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Abstract—Assuring security of the Internet of Things (IoT)
is much more challenging than assuring security of centralized
environments, like the cloud. A reason for this is that IoT devices
are often deployed in domains that are remotely managed and
monitored. Thus, their physical security cannot be guaranteed
as reliably as physical security of data centers. Some believe that
physical security becomes less important if all data processed
and stored within a device is encrypted. However, an attacker
with a physical access to a device implementing an encryption
algorithm may be able to extract the encryption key and decrypt
data. As a demonstration, in this paper we attack ACORN
stream cipher, a finalist of CESAR competition for authenticated
encryption. By injecting a single stuck-at-0 fault into ACORN’s
implementation, we reduce its non-linear feedback function to
a linear one. Since this obviously makes ACORN weaker, many
known attacks can be applied to break it. We apply an algebraic
attack which recovers the key from 215.34 keystream bits using
235.46 operations.

Index Terms—Internet of Things (IoT) security, physical secu-
rity, fault attack, algebraic attack, ACORN, stream cipher.

I. INTRODUCTION

A rapid growth of the Internet of Things (IoT) applications
is expected in the coming years [1]. Household appliances,
meters, sensors, and vehicles will be accessible and controlled
via local networks or the Internet to provide new services
appealing to users.

However, assuring IoT security is much more challenging
than assuring security of centralized environments, like the
cloud. While IoT inherits old problems such as weak zero-day
vulnerabilities and lack of updates, it creates new problems.

First, the attack surface of future IoT with billions of con-
nected devices will be enormous. Second, IoT relies on many
different types of devices, including resource-constrained sen-
sors and actuators. Such devices may not have enough storage,
computing and energy resources for implementing a strong
cryptographic protection. The security of a network is only
as strong as its weakest link. A compromised sensor can
potentially be used as an entry point for cyberattacks on other
devices connected to the network, or the network itself [2].
Finally, IoT devices are often deployed in domains that are
remotely managed and monitored. Thus, their physical security
cannot be guaranteed as reliably as physical security of data
centers.

Some believe that physical security becomes less important
if all data processed and stored within a device is encrypted
and secure access is assured [3]. However, an attacker with
a physical access to an device implementing the encryption
algorithm may be able to extract the encryption key and
decrypt data. In this paper, we demonstrate such an attack on

the example of ACORN stream cipher, a finalist of CESAR
cryptographic competition for authenticated encryption (2014-
2018) [4].
Previous Work. Due to its importance, ACORN has been
actively cryptanalyzed before. In [5], leakage of ACORN is
evaluated using t-test, and in [6] using cube testers and d-
monomial test. In [7], a differential power analysis attack
on ACORN is described. In [8], an EM-based side-channel
attack on ACORN is presented. A SAT-based cryptanalysis of
ACORN v1 and v2 is made in [9]. A state recovery attack on
ACORN v1 and ACORN v2 with 2120 complexity is described
in [10]. In [11], the key is recovered from ACORN by re-using
the nonce several times to encrypt the same chosen plaintext.
In [12], a cube attack on the reduced versions of ACORN
v1 and v2 is presented. In [13], a state recovery attack on
ACORN v2 with 240 complexity is presented under a chosen
plaintext attack model which assumes that, for a given key,
one can find a message m whose corresponding polynomial
is equal to the non-linear feedback function f of ACORN. As
a result, m⊕ f = 0 and f is canceled from the state update.
However, it is not clear how such a message can be found if
the key is unknown.

Several faults attack on ACORN has also been presented.
A differential fault attack on ACORN v3 which requires 9 bit
flips to be injected into the initial state to recover the state
with the complexity 225.40. Zhang et al. [14] present another
differential fault attack on ACORN v3 in which a bit of the
initial state is flipped at random. Then, the fault is located and
the resulting equations are solved. With k faults, the initial
state can be recovered with time complexity c · 2146.5−3.52k,
where c is the complexity of solving linear equations and 26 <
k < 43. In [15], an attack on ACORN v1 and v2 is described
in which a random bit of the fifth LFSR of ACORN is stuck to
the constant-1 value during the encryption. For certain faulty
bit positions, the attack complexity is 255.85.
Our Contribution. In this paper, we present a new fault
attack on ACORN v3 in which a stuck-at-0 fault is injected
to reduce the non-linear feedback function of ACORN to a
linear one. As a result, it becomes possible to express the state
update function of ACORN in terms of the linear equations
depending on the key and unfold the function to the initial
encryption state without its size blowing-up exponentially, as
in the case of the fault-free ACORN. It also becomes possible
to recover the initial encryption state from 215.34 keystream
bits with 235.46 operations by applying known linearization
methods [16], [17], [18], [19]. Once the state is recovered,
the key is obtained by solving the system of linear equations
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Fig. 1. Block diagram of ACORN v3.

representing the unfolded update function, which takes 216.63

operations.
In the second part of the paper, we describe several ways

of injecting stuck-at faults in practice and discuss potential
countermeasures.
Paper Outline. The paper is organized as follows. Section II
describes our assumptions and the attack model. Section III
reviews the ACORN v3 design. Section IV presents the
fault attack. Section V discuss potential countermeasures.
Section VI concludes the paper.

