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Abstract. Highly efficient non-interactive zero-knowledge arguments
(NIZK) are often constructed for limited languages and it is not known
how to extend them to cover wider classes of languages in general. In this
paper we initiate a study on black-box language extensions for conjunctive
and disjunctive relations, that is, building a NIZK system for Lof (with
o € {A,V}) based on NIZK systems for languages £ and £. While the
conjunctive extension of NIZKs is straightforward by simply executing
the given NIZKs in parallel, it is not known how disjunctive extensions
could be achieved in a black-box manner. Besides, observe that the simple
conjunctive extension does not work in the case of simulation-sound
NIZKs (SS-NIZKs), as pointed out by Sahai (Sahai, FOCS 1999). Our
main contribution is an impossibility result that negates the existence
of the above extensions and implies other non-trivial separations among
NIZKs, SS-NIZKs, and labelled SS-NIZKs.

Motivated by the difficulty of such transformations, we additionally
present an efficient construction of signature schemes based on unbounded
simulation-sound NIZKs (USS-NIZKs) for any language without language
extensions.

1 Introduction

1.1 Background

A non-interactive zero-knowledge argument system (NIZK) [6] is a beneficial
building block for efficiently constructing a wide variety of cryptographic schemes
and protocols. Very roughly, given an NP language L for certain relation R, i.e.,
L :={z|3w s.t. R(x,w) = 1}, a NIZK argument system for £ allows a prover
(who owns a pair x,w such that R(xz,w) = 1) to convince a verifier of the fact
that x € £. The communication between the two parties is unilateral and the
verifier learns no new information about possible witnesses for x, except the fact
that there exists one. That is enforced by the presence of a simulator which,
without any witness for x, produces an output (a proof) that is indistinguishable
from the one produced by a real prover. A NIZK system is said to be correct
if an honest prover can always convince a verifier of a true statement. On the
other hand, the system is said to be sound if a (possibly malicious) prover
cannot convince an honest verifier of a false statement (except with negligible
probability). A simulation-sound NIZK (SS-NIZK) [48] is a strengthening of NIZK
whose soundness holds even in the presence of simulated proofs on arbitrary
statements. SS-NIZKs receive much attention due to their usefulness in the
construction of public-key encryption schemes secure against adaptive chosen
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message attacks [48]. Another application of SS-NIZKs is on building Threshold
Password-Authenticated Key Exchange [42]. Furthermore, they have recently
been used to build tightly secure CCA2 encryption in the multi-challenge and
multi-user setting [37] or to design tightly secure signature schemes [29].

Thanks to a considerable and prolonged effort by the community of cryptog-
raphers, there exist NIZK systems for NP-complete languages in several settings,
e.g., [6,18,24], and general constructions have been designed to strengthen them
to SS-NIZK, e.g., [48,50]. Some of these settings provide very efficient NIZK
systems: Schnorr proofs [43], Groth-Sahai proofs [27], Quasi-Adaptive NIZKs
(QA-NIZKs) [32] that are designed for particular languages. However, when NIZK
systems are used for building advanced cryptographic schemes and protocols, it
is frequently assumed that a convenient language is covered by the NIZK, or
that the system can be extended to support such a language. For instance, the
general transformations from NIZK to unbound SS-NIZK (USS-NIZK) in [29, 50]
(see Definition.2.5) require the NIZK support a disjunctive statement combining
two instances of certain specific languages.

Given the relevance of these works, where additional assumptions are made
on the languages supported by the NIZK systems, we study black-boz language
extensions of NIZKs for conjunctive and disjunctive relations. More concretely,
given a NIZK system for language £ and given another L, we consider the
question of whether it is possible to construct a NIZK system for £ ¢ £ where
o € {A, V} in a black-box manner. Many non-black-box techniques for disjunctive
language extension can be found in the literature, e.g., [1,11,12,20,23,25,41,46],
but not much is known in the case of black-box extensions, which are a relevant
area of study due to their potential for building efficient and more advanced
cryptographic primitives. Note that in the settings where generic NIZKs for NP
are not very efficient, using a generic transformation from a less expressive (but
more efficient) NIZK may be a better approach than going through the Karp
reduction.

