωID as above and calling skID ← RandSK(msk, ωID). If H is modeled as a random oracle that
maps to the randomness space for rerandomizing keys, then the rerandomizability property mentioned
above satisfies that our wallet construction achieves forward unlinkability. On the other hand, wallet
unforgeability follows from the unforgeability of the underlying signature scheme. For the latter to go
through, we rely on the special RSign oracle that is provided in the unforgebaility game of signatures with
rerandomizable keys (see below). Besides its strong security guarantees, our generic wallet construction
preserves the storage efficiency of the BIP32 standard and only requires one hash computation more per
hot/cold wallet for every derived session key pair.

Of course, before we can use our wallet scheme in practice, we need to build signatures with
rerandomizable keys from standard (practical) signature schemes ideally used by cryptocurrencies. As
shown in [FKM+16] the Schnorr signature scheme [Sch89] satisfies these properties. In addition, we show
that also BLS signatures [BLS04] can be used to construct signatures with rerandomizable keys. Thus,
these schemes are natural candidates for our wallet construction.
Provably secure ECDSA-based wallets. While many cryptocurrencies plan to use Schnorr and
BLS signatures in the future, to date almost all legacy cryptocurrencies (e.g., Bitcoin or Ethereum) rely
on the ECDSA signature scheme. The main technical contribution of our work is thus to propose the
first provably secure construction of stateful deterministic wallets that work together with ECDSA-based
cryptocurrencies such as Bitcoin. To achieve this, we make several subtle changes to the current way
hot/cold wallets are built in BIP32 for Bitcoin. An important goal of our construction is that all these
changes come with minimal overheads to guarantee efficiency and are compatible with Bitcoin and other
state-of-the-art cryptocurrencies. The latter ensures that our wallet scheme can be readily deployed as a
more secure alternative for existing hot/cold wallet systems. At the technical level, the main challenge of
our work lies in proving that the ECDSA signatures can be used to construct a signature scheme with
rerandomizable keys. Due to the rather “contrived” nature of ECDSA signatures our analysis is, however,
more involved than for Schnorr and BLS signatures, and also requires us to slightly weaken the original
notion of unforgeability under rerandomized keys due Fleischhacker et al. [FKM+16]. We call this notion
unforgeability under honestly rerandomized keys (uf -cma-hrk).

Formally, we prove uf -cma-hrk of a “salted version” of the ECDSA signature scheme assuming
that the standard ECDSA signature scheme is existentially unforgeable under chosen message attacks
(uf -cma). The main challenge for this reduction is that in the uf -cma-hrk game, the adversary may
see signatures under related (i.e., rerandomized) keys, where the relation between these keys may be
known to the adversary. This significantly complicates the reduction. More precisely, in the reduction we
need to embed the target public key pk∗ of the uf -cma game for the ECDSA signature scheme into the
simulation of the adversary in the uf -cma-hrk game. Once pk∗ has been embedded, the reduction may
have to answer signing queries for any of the rerandomized keys that the adversary can ask via the oracle
RSign. Unfortunately, for this simulation we neither know the corresponding secret keys nor can the
reduction answer these queries by using the underlying ECDSA signing oracle from the uf -cma game.

To overcome this challenge, we develop an efficient method that transfers ECDSA signatures wrt. pk∗
to signatures wrt. a related public key, and show how to apply it for proving the uf -cma-hrk security.
The later is the main technical contribution of our work.
Practical considerations. As a final contribution, we explore the practical implications of our work.
First, we argue that a careless implementation of hot/cold wallets using as underlying signature scheme,
e.g., Schnorr or BLS, may result into a severe security vulnerability if the hot wallet is compromised.
This may seem a bit surprising as the hot wallet does not contain any secret key material. At a high
level, the vulnerability exploits a “related key attack” in these signature schemes, where an adversary
that knows the “relation” between two related public keys pkID and pkID′ can transform a signature σID

4

scheme under pkID to a signature σID′ under pkID′ . This may have severe consequences because once an
adversary sees a signature σID that transfers funds assigned to pkID, it can also transfer the funds held
by pkID′ .

As a second practical contribution, we describe how our ECDSA-based wallet scheme can be integrated
into Bitcoin. One difficulty is that for the proof to go through, we need that signatures produced by the
cold wallet are salted with fresh randomness and prefixed by the pulic key (or the hash of it). Fortunately,
Bitcoin supports a simple scripting language such that these changes can be integrated at very low
additional costs.

1.3 Related work

Research on wallet systems. Hot/cold wallets are widely used in cryptocurrencies and various
implementations on standard computing and dedicated hardware devices are available. Most related to
our work is the result of Gutoski and Stebila [GS15] who discuss a flaw in BIP32 and propose a (provably
secure) countermeasure against it. Concretely, they study the well known attack against deterministic
wallets [But13] that allows to recover the master secret key once a single session key has leaked from the
cold wallet. They then propose a fix for this flaw which allows up to d session keys to leak, and show
by a counting argument that under a one-more discrete-log assumption the master secret key can not
be recovered. We emphasize that their model is rather restricted and does not consider an adversary
learning public keys or signatures for keys which have not been compromised. More importantly, [GS15]
prove only a very weak security guarantee. Namely, instead of aiming at the standard security notion
of unforgeability where the adversary’s goal is to forge a signature (as considered in our work), [GS15]
consider the much weaker guarantee where the adversary’s goal is to extract the entire master secret key.
Hence, the security analysis in [GS15] does not consider adversaries that forge a signature with respect to
some session public key, while in practice this clearly violates security.

Besides [GS15], various other works explore the security of hot/cold wallets. Similar to [GS15], Fan
et al. [FTS+18] study the security against secret session key leakage (they call it “privilege escalation
attacks”). Unfortunately, their proposed countermeasure is ad-hoc and no formal model nor security
proof is provided. Another direction is taken by Turuani et al. [TVR16] who provide an automated
verification of the Bitcoin Electrum wallet in the Dolev Yao model. Since the Dolev-Yao model assumes
that ciphertexts, signatures etc. are all perfect, their analysis exclude potential vulnerabilities such as
related key attacks, which turn out to be very relevant in the hot/cold wallet setting.

Another line of recent work focuses on the security analysis of hardware wallets [MPas19, AGKK19].
Both works target different goals. The work of Marcedone et al. [MPas19] aims at integrating two-factor
authentication into wallet schemes, while Arapinis et al. [AGKK19] consider hardware attacks against
hardware wallets and provide a formal modeling of such attacks in the UC framework. Similar to the latter,
Curtoius et al. [CEV14] investigate how implementation flaws such as bad and correlated randomness may
affect security. Other works that study the implications of weak randomness in wallets are [BR18, BH19].

Orthogonal to our work is a large body of work on threshold ECDSA [GGN16, LN18, DKLS18] and
multisignatures [BDN18] to construct more secure wallets. Both approaches aim at distributing trust by
requiring that multiple key holders authenticate transactions. These techniques can be combined with
our hot/cold wallet to mitigate attacks against the cold wallet.
Other related work. One of the techniques that we use in this work is that certain signature schemes
support the following efficient transformation: given a signature under some public key pk , one can
produce a signature with respect to a related key pk ′. While for certain signature schemes such as
Schnorr [Sch89] this is a well-known trick that has been used in various works [FF13, KMP16, ZCC+15],
we are not aware of any prior use of such an algorithm for the ECDSA signature scheme. In addition, as
discussed above we make use of the abstraction of signature schemes with rerandomizable keys that was
originally introduced by Fleischhacker et al. [FKM+16] in the context of sanitizable signatures.

2 Preliminaries

Notation. We denote as s $← H the uniform sampling of the variable s from the set H. If ` is an integer,
then [`] is the set {1, . . . , `}. We use uppercase letters A,B to denote algorithms. Unless otherwise stated,

5

all our algorithms are probabilistic and we write y $← A (x) to denote that A returns output y when run on
input x. We write y ← A (x, ρ) to denote that A returns output y when run on input x and randomness
ρ. Note that in this way, A becomes a deterministic algorithm. We use the notation A (x) to denote the
set of all possible outputs of (probabilistic) algorithm A on input x.

We write AB to denote that A has oracle access to B during its execution. For ease of notation, we
generally assume that boolean variables are initialized to false, integers are set initially to 0, lists are
initialized to ∅, and undefined entries of lists are initialized to ⊥. To further simplify our definitions and
notation, we assume that public parameters par have been securely generated and define the scheme
or algebraic structure in context. We denote throughout the paper κ as the security parameter. For
bit strings a, b ∈ {0, 1}∗ if we write “a = (b, ·)” we check if the prefix of a is equal to b; likewise with
“a 6= (b, ·)” we check if the prefix of a is different from b.
Security Games. We use standard code-based security games [BR04]. A game G is an interactive
probability experiment between an adversary A and an (implicit) challenger which provides answers to
oracle queries posed by A. G has one main procedure and can have any number of additional oracle
procedures that describe how oracle queries are answered. We distinguish such oracle procedures from
algorithmic ones by using a distinct font Oracle. The output of G when interacting with adversary A is
denoted as GA. Finally, the randomness in any probability term of the form Pr[GA = 1] is assumed to be
over all the random coins in game G.
Random Oracle Model. We model hash functions as random oracles [BR93]. The code of hash
function H is defined as follows. On input x from the domain of the hash function, H checks whether H (x)
has been previously defined. If so, it returns H (x). Else, it sets H (x) to a uniformly random element
from the range of H and then returns H (x).
Elliptic Curve Cryptography. We denote an elliptic curve group as E = E (par) with order p. The
base point of the group E is denoted as G := (xb, yb). Any point S := (xs, ys) in the group E can be
written as S = aG, where aZp and we use additive notation.

2.1 Signature Schemes
In this section, we introduce the syntax and relevant security notions for signature schemes.

Definition 2.1 (Signature Scheme). A signature scheme Sig is a triple of algorithms Sig =
(Sig.Gen,Sig.Sign,Sig.Verify). The randomized key generation algorithm Sig.Gen takes as input pub-
lic parameters par and returns a pair (sk, pk), of secret and public keys. The randomized signing
algorithm Sig.Sign takes as input a secret key sk and a message m and returns a signature σ. The
deterministic verification algorithm Sig.Verify takes as input a public key pk, a signature σ, and a message
m. It returns 1 (accept) or 0 (reject). We require correctness: For all (sk, pk) ∈ Sig.Gen (par), and all
m ∈ {0, 1}∗, we have that

Pr
σ

$←Sig.Sign(sk ,m)
[Sig.Verify (pk, σ,m) = 1] = 1.

We also adopt the notion of signature schemes with rerandomizable keys from Fleischhacker et
al. [FKM+16].

Definition 2.2 (Signature Scheme with Perfectly Rerandomizable Keys). A signature scheme with per-
fectly rerandomizable keys is a tuple of algorithms RSig = (RSig.Gen,RSig.Sign,RSig.Verify,
RSig.RandSK,RSig.RandPK) where (RSig.Gen,RSig.Sign,RSig.Verify) are the standard algorithms of a
signature scheme as defined above. Moreover, we assume that the public parameters par define a random-
ness space χ := χ(par). The probabilistic secret key rerandomization algorithm RSig.RandSK takes as
input a secret key sk and randomness ρ ∈ χ and outputs a rerandomized secret key sk′. The probabilistic
public key rerandomization algorithm RSig.RandPK takes as input a public key pk and randomness ρ ∈ χ
and outputs a rerandomized public key pk′. We make the convention that for the empty string ε, we have
that RSig.RandPK(pk, ε) = pk and RSig.RandSK(sk, ε) = sk. We further require:

1. (Perfect) rerandomizability of keys: For all (sk, pk) ∈ RSig.Gen (par) and ρ $← χ, the distributions

6

main uf -cmaSig
00 (sk, pk) $← Sig.Gen (par)
01 (m∗, σ∗) $← CSignO (pk)
02 If m∗ ∈ Sigs : bad← true
03 b′ ← Sig.Verify (m∗, pk∗, σ∗)
04 Return b′ ∧ ¬bad

Oracle SignO (m)
05 σ $← Sig.Sign (sk,m)
06 Sigs ← Sigs ∪ {m}
07 Return σ

Figure 1: Security game uf -cmaSig with adversary C.

main uf -cma-hrkRSig
00 RList← {ε}
01 (sk, pk) $← RSig.Gen (par)
02 (m∗, σ∗, ρ∗) $← CRand,RSign (pk)
03 If m∗ ∈ Sigs : bad← true
04 If ρ∗ 6∈ RList : bad← true
05 pk∗ ← RSig.RandPK(pk, ρ∗)
06 b← RSig.Verify (pk∗, σ∗,m∗)
07 Return b ∧ ¬bad

Oracle RSign (m, ρ)
08 If ρ /∈ RList : Return ⊥
09 sk′ ← RSig.RandSK(sk, ρ)
10 σ $← RSig.Sign (m, sk′)
11 Sigs ← Sigs ∪ {m}
12 Return σ

Oracle Rand
13 ρ $← χ
14 RList← RList ∪ {ρ}
15 Return ρ

Figure 2: Security game uf -cma-hrkRSig with adversary C.

of (sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RSig.RandPK(pk, ρ),RSig.RandSK(sk, ρ)) ,
(sk′′, pk′′) $← RSig.Gen (par) .