II. ASSUMPTIONS AND ATTACK MODEL

We consider two possible attack scenarios. In both cases,
we assume that the key is stored on chip/board. The goal of
the attack is to extract the key.

In the first scenario, the attacker has a physical access to
the chip implementing the stream cipher and has means of
injecting faults of the following type:

• Granularity: Single bit
• Fault type: Stuck-at fault
• Control on the fault location and timing: Precise

The attacker then uses the fault-injected chip to encrypt some
plaintext and uses the ciphertext for cryptanalysis.

If the attacker’s goal is to decrypt the future traffic from/to
the legitimate user, he/she injects the fault using some non-
invasive method which does not leave the evidence of tam-
pering. After the key is extracted, the attacker de-activates the
fault and returns the compromised device to its legitimate user.
Since the distribution stage of today’s global supply chain of
electronic products involves multiple parties, including third-
party logistics providers, distributors, and retailers, any of
these parties can potentially physically access and manipulate
the device during its distribution. The device can also be
manipulated when it is returned for a repair or maintenance.

In the second scenario, the attacker is a design house or an
untrusted foundry which has means to add to the implementa-
tion of the stream cipher a hardware Trojan having the effect
of a stuck-at fault in its active state. Other characteristics of
the Trojan are (following to Trust-Hub [20] taxonomy):

• Insertion Phase: Design or Fabrication
• Abstraction Level: Gate
• Activation Mechanism: Triggered Internally or Externally
• Effect: Change functionality
• Location: Depends on the implementation of the algo-

rithm
• Physical Characteristics

– Type: Functional

– Structure: Layout change
Once the Trojan-infected chip is manufactured, it can be

physically accessed by the attacker, or attacker’s collaborates,
to activate the Trojan for one encryption and extract the key.

III. DESIGN DESCRIPTION

ACORN v3 is a bit-oriented authenticated stream ci-
pher [21]. It is constructed from six LFSR which are composed
into a 293-bit register, as shown in Fig. 1. It uses several
functions: a function to generate the keystream bit, a function
to compute the feedback bit, and 6 functions to update the
state.

The keystream generation function, ks, is defined as fol-
lows:

ks(s) = s12⊕s154+maj(s235, s61, s193)⊕ch(s230, s111, s66)
(1)

where sj is the jth bit of the state s = (s0, . . . , s292) and maj
and ch are the majority and the choice operations, respectively,
defined by

maj(x, y, z) = xy ⊕ xz ⊕ yz
ch(x, y, z) = xy ⊕ xz,

where “⊕” is the Boolean XOR and x is for the Boolean
complement of x, x = 1⊕ x.

The feedback function, f , is given by:

f(s, ca, cb) = s0⊕s107⊕maj(s244, s23, s160)⊕ca·s196⊕cb·ks,
(2)

where “·” is the Boolean AND, and ca and cb are the
control bits. The bit ca is used to separate the processing of
associated data, the processing of plaintext, and the generation
of authentication tag. The bit ca is used to let the keystream
bit to affect a feedback bit during initialization, processing of
associated data, and the tag generation.

The state is updated in four steps. First, six LFSRs are
updated as follows:

s289 = s289 ⊕ s235 ⊕ s230
s230 = s230 ⊕ s196 ⊕ s193
s193 = s193 ⊕ s160 ⊕ s154
s154 = s154 ⊕ s111 ⊕ s107
s107 = s107 ⊕ s66 ⊕ s61
s61 = s61 ⊕ s23 ⊕ s0

(3)

Second, the keystream bit is computed as (1). Third, the
feedback bit is generated as (2). Finally, all but the input
register bits are updated by a shift as s+j = sj+1, for j ∈
{0, . . . , 291}, and the input bit is updated as s+292 = f(s)⊕mi,
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Fig. 2. Fault injection point.

where m is the data bit at the step i and s+j denotes the value
of sj at the next step.