Some black-box language extensions are straightforward, e.g., a conjunctive
extension from a NIZK for £ to a NIZK for £ A £ (when the system is a
standard NIZK, i.e., not simulation-sound) can be achieved by computing both
proofs and concatenating them. Others are more involved, for example, a similar
approach fails in the case of disjunctive language extension to £V L, because the
information about which of the two instances is correct (possibly both) will be
leaked. Another example pointed out by Sahai [48] is the conjunctive extension in
the case of USS-NIZKs where the above simple approach fails: given two simulated
proofs (71, me) and (7], ), for statements (z1, z2) and (2, x5) respectively, one
could create a new proof (my, 7)) for the new statement (z1, %), winning the
simulation-soundness game (as long as either z; or a4 is a false statement).

Contrary to the case of conjunctive extensions, generic methods for achieving
disjunction of languages in the framework of NIZKs are not known. A black-
box disjunctive language extension could be a great tool for building more
advanced and secure NIZK systems. In particular, as pointed out by Peikert and
Vaikuntanathan [45], disjunctive language extensions would be extremely useful
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to construct NIZK systems based on lattice-based assumptions. In that work, the
authors present a transformation that achieves disjunction for a limited predicate
and, to the best of our knowledge, this direction of work is not completed as the
state-of-the-art of NIZK systems for NP under lattice-based assumptions [36]
are restricted to the co-called preprocessing model, introduced by De Santis
et al. in [16]. Observe that NIZKs for disjunctive languages have a vast number of
applications. Among them, an important example is the framework of electronic
voting [12], where disjunction is used to argue that a vote is valid. In general,
it is very useful in any secure function evaluation scenario where a proof of a
disjunctive relation is used to guarantee that the input to each wire is either 0 or 1.
Furthermore, disjunctive relations are used as a building block for achieving tight
security (they often simplify the simulation in the security reduction).

1.2 Owur Results

Our main contribution is a series of (im)possibility results about black-box
language extensions among different types of NIZK systems. Figure 1 summarizes
our contributions, which we further describe in the rest of this section.

Impossibility of Black-Box Disjunctive Extension of various NIZKs.
When building disjunctive language extensions of NIZKs the main challenge
(very roughly) is to define a prover algorithm that handles (yes,no)-instances
without any trapdoor and without revealing which of the statements (if not both)
is true. Unfortunately, as our first contribution, we show that there is no fully
black-box disjunctive language extension for NIZKs. We show this result in a
stronger form by proving the absence of reductions from a labelled USS-NIZK
system (see Definition.2.3) for £ to a NIZK scheme for £V £ (for any £). (Note
that we focus on labelled USS-NIZKs for its generality.) To explain the core
idea of our argument, let us define a legitimate crs as a crs generated with the
underlying NIZK’s crs generation algorithm. Roughly, our proof goes as follows:
i) we show that the prover algorithm of the disjunctive extension cannot invoke
the underlying NIZK’s prover on legitimate crs’s (or otherwise the resulting
NIZK will not be zero-knowledge); ii) we then argue that because all calls to the
underlying prover must be on non-legitimate crs’s, very roughly, their trapdoor is
known to the prover of the extended NIZK and thus, soundness is compromised.
In Section 3 we formalize the previous intuition and rigorously considering other
missing cases.

A bit more formally, we follow the oracle separation paradigm, cf., [7,22,31,
47,51] where we construct an oracle O relative to which there exists a language
L and a secure labelled USS-NIZK system L for it, but there exists no NIZK
system M for £V £ with any L that is zero-knowledge and sound at the same
time. Our contribution also includes a novel approach in the construction of
an adversary against simulation soundness, exploiting the simulability of the
NIZK in a reverse manner: simulating the zero-knowledge simulator with a real
prover, as we elaborate below. It bears similarity with the simulatable adversary
paradigm in [21] that exploits the duality of the zero-knowledge simulator and
the real prover to construct a meta-reduction [8,13]. In our approach, we let
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Fig. 1: Relations between variations of NIZK. Non-labelled edges correspond to straight-
forward black-box constructions. Separations labelled as (1) are implied by Theorem 3.1
(see Corollary 3.2). Those labelled as (2) are implied by Theorem 4.1 and hold in the
full-verification model (see Definition 4.1 and Section 5.1).

the adversary simulate the oracle so that a no-instance of the language can look
like a yes-instance with a certain witness. This can be done by redefining the
language in such a way that a no-instance and a yes-instance are swapped (we
call this instance swapping). The verifier algorithm with the real oracle should
never make a query on the fake witness, because otherwise the zero-knowledge
property will be lost. The way we simulate the oracle simplifies the analysis and
results in eliminating the use of PSPACE power from the adversary, which used
to be essential in standard approaches from the literature. We believe this new
technique is of independent interest and could be helpful and applicable to other
impossibility results.