2. Correctness under rerandomized keys: For all (sk, pk) ∈ RSig.Gen (par), for all ρ ∈ χ, and for
all m ∈ {0, 1}∗, the rerandomized keys sk′ ← RSig.RandSK(sk, ρ) and pk′ ← RSig.RandSK(pk, ρ)
satisfy:

Pr
σ

$←RSig.Sign(sk′,m)
[RSig.Verify (pk′, σ,m) = 1] = 1.

Security of Signature Schemes. In this work we will use the standard security notion of existential
unfogeability under chosen message attacks (UFCMA). We formalize this notion for a signature scheme
Sig via the game uf -cmaSig (Figure 1). In this game, the challenger begins by sampling (sk, pk) as
(sk, pk) $← Gen (par). The adversary is then given the public key pk and can adaptively sign messages of
its choice under the corresponding secret key via an oracle SignO. Its goal is to forge a signature on a
fresh message m∗, i.e., one that was not previously queried to SignO. For an algorithm C, we define C’s
advantage in game uf -cmaSig as AdvC

uf -cma,Sig = Pr
[
uf -cmaC

Sig = 1
]
.

For a signature scheme with rerandomizable keys RSig, we also introduce a new security notion called
unforgeability under honestly rerandomized keys that is formalized via game uf -cma-hrkRSig (Figure 2).
This notion constitutes a weaker form of the notion of existential unforgeability under rerandomized
keys proposed in [FKM+16]. In the latter notion, the adversary is able to query the signing oracle not
only for signatures corresponding to the public key pk that it obtains in the unforgeability experiment,
but also for signatures that correspond to arbitrary rerandomizations of pk. Similarly, the winning
condition is also relaxed in this notion by allowing the adversary to return a forgery under an (arbitrarily)
rerandomized key (but still on a fresh message m∗). The main difference between the security notion
from [FKM+16] and our new one is that the adversary is restricted to honest rerandomizations of pk,
i.e., randomizations where the randomness is chosen by the challenger uniformly at random from χ. We
model this via an additional oracle in the security game. For an algorithm C, we define C’s advantage in
game uf -cma-hrkRSig as AdvC

uf -cma-hrk,RSig = Pr
[
uf -cma-hrkC

RSig = 1
]
.

7

MGen

PKDer

SKDer

mpk

msk

pkID

skID

St ID

B: Hot Wallet

A: Cold Wallet

Session public key derivation in Hot Wallet

Session secret key derivation in Cold Wallet

Figure 3: Both Hot/ Cold wallet internally stores the common state St. The master keys are stored in
the respective wallets. When a session secret key is generated within the cold wallet as (skID,St) ←
SWal.SKDer(msk, ID,St), the state St gets refreshed. The session public key pkID is generated within
the hot wallet as (pkID,St)← SWal.PKDer(mpk, ID,St), and the corresponding state St is refreshed in
the same manner.

3 The Stateful Model for Wallets
In this section, we introduce our formal security model for stateful deterministic wallets. At a high level,
a stateful deterministic wallet scheme allows two parties A (the cold wallet) and B (the hot wallet) to
derive matching session key pairs (for signing/verification) from a pair of master keys. As presented in
Figure 3, A keeps her master secret key msk and gives the master public key mpk to B. A and B can
now use the key derivation procedures SKDer and PKDer, respectively, to derive an arbitrary number of
session key pairs, locally, i.e., without further interaction. Intuitively, this is possible since every part of
the key derivation procedure is deterministic and therefore, both A and B “automatically” carry out the
same sequence of derivations.

In contrast to standard hot/cold wallets, we will make one conceptual change and add to our schemes
a state, denoted St below. The state St is updated (deterministically) during each call to one of the key
derivation procedures. As we will explain shortly, this allows to obtain a strong form of forward privacy,
which we will refer to as unlinkability. For A to easily identify keys on the blockchain for which she can
derive a corresponding secret key and to keep track of the order they where derived in by B, session keys
also have an identifier ID ∈ {0, 1}∗ which is used as an argument for the key derivation procedures. We
now proceed to give the syntax of a stateful wallet scheme.

Definition 3.1 (Stateful Wallet). A stateful wallet is a tuple of algorithms

SWal = (SWal.MGen,SWal.SKDer,SWal.PKDer,SWal.Sign,SWal.Verify),

which are defined as follows. The randomized master key generation algorithm SWal.MGen(par) takes
public parameters par as input and outputs a tuple (St0, mpk, msk) consisting of an initial state St0, a
master secret key msk and a master public key mpk. The deterministic secret key derivation algorithm
SWal.SKDer takes as input a master secret key msk, an identity ID, and a state St. It outputs a session
secret key skID and an updated state St′. The deterministic public key derivation algorithm SWal.PKDer
takes as input a master public key mpk, an identity ID, and a state St. It outputs a session public key
pkID and an updated state St′. The randomized signing algorithm SWal.Sign takes as input a (session)
secret key sk and a message m and returns a signature σ. The deterministic verification algorithm
SWal.Verify takes as input a (session) public key pk , a signature σ, and a message m. It returns 1 (accept)
or 0 (reject).

8

Hot Wallet

Cold Wallet

User Side

User Side

PKDer Verify

SKDer Sign

pkID

(mpk, ID, St)

(σ,m)

(0/1)

(msk, ID, St)

skID

m

(pkID, σ,m)

St

Figure 4: (1) The cold wallet signs a messagem with its session secret key skID as σ ← SWal.Sign(skID,m).
(2) Anyone can later verify the validity of a signature σ on message m as (0/1)← SWal.Verify(pkID, σ,m).

Let SWal = (SWal.MGen,SWal.SKDer,SWal.PKDer,SWal.Sign,SWal.Verify) denote a stateful wallet
according to Definition 3.1, for the remainder of this section. We now define correctness of stateful
deterministic wallets. Roughly speaking, correctness should ensure that if the cold wallet A and the hot
wallet B derive session key pairs on the same set of identities ID0, ..., IDn−1 ∈ {0, 1}∗ and in the same
order, any signature created under one of the resulting signing keys of A should correctly verify under the
corresponding verification key of B. In other words, all the derived session keys should “match”.

Definition 3.2 (Correctness of Stateful Wallets). For all (St0,msk,mpk) ∈ SWal.MGen(par), all n ∈ N,
all ~ID := (ID0, ..., IDn−1) ∈ {0, 1}∗, we set St0[~ID,St0,msk] = St0[~ID,St0,mpk] := St0 and define the
sequence

{(
ski[~ID,St0,msk],Sti[~ID,St0,msk]

)}
1≤i≤n

recursively as(
ski[~ID,St0,msk],Sti[~ID,St0,msk]

)
:= SWal.SKDer(msk, IDi−1,Sti−1[~ID,St0,msk]).

Analogously, we define
{(

pki[~ID,St0,mpk],Sti[~ID,St0,mpk]
)}

1≤i≤n
recursively as(

pki[~ID,St0,mpk],Sti[~ID,St0,mpk]
)

:= SWal.PKDer(mpk, IDi−1,Sti−1[~ID,St0,mpk]).

We say that SWal is correct if for all n ∈ N, all (ID0, ..., IDn−1) ∈ {0, 1}∗, all (St0,msk,mpk) ∈
SWal.MGen(par), and all m ∈ {0, 1}∗, we have for pk := pkn[~ID,St0,mpk] and sk := skn[~ID,St0,msk]:

Pr
σ

$←SWal.Sign(sk ,m)
[SWal.Verify(pk , σ,m) = 1] = 1.

In the next subsection, we introduce the two basic security notions for stateful wallets, namely a)
unlinkability of generated public session keys, and b) unforgeability of corresponding signatures.

3.1 Wallet Unlinkability
We begin by introducing the notion of wallet unlinkability. Intuitively, unlinkabililty guarantees that
transactions sending money to different public session keys that were derived from the same master key

9

should be unlinkable. Formally, we require that, given the master public key, the distribution of session
public keys is computationally indistinguishable from session public keys that are generated from a fresh
(i.e., independently and randomly chosen) master public key and state. Unfortunately, there is little
hope to achieve this guarantee for keys to which the adversary knows the state St used to derive them.
Therefore, our notion of unlinkability satisfies a weaker form of privacy called forward unlinkability. This
means that keys generated prior to a hot wallet breach (i.e., when the adversary learns the state) cannot
be linked to mpk.

The wallet unlinkability game unlSWal is presented in Figure 5. Initially, A receives as input a master
public key mpk generated via MGen (par) and subsequently interacts with oracles PK, WalSign and Chall
that reflect A’s capabilities. The game internally maintains a state St, which is updated when A calls the
oracle PK to derive new keys. In addition, at any point in time A can read out the current state St by
calling the oracle getSt. This models A’s capability to break into the hot wallet on which the state is
stored. Finally, the oracle Chall allows A to obtain a challenge public key pkID for a user identity ID of
its choice. This challenge public key is either “real” or “random”, i.e., it depends on mpk or was sampled
freshly and independently of mpk (see below for details). A’s goal is to distinguish these two scenarios.
However, A is only considered successful if it obtains St (via oracle getSt) after being given the challenge
public key pkID.3 We now proceed in explaining the oracles to which A has access in more detail.

PK (ID): The oracle PK takes as input an ID and returns a corresponding session public key pkID. It
models A’s capability to observe transactions stored on the blockchain that transfer money to pkID. A
typical setting where this may occur is when funds are sent via the blockchain to the cold wallet. For
simplicity of bookkeeping, we make the convention that identifiers are unique and thus A can call PK
only once per ID.

WalSign(m, ID): The oracle WalSign takes as input an identity ID and a message m and returns the
corresponding signature if pkID has been previously returned as a result to a PK (ID) query. As such,
it allows A to sign, in an adaptive fashion, messages of its choice under public keys that it previously
obtained via the oracle PK. WalSign models that an adversary A may obtain signatures that are produced
by the cold wallet with skID, when funds are spent from the cold wallet (e.g., when the owner of the cold
wallet buys something with the collected coins).

getSt: The oracle getSt returns the current state St and records this event by setting StateQuery to
true. As mentioned above, this models hot wallet corruption.

Chall (ID): The oracle Chall takes as input an ID and returns a public key pkbID that depends on the
uniformly random bit b sampled internally by the game unlSWal. Chall can be called only a single time.
If b = 0, pk0

ID is derived from the current state St and mpk as
(
pk0

ID, ·
)
← SWal.PKDer(mpk, ID,St). If

b = 1, pk1
ID is derived from a freshly generated master public key and state for the same identity ID, i.e.,

via the sequence of steps:

• (Ŝt, ·, m̂pk) $← SWal.MGen(par)

•
(
pk1

ID, ·
)
← SWal.PKDer(m̂pk, ID, Ŝt)

If A sets StateQuery prior to calling Chall, or queries Chall on an identity ID that it previously queried
PK on, Chall always returns ⊥ in order to prevent a trivial attack on unlinkability. We define A’s advantage
in unlSWal as

AdvA
unl,SWal =

∣∣∣∣Pr
[
unlA

SWal = 1
]
− 1

2

∣∣∣∣ . (1)

3Recall that otherwise the adversary can trivially distinguish between “real” or “random”.

10

main unlSWal
00 (St,msk,mpk) $← SWal.MGen(par)
01 b $← {0, 1}
02 Orc← {PK, WalSign,Chall, getSt}
03 b′ $← AOrc(mpk)
04 Return b′ = b

Oracle WalSign(m, ID)
05 If SSNKeys[ID] = ⊥ : Return ⊥
06 (pkID, skID)← SSNKeys[ID]
07 σ $← SWal.Sign(skID,m)
08 Return σ

Oracle PK (ID) // Once per ID
09 tmp1 ← (msk, ID,St)
10 tmp2 ← (mpk, ID,St)
11 (skID,St)← SWal.SKDer(tmp1)
12 (pkID,St)← SWal.PKDer(tmp2)
13 SSNKeys[ID]← (pkID, skID)
14 Return pkID

Oracle getSt
15 StateQuery ← true
16 Return St

Oracle Chall (ID) //One time
17 If StateQuery : Return ⊥
18 If SSNKeys[ID] 6= ⊥ : Return ⊥
// Generate real key
19 tmp1 ← (msk, ID,St)
20 tmp2 ← (mpk, ID,St)
21 (sk0

ID,St)← SWal.SKDer(tmp1)
22 (pk0

ID,St)← SWal.PKDer(tmp2)
// Generate random key
23 (Ŝt, m̂sk, m̂pk) $← SWal.MGen(par)
24 tmp1 ← (m̂sk, ID, Ŝt)
25 tmp2 ← (m̂pk, ID, Ŝt)
26 (sk1

ID, ·)← SWal.SKDer(tmp1)
27 (pk1

ID, ·)← SWal.PKDer(tmp2)
28 SSNKeys[ID]← (pkbID, skbID)
29 Return pkbID

Figure 5: Adversary A playing in Game unlSWal.

main wunf SWal
00 (St,msk,mpk) $← SWal.MGen(par)
01 (m∗, σ∗, ID∗) $← APK,WalSign(mpk,St)
02 If SSNKeys[ID∗] = ⊥
03 Return 0
04 (pkID∗ , skID∗)← SSNKeys[ID∗]
05 If m∗ ∈ Sigs[ID∗]
06 Return 0
07 If SWal.Verify(pkID∗ , σ

∗,m∗) = 0
08 Return 0
09 Return 1

Oracle WalSign(m, ID)
10 If SSNKeys[ID] = ⊥ : Return ⊥
11 (pkID, skID)← SSNKeys[ID]
12 σ $← SWal.Sign(skID,m)
13 Sigs[ID]← Sigs[ID] ∪ {m}
14 Return σ

Oracle PK (ID) // Once per ID
15 tmp1 ← (msk, ID,St)
16 tmp2 ← (mpk, ID,St)
17 (skID,St)← SWal.SKDer(tmp1)
18 (pkID,St)← SWal.PKDer(tmp2)
19 SSNKeys[ID]← (pkID, skID)
20 Sigs[ID]← ∅
21 Return pkID

Figure 6: Adversary A playing in Game wunf .