The initialization of ACORN is done as follows. First, all
bits of the state are set to zero. Then, the cipher is run for
1792 steps with a bit of a 128-bit key K or a 128-bit IV
being loaded into the register at the step i through the data bit
mi as follows:

mi = Ki for i = 0 to 127;
mi = IVi mod 128, for i = 128 to 255;
mi = Ki mod 128 for i = 256;
mi = Ki mod 128 for i = 257 to 1535.

(4)

After the initialization, the associated data is used to update
the state. Even when there is no associated data, the cipher
is run for 256 steps with the data bit mi = 0. Otherwise, the
cipher is run for 256+adlen steps, where adlen is the length
of associated date. Then, the encryption starts.

At each step of the encryption, one plaintext bit pi is used
as the data bit mi = pi to update the state. The ciphertext
bit ci is computed by XORing the plaintext bit pi with the
keystream bit computed according to (1).

After processing all the plaintext, the authentication tag is
generated. We omit the description since it is not related to
the presented work.

IV. FAULT ATTACK

The attack is performed in 3 steps:

1) Inject a stuck-at-0 fault at fi as shown in Fig. 2.
2) Encrypt some r-bit plaintext while the fault is active.
3) Analyze the resulting r-bit ciphertext as described in

Section IV-A and IV-B to recover the key.
4) Deactivate the fault after 2048 + adlen+ r steps.

As we can see from the previous section, the initialization
takes 1792 steps and the associated data processing takes 256+
adlen steps. Assuming the associated data is empty, ACORN
starts the encryption after 2048 steps.

The analysis consists of two parts: (1) deriving the value
of the initial encryption state from the keystream bits, and
(2) deriving the key from the initial encryption state. We start
from describing the latter.

A. Deriving the key form the initial state

If fi = 0 for i = {0, 1, . . . , 2047}, its value does not affect
the next state of ACORN during the initialization and the
associated data processing. The state is updated by the linear

function L defined by the six LFSRs and the data bit mi,
namely

s+292 = mi

s+288(s) = s289 ⊕ s235 ⊕ s230
s+229(s) = s230 ⊕ s196 ⊕ s193
s+192(s) = s193 ⊕ s160 ⊕ s154
s+153(s) = s154 ⊕ s111 ⊕ s107
s+106(s) = s107 ⊕ s66 ⊕ s61
s+60(s) = s61 ⊕ s23 ⊕ s0

(5)

and s+j = sj+1, for all other j ∈ {0, . . . , 291}. Since mi is a
function of the key K and IV , see (4), the initial encryption
state is defined by L2048(K, IV ). It can be expressed by a
system of 293 linear equations depending of 128 unknown
key bits and 128 known IV bits.

It is known that a linear system with k variables can be
solved by the Gaussian elimination in time kω , where ω ≤
2.376 is the exponent of the Gaussian reduction [22]. So, in
our case, finding the solution takes at most 1282.376 = 216.63

operations.

B. Deriving the initial state from the keystream

Given the initial encryption state s = (s0, . . . , s292),
ACORN with the fault fi = 0 for i = {2048, . . . , 2047 + r},
generates the keystream bits for the encryption of the plaintext
p0, . . . , pr−1 as follows

b0 = ks(s, p0)
b1 = ks(L(s, p0, p1))
b2 = ks(L2(s, p0, p1, p2))
. . .
br−1 = ks(Lr−1(s, p0, p1, p2, . . . , pr−1))

(6)

where L is the linear state updating function defined by (5)
where mj = pj , for j = {0, 1, . . . , r − 1}.

In the equation (1), the keystream generation function
ks(s) is expressed in terms of 8 variables. However,
since each keystream bit is computed after the state bits
s289, s230, s193, s154, s107, s61 are updated as shown in (3), the
function ks(s) actually depends on 13 bits of the state. After
substituting s61, s154, s193 and s230 by their corresponding
expressions from (3) and expanding, we get the following
algebraic normal form for ks(s):

ks(s) = s12 + s66 + s107 + s111 + s154 + s235s61
+ s235s23 + s235s0 + s61s193 + s61s160 + s61s154
+ s23s193 + s23s160 + s23s154 + s0s193 + s0s160
+ s235s154 + s230s111 + s196s111 + s193s111 + s230s66
+ s0s154 + s235s193 + s235s160 + s196s66 + s193s66

The function ks(s) is non-linear, however, there are known
linearization methods [16], [19] which can find the solution to

the system of the non-linear equations (6) given r ≥
(

n
d

)
keystream bits and within rω computations, where n is the
state size and d is the algebraic degree of the output function.
The linearization is done by introducing a new variable for
each monomial and solving the resulting system of linear
equations by the Gaussian elimination. Since the number of
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Fig. 3. The original (upper part) and the modified (lower part) hex code.