Impossibility of Black-Box Conjunctive Extension of USS-NIZK. It
is remarkable that a conjunctive language extension is hard to achieve in a
black-box way in the case of USS-NIZKs. Specifically, in Section 4, we show that
there is no fully black-box reduction [31,47] from a USS-NIZK system L for a
hard language £ to a USS-NIZK system M for the extended language £ A L,
for any arbitrary hard language L. (We refer to Theorem 4.1 for a more formal
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statement.) Here, a hard language is, in short, a language that constitutes a
promise problem [17,49] consisting of a pair of disjoint, efficiently sampleable,
and indistinguishable languages, £ and C (see Definition 2.1). Our result also
extends to a case where the extended part of the language L is trivial (i.e., in
BPP) as long as the inverse of its size is negligible in the security parameter.

A very high level view of our proof strategy is similar to the one for the
impossibility of disjunctive extensions. However since the simulation soundness
game is interactive, where oracle queries from M.PrvSim run by the challenger
cannot be seen by the adversary, it is more difficult to collect enough information
for producing a forgery and the details of the proof differ considerably. Another
important difference from the case of disjunction is that our impossibility result
about the conjunctive extension is limited to what we introduce as the full-
verification model. Namely, every proof that is created internally with the prover
algorithm must then be verified by the verification algorithm. See Definition 4.1
for a formal definition and Section 5.1 for more discussion on this model.

Implications and More. Our two impossibility results, in combination with a
simple analysis, allow us to discover other impossibility relations (see Figure 1). A
remarkable one is the impossibility of fully black-box construction of USS-NIZKs
from NIZKs. Such an impossibility (even in the weaker full-verification model)
enlightens the essential difference between bounded and unbounded simulation
soundness in the context of NIZKs.

Construction of Signatures without Language Extension. Motivated by
our previous results about impossibility of language extensions, we show that
any USS-NIZK for any hard language in NP can be used by itself without
language extensions as a secure digital signature scheme. Our construction retains
almost the same computation and space complexity and hence has a practical
value. Concretely, given a USS-NIZK for any hard language £, we construct a
signature scheme that is unforgeable against adaptive chosen message attacks.
We emphasize that our result does not require £ support particular relations,
which was required by related works on building signatures from USS-NIZKs,
e.g., [26,34] (see Table 1) and which is not possible as stated by our impossibility
results. That is a sharp difference from previous works. Furthermore, the only
additional building block (used to create a signature scheme for arbitrary long
messages) other than USS-NIZK is an extended target-collision-resistant function
that is a “secret-key-free” primitive unlike “authenticating” ones used in the
literature. Note that, in theory, a signature scheme can be constructed solely from
NIZK by using its common-reference generator as a one-way function. However,
the resulting scheme suffers from a significant performance overhead [4] and,
unlike ours, does not allow us to conclude that upgrading a NIZK to achieve
unbounded simulation soundness requires the use of a signature-like primitive.
Our general construction shares an idea with other works, e.g. [33]: the
trapdoor for zero-knowledge simulation can be used as a signing-key and the
simulated proofs should work as signatures, because the simulation function
can only be invoked with the trapdoor and they are publicly verifiable with the
crs bound to the trapdoor. Unforgeability is argued based on the simulation
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Ref. Objective Statements proved on the underlying NIZK

=
X,

NIZK — OSS-NIZK |R(z,w
NIZK — USS-NIZK |R(z,w

o

k=)
EEE

29] | NIZK — USS-NIZK | R(z,w
[5] | NIZK — SIG y = PRFs(m) A Com(s;r) =0
[34] | USS-NIZK — LRSIG |C = ENCp(z||m;w) Ay = TCRx(x)

S}

6] | SE-SNARK — SoK | R(z,w) Ay = TCRg(m)

Table 1: Upper block: General transformations from NIZK to USS-NIZK. Lower block:
Constructions of various signature schemes based on non-interactive arguments. Under-
lined symbols are witnesses. OSS-NIZK stands for one-time simulation-sound NIZK.
R: relation associated to the original language. o, 6: common reference strings. PRF:
pseudo-random function. PRG: pseudo-random generator. ENC: CPA-secure encryp-
tion. LRSIG: leakage-resilient signatures. TCR: target-collision-resistant function. SIG:
signature scheme. SoK: signature of knowledge.

soundness property. Our result is quite general in terms of the language that the
underlying USS-NIZK must support. The assumption we make on the language
is, roughly, that there exist efficient samplers D, and D¢ producing instances for
L and C respectively and the produced instances are indistinguishable. We refer
to Section 6 for more details.