3.2 Wallet Unforgeability
In this subsection we describe the wallet unforgeability notion. In Game wunf A

SWal (depicted in Figure 6)
we consider again an adversary A that receives as input a master public key mpk and has subsequently
access to oracles PK and WalSign, which work as their corresponding oracles in the unlinkability game.
In addition, A gets as input the initial state St. A wins if it can produce a triple (m∗, σ∗, ID∗) such that
σ∗ is a valid forgery on message m∗ under a public key pkID∗ previously obtained from a call to PK.
Here, valid means that no signature on message m∗ under pkID∗ was previously obtained from a call to
WalSign. We denote A’s advantage in wunfSWal as

AdvA
wunf,SWal = Pr

[
wunf A

SWal = 1
]
. (2)

Unforgeability for Keys with Compromised State. At a high-level, the wunf SWal game models
that once funds are transferred to the cold wallet they remain secure even if (a) the hot wallet is
compromised, and (b) the adversary can see transfers of coins sent from the cold wallet. We now explain
the game in more detail. In contrast to the unlSWal game from the previous section, in the wunf SWal game
the adversary is given the state St as part of its initial input. This models the “worst-case” adversary that
breaks into the hot wallet right after the hot/cold wallet has been initialized. In addition, to giving A the
initial state St and the master public key mpk, we also give it access to the PK and WalSign oracle. The
first can be queried by the adversary on identity ID to derive a new key pair (pkID, skID) from the master
keys and the current state, and is used mainly for bookkeeping purposes.4 The second oracle WalSign is

4Notice that in wunf SWal the adversary obtains mpk and the initial state, and hence can compute the output pk of PK
himself.

11

as in the unlSWal game except that we also keep track of the messages that were already signed via the
map Sigs[ID].

As already mentioned above, since the adversary receives mpk and the initial state St in the wunf SWal
game, it can derive all possible pkID (even without calling PK (ID)). This subtle difference significantly
complicates the security proof in the subsequent sections and is a crucial aspect of our unforgeability
notion. More concretely, since A knows the state throughout the entire game wunf SWal, it may be
able to mount a related key attack (RKA) against the underlying signature scheme used in our wallet
construction. At a high-level the RKA allows the adversary to “transfer” a signature σID with respect to
pkID to a valid signature σID∗ for pkID∗ . Signature schemes that are susceptible to such an RKA are
for instance the Schnorr or BLS signature scheme, and we will discuss how to attack a hot/cold wallet
instantiated in a naive way with these schemes in the appendix. Let us briefly explain how an adversary
in the wunf SWal game can exploit such an RKA to break the underlying wallet scheme.

To this end, consider an adversary A that breaks into the hot wallet and obtains mpk and St. This
break-in is modeled in wunf SWal by giving the adversary mpk,St at the beginning of the game. Next,
the adversary waits until some funds are transferred to the cold wallet, which we model by calls to the
PK oracle. Finally, A queries the WalSign oracle to transfer some fraction of funds – say the funds stored
under pkID – from the cold wallet to some new address. In practice, this may happen for example when
some of the funds kept on the cold wallet are spent for a purchase. Once the adversary has received a
single signature σID produced by the cold wallet, it can apply the RKA to steal all funds that have ever
been transferred to the cold wallet. More precisely, given the signature σID, the master public key mpk,
and the state St it can produce valid signatures σID∗ for pkID∗ where pkID∗ resulted from a previous call
to PK on input ID∗.

This attack results into a severe security breach as the owner of the cold wallet can loose its entire
funds stored on the cold wallet. Since the attack does not require to break into the cold wallet, it strongly
violates the original purpose of the hot/cold wallet concept in cryptocurrencies. Indeed, a user that
transfers its funds to the cold wallet would assume that once the funds are transferred to the cold wallet,
they are safe except for a break-in to the cold wallet.

As demonstrated in the subsequent section, an easy way to thwart this attack is to use public key
prefixing, i.e., to compute a signature on m as Sign (sk,(pk ,m)). Interestingly, this technique was also
used in [MSM+15], with the purpose of preventing an RKA. This further highlights the close relation
between resistance to RKAs and unforgeability in our model.

Of course, exploiting an RKA is only one possibility of stealing funds from the cold wallet, and there
may be other types of attacks allowing the adversary to forge signatures with respect to keys stored on
the cold wallet, given that it knows the state. Nevertheless, it also clearly underlines the importance of a
formal security analysis of hot/cold wallet schemes within a strong security model. In the next section,
we show how to reduce the security of a wallet scheme in the above unforgeability game to the security of
the signature scheme that underlies the wallet construction.

4 Generic Constructions
In this section, we show how to realize a stateful wallet from any signature scheme with uniquely
rerandomizable keys. Such a signature scheme is defined as follows.
Definition 4.1 (Signature scheme with uniquely rerandomizable keys). A rerandomizable signature
scheme RSig, is said to have uniquely rerandomizable public keys if for all (ρ, ρ′) ∈ χ, we have that
RandPK(pk , ρ) = RandPK(pk , ρ′) implies ρ = ρ′.

We begin by explaining our generic construction. We then prove its security with respect to the
security notions introduced in Section 3. We assume in the following a signature scheme with uniquely
rerandomizable keys RSig = (RSig.Gen,RSig.Sign,RSig.Verify,RSig.RandSK,RSig.RandPK). Our construc-
tion swal[H] of a stateful wallet which internally uses the hash function H : {0, 1}∗ → Zp × {0, 1}κ (for
state updates) is depicted in Figure 7.

4.1 Security Analysis
We proceed to analyze the properties of unlinkability and unforgeability of our stateful wallet construction
(c.f. Figure 7) below.

12

Algorithm SWal[H].MGen(par)
00 St $← {0, 1}κ
01 (mpk,msk) $← RSig.Gen(par)
02 Return (St,msk,mpk)

Algorithm SWal[H].Sign(m, sk , pk)
03 m̂← (pk ,m)
04 σ $← RSig.Sign(sk , m̂)
05 Return σ

Algorithm SWal[H].Verify(pk , σ,m)
06 m̂← (pk ,m)
07 Return RSig.Verify(pk , σ, m̂)

Algorithm SWal[H].SKDer(msk, ID,St)
00 (ωID,St)← H(St, ID)
01 skID

$← RSig.RandSK(msk, ωID)
02 Return (skID,St)

Algorithm SWal[H].PKDer(mpk, ID,St)
03 (ωID,St)← H(St, ID)
04 pkID ← RSig.RandPK(mpk, ωID)
05 Return (pkID,St)

Figure 7: Construction of swal[H] from RSig and H.

4.1.1 Unlinkability

We begin by proving unlinkability of our generic construction. The proof is rather simple and follows from
collision resistance of H and that H is modeled as a random oracle. It also relies on the rerandomizability
property of the underlying signature scheme.

Theorem 4.2 Let swal[H] be the construction defined in Figure 7. Then for any adversary A playing in
game unlswal[H], we have

AdvA
unl,swal[H] ≤

qH(qP + 2)
2κ ,

where qH and qP are the number of random oracle queries and queries to oracle PK, respectively, that A
makes.

Proof. Consider an adversary A playing in game unlswal[H]. A interacts with oracles PK, WalSign, getSt,Chall,
and the random oracle H. We can assume without loss of generality that A always calls Chall (ID) before
calling getSt and exclusively on an identity ID that was never previously queried to PK; otherwise,
AdvA

unl,swal[H] = 0 and the theorem holds trivially. In the following, let S denote the set of values taken
by the variables St, Ŝt before A calls Chall (ID). Furthermore, let pk0

ID, pk1
ID denote the keys internally

sampled in unlswal[H] upon A’s call Chall (ID). Note that by definition of swal[H].PKDer, unless A manages
to make a query of the form H

(
St′, ID

)
where St′ ∈ S, pk0

ID and pk1
ID are identically distributed from

its point of view. The reason is that as long as such a query hasn’t been made, the values of St, Ŝt
used to derive pk0

ID and pk1
ID, respectively, are uniformly distributed from A’s point of view. Now, the

rerandomizability property of RSig ensures that both pk0
ID and pk1

ID are identically distributed to a
freshly generated public key pk $← RSig(par) (and therefore identically distributed to each other). In this
case we again have that AdvA

unl,swal[H] = 0. It therefore remains to argue that A makes such a call to H
with probability at most (qH(qP + 2)) /2κ. This can be seen as follows. Since A makes at most qP queries
to PK throughout unlswal[H], in particular |S| ≤ qP + 2. Since we have assumed that A always calls getSt
after calling Chall (which internally updates St), all values in S are uniformly distributed from A’s point
of view, until it learns any particular value St′ ∈ S (note that after such St′ becomes known to A, it is
able to infer all values that were added to S after St′). Therefore, the probability that for any particular
query of the form H

(
St′, ID

)
, St′ ∈ S, is at most (qP + 2)/2κ. Since A makes at most qH such queries of

the form H
(
St′, ID

)
, the probability that for any of them, St′ ∈ S, is at most (qH(qP + 2)) /2κ, which

proves the lemma.

13

4.1.2 Unforgeability

We now turn towards the unforgeability of our construction. Before giving the proof, we provide some
intuition about our proof technique. At a high level, the idea is to reduce the security of the stateful
wallet scheme swal[H] (relative to wunf swal[H]) to the security of RSig (relative to uf -cma-hrkRSig). As
such, the proof consists mainly of the description of a reduction C trying to come up with a valid forgery
in order to win the game uf -cma-hrkRSig by simulating wunf swal[H] to an adversary A. Recall that C
obtains a public key pkC from its challenger in uf -cma-hrkRSig and has access to oracles Rand, RSign.
It can call the oracle Rand to obtain a random value ρ. Later, C can use the signing oracle RSign
on input (m, ρ), which provides signatures on a message m of C’s choice under the rerandomized key
pk′ := swal[H].RandPK(pkC, ρ). Note that C can query RSign also to get signatures under pkC by setting
ρ = ε. C’s goal is to simulate the oracles in the wunf swal[H] experiment and to suitably embed pkC into
the key pkID∗ under which A eventually returns a forgery (σ∗,m∗). The hope is that it can use (σ∗,m∗)
to win uf -cma-hrkRSig.

A promising approach is therefore to embed pkC into the master public key mpk within the simulation.
This way, every answer to a query PK(ID) can easily be computed as (ωID, ·) ← H (St, ID), pkID ←
swal[H].RandPK(mpk, ωID). To simulate any signature under pkID to A, C can make a query of the form
RSign(m̂, ωID), where m̂ = (pkID,m). When A returns the forgery (m∗, σ∗, ID∗), it is valid under the
following conditions: (i) pkID∗ is a valid session public key that was returned to A as the answer to a query
PK(ID∗), (ii) A has not yet queried WalSign for a signature on m∗ under pkID∗ , (iii) the signature σ∗ is
valid, i.e., swal[H].Verify(pkID∗ , σ

∗,m∗) = 1. As part of the proof, we show that C can win uf -cma-hrkRSig
by returning the forgery (m∗, σ∗, ρ∗), where ρ∗ = ω∗ID.

Theorem 4.3 Let A be an algorithm that plays in the unforgeability game wunf swal[H], where swal[H] de-
notes the construction defined in Figure 7. Then if RSig is a signature scheme with uniquely rerandomizable
keys, then there exists an algorithm C running in roughly the same time as A, such that

AdvA
wunf ,swal[H] ≤ AdvC

uf -cma-hrk,RSig + q2

p

where q is the number of random oracle queries that A makes.

Proof. Consider an adversary A playing wunf swal[H]. As such, A is given the initial master public key
mpk and the initial state St, and is granted access to the oracles PK, WalSign and the random oracle H.
We prove the Theorem via a sequence of games.
Game G0: This game behaves exactly as wunf swal[H], i.e., G0 := wunf swal[H]. Internally however, G0
additionally sets flag← true, whenever there is a call of the form PK(ID), such that the tuple (skID, pkID)
of session keys corresponding to this query, collides with a pair of session keys that was previously derived
for another identity ID′ 6= ID, i.e., (pkID, skID) = (pkID′ , skID′) = SSNKeys[ID′].
Game G1: G1 behaves as G0, but aborts whenever flag is set to true. We let E0,1 denote the event
that flag = true during the execution of G1.