monomials of degree d is
(

n
d

)
such a method is efficient

if the degree d is small.
In our case, the algebraic degree of ks(s) is only two. The

four state bits s289, . . . , s293 can be ignored since they just
delay the input plaintext bits by 4 clock cycles. The remaining

289 bits of the state s can be recovered using r =

(
289
2

)
=

215.34 keystream bits with 215.34×2.376 = 235.46 operations.
It is worth mentioning that there are other methods, such

as XL algorithm or Gröbner bases algorithms [16], [17], [18],
which can find a solution of an overdefined system using less

than
(

n
d

)
keystream bits. However, the complexity of the

attack increases substantially.

C. Injecting stuck-at faults

Various fault injection methods have been proposed over
the last two decades, see [23] for a overview. In this section,
we first describe a fault injection technique by hex code
modification which we implemented. Then, we discuss other
possible options.

1) Microcontroller hex code modification: If the device
under attack is implemented in a microcontroller and lock
bits responsible for protecting from readback are not set, the
attacker can download the original hex code programmed into
the microcontroller, inject a fault, and re-program the modified
code.

In general, it is difficult to do modify a hex code if the
original C code is not available. However, a local modification
is easier to perform. Many tools for disassembling the hex code
exist, e.g. radare2 [24] or PICHexDisassembler [25]. These
tools can be used to partially reverse engineer the hex code
and locate the attack point. In our case, the attack point is the
ACORN’s function f(s, ca, cb).

Through trial and error, we found that it is possible to inject
a fault having the effect f(s, ca, cb) = 0 by a local modifi-
cation illustrated in Fig. 3. In the upper part of the figure, a
snapshot of the original hex code of ACORN complied for x86
instruction set architecture is shown. The x86 architecture is
used, for example in Intel Quark microcontrollers. The lower

part of the figure shows the modified hex code, with the fault
f(s, ca, cb) = 0 injected. The segment C2 48 8B 45 E0 0F B6
00 22 45 D8 31 (marked in blue, 24 hex symbols) is removed
from the original code. After the segment D0 83 F0 01 88 45
FF (marked in pink), the segment C6 45 FF 00 (marked in
yellow, 8 hex symbols) is added three times. Three repetitions
are required in order to equalize the size of removed and added
segments.

The segment C6 45 FF 00 (mov BYTE PTR [ebp-0x1],0x0
in assembly) implements the C statement f = 0, so repeating
it 3 times causes no problems. The removal of the segment C2
48 8B 45 E0 0F B6 00 22 45 D8 31 has the effect of reducing
the term cb · ks in the expression (2) to 0 · ks.

The original and modified hex codes differ only in the two
lines (10016000 and 10017000). In order for the modified code
to be accepted by a microcontroller, the 8-bit CRC checksums
for these two lines (the last two hex symbols) have to be re-
computed and replaced. The CRC makes the sum of all of the
bytes in the line, including the checksum, zero.

2) FPGA bitstream modification: If the device under attack
is implemented in SRAM-based FPGAs, it may be possible to
inject a stuck-at fault by bitstream modification. In several
works [26], [27], [28], [29] it has been shown that direct
bitstream modification is feasible in practice. The techniques
presented in [27], [29] are particularly relevant for our case
since they target stuck-at faults. In [27] a reverse-engineering
technique that finds Look-Up Tables (LUTs) in a bitstream is
presented. On the examples of DES and AES, it is shown
how to find positions of all LUTs implementing SBoxes
and replace their content with “0”s. The CRC checksums
which verify integrity of bitstream frames are re-computed
and replaced by the new ones. As long as the attacker knows
which Boolean function to search for, he/she may be able to
find LUTs implementing this function in the bitstream. In our
case, the LUTs implementing the function f(s, ca, cb) have
to be identified in the bitstream and their content modified to
f(s, ca, cb) = 0.

3) EM fault injection: Theoretically, electromagnetic (EM)
pulses can be used for fault injection. Such attacks can
be carried out without depackaging the chip, they do not
leave any evidence of tampering, and require much cheaper
equipment compared to the invasive attacks [30]. It has been
demonstrated that electromagnetic pulses can induce faults
with the precision up to the level of a single bit [31]. However,
in advanced technologies, achieving the bit-level precision
might be difficult.