1.3 Related Works

There exist several works for extending NIZKs to support disjunction of instances
without reductions to NP-complete languages. In [12] Cramer et al., presented
a very useful framework to extend any sigma-protocol to handle disjunctive
relations among instances. The idea is to split a challenge into two so that one
of them can be predicted in advance for simulating the ‘no’ side of the two
instances. This idea applies to a wide range of NIZK constructions based on the
Fiat-Shamir heuristic [19] (in the random oracle model [10]). Splitting a crs into
two shares allows similar ideas if some algebraic properties are available. On the
other hand, other works [20,41,46] follow an approach based on the Groth-Sahai
proofs, which allow to prove disjunctive statements in some cases, e.g., [11,23].
Furthermore, Abdalla et al. [1] achieve disjunction through a smooth projective
hash proof system [14].

Many works also try to upgrade NIZK systems to achieve simulation-soundness.
Such upgrades usually require additional cryptographic primitives or the language
associated to the NIZK be extended. In Table 1 we exemplify some of these
transformations. The construction by Sahai in [48] is based on the generation of
multiple common-reference strings of the original NIZK. It is a fully black-box
construction that works for any NIZK systems and languages but results only in
bounded simulation soundness that allow preliminary bounded number of queries.
De Santis et al. built the first USS-NIZK in [50] by using a pseudo-random



Black-Box Language Extension of NIZK Arguments 7

function (PRF) and a commitment scheme, in combination with a general NIZK
that supports disjunction. The essential idea of this work is to prove that certain
statement is true or the PRF was computed correctly with a secret key that was
previously committed in the CRS. Groth [23], followed by other works [2,11,29],
combined a signature scheme and a one-time signature scheme with a NIZK
system for satisfiability of relations over bilinear groups. Kiltz et al. combined
randomized PRFs with a QA-NIZK based on the Matrix DH and the Kernel DH
assumptions [35]. In summary, all these works for obtaining USS are non-black,
since they require specific properties.

Our last contribution is motivated by our impossibility results and the ob-
servation that the attempts from the literature to build signature schemes from
USS-NIZKs require the language be extended or the use of additional primitives.
For example, Bellare and Goldwasser [5] construct a signature scheme by combin-
ing a PRF and a public-key encryption scheme (as a commitment scheme) with
a standard NIZK. Another attempt in [34] combines a labelled PKE scheme [14]
with a USS-NIZK system to produce a signature scheme where messages are
embedded into a label of the encryption. Libert et al. [37,38] combined a SS-
QA-NIZK system with a signature scheme to achieve new functionalities. Groth
and Maller [26] present a general framework for constructing signature of knowl-
edge (SoK) schemes based on succinct simulation extractable non-interactive
arguments of knowledge (SE-SNARK) requiring conjunctive extension.

2 Preliminaries
2.1 Notations

For a finite set X, <+ X denotes that there exists an efficient sampling algorithm
that takes some randomness and outputs an instance z € X with uniform
distribution over X. If we need to be explicit about random coins, we write
x < X(r) to represent that coin r is used to select instance x from X. For
n € N, we denote by U,, the uniform distribution over {0,1}". A positive function
€: N — [0,1] C R is called negligible if for every polynomial p(z) € R[X] there
exists a constant kg such that for every x > kg it holds e(k) < 1/p(x). negligible.

By y + A(z) we denote a process of computation where A takes = as input
and outputs y. For oracle algorithm A°, notation y < O(z) denotes computation
by O taking x as input given from A and output y returned to A. We also use
the same notation y <— O(z) to denote input/output pair (y,z) with respect to
O in order to make O explicit in the context. Variables with brackets [-] match
to any value. For instance y < O([x]) matches to any oracle query whose output
is y and we refer to the input value by z thereafter. When the matched value
will not be referred afterwards, we use x and write y + O(x) to mean that there
exists an input to O that results in y. We also use the wildcard [+ # L] < O(z)
to denote that O outputs something other than L for input x.