Claim 4.4 Pr[E0,1] ≤ q2

p .

Proof. A collision of the form (pkID, skID) = (pkID′ , skID′), where ID 6= ID′ implies that

RSig.RandPK(mpk, ωID) = RSig.RandPK(mpk, ωID′).

From the property of signature scheme with uniquely rerandomizable keys of RSig, this would mean
ωID = ωID′ , where (ωID, ·) = H(·, ID), (ωID′ , ·) = H(·, ID′). Since there are q queries to H the probability
of event E0,1 is bounded by q2

p .

Thus, AdvA
wunf ,swal[H] ≤ AdvA

G1
+ q2

p .
Next, we show how winning game uf -cma-hrkRSig reduces to winning game G1. To this end, we

describe an algorithm CRand,RSign (depicted in Figure 8) that plays in game uf -cma-hrkRSig. C obtains
as input a public key pkC and is given access to the oracles Rand and RSign. C simulates G1 to A as
described in the following.

14

Algorithm CRSign,Rand(pkC)
00 St $← {0, 1}κ
01 (m∗, σ∗, ID∗) $← APK,WSign,H(mpk,St)
02 If SSNKeys[ID∗] = ⊥ : Abort
03 If m∗ ∈ Sigs[ID∗] : Abort
04 (pkID∗ , ωID∗)← SSNKeys[ID∗]
05 If SWal[H].Verify(pkID∗ , σ

∗,m∗) = 0 :
06 Abort
07 m̂∗ ← (pkID∗ ,m

∗)
08 Return (m̂∗, σ∗, ωID∗)

Procedure PK (ID) //Once per ID
09 (ωID,St)← H(St, ID)
10 pkID ← SWal[H].RandPK(mpk, ωID)
11 If (pkID, ωID) ∈ SSNKeys : Abort
12 SSNKeys[ID]← (pkID, ωID)
13 Return pkID

Procedure WalSign(m, ID)
14 If SSNKeys[ID] = ⊥ : Return ⊥
15 (pkID, ωID)← SSNKeys[ID]
16 m̂← (pkID,m)
17 σ ← RSign(m̂, ωID)
18 Sigs[ID]← Sigs[ID] ∪ {m̂}
19 Return σ

Procedure H (s)
20 If H[s] 6= ⊥
21 Return H[s]
22 ρ $← Rand
23 ϕ $← {0, 1}κ
24 H[s]← (ρ, ϕ)
25 Return H[s]

Figure 8: C’s simulation of wunf swal[H] to A.

Setup. C first samples an initial state St $← {0, 1}κ and uses the public key pkC from the uf -cma-hrkRSig
game as the master public key mpk in its simulation of wunf swal[H], i.e., it runs A on input mpk = pkC,St
in wunf swal[H]. Throughout the game, C keeps updating St each time it answers a query to PK from A,
as we describe below.
Simulation of Random Oracle Queries. C has to answer queries of the form H (s): Queries of this
type are simulated in the programmable random oracle model as follows. When A makes a query of
the form H(s), C returns H[s] if it was already set. Otherwise, it proceeds as follows. Firstly, C fetches
ρ $← Rand by querying the oracle Rand. Let us note that Rand internally updates RList ← RList ∪ {ρ}.
Secondly, C freshly samples ϕ $← {0, 1}κ. Finally, C returns H[s] = (ρ, ϕ).
Simulation of Public Key Queries. C answers a call of A to PK (ID) by computing pkID as
pkID ← RSig.RandPK(pkC, ωID) where (ωID,St)← H (St, ID). If C detects a collision among (pkID, ωID)
and a value previously stored in SSNKeys, C aborts the simulation. Otherwise, it sets SSNKeys[ID]←
(pkID, ωID) and returns pkID.

Simulation of Signing Queries. When A queries WalSign on input (m, ID), C first recovers the
pair (pkID, ωID) ← SSNKeys[ID] (it returns ⊥ if SSNKeys[ID] = ⊥). Next, C sets m̂ = (pkID,m) and
obtains σ $← RSign(m̂, ωID) by querying its own challenge signing oracle. Since H (·, ·) is programmed as
explained above by making a call to Rand, we know that ωID ∈ RList. Hence, the query RSign(m̂, ωID)
is indeed valid, i.e, does not return ⊥. From the definition of signature schemes with rerandomizable
keys, SWal[H].Verify(pkID, σ,m) = RSig.Verify(RSig.RandPK(pkC, ωID), σ, m̂)) = 1, and so the simulated
signatures are also correctly distributed.
Extracting the forgery. When A returns the tuple (m∗, σ∗, ID∗), C aborts if it encounters any
of the cases in which G1 would return 0 at this point (c.f. Figure 8). Otherwise it proceeds as
follows. It first recovers the pair (pkID∗ , ωID∗) ← SSNKeys[ID∗], and then returns (m̂∗, σ∗, ωID∗) =
((pkID∗ ,m

∗), σ∗, ωID∗). (m̂∗, σ∗, ωID∗) is a valid forgery in uf -cma-hrk game since:

1. From the simulation, we have that pkID∗ = pkC · ωID∗ and ωID∗ ∈ RList.

2. Since swal[H].Verify(pkID∗ , σ
∗,m∗) = 1, it follows from the previous point that RSig.Verify(pkID∗ , σ

∗, m̂∗) =
1.

3. m∗ /∈ Sigs[ID∗] implies that C never simulated a signature on message m∗ under public key pkID∗
to A before. Since every identifier has a unique key in G1, it follows that C never made a query of
the form RSign(m̂∗, ·) throughout its simulation. Consequently, m̂∗ /∈ Sigs.

It is clear that C provides a perfect simulation of G1 to A. Therefore, we obtain

AdvA
wunf ,swal[H] ≤ AdvA

G1,swal[H] + q2

p
= AdvC

uf -cma-hrk,RSig + q2

p
,

15

Algorithm EC[H].Gen (par)
00 x $← Zp
01 X ← x ·G
02 sk ← x
03 pk ← X
04 Return (pk, sk)

Algorithm EC[H].Sign (sk = x,m)
05 z ← H (m)
06 t $← Zp
07 (ex, ey)← t ·G
08 r ← ex mod p
09 If r = 0 mod p
10 Goto Step 2
11 s← t−1 (z + rx) mod p
12 If s = 0 mod p
13 Goto Step 2
14 Return σ := (r, s)

Algorithm EC[H].Verify (pk = X,σ,m)
15 Parse (r, s)← σ
16 If (r, s) 6∈ Zp
17 Return 0
18 w ← s−1 mod p
19 z ← H (m)
20 u1 ← zw mod p
21 u2 ← rw mod p
22 (ex, ey)← u1 ·G+ u2 ·X
23 If (ex, ey) = (0, 0)
24 Return 0
25 Return r = ex mod p

Figure 9: EC [H] = (EC[H].Gen, EC[H].Sign, EC[H].Verify): ECDSA Signature scheme relative to elliptic curve E and
hash function H : {0, 1}∗ → Zp.

Algorithm REC[H0].Sign (sk ,m)
00 ψ $← {0, 1}κ
01 m̂← (pk , ψ,m)
02 σ′ ← EC[H0].Sign (sk , m̂)
03 Return σ = (ψ, σ′)

Algorithm REC[H0].Verify (pk , σ,m)
04 (ψ, σ′)← σ
05 m̂← (pk , ψ,m)
06 Return EC[H0].Verify (pk , σ′, m̂)

Algorithm REC[H0].RandSK (sk , ρ)
00 sk ′ ← sk · ρ mod p
01 Return sk ′

Algorithm REC[H0].RandPK (pk , ρ)
02 pk ′ ← pk · ρ
03 Return pk ′

Figure 10: Salted and key-prefixed version of the ECDSA signature scheme with perfectly rerandom-
izable keys REC[H0] := (REC[H0].Gen = EC[H0].Gen, REC[H0].Sign, REC[H0].Verify, REC[H0].RandSK,
REC[H0].RandPK) from the ECDSA signature scheme EC[H0]. H0 : {0, 1}∗ → Zp denotes a hash function.

which implies the theorem.

5 A Construction from ECDSA
In this section, we prove security of a construction based on the EC [H] scheme (cf. Figure 11). For the
following discussion, let E (par) denote an elliptic curve with base point G and prime order p. Furthermore,
assume hash functions G : {0, 1}∗ → Zp, H0 : {0, 1}∗ → Zp(modeled as random oracles). We prove that a
salted variant of the standard EC [H] scheme, denoted as REC[H] and depicted in Figure 10, satisfies the
notion of unforgeability under honestly rerandomized keys.

5.1 Security Analysis of Our Construction
We now proceed to the main technical contribution of this paper, where we analyze the notion of
unforgeability under honestly rerandomized keys of the construction REC[H0] presented in Figure 10. We
prove the following theorem.

Theorem 5.1 Let G,H0 : {0, 1}∗ → Zp be hash functions (modeled as random oracles). Let A be an
algorithm that plays in game uf -cma-hrkREC[H0]. Then there exists an algorithm C running in roughly

16

Trf[H,G]EC(m0,m1, σ1, ω,X0, X1)
00 z0 ← H (m0)
01 z1 ← G (m1)
02 If

(
VerifyG(σ1,m1, X1) = 0

)
∨
(
ω 6= z1

z0
∨X1 6= X0 · ω

)
:

03 Return ⊥
04 (r, s1)← σ1
05 s0 ← s1

ω mod p
06 σ0 ← (r, s0)
07 Return σ0

Figure 11: Figure shows the TrfECDSA algorithm for hash functions H,G : {0, 1}∗ → Zp.

the same time as A, such that

AdvA
uf -cma-hrk,REC[H0] ≤ AdvC

uf -cma,EC[G] + 5q2

p
,

where q is the number of random oracle queries that A makes.

Algorithm Trf[H,G]EC The algorithm Trf[H,G]EC which serves as an essential tool in our proof of
Theorem 5.1 is presented in Figure 11. It takes as input two distinct messages m0,m1, two ECDSA
public keys X0, X1 related via the offset ω and a signature σ1 of m1 wrt. public key X1. The algorithm
then carries out several consistency checks and if they pass outputs a valid signature σ0 of m0 under
the related public key X0. Notice that the two signatures σ0 and σ1 are valid with respect to different
hash function, i.e., σ1 is a signature with respect to G, while σ0 is a signature with respect to H. This
in particular implies that the transformation in Trf[H,G]EC does not result into a practical related key
attack as both signatures σ0 and σ1 are valid with respect to different hash functions and the consistency
checks in Trf[H,G]EC strongly restrict on what messages the related signature can be computed.5 The
following lemma formalizes the properties of Trf[H,G]EC. The proof can be found in App. C.

Lemma 5.2 Consider the algorithm Trf[H,G]EC in Figure 11. Suppose that:

• ω = G (m1) /H (m0) ∈ Zp,

• X0, X1 ∈ E s.t. X0 = x0 ·G and X1 = ω ·X0,

• EC[G].Verify(X1, σ1,m1) = 1,

• σ0 ← Trf[H,G]EC(m0,m1, σ1, ω,X0, X1).

Then EC[H].Verify(X0, σ0,m0) = 1.

Before giving the formal proof, we give some intuition about the main difficulties that we need
to overcome. At a high level, the idea is to reduce the security of the salted ECDSA construction
REC[H0](relative to uf -cma-hrkREC[H0]) to the security of EC[G] (relative to uf -cmaEC[G]). As such, the
proof consists mainly of the description of a reduction C trying to come up with a valid forgery in order to
win the game uf -cmaEC[G] by simulating uf -cma-hrkREC[H0] to the adversary A. C obtains a public key
pkC from its challenger and can query a signing oracle SignO(·) which provides signatures on messages of
C’s choice under pkC. It also can query the random oracle G. C’s goal is to simulate the oracles in the
uf -cma-hrkREC[H0] experiment and to suitably embed pkC into the key pk∗ under which A eventually
returns a forgery (σ∗,m∗, ρ∗). The hope is that it can use (σ∗,m∗, ρ∗) to win uf -cmaEC[G].

C embeds pkC as A’s input public key pk . This allows C to rerandomize pk into pk ′ which is a crucial
requirement for answering oracle queries posed by A. However, there are several issues with this approach.
Firstly, C is not aware of any of the secret keys for the public keys generated as pk ′ ← pk · ρ = pkC · ρ.

5The RKA against ECDSA can also be deployed when setting H = G. However, this attack is not particularly useful for
our simulation argument. For the simulation argument we require to move signatures between different hash functions.