4) Optical fault injection: If evidence of tampering is not
a problem as, for example, in the case of the attacker is the
user, an optical fault injection can potentially be used. Optical
attacks expose a decapsulated chip to a strong light, or use a
laser beam. Since CMOS transistors are sensitive to ionizing
radiation, in this way it is possible to cause a transistor to
conduct. The fact that it is possible to set a selected bit to
either 0 or 1 value with a precise timing has been demonstrated
by Skorobogatov and Anderson already in 2002 [32]. They
used a focused flash light to set individual SRAM cells in
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Fig. 4. Injecting a stuck-at-0 at fi using a Trojan.

the PIC16F84 microcontroller to a fixed value. Since then the
state-of-the-art in optical attacks advanced considerably. It was
demonstrated that it is possible to simultaneously flip multiple
bits at different locations with multiple lasers (two different
bits in a Xilinx Spartan-6 45nm FPGA were simultaneously
flipped using two lasers [33]) as well as to flip the same bit
multiple times (the same bit was flipped more than once in the
CRT-RSA running on a 32-bit ARM Cortex-M3 core [34]).
However, optical methods might destroy the transistor under
attack if the fault is active for many consecutive clock cycles,
as in our case.

5) Hardware Trojans: A stuck-at fault at fi can also be
injected through a hardware Trojan. In today’s globalized
world where the manufacturing is typically outsourced and the
use of third-party IPs from small and relatively new vendors is
widespread, such an possibility cannot be neglected [35], [36].
Recent controversial news about the Tiny Chip hack [37] are
likely to bring more attention to the problem of assuring that
electronic products are Trojan-free.

A Trojan having the effect of a stuck-at-0 fault on a line
can be implemented, for example, using two 90-degree out-of-
phase Ring Oscillators (ROs) feeding an XOR gate, as shown
in Fig. 4. While ROs are out of phase, the XOR’s output is
1 and the Trojan is dormant. By injecting a signal with a
specific frequency into the power supply, an attacker can lock
ROs in phase, producing 0 at the XOR’s output and activating
the Trojan. Such a technique, called injection locking, was
proposed in [38] with the purpose of reducing entropy of true
random number generators. We can turn injection locking into
a Trojan by feeding the output of the XOR into an AND gate
which has takes F as its second input, as shown in Fig. 4
(right). When the output of the XOR gate is 1 (Trojan is
dormant), the output of the AND is F . When the output of
the XOR gate is 0 (Trojan is active), the output of the AND
is 0.

V. COUNTERMEASURES

The microcontroller hex code modification attack described
in Section IV-C1 can be prevented by setting lock bits respon-
sible for protecting the program memory from readback. If
lock bits are set, the program memory will be typically read
back as all zeros.

Countermeasures against fault attacks usually rely on re-
dundancy (hardware or time [39]) to detect the computational
errors caused by injected faults, partly because fault injections

themselves are difficult to detect [40], [30], [41], [42]. For
example, the duplication with comparison [43] duplicates the
cryptographic algorithm and compares the two results to detect
disagreement. Such an approach can protect against single
fault injections. However, attacks based on simultaneously
injecting faults into both modules remain a threat [33]. Fur-
thermore, duplication may reduce the number traces required
for a successful power analysis [44], even if the duplicated
module is implemented in the complementary form [45].
Countermeasures based on error-detecting codes may also
simplify power analysis [46].

Hardware Trojans are typically detected either by side-
channel analysis, or by testing, or by visual inspection. In
side-channel analysis, signals leaked by a chip are measured
and compared to the ones of a “golden” chip [47]. Testing
applies test stimuli to a chip under test and monitors chip’s
output to detect disagreement with the specification [48], [49].
In visual inspection, layers of a chip are removed one-by-one
and the exposed circuitry is scanned using various imaging
methods [50].

It might be difficult to detect the Trojan shown in Fig. 4
by side-channel analysis, since it adds only a few gates to the
original design. So, the change in the side-channel information
is likely to be too small to be detected. Typically side-channel
analysis can only detect sufficiently large Trojans that are
at most three to four orders of magnitude smaller than the
original design [51]. If the Trojan is dormant during testing,
testing might not detect it as well, since a dormant Trojan
does not change the functionality. However, visual inspection
methods are likely to detect the Trojan since the Trojan
changes the layout of the original design.

VI. CONCLUSION

We presented an attack which can recover the key of
ACORN v3 from 215.34 keystream bits using 235.46 operations.
The presented attack is general and can potentially be applied
to other stream ciphers whose feedback functions can be made
linear with a single fault.

Our results show that encryption does not diminish the
importance of physical security. Future work involves devel-
oping techniques for assuring physical security of resource-
constrained IoT devices.
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