Algorithms and oracles often implement several functions identified by an
input. By M(func, args) we mean that algorithm M works as a function specified
by func taking args as input. Dot notation M.func may be used if inputs are not
important in the context.
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2.2 Hard Language and Language Extension

We say that £ is a hard language accompanied by C if £ and C are efficiently
sampleable, disjoint, and hard to distinguish. Accordingly, (£,C) constitutes a
promise problem [17,49]. More formally:

Definition 2.1 (Hard Language). Let R be an efficiently computable binary
relation. For some fized polynomials poly, and poly,, let L, := {z : = €
{0,1}Poa() A Jop € {0,1}PYe(®) st R(z,w) = 1}, and L := U.L,. Let
Cr € {0,1}P°Ya(%) gnd C := U.C,. Given a negligible function enq, we say L is
end-hard (with respect to C) if for every k € N, L,, NC,, = 0 and the following
properties are satisfied:

e For all k € N, there exist efficiently sampleable distributions Dy, and De,
sampling elements from L, and C,, respectively.

« L and C are indistinguishable, w.r.t. Dy = {D¢r,. }tren and Dec = {Dc, }ren,
i.e., for every p.p.t. algorithm A and for all sufficiently large k, it holds

[Priz<«+ Dg, : 1+ A(x)]—Pr[a<+De, : 1+ Ax)]] < end(k) .

In this paper, we consider extending a language £ with respect to conjunction
or disjunction with an arbitrary language £ as formally defined below.

Definition 2.2 (Extended Language). Given two languages L and L, and a
logical binary operator o € {A,V}, an extended language (denoted by L o ﬁ) 18
defined as the union U, (L, o L) where L. o L, :={(2,2)] (x € L) o (& € L,)}.
The extension is said to be non-trivial if L., o L, & L for any k and K.

Note that, for any non-empty finite £, and L, we have £, o £, ¢ L,.. We only
consider non-trivial language extensions in this paper. A language extension of
a NIZK (with respect to operator ¢) consists of, given hard languages £ and L
and a NIZK scheme L for £, build a NIZK scheme M for L ¢ L.

2.3 Non-Interactive Zero-Knowledge Argument System

In this section we present syntactical and security definitions for labelled NIZKs.
Fixing label £ to a default, e.g. the empty string, results in the standard definitions
for (non-labelled) NIZKs.

Definition 2.3 (Labelled Non-Interactive Argument System). A labelled
non-interactive argument system for language L assoctiated to relation R is a
tuple of polynomial-time algorithms (Crs, Prv, Vrf) where:

« 0 < Crs(1%) takes a security parameter and generates a crs.

o <+ Prv(o,x, 0, w) takes o, an instance x, a label ¢, and a witness w as input
and outputs a proof m or L.

o b+ Vrf(o,x,¢,7) takes o, an instance x, a label £, and a proof m, outputs
either 1 or 0 representing acceptance or rejection, respectively.
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It is required that there exists a negligible function €., in k that, for all sufficiently
large r, all (xz,w) € {0,1}PVe(%) x {0,1}PWu(®) sych that R(x,w) =1, and all
¢ € {0, 1}PoVe(%) it holds:

Pro + Crs(17); m + Prv(o,x,l,w) : 1 £ Vrf(o,2,4,7)] < eco(K) -

Definition 2.4 (Adaptive Zero-Knowledge). A labelled non-interactive ar-
gument system (Crs, Prv, Vrf) is adaptive zero-knowledge if there exists a pair of
p.p.t. algorithms CrsSim and PrvSim and a negligible function €, in Kk such that
for every p.p.t. algorithm A and for every sufficiently large k,

’Pr [a<—Crs(1"€) : 1<—Aol(""')(a)] —Pr [(0', 7) = CrsSim(17) : 1= A7) (o) ] ‘

is lower than ek (k). Oracles Oy, Oy, on input (x, £, w) output L if R(x,w) = 0.
Otherwise, they return Prv(o,x,f,w) and PrvSim(o,x,{, ) respectively.

We call it non-adaptive multi-theorem zero-knowledge if all inputs to O are
chosen at once by A before o is generated.