17

Secondly, the signatures obtained by making a query SignO(·) to C’s challenger are only valid under pkC,
so cannot be directly used to simulate signing queries of the form RSign(m, ρ) to A. To solve the latter
problem, C can convert a signature of the form σ ← SignO(m′) under pkC into a signature σ̂ under pk ′,
and on message m̂ using algorithm Trf[H0,G]EC. Here, pkC and pk ′ are related as pkC = pk ′ · ρ−1, and
ρ−1 = G(m′)

H0(m̂) . Similarly, it can convert a forgery (σ∗,m∗) under an arbitrary related key pk∗ into a forgery
that is valid under pkC, using Trf[G,H0]EC in the “reverse” direction (note the inverted order of H0 and
G). To satisfy the relationship between the (hash of) messages involved in the signatures, C needs to
carefully program the random oracle H0 to make everything consistent with what A expects to see. This
gets even more complicated because A can make direct queries to the programmed oracle H0(·) where
each of the queries should look random from A’s point of view.

We now turn to the formal proof of Theorem 5.1.

Proof. Consider an adversary A playing in Game uf -cma-hrkREC[H0]. As such A is granted access to
the oracles Rand, RSign, and the random oracle H0 : {0, 1}∗ → Zp. In the following, we use that 2κ ≤ p.
We prove the statement via a sequence of games. Each game Gi(i>0) is presented in Figure 13 via the
description of the oracles that are modified with respect to the previous game Gi−1. The exact differences
of game Gi to game Gi−1 are highlighted in the form of boxed pseudocode. Moreover, we denote by
Ei−1,i a difference event, where the indices of the event correspond to games Gi−1,Gi that are affected
by the event.
Game G0: The initial game G0 (Figure 12) corresponds to uf -cma-hrkREC[H0], i.e., G0 := uf -cma-hrkREC[H0].
Since we are in the random oracle model, we explicitly list the random oracle H0 in G0.
Game G1: In G1, the way that random oracle queries to H0 from A are answered, is internally modified as
follows. To answer queries to H0, G1 internally keeps two lists H0 and H ′0 which it programs throughout
its interaction with A. Depending on whether a queried message m contains as part of its prefix a public
key pk ′, it programs H0 [m] and H ′0 [m] in two different possible ways. Note that pk ′ is the result of
rerandomizing pk as pk ′ = pk · ρ, where ρ← Rand(ρ ∈ RList) is a previous answer to a oracle query Rand.
We now analyze the three types of queries to H0 that can occur.

• H0 [m] 6= ⊥: In this case, G1 returns H0 [m].

• H0 [m] = ⊥ and m is of the form m = (·, pk ′, ·), s.t. pk ′ = pk · ρ for some ρ ∈ RList: In this case,
G1 computes h← G (ctr), where ctr $← {0, 1}κ. Consequently, G1 sets H0 [m]← ρ · h mod p and
H ′0 [m]← ctr. It returns H0 [m].

• Otherwise, G1 samples h $← Zp and sets H0 [m]← h, H ′0 [m]← ε. It then returns H0 [m].

It is easy to see that all answers for queries to H0 that G1 returns are uniformly distributed from A’s
perspective. This follows from the uniformity of output h computed via random oracle G. Therefore, G1
behaves exactly as G0.
Game G2: In G2, the way in which queries to Rand are answered, is internally modified as follows. When
A asks a query of the form Rand, the game aborts if there exists a message of the form m =

(
·, pk ′, ·

)
for

which H ′0 [m] evaluates to ε and where pk ′ is the (rerandomized) key that corresponds to the return value
ρ of Rand, i.e., pk ′ = pk · ρ. The following claim bounds the probability of such an abort scenario.

Claim 5.3 Let E1,2 denote the event that G2 aborts during a Rand query, for which H ′0 [m] evaluates to
ε, where m =

(
·, pk ′, ·

)
. Then Pr [E1,2] ≤ q2

p .

Proof. During any particular call to the oracle Rand, this event can only occur if A has already made a
query of the form H0(m), where m = (·, pk ′, ·) (prior to the oracle Rand returning the value ρ for this
query). Since RList contains at most q values at any point during the game, any of them coincide with
the (uniformly chosen) value ρ with probability at most q

p . Since keys are uniquely rerandomizable, a
query of the form H0(m) thus also has probability at most q

p of having been made prior to this particular
call to Rand. Since there at most q queries to Rand, it follows that Pr [E1,2] ≤ q2

p .

Since the games G1, G2 are equivalent unless the event Pr[E1,2] occurs, AdvA
G2,REC[H0] ≤ AdvA

G1,REC[H0]+

Pr [E1,2] ≤ AdvA
G1,REC[H0] + q2

p .

18

Game G0
00 RList← {ε}
01 bad← false
02 (sk , pk) $← REC[H0].Gen (par)
03 (m∗, σ∗, ρ∗) $← CH0,Rand,RSign (pk)
04 pk∗ ← pk · ρ∗
05 If m∗ ∈ Sigs : bad← true
06 If ρ∗ 6∈ RList : bad← true
07 b ← REC[H0].Verify (pk∗, σ∗,m∗)
08 Return b ∧ ¬bad

Oracle Rand
09 ρ $← χ
10 RList← RList ∪ {ρ}
11 Return ρ

Oracle RSign (m, ρ)
12 If ρ /∈ RList : Return ⊥
13 ψ $← {0, 1}κ
14 pk ′ ← pk · ρ mod p
15 sk ′ ← sk · ρ mod p
16 m̂← (ψ, pk ′,m)
17 σ ← REC[H0].Sign

(
m̂, sk ′

)
18 Sigs ← Sigs ∪ {m}
19 Return (ψ, σ)

Oracle H0 (m)
20 If H0 [m] 6= ⊥
21 Return H0 [m]
22 H0 [m] $← Zp
23 Return H0 [m]

Figure 12: Game G0 = uf -cma-hrkREC[H0] with adversary C.

Oracle H0 (m) in G1
00 If H0 [m] 6= ⊥
01 Return H0 [m]
02 Parse m as

(
·, pk ′, ·

)
03 If ∃ρ ∈ RList : pk ′ = pk · ρ
04 ctr ← {0, 1}κ
05 h← G (ctr)
06 H0 [m]← ρ · h mod p
07 H ′0 [m]← ctr
08 Else
09 h $← Zp
10 H0 [m]← h
11 H ′0 [m]← ε
12 Return H0 [m]

Oracle Rand in G2
13 ρ $← χ

14 pk ′ ← pk · ρ

15 ∀m =
(
·, pk ′, ·

)
:

16 If H ′0 [m] = ε : Abort
17 RList← RList ∪ {ρ}
18 Return ρ

Oracle RSign (m, ρ) in G3
19 If ρ 6∈ RList : Return ⊥
20 ψ $← {0, 1}κ
21 pk ′ ← pk · ρ mod p
22 sk ′ ← sk · ρ mod p
23 m̂← (ψ, pk ′,m)
24 If H ′0[m̂] 6= ⊥ : Abort
25 σ̂ ← EC[H0].Sign(sk ′, m̂)
26 Sigs ← Sigs ∪ {m}
27 Return (ψ, σ̂)

Oracle RSign (m, ρ) in G4
28 If ρ 6∈ RList : Return ⊥
29 ψ $← {0, 1}κ
30 pk ′ ← pk · ρ
31 m̂← (ψ, pk ′,m)
32 If H ′0[m̂] 6= ⊥ : Abort
33 Query H0(m̂)

34 m′ ← H ′0[m̂]

35 σ′ ← EC[G].Sign(sk ,m′)

36 σ̂ ← Trf[H0,G]EC(m̂,m′, σ′, ρ−1, pk ′, pk)
37 Sigs ← Sigs ∪ {m}
38 Return (ψ, σ̂)

main in G5
39 (pk , sk)← EC.Gen(par)
40 (m∗, σ∗, ρ∗) $← AH0,Rand,RSign(pk)
41 pk∗ ← pk · ρ∗

42 m̂∗ ← (ψ, pk∗,m∗)

43 If H ′0[m̂∗] = ε : Abort
44 If m∗ ∈ Sigs : bad← true
45 If ρ∗ 6∈ RList : bad← true
46 b← REC[H0].Verify (pk∗, σ∗,m∗)
47 Return b ∧ ¬bad

Figure 13: Games G1-G5

19

Game G3: In G3, the way in which signing queries from A are answered, is internally modified as follows.
When A makes a query of the form RSign (m, ρ), G3 first checks whether ρ ∈ RList and if not, returns ⊥.
Otherwise, it samples ψ $← {0, 1}κ, computes pk ′ ← pk · ρ, sk ′ := sk · ρ mod p, and sets m̂←

(
ψ, pk ′,m

)
.

If the list H ′0 already contains an element for H ′0 [m̂], i.e. H ′0 [m̂] 6= ⊥, then the game aborts at this point.
Otherwise, a signature σ̂ is computed as σ̂ $← EC[H0].Sign

(
sk ′, m̂

)
. G3 subsequently returns (ψ, σ̂). The

only difference of game G3 to G2, is that game G3 potentially aborts at line 24 if H ′0 [m̂] 6= ⊥. Hence,
we obtain the following claim.

Claim 5.4 Let E2,3 denote the event that G3 aborts during a signing query, when H0[m̂] 6= ⊥, where
m̂ = (ψ, pk ′,m). Then Pr[E2,3] ≤ q2

p .

Proof. This event can only happen when A makes a correct guess of the message m̂ and makes a query of
the form H0(m̂) prior to a RSign(m, ρ) query. m̂ is constructed as m̂ = (ψ, pk ′,m) where ψ is uniformly
sampled as ψ $← {0, 1}κ. Since A makes atmost q queries to H0(·), A can correctly guess a particular
m̂ = (ψ, pk ′,m) for a fixed m, with probability q

p . Since A makes at most q signing queries to RSign (m, ρ),
A can correctly guess any m̂ with a probability bounded by

∑q
i=1

q
p ≤

q2

p .

Since the games G2, G3 are equivalent unless the event Pr[E2,3] occurs, AdvA
G2,REC[H0] ≤ AdvA

G3,REC[H0]+

Pr [E2,3] ≤ AdvA
G3,REC[H0] + q2

p .

Game G4: In G4, the way that signing queries from A are answered, is again internally modified as
follows. When A makes a query of the form RSign(m, ρ), G4 first checks whether ρ ∈ RList and if not,
returns ⊥. Otherwise, it samples ψ $← {0, 1}κ computes pk ′ ← pk ·ρ, and sets m̂←

(
ψ, pk ′,m

)
. The game

aborts at this point if H0[m̂] 6= ⊥. If it does not abort, it internally queries H0 on input message m̂. This
means it queries h← G (ctr), where ctr $← {0, 1}κ. G4 internally sets H0[m̂]← ρ · h mod p and stores
H ′0[m̂]← ctr. After making the query to H0, G4 fetches m′ ← H ′0[m̂], where m′ was set to ctr during H0
query. Since sk is known to the game, it can now compute the signature σ′ as σ′ $← EC[G].Sign(sk ,m′).
Finally, it computes and returns the signature σ̂ as σ̂ ← Trf[H0,G]EC(m̂,m′, σ′, ρ−1, pk ′, pk), where
pk = pk ′ · ρ−1.

Claim 5.5 AdvA
G3,REC[H0] = AdvA

G4,REC[H0]

Proof. We argue that in both games, the answers to signing queries are identically distributed. To this end,
we analyze how G4 replies to a query of the form RSign (m, ρ). First note that the explicit query to H0 at
line 33 is implicitly also made in G3 at line 25 and therefore does not change the behaviour of G4 (compared
to G3). Next, G4 derives signature (ψ, σ̂) on input (m, ρ) as σ̂ ← Trf[H0,G]EC(m̂,m′, σ′, ρ−1, pk ′, pk),
where m′ = H ′0[m̂], pk = pk ′ · ρ−1,EC[G].Verify(pk , σ′,m′) = 1, and G(m′)

H0[m̂] = h′

H0[m̂] = h′

ρ·h′ = ρ−1 mod p.
It follows from Lemma 5.2 that σ̂ constitutes a correct signature on message m̂ and under public key pk ′
relative to EC[H0].Verify. It follows immediately that the signature (ψ, σ̂) constitutes a valid signature
relative to REC[H0].Verify. Moreover, the value of ψ is identically distributed in games G3,G4, which
concludes the proof.

Game G5: G5 behaves identically to G4 except for the following modification in the main procedure:
Upon receiving a forgery of the form (m∗, σ∗ = (ψ, σ̂), ρ∗) from A, it sets m̂∗ ← (ψ, pk∗,m∗) and aborts
if H ′0[m̂∗] = ε.

Claim 5.6 Let E4,5 be the event that G5 aborts if H ′0[m̂∗] = ε, where m̂∗ = (ψ, pk∗,m∗). Then
Pr[E4,5] ≤ q2

p .

Proof. The only way this event can happen, is if A manages to make a query of the form H0(m̂∗) before
querying Rand to obtain the corresponding value of ρ∗. The proof of this claim follows in a similar way as
the corresponding proof in claim 5.3.

Since the games G4, G5 are equivalent unless event E4,5 occurs, AdvA
G4,REC[H0] ≤ AdvA

G5,REC[H0] +
q2

p .

Reduction to UF-CMA security. We describe an algorithm CSignO,G (depicted in Figure 14) that
plays in the uf -cmaEC[G] game. C obtains as input a public key pkC and is given access to the signing

20

main CSignO,G(pkC)
00 (m∗, σ∗, ρ∗) $← AH0,Rand,RSign(pkC)
01 (ψ, σ̂)← σ∗

02 pk∗ ← pk · ρ∗
03 m̂∗ ← (ψ, pk∗,m∗)
04 If H ′0[m̂∗] = ε : Abort
05 If m∗ ∈ Sigs : bad← true
06 If ρ∗ 6∈ RList :
07 bad← true
08 b← REC[H0].Verify (pk∗, σ∗,m∗)
09 If ¬b ∨ bad : Abort
10 m′ ← H ′0[m̂∗]
11 tmp← (m′, m̂∗, σ̂∗, ρ∗, pkC, pk∗)
12 σ′ ← Trf[G,H0]EC(tmp)
13 Return (m′, σ′)

Procedure Rand
14 ρ $← χ
15 pk ′ ← pk · ρ
16 ∀m =

(
·, pk ′, ·

)
:

17 If H ′0 [m] = ε : Abort
18 RList← RList ∪ {ρ}
19 Return ρ

Procedure RSign (m, ρ)
20 If ρ 6∈ RList : Return ⊥
21 ψ $← {0, 1}κ
22 pk ′ ← pk · ρ
23 m̂← (ψ, pk ′,m)
24 If H ′0[m̂] 6= ⊥ : Abort
25 Query H0(m̂)
26 m′ ← H ′0[m̂]
27 σ′ ← SignO(m′)
28 tmp← (m̂,m′, σ′, ρ−1, pk ′, pkC)
29 σ̂ ← Trf[H0,G]EC(tmp)
30 Sigs ← Sigs ∪ {m}
31 Return (ψ, σ̂)

Procedure H0 (m)
32 If H0 [m] 6= ⊥
33 Return H0 [m]
34 Parse m as

(
·, pk ′, ·

)
35 If ∃ρ ∈ RList : pk ′ = pk · ρ
36 ctr ← {0, 1}κ
37 h← G (ctr)
38 H0 [m]← ρ · h mod p
39 H ′0 [m]← ctr
40 Else
41 h $← Zp
42 H0 [m]← h
43 H ′0 [m]← ε
44 Return H0 [m]

Figure 14: Reduction to UF-CMA game.

oracle SignO to obtain signatures under pkC under messages of its choice. Furthermore, C has access to
the random oracle G. C runs A on input pkC and simulates G5 to A as described in Figure 14.
Simulation of Randomness Queries. Queries to Rand from A do not require knowledge of the secret
key corresponding to pkC and hence are straight forward to simulate.
Simulation of Random Oracle Queries. C’s simulation of random oracle queries coincides with the
above programming strategy that is already internally present in G5.
Simulation of Signing Queries. Recall that in G5, queries of the form RSign (m, ρ) internally prompt
the computation of signature σ′ = EC[G].Sign(skC,m

′), where m′ ← ctr. Since C does not know skC, it
needs to compute σ′ via a call to its signing oracle, i.e., as σ′ ← SignO(m′). Other than that C simulates
such a query exactly as internally done for G5.
Extracting the forgery. When the tuple (m∗, σ∗, ρ∗) is returned as an answer from A, C first
parses it as (m∗, σ∗, ρ∗) = (m∗, (ψ∗, σ̂∗), ρ∗), checks whether it constitutes a valid forgery, and aborts
otherwise (note that in this case, G5 would return 0, so C can safely abort). In case C does not abort,
it computes pk∗ = pkC · ρ∗, where pk∗ is the public key under which A’s forgery is valid. C computes
m̂∗ ← (ψ∗, pk∗,m∗) and if H ′0 [m̂∗] = ε, it aborts. Otherwise, C fetches m′ ← H ′0 [m̂∗] and computes

σ′ ← Trf[G,H0]ECDSA (m′, m̂∗, σ̂∗, ρ∗, pkC, pk∗) .

Since H0 [m̂∗] = G (H ′0 [m̂∗]) · ρ∗ = G (m′) · ρ∗, we have that H0[m̃∗]
G(m′) = G(m′)·ρ∗

G(m′) = ρ∗. Together with
pk∗ = pkC · ρ∗ and EC[H0].Verify(pk∗, σ̂∗, m̂∗) = 1, Lemma 5.2 implies that

EC[G].Verify (pkC, σ
′,m′) = 1.

21

Claim 5.7 (m′, σ′) constitutes a valid forgery in uf -cmaEC[G] with probability 1− q2/p.

Proof. We have to show that the query SignO(m′) was not made by C during its simulation and hence
(m′, σ′) is a valid forgery in uf -cmaEC[G]. Note that A has not made a query of the form RSign (m∗, ρ∗)
throughout the simulation. Namely, if it had, (m∗, σ∗, ρ∗) would not constitute a valid forgery in G5
and the simulation would have aborted at this point. This implies that C never had to simulate a query
RSign(m∗, ρ∗) to A which entailed a H0 query on message m̂∗ ← (ψ∗, pk∗,m∗). Hence, m′ associated
with query H0(m̂∗) was not queried by C to the oracle SignO in any query of the form RSign (m, ρ) with
m 6= m∗ unless there exist (any) two values m1,m2 s.t. H ′0[m1] = H ′0[m2] 6= ⊥. It is easy to see that this
happens with probability at most q2/p during C’s simulation, since all values that C queries to the oracle
SignO are sampled independently and uniformly at random from {0, 1}κ.

From claims 5.3-5.6, we have AdvA
G0,REC[H0] ≤ AdvA

G5,REC[H0] + 4q2

p . Since C provides a perfect
simulation of G5 to A up to an error of q2/p, as shown in the previous claim, we obtain

AdvA
uf -cma-hrk,REC[H0] ≤ AdvA

G5
+ 4q2

p
≤ AdvC

uf -cma,EC[G] + 4q2

p
,

which implies the theorem.

6 Practical Considerations

Synchronizing hot/cold wallet. To achieve correctness according to Definition 3.2, the cold wallet
and hot wallet (party A and party B in Fig. 3) respectively, need to derive their keys in the same (ordered)
sequence. Fortunately, this can be realized easily in practice. A simple solution is to use an increasing
counter for every freshly derived pair of session keys in place of the ID argument. In this case, no
additional synchronization between the hot and cold wallet is necessary. However, it is also possible
to include a more complicated ID structure, where the ID is provided by the wallet user as an input
parameter. Consider a scenario, where a wallet user Bob wants to receive some payment for some ID. To
this end, the hot wallet generates a fresh session public key pkID for ID via SWal.PKDer. Then, ID is
added to the transaction tx that is published on the blockchain. Later, when Bob wants to spend the
transaction via the cold wallet, he can extract the ID from tx to generate the corresponding secret key
skID on the cold wallet. Notice, of course, that the values for ID have to be chosen “somewhat randomly”
as otherwise the unlinkability property of the wallet scheme is broken. One simple way to achieve this is
to let the hot wallet encrypt the ID and add the ciphertext to the transaction that sends money to the
address pkID.
Statefulness of our scheme. We point out that the state in our stateful wallet scheme SWal may make
our scheme more complex to use in practice (as evidented from the previous discuss on synchronization).
However, the state is only needed in order to achieve forward unlinkability after compromise of the hot
wallet. The unforgeability property proven in our work also works for the simpler stateless wallets. Hence,
if forward unlinkability is not needed, one can use a stateless version of our constructions and benefit
from our security analysis (i.e., unlinkability without state compromise and unforgeability).
The winning condition of wallet unforgeability. In Figure 6 the adversary wins the game if she
manages to output a valid forgery (pkID∗ , σ

∗,m∗) such that SWal.Verify(pkID∗ , σ
∗,m∗) = 1. We emphasize

that in practice for breaking a wallet in, e.g., Bitcoin, it suffices that the adversary creates a transaction
spending money from address pkID∗ and is accepted by the miners. The latter is quite important because
there is no reason why in legacy cryptocurrencies, miners should execute the SWal.Verify algorithm of
our SWal construction. Fortunately, however, in Bitcoin miners implicitly execute REC[H].Verify when
verifying transactions, and hence our scheme and its security analysis is compatible with Bitcoin.6

6At a more technical level, in Bitcoin if we want to spend money from an address pkID, then the spending transaction
(that is signed with skID) contains pkID. Hence, it has a form that is compatible with the verification done by REC[H].Verify.
In fact, our security proof can also be adjusted to match exactly with the verification that is carried out by the miners.

22

Transaction Cost Analysis. To integrate our scheme into Bitcoin, we have to make sure that (a)
transactions are salted, (b) they are pre-fixed7 by the public key pk from which the money is sent, and
(c) such transactions are accepted by the miners. Fortunately, in Bitcoin this can be achieved using the
simple scripting language, and we explain it in detail in App. B.2. While the pre-fixing of the public key
(b) is naturally happening in Bitcoin, the random salting (a) is non-standard and results into additional
costs. We discuss them briefly below and compare them with the standard costs of creating transactions
in Bitcoin (i.e., without salting). Consider a transaction tx0 that transfers money from the cold wallet to
a new address, and hence in our scheme has to be randomized. Due to the mechanics of Bitcoin also
the transaction tx1 that spends tx0 will include this random salt. Thus, our cost analysis includes these
two transactions. We summarize the costs in Satoshi and USD, depending on whether the transaction
gets included in the next block, or within the next 6 subsequent blocks. Note that confirmation of a
transaction in an earlier block results into higher costs8

Table 1: Standard vs Randomized Transactions Costs
Transaction Type Confirmation in next

block
Confirmation in next 6
blocks

Fees (Satoshi/ USD) Fees (Satoshi/ USD)
tx0 (Standard) 7665/0.54 2190/0.17
tx1 (Standard) 8505/0.60 2430/0.19
tx0 (Randomized) 7875/0.56 2250/0.18
tx1 (Randomized) 8610/0.61 2460/0.19

7 Conclusion
In this work, we focused on analyzing the security of deterministic wallets. We developed two new security
guarantees that we call wallet unlinkability and wallet unforgeability, and showed a modular approach
for constructing such wallets from certain signature schemes. At the technical level, we proved that a
simple extension of the ECDSA-based hot/cold wallet as used in Bitcoin can be proven secure in our
model. A natural extension of our work will be to consider the case of hierarchical wallets. However, the
hierarchical setting will require a significantly more complex model (additional oracles, more complex
bookkeeping). The security analysis in this setting is also believed to be more involved. Hence, it is
certainly an excellent direction for future research to extend our model to the hierarchical case.

8 Acknowledgments
This work was partly supported by the DFG CRC 1119 CROSSING (project S7), the German Federal Min-
istry of Education and Research (BMBF) iBlockchain project, and the ERC Project ERCC (FP7/615074).
Additionally, the first two authors of this work have received funding from the German Federal Ministery
of Education and Research and the Hessen State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Center for Applied Cybersecurity (CRISP).

We would like to thank Eike Kiltz for preliminary discussions on our model and Hendrik Amler for
helping us in the practical evaluations. We are grateful to our anonymous reviewer from CCS for important
comments on the modularization of our proofs using the notion of unforgeability under rerandomizable
keys.

7Notice that in our generic wallet construction (c.f. Figure 7), messages are key pre-fixed to prevent from the related key
attack. For the salted ECDSA construction to satisfy the property of signatures with uniquely rerandomizable keys (c.f.
Figure 10), messages are again key-prefixed. The key prefixing in the latter case is necessary as an essential technique for
the proof of Th 5.1. Although theoretically our ECDSA based wallet construction is key pre-fixed twice, in practice key
pre-fixing the message once will be enough.

8We have used the currency value from [Cur19] timestamped on 14th May, 2019. Notice that the increase in costs are
around 3% compared to standard Bitcoin transactions. However the cost increase also depends on the application, and we
leave it as an interesting question for future work to provide an application-dependent optimization of costs.

23

References
[AGKK19] Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos Kiayias. A formal

treatment of hardware wallets. Cryptology ePrint Archive, Report 2019/034, 2019. https:
//eprint.iacr.org/2019/034. (Cited on page 5.)

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. Cryptology ePrint Archive, Report 2018/483, 2018. https://eprint.iacr.org/
2018/483. (Cited on page 5.)

[BH19] Joachim Breitner and Nadia Heninger. Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies. IACR Cryptology ePrint Archive, 2019:23, 2019.
(Cited on page 5.)

[Bit18] BitcoinExchangeGuide. CipherTrace Releases Report Exposing Close to $1 Bil-
lion Stolen in Crypto Hacks During 2018. https://bitcoinexchangeguide.
com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_
-crypto-hacks-during-2018/, 2018. (Cited on page 1.)

[Blo18] Bloomberg. How to Steal $500 Million in Cryptocurrency. http://fortune.com/2018/01/
31/coincheck-hack-how/, 2018. (Cited on page 1.)

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J.
Cryptology, 17(4):297–319, 2004. (Cited on page 4.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, November
1993. (Cited on page 6.)

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331, 2004. http://eprint.iacr.org/
2004/331. (Cited on page 6.)

[BR18] Michael Brengel and Christian Rossow. Identifying key leakage of bitcoin users. In Research
in Attacks, Intrusions, and Defenses - 21st International Symposium, RAID 2018, Heraklion,
Crete, Greece, September 10-12, 2018, Proceedings, pages 623–643, 2018. (Cited on page 5.)