Definition 2.5 (Unbounded Simulation Soundness). A labelled non-inte-
ractive zero-knowledge argument system II := (Crs, Prv, Vrf, CrsSim, PrvSim) for
language L is unbounded simulation sound if there exists a negligible function egs
in k such that, for any p.p.t. algorithm A,

(o,7) + CrsSim(1%) () EQ Nz gL

Adv¥>S =P ) :
dvira(e) ' (z,€,7) + APVSIM(@7) () " 1 = Vrf(o, @, £, )

< €ss(k)

holds, where Q is a list of queries sent to PrvSim.

We call (Crs, Prv, Vrf, CrsSim, PrvSim) a USS-NIZK system when it constitutes a
non-interactive argument system that is zero-knowledge and unbounded simula-
tion sound.

We next present two lemmas related to the behavior of a zero-knowledge
simulator. They state that the simulator must produce valid proofs for an
overwhelming amount of yes-instances of the language (due to the zero-knowledge
property) and valid proofs for an overwhelming amount of no-instances of the
language (due to the hardness of the language).

Definition 2.6 (Yes-instance simulation correctness). A non-interactive
argument system IT = (Crs, Prv,Vrf, CrsSim, PrvSim) for language L is yes-
instance simulation correct if, for any x € L,; and £ € {0, 1}1"’1“(”), the probability

€yes(k) 1= Pr[(o, 7) <= CrsSim(1%) : 1 # Vrf(o, z, PrvSim(o, z,¢, 7))]

is negligible in k. The NIZK system II is perfectly yes-instance simulation correct
if €yes(k) = 0.

Lemma 2.1. €yes(k) < €4(K) + €co(K).
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Proof. We refer to Appendix A.1 for a formal proof. [

Definition 2.7 (No-instance simulation correctness). A non-interactive
argument system IT = (Crs,Prv,Vrf, CrsSim, PrvSim) for enq-hard language L
accompanied by C is no-instance simulation correct if for every £ € {0, 1}Petye(x)
the probability

€no(k) := Pr[(o,7) - CrsSim(1%) ; = < De, : 1 # Vrf(o,z,PrvSim(o,z, ¢, 7))]
is negligible in k. II is perfectly no-instance simulation correct if €no(k) = 0.

Observe that the yes-instance simulation correctness is universally quantified
for all x € L. However, the same is too restrictive in the case of no-instance
simulation correctness, because, in general, a proof simulator may not produce
valid proofs for a small set of no-instances without violating zero-knowledge.

Lemma 2.2. epo(k) < €x(K) + €co(K) + €na(k)-

Proof. We refer to Appendix A.1 for a formal proof. [

2.4 Fully Black-Box Construction and Separation

We follow the framework of fully black-box construction and separation in [31,47].
We say that there is a fully black-box construction of primitive A based on
primitive B if, given L securely implementing B as an oracle, there exists an
oracle machine M such that M" securely implements A.

On the other hand, to show the absence of a fully black-box construction,
we use the so-called single oracle separation technique. That is, there is no fully
black-box construction of primitive A based on B if there exists an oracle O for
which there exists an oracle machine L such that L° securely implements B, but
any oracle machine M such that M® implements A, is insecure. In Section 3, we
show an oracle O such that L° is a NIZK system for £, but any construction
MO of a NIZK system for language £V £ is insecure (for any hard ﬁ) As we
investigate constructions that do not rely on particular structures or properties,
we treat £ as a black-box as well. (Therefore, it would be more precise to denote
the language as £° but we abuse notation and use £ instead.)

By A = B, we mean that there exists a fully black-box construction of B
based on A. A fully black-box separation is denoted by A # B. If a separation
holds for a restricted class of black-box constructions, we denote it by A %, B.
Though separations for restricted classes of black-box constructions can bring
insight to a particular problem, rigorously, they are weaker than fully black-box
separations, so we make it explicit.

3 Disjunctive Language Extension

We show that given a NIZK system with strong properties such as labelling and
unbound simulation soundness, it is hard to disjunctively extend the language to
LV L even when compromising labelling or simulation soundness.
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Theorem 3.1. (LBL-USS-NIZK # OR-NIZK) Given any hard language L and
any labelled SS-NIZK system L for L, there exists no fully black-box construction
of NIZK scheme M for L\ L with any hard language L that is correct, adaptive
zero-knowledge, and sound.