[But13] Vitalik Buterin. Deterministic Wallets, Their Advantages and
their Understated Flaws. https://bitcoinmagazine.com/articles/
deterministic-wallets-advantages-flaw-1385450276/, 2013. (Cited on page 2,
5.)

[CEV14] Nicolas T. Courtois, Pinar Emirdag, and Filippo Valsorda. Private key recovery combination
attacks: On extreme fragility of popular bitcoin key management, wallet and cold storage
solutions in presence of poor RNG events. IACR Cryptology ePrint Archive, 2014:848, 2014.
(Cited on page 5.)

[Cur19] Bitcoin Fees for Transactions. https://bitcoinfees.earn.com/, 2019. (Cited on page 23.)

[DKLS18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, 21-23 May 2018, San Francisco, California, USA, pages 980–997, 2018.
(Cited on page 5.)

[FF13] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique: The case
of schnorr signatures. In Advances in Cryptology - EUROCRYPT 2013, pages 444–460, 2013.
(Cited on page 5.)

24

https://eprint.iacr.org/2019/034
https://eprint.iacr.org/2019/034
https://eprint.iacr.org/2018/483
https://eprint.iacr.org/2018/483
https://bitcoinexchangeguide.com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_-crypto-hacks-during-2018/
https://bitcoinexchangeguide.com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_-crypto-hacks-during-2018/
https://bitcoinexchangeguide.com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_-crypto-hacks-during-2018/
http://fortune.com/2018/01/31/coincheck-hack-how/
http://fortune.com/2018/01/31/coincheck-hack-how/
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331
https://bitcoinmagazine.com/articles/deterministic-wallets-advantages-flaw-1385450276/
https://bitcoinmagazine.com/articles/deterministic-wallets-advantages-flaw-1385450276/
https://bitcoinfees.earn.com/

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder,
and Mark Simkin. Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang, editors, PKC 2016, Part I, volume 9614 of LNCS, pages 301–330. Springer, Heidelberg,
March 2016. (Cited on page 3, 4, 5, 6, 7, 26.)

[FTS+18] Chun-I Fan, Yi-Fan Tseng, Hui-Po Su, Ruei-Hau Hsu, and Hiroaki Kikuchi. Secure hierarchical
bitcoin wallet scheme against privilege escalation attacks. In IEEE Conference on Dependable
and Secure Computing, DSC 2018, pages 1–8, 2018. (Cited on page 5.)

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In Applied Cryptography and Network
Security - ACNS 2016, pages 156–174, 2016. (Cited on page 5.)

[GS15] Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wallets that tolerate key
leakage. In Financial Cryptography and Data Security - 19th International Conference, FC
2015, pages 497–504, 2015. (Cited on page 5.)

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signatures from
identification schemes. In Advances in Cryptology - CRYPTO 2016, Part II, pages 33–61,
2016. (Cited on page 5.)

[Lig18a] Lightning Bitcoin mainnet. https://graph.lndexplorer.com/, 2018. (Cited on page 30.)

[Lig18b] Lightning RFC BOLT 3. https://github.com/lightningnetwork/lightning-rfc/blob/
master/03-transactions.md, 2018. (Cited on page 30.)

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed
key generation and applications to cryptocurrency custody. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 1837–1854, 2018. (Cited on page 5.)

[MB18] Gregory Maxwell and Iddo Bentov. Deterministic Wallets. https://www.cs.cornell.edu/
~iddo/detwal.pdf, 2018. (Cited on page 3.)

[Med18] Mediawiki. BIP32 Specification. https://github.com/bitcoin/bips/blob/master/
bip-0032.mediawiki, 2018. (Cited on page 2.)

[MPas19] Antonio Marcedone, Rafael Pass, and abhi shelat. Minimizing trust in hardware wallets
with two factor signatures. Cryptology ePrint Archive, Report 2019/006, 2019. https:
//eprint.iacr.org/2019/006. (Cited on page 5.)

[MSM+15] Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka, and Tetsu Iwata.
On the security of the schnorr signature scheme and DSA against related-key attacks. In
ICISC 2015 - 18th International Conference, Seoul, South Korea, November 25-27, 2015,
Revised Selected Papers, pages 20–35, 2015. (Cited on page 12.)

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings, pages 239–252, 1989. (Cited on page 4, 5.)

[Seg18] Bitcoin Improvement Proposals for Segwit. https://github.com/bitcoin/bips, 2018.
(Cited on page 29.)

[Seg19] Segregated Witness Wallet Development Guide. https://bitcoincore.org/en/segwit_
wallet_dev/, 2019. (Cited on page 31.)

[Ske18] Rhys Skellern. Cryptocurrency Hacks: More Than $2b
USD lost between 2011-2018. https://medium.com/ecomi/
cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_-67054b342219,
2018. (Cited on page 1.)

25

https://graph.lndexplorer.com/
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://www.cs.cornell.edu/~iddo/detwal.pdf
https://www.cs.cornell.edu/~iddo/detwal.pdf
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://eprint.iacr.org/2019/006
https://eprint.iacr.org/2019/006
https://github.com/bitcoin/bips
https://bitcoincore.org/en/segwit_wallet_dev/
https://bitcoincore.org/en/segwit_wallet_dev/
https://medium.com/ecomi/cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_-67054b342219
https://medium.com/ecomi/cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_-67054b342219

main uf -cma-rkRSig
00 (sk , pk) $← RSig.Gen (par)
01 (m∗, σ∗, ρ∗) $← CRSign (pk)
02 If m∗ ∈ Sigs : bad← true
03 pk∗ ← RSig.RandPK(pk , ρ∗)
04 b← RSig.Verify (pk∗, σ∗,m∗)
05 Return b ∧ ¬bad

Oracle RSign (m, ρ)
06 sk ′ ← RSig.RandSK(sk , ρ)
07 σ $← RSig.Sign

(
m, sk ′

)
08 Sigs ← Sigs ∪ {m}
09 Return σ

Figure 15: Security game uf -cma-rkRSig with adversary A.

[TVR16] Mathieu Turuani, Thomas Voegtlin, and Michael Rusinowitch. Automated verification of
electrum wallet. In Financial Cryptography and Data Security - FC 2016 International
Workshops, BITCOIN, VOTING, and WAHC, pages 27–42, 2016. (Cited on page 5.)

[Wik18a] Bitcoin Wiki. BIP32 proposal. https://en.bitcoin.it/wiki/BIP_0032, 2018. (Cited on
page 2.)

[Wik18b] Wikipedia. Hardware Wallet. https://en.bitcoin.it/wiki/Hardware_wallet, 2018.
(Cited on page 2.)

[Wik19] Wikipedia. ECDSA Signature Scheme. https://en.wikipedia.org/wiki/Elliptic_Curve_
Digital_Signature_Algorithm, 2019. (Cited on page 28.)

[Wui17] Pieter Wuille. Bitcoin Improvement Proposal 62. https://github.com/bitcoin/bips/
blob/master/bip-0062.mediawiki, 2017. (Cited on page 29.)

[ZCC+15] Zongyang Zhang, Yu Chen, Sherman S. M. Chow, Goichiro Hanaoka, Zhenfu Cao, and Yunlei
Zhao. Black-box separations of hash-and-sign signatures in the non-programmable random
oracle model. In Provable Security - 9th International Conference, ProvSec 2015, pages
435–454, 2015. (Cited on page 5.)

A A Construction from BLS
Recall that the notion of unforgeability under honestly rerandomizable keys introduced in Section 2 is a
weaker form of the notion of unforgeability under rerandomizedkeys proposed in [FKM+16]. For a signature
scheme with rerandomizable keys RSig, we present a formalization of later via game uf -cma-rkRSig in
Figure 15. In this section we show that the BLS signature scheme achieves the notion of unforgeability
under rerandomized keys. We give a formal proof via Theorem A.2 in the following subsection. For the
Schnorr signature scheme, we note that the corresponding result follows from Theorem 1 in [FKM+16].
We begin by recalling the BLS signature scheme BLS presented in Figure 16. Here, we assume that
par = G defines a group G of prime order p with generator g. To prove that RBLS[H] satisfies the notion
of uf -cma-rk, we again use a transformation algorithm (similar to the one used in the ECDSA based
construction) that converts signatures under a public key pk into signatures under a related public key
pk′. The BLS transformation algorithm is depicted in Figure 17 and its properties are summarized in the
following lemma:

Lemma A.1 Consider the algorithm Trf[H]BLS depicted in Figure 16. Suppose that:

• X0 = gx0 , X1 = gx1 ∈ G and ω ∈ Zp s.t. X1 = X0g
ω = gx0+ω,

• BLS[H].Verify(X1, σ1,m) = 1,

• σ0 ← Trf[H]BLS(m,σ1, ω,X0, X1).

Then BLS[H].Verify(σ0, X0,m) = 1.

26

https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/Hardware_wallet
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

Algorithm BLS[H].Gen (par = G)
00 x $← Zp
01 X ← gx

02 sk ← x
03 pk ← X
04 Return (pk , sk)

Algorithm BLS[H].Sign (sk = x,m)
05 Return σ := H (m)x

Algorithm BLS[H].Verify(pk = X,σ,m)
06 Return (e (σ, g) = e (H (m) , X))

Algorithm RBLS[H].RandPK(pk = X, ρ)
07 pk ′ = X · gρ
08 Return pk ′

Algorithm RBLS[H].RandSK(sk = x, ρ)
09 sk ′ = x+ ρ
10 Return sk ′

Figure 16: BLS [H] = (BLS[H].Gen,BLS[H].Sign,BLS[H].Verify): BLS Signature scheme relative to groups
G,GT with bilinear mapping e : G×G→ GT , where g is the generator of the group G and hash function
H : {0, 1}∗ → G. RBLS[H] = (BLS [H] ,RBLS[H].RandSK,RBLS[H].RandPK): BLS signature scheme with
rerandomization routines for secret and public keys.

Trf[H]BLS (m,σ1, ω,X0, X1)
11 If (BLS[H].Verify (σ1, X1,m) = 0) ∨ (X1 6= X0 · gω) :
12 Return ⊥
13 h← H(m)
14 σ0 ← σ1 · h−ω
15 Return σ0

Figure 17: Transformation algorithm Trf[H]BLS with hash function H : {0, 1}∗ → G.

Proof. From the prerequisite of the lemma, we have thatX1 = X0g
ω = gx0+ω and BLS[H].Verify(X1, σ1, ,m) =

1, which implies that both σ1 = H(m)x1 = H(m)x0+ω and Trf[H]BLS(m,σ1, ω,X0, X1) 6= ⊥. Trf[H]BLS
now computes and returns σ0 = σ1 · H(m)−ω. Since σ0 = H(m)x0+ω · H(m)−ω = H(m)x0 is the unique
signature on message m under public key X0, it follows that BLS[H].Verify(X0, σ0,m) = 1.

Theorem A.2 Let H : {0, 1}∗ → Zp be a hash function (modeled as a random oracle). Let A be an
algorithm that plays in game uf -cma-rkRBLS[H]. Then there exists an algorithm C running in roughly the
same time as A, such that

AdvA
uf -cma-rk,RBLS[H] ≤ AdvC

uf -cma,BLS[H],

where q is the number of random oracle queries that A makes.

Proof. Consider an adversary A playing in game uf -cma-rkRBLS[H]. As such, A is given an input public
key pk = X, and is granted access to the oracle RSign and the random oracle H. We prove Theorem A.2
via the following reduction.
Reduction to UF-CMA Security. We describe an algorithm C (depicted in Figure 18) that plays in
the uf -cmaBLS[H] game. C obtains as input a public key pkC and is given access to the signing oracle
SignO to obtain signatures under pkC under messages of its choice. Furthermore, C has access to the
random oracle H. C runs A on input pkC and simulates uf -cma-rkRBLS[H] to A as described in Figure 18.

Simulation of Signing Queries. Note that C does not know sk ′ = RBLS[H].RandSK(sk , ρ). However,
C can use the signing oracle SignO in the uf -cmaBLS[H] game to obtain signatures on a message m of
C’s choice under pkC. Subsequently, C can use Trf[H]BLS to convert the so-obtained signature σ into a
signature σ′ (also on m) under pk ′ = pk · gρ, i.e, σ′ ← Trf[H]BLS(m,σ, ρ, pk ′, pk). By lemma A.1, σ′ is a
valid signature under pk ′.
Extracting the forgery. When A returns tuple (m∗, σ∗, ρ∗), C derives the rerandomized key
pk∗ = gpk+ρ∗ and checks whether (m∗, σ∗, ρ∗) is a valid forgery under pk∗. If yes, then C derives σ under
pkC as σ ← Trf[H]BLS(m∗, σ∗, ρ∗, pkC, pk∗). σ is a valid forgery under pkC in game uf -cma-rkBLS[H] since by

27

Lemma A.1, BLS[H].Verify(pk∗,m∗) = RBLS[H].Verify(pk∗,m∗) = 1 implies that BLS[H].Verify(pkC,m
∗) =

1 and moreover, m∗ /∈ Sigs (because m∗ is a valid forgery in uf -cma-rkRBLS[H]).