Given the straightforward implications among NIZK, USS-NIZK, and LBL-
USS-NIZK, Theorem 3.1 implies that no black-box disjunctive language extension
is possible with respect to NIZK, USS-NIZK, and LBL-USS-NIZK.

Corollary 3.2. NIZK # OR-NIZK, USS-NIZK # OR-USS-NIZK, LBL-USS-NIZK
# LBL-OR-USS-NIZK

In the rest of this section, we prove Theorem 3.1. For that, following the stan-
dard oracle separation paradigm, we first describe an oracle used for constructing
a hard language and a labelled USS-NIZK for it.

Definition 3.1 (Oracle O). Oracle O is equipped with two injections H, :
{0,1}% — {0,1}** and H, : {0,1}*"' — {0,1}**, and a permutation H, :
{0,1}5% — {0,1}5%. Let H7*, H ! and Hp_1 be their respective inverse functions
that output L for inputs having no preimages. Oracle O provides three language-
related functionalities SmplYes, SmplNo, and Promise, and four NIZK-related
functionalities, Crs, Prv, PrvSim and Vrf that:

o Given
o Given

SmplYes, w) for w € {0,1}"*, compute x < Hy(1||w), and output x.
SmplNo, w) for w € {0,1}", compute x < H,(0||w), and output x.

« Given (Promise, x) for z € {0,1}%%, output 0 if L « H_1(z) and 1 otherwise.
« Given (Crs, 1) for 7 € {0,1}", compute o + H.(T) and oulput o.

o Given (Prv,o,z,0,w), output L if L «+ H (o), v # Hy(1||w), or ¢ &
{0,1}2% happens. Otherwise, output m <+ H,(c||z||¢).

Given (PrSim,o,2,0,7), output L if o # H.(1), L « H;'(x), or { ¢
{0,1}%% happens. Otherwise, output m < H,(o||z||().

e Given (Vrf,0,2,(,7), output 1 if (o||z||¢) = H, ' (7). Output 0, otherwise.

o~ —

We denote by O a set of all the oracles that follow the above syntax with security
parameter k, and by O the collection of O,; for all k > 0.

A query to O is successful if something other than L (or 0 in the case of O.Vrf)
is returned. We say that a common reference string o is valid (with respect to
O) if there exists 7 that satisfies 0 = H (7). Given o (without 7), it is easy to
assure its validity by checking that O(Prv, o, z, ¢, w) is different from L, where x
can be any yes-instance and w its corresponding witness.

The oracle O can be seen as a set consisting of entries of a form (cmd, args,
output) where command cmd is one of {SmplYes, SmplINo, Promise, Crs, Prv, PrvSim,
Vrf}, args denotes inputs for each command, and output is the answer. Inputs
and outputs may include wildcards such as .

Then, a set S of entries of this form is called a partial oracle as it can be seen
as an oracle that accepts only limited inputs. A partial oracle S is called consistent
if there exists another set S’ that S U S’ forms a complete oracle in O. Otherwise
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S is called inconsistent. A hybrid oracle, denoted as S := S1|S3| - -, is an oracle
that combines partial oracles S, S5, ... in such a way that, given a query of the
form (cmd, args), it first searches S; for matching entry (cmd, args, [output]) and
returns output if it exists. If no such entry is found in 57, it searches S5 and so
forth. Note that a hybrid oracle may not be consistent.

Let L be an oracle machine that, given O as an oracle, forwards its input to
O and outputs whatever O outputs. L° implements a hard promise problem and
a NIZK argument system for it. (Some trivial syntactical adjustments to fit to
the definition of NIZK in 2.3 and 2.4 are needed.)

The following lemma holds for L°.

Lemma 3.1. For any O € O, L° implements a hard promise problem (L,,C)
for Ly, = {x|3w € {0,1}" s.t. v = Hy(1||w)} and Cy, := {x|Fw € {0,1}" s.t.
x = H,(0l|w)}. It also implements a non-interactive zero-knowledge argument
system for L. that is perfectly correct, perfectly yes-instance and no-instance
simulation correct. Furthermore, it is adaptive zero-knowledge and unbound
stmulation-sound against polynomial-time adversaries given oracle access to O a
polynomial number of times.