CSign,H(pkC)
00 bad← false
01 (m∗, σ∗, ρ∗) $← CH,RSign (pkC)
02 pk∗ ← pkC · gρ

∗

03 If m∗ ∈ Sigs : bad← true
04 b ← RBLS[H].Verify (pk∗, σ∗,m∗)
05 If ¬b ∨ bad : Abort
06 σ ← Trf[H]BLS(m∗, σ∗, ρ∗, pkC, pk∗)
07 Return (m∗, σ)

Oracle RSign (m, ρ)
08 pk ′ ← pkC · gρ
09 σ ← SignO(m)
10 σ′ ← Trf[H]BLS(m,σ, ρ, pk ′, pkC)
11 Sigs ← Sigs ∪ {m}
12 Return σ′

Figure 18: Reduction to uf -cma Game

B The mechanics of Bitcoin
In this section, we discuss the underpinnings of the money mechanism in Bitcoin. The currency unit in
Bitcoin is denoted as BTC. When a user Alice with key pair (pkA, skA) wants to pay x amount of BTC to
Bob having key pair (pkB, skB), then it first needs to create a Bitcoin transaction. Let us denote this
transaction as txAB. This transaction firstly includes information about Alice’s payment in the input,
secondly the destination address of Bob in the output, which essentially represents Bob’s public key –
pkB. After the transaction txAB has been created, it is signed by Alice’s secret key skA – as a result, a
signature σA is generated. Once txAB is propagated to the Bitcoin network, it will be validated by one of
the mining nodes. The validation process essentially involves checking whether the signature σA provided
by Alice is valid with respect to it’s public key pkA. This signature generation, verification process in
Bitcoin relies on the ECDSA signature scheme [Wik19]. Once txAB qualifies as a valid transaction , it is
included within a block. After a subsequent number of blocks, transaction txAB gets confirmed in the
Bitcoin network.

B.1 Payments over Bitcoin
In this subsection we want to take a closer look at how payments are done in Bitcoin via transactions.
The majority of transactions in Bitcoin currently behaves as follows. The output of a Bitcoin transaction
in its unspent form, is referred to as a UTXO – Unspent Transaction Output. A UTXO is analogous to the
unspent money a user carries in its wallet. So a user can have $46 cash in its wallet in the form of a
combination of notes and coins - for example: two $20 notes, one $5 coin, and one $1 coin. Similarly, in
the cryptocurrency world, this user might possess 46 BTC in its Bitcoin wallet, in the form of a number of
UTXO-s (for ex: UTXO1 = 10BTC, UTXO2 = 15BTC, UTXO3 = 21BTC, so that UTXO1 + UTXO2 + UTXO3 = 46BTC.).
Likewise, when a user wants to pay via a Bitcoin transaction, then it is analogous to a regular cash
payment in a shop. Suppose a user wants to buy bread worth $4.65. the user may not have exactly $4.65
in her wallet. Instead he gives a note of $5 to the shop, out of which $4.65 is spent for the purchase, while
$0.35 is returned to the user. In a similar way, a bitcoin transaction consists of an input part - specifying
the UTXOs, the user wants to spend (analogous with the $5 in the previous example) and a output part –
specifying the newly created UTXOs to be paid to the recipient (analogous with the $4.65 and $.35 in the
previous example). As is evident from the example above, both the input and output parts may contain
more than one UTXO. In fact, the output field can be modified to create a more complicated transaction,
or better include some important functionality. Before going into this direction of modifying an output
field and its benefits, we first give details on the format of a transaction next.
Format of transactions. Here, we give a detailed overview on the important fields of a Bitcoin
transaction with an illustration. Suppose Alice wants to use 5 BTC from her Bitcoin wallet to pay Bob.
Henceforth Alice uses two UTXO-s from her wallet, where UTXOA1 = 2BTC, UTXOA2 = 3BTC. To pay Bob,

28

txAB : Alice’s
UTXO input

UnlockingScript

σA, pkA

LockingScript

on pkB
5 BTC Other fields

txA1 : Other fields UTXOA1 2BTC Other fields txA2 : Other fields UTXOA2 3BTC Other fields

Figure 19: A payment of 5 BTC from Alice (pkA, skA) to Bob (pkB, skB) via txAB.

Alice creates a new transaction. Let us name this transaction as txAB (details in Figure 19). The newly
created transaction txAB contains the following fields:

1. Input: The input field contains

• The details of the UTXOs which will be spent to create the current transaction. In this example
- UTXOA1, UTXOA2.
• The Unlocking Script contains a) the signature of the owner of txAB, i.e. the signature of
Alice, computed as σA := Sign(m = H (txAB) , skA). b) The public key of Alice – pkA, later
required for signature verification.

2. Output: The output field may contain a number of so-called Locking Scripts, each one corre-
sponding to one of the output UTXOs. The role of each Locking Script is to contain the destination
address along with some conditions which are later relevant during transaction validation process.
When a Locking Script is run with its matching Unlocking Script, if the result evaluates to true,
it implies the transaction is valid. In the above example, the output contains one Locking Script
corresponding to Bob’s public key pkB.

Locking Script. Depending on the format of a Bitcoin transaction, the Locking Script specification
varies. We describe the Locking Script in two of the most popular Bitcoin transaction formats. Pay-to-
PubKey-Hash format (P2PKH): As the name hints, Pay-to-PubKey-Hash Script represents payment
to the destination address, which is essentially the hash of public key of the recipient. In this particular
format, the Locking Script denoted as ScriptPubKey is of the following form

OP_DUP OP_HASH160 < hash160(pubKey) > OP_EQUAL

OP_CHECKSIG

where, pubKey = public key of the recipient, the rest are the operators in the underlying scripting language.
The corresponding Unlocking Script is

ScriptSig :=< Sig pubKey >

where, Sig denotes the signature with respect to pubKey. The two scripts – ScriptSig, ScriptPubKey
are run back to back within a forth-like stack based programming language. The script executes from left
to right, where any non-operator is pushed into the stack. When the cursor reaches an operator, then
necessary inputs are popped from the stack, and evaluated to produce an output.

The execution of following Unlocking-Locking Script has been illustrated in Table 2. The cursor
will scan the Script from left to right.

Script = Sig pubKey OP_DUP OP_HASH160

< hash160(pubKey) > OP_EQUAL OP_CHECKSIG

Segwit format (P2WSH): The key distinction of the Seggregated witness format to the previous format
is that, the Unlocking Script is moved to an entity called the witness which is not stored as part of
the transaction. This enhances Bitcoin scalability [Seg18], prevents transaction malleability [Wui17], and
has other benefits. Here the Locking Script or ScriptPubKey is computed as follows

29

Table 2: Executing a matching Unlocking-Locking Script in Bitcoin
Steps Cursor reads Stack
Step 1 Sig
Step 2 pubKey Sig
Step 3 OP_DUP pubKey

Sig
Step 4 OP_HASH160 pubKey

pubKey
Sig

Step 5 < hash160(pubKey) > hash160(pubKey)
pubKey
Sig

Step 6 OP_EQUAL < hash160(pubKey) >
hash160(pubKey)
pubKey
Sig

Step 7 OP_CHECKSIG pubKey
Sig

Step 8 0/1

1. Define witness Script.

2. Set scriptHash = hash of (witness Script).

3. Compute
ScriptPubKey = OP_HASH160 hash160(scriptHash) OP_EQUAL.

The witness Script contains the witness data which is embedded in the hash. The run of the Locking
Script along with the Unlocking Script follows same as before, where the transaction passes as valid
only when the Script evaluates to true.
Problem of lacking randomization. As was mentioned above, the underlying signature scheme in
Bitcoin is ECDSA. Unfortunately the Bitcoin wallet in practice using ECDSA is not provably secure in our
model. However, as discussed in section 5, our construction of a Bitcoin wallet instantiated with ECDSA
achieves the notion of wunf security. Our proof technique crucially relies on prefixing any message with
a random salt (denoted as ψ) before signing it. In any cryptocurrency network, messages are essentially
the hash of the the entire transaction. To randomize the message, henceforth the underlying transaction
needs to be randomized. However, one of the problems in existing Bitcoin transaction formats discussed
above is that currently all the fields are of some specific form and contain no randomness. Although the
public key value pubKey should be generated from the PKDer algorithm within the wallet and should
look random to the user, it is not an acceptable source of randomness, as the random salt must be chosen
freshly for every newly signed transaction. Note that a public key pubKey on the other hand may show
up in multiple transactions if the user deliberately or unknowingly provides the same destination address
which is used in a previous transaction. We provide a proposal to solve the lack of randomness problem
in a transaction in the next section.

B.2 Integrating our Wallet Solution in Bitcoin
The Locking Script or the ScriptPubKey field in a transaction contains a Bitcoin script which later
needs to be executed with a matching Unlocking Script. However this Locking Script can support
much more complicated code, which, e.g., allows for mutli-signature payments. It is also a key ingredient
to support payment channels in Bitcoin [Lig18a], [Lig18b]. We propose to use the Locking Script to
integrate the salting process. For the following Bitcoin transaction formats, the Locking Script can be
modified in the following way.
Pay-to-PubKey-Hash format (P2PKH): The idea here is to add a random seed in the Locking
Script, essentially drop the seed using operator OP_DROP, then continue evaluating the rest of the script.

30

This helps in randomizing the Locking Script field in the transaction. This would require modification
of the ScriptPubKey as

ScriptPubKey = ψ OP_DROP OP_DUP OP_HASH160

< hash160(pubKey) > OP_EQUAL OP_CHECKSIG

where, ψ $← {0, 1}κ is the randomness. Here, the length of the transaction would increase by κ bits.
Segwit format (P2WSH): Similarly, in case of the Segwit format, we propose to include randomness
in the witness Script. The witness Script has a size limitation of 3600 bytes [Seg19], thus allowing
enough space for including more involved commands, and subsequently hashes to a 32 bytes value –
scriptHash. So unlike Pay-to-PubKey-Hash, Segwit allows the possibility of randomized transaction
without blowing up the length of the transaction. The modified script will have the following form:
witness′ := r OP_DROP witness, where again ψ $← {0, 1}κ.

C Missing Proofs

Proof of Lemma 5.2

Proof. Let σ1 = (r, s1) be a valid signature onm1 relative to G and public keyX1, i.e., EC[G].Verify(X1, σ1,m1) =
1. We have to show that σ0 = (r, s1

ω) = Trf[H,G]EC(m0,m1, σ1, ω,X0, X1) is a valid signature on m0 rela-
tive to H and public key X0, i.e., EC[H].Verify(X0, σ0,m0) = 1. To this end, let z1 = G (m1) and suppose
that s1 was computed as s1 = z1+rωx

t for some t ∈ Zp. We show that EC[H].Verify(X0, σ0,m0) = 1. The
algorithm EC[H].Verify on input (X0, σ0,m0) first computes w0 = (s0)−1 = ω

s1
= ωt

z1+rωx = ωt
ωz0+rωx =

t
z0+rx = t

H(m0)+rx , where the last equation follows, because Trf[H,G]EC(m0,m1, σ1, ω,X0, X1) did not
return ⊥ (by the prerequisites of the lemma). Therefore, since z0 = z1/ω = G (m1) /ω, it must hold that
z0 = H (m0).

EC[H].Verify next computes u1,0 ≡p z0w0 ≡p H (m0)w0, u2,0 ≡p rw0 and

u1,0 ·G+ u2,0 ·X0 =H (m0)w0 ·G+ rw0 · x ·G
=H (m0)w0 ·G+ xrw0 ·G
= (w0 (H (m0) + xr)) ·G (3)
=t ·G =: (ex, ey)

To ensure that EC[H].Verify(X0, σ0,m0) = 1, it remains to show that r ≡p ex, where r is the first
component of the signature. To this end, consider the computation performed via EC[G].Verify(X1,
σ1,m1). First, the algorithm computes

w1 = (s1)−1 = t

z1 + rωx
= t

G (m1) + ωrx
.

Next it computes u1,1 ≡p z1w1 ≡p G (m1)w1, u2,1 ≡p rw1,

u1,1 ·G+ u2,1 ·X1 =G (m1)w1 ·G+ rw1 · xω ·G
=G (m1)w1 ·G+ xωrw1 ·G
= (w1(G (m1) + xωr)) ·G (4)
=t ·G = (ex, ey),

Therefore, since EC[G].Verify(X1, σ1,m1) = 1, we have that r ≡p ex. It follows now that also
EC[H].Verify(X0, σ0,m0) = 1.

31

	Introduction
	Deterministic hot/cold wallets
	Our contributions
	Related work

	Preliminaries
	Signature Schemes

	The Stateful Model for Wallets
	Wallet Unlinkability
	Wallet Unforgeability

	Generic Constructions
	Security Analysis
	Unlinkability
	Unforgeability

	A Construction from ECDSA
	Security Analysis of Our Construction

	Practical Considerations
	Conclusion
	Acknowledgments
	A Construction from BLS
	The mechanics of Bitcoin
	Payments over Bitcoin
	Integrating our Wallet Solution in Bitcoin

	Missing Proofs