Proof. We refer to Appendix A.2 for a formal proof. |

We make some remarks about our design choices for O and the properties of L.
It was shown in [9,53] that a simpler witness-indistinguishable oracle suffices to
construct a simulation sound NIZK. It is however essential for their construction
that the oracle supports an NP-complete language (or a specific disjunctive
language). The NIZK implemented by the above L is deterministic but one can
make it probabilistic so that (simulated) proofs have k-bit entropy simply by
attaching s-bit randomness to the proof. The simulation soundness of L° will not
be directly used in our proof of impossibility. What is important here is to see
that O suffices to construct a USS-NIZK for L.

Intuition for the impossibility. If the construction M is such that, M.Crs generates
some o; by calling O.Crs and encoding them into & (which we call legitimate
crs’s), we claim that the prover algorithm M.Prv cannot use them. Otherwise,
the adaptive zero-knowledgeness will be compromised. That is, all crs’s used
in proving a given statement should be generated within the prover algorithm
(except for some eccentric cases that we explain later). A crucial observation
is that, to prove disjunction for an instance (z,%), it may be the case that
(z,2) € Cy X L, and the no-instance z cannot be proven with a legitimate crs
whose trapdoor is not known to the prover. Using a legitimate crs only for
yes-instances will lose zero-knowledgeness since the zero-knowledge simulator
does not know whether the given x is a yes or a no-instance.

Let us elaborate on this point. Consider the adaptive zero-knowledge game
where an adversary submits disjunctive instances (z;,%;) for j =1,...,¢° (for
certain integer c) to the challenger that produces proofs either by M.Prv or
M.PrvSim. The adversary verifies the proofs by M.Vrf which may make verification
queries O.Vrf on z;. Let I denote the set of crs’s given as input to O.Vrf to
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verify x; for j = 1,...,¢° in the above verification when all (z;,#;) are taken
from L, x L, and proofs are made by M.PrvSim. Similarly, let I}, denote the set
of crs’s as well when all (z;, ;) are taken from C, x £, and proofs are made by
M.Prv. Other combinations of suffixes are defined accordingly. Suppose the case
where proofs are made by simulator M.PrvSim. First observe that we can interpret
the sets as distributions (quantified over the adversary and M). That way, the
distributions of Iy, and Iy are indistinguishable due to the zero-knowledge
property. It then hold that the distributions of I'y; and I'D are indistinguishable
because, otherwise, M.PrvSim can be used to distinguish between £ and C.
Similarly, I’ and I 150 are indistinguishable due to the indistinguishabilty of
£ and C. Then, I'fy and I, are indistinguishable due to the zero-knowledge
property. Thus Iy; and I}, are indistinguishable. Now observe that I}y; does
not contain a legitimate crs since the real prover algorithm cannot prove on a
no-instance with a legitimate crs whose trapdoor is not given. The same is true
for I}y because I], is indistinguishable from I7); and because legitimate crs’s can
be identified (as in the learning-phase defined below). Thus, even if a witness for
x; is given, the prover algorithm must not use legitimate crs’s to prove x;.

We indeed show that such a NIZK system that does not use the legitimate
crs for proving a given statement cannot be sound. Intuitively, if all crs’s are
generated internally, relevant trapdoors are available to the prover algorithm. A
caveat is however that the prover algorithm must work only for yes-instances
with correct witnesses and it is not clear how it is useful in forging proofs for
no-instances. We construct an adversary that runs the prover algorithm, M.Prv,
on (z*,2*) € Cx x C,. and performs an instance swapping to fool it as if * was
taken from L. It is done by giving M.Prv a random fake witness, w*, for x*
and simulating O on queries involving z*. Concretely, if M.Prv makes O.SmplYes
queries on the fake witness w* to check its correctness, we simulate the answer
by returning x*. If O.Prv queries are made on z* under a crs, 0, we replace the
query with O.PrvSim using a trapdoor 7; for o;. It is indeed possible since all crs’s
are internally created within M.Prv so their trapdoors are known. There could be
a case where a legitimate crs is used to prove z*. Recall that I, does not include
legitimate crs’s, i.e., proofs with a legitimate crs will not be verified by M.Vrf.
Yet, M.Prv may create and verify proofs with a legitimate crs for internal use
only. Therefore, the adversary must fool M.Prv by simulating such proofs with
random strings and answering accordingly to the respective verification queries.
Once M.Prv is done, the resulting proof 7 should pass the final verification since
all proofs 7; embedded in 7 and verified by M.Vrf are genuine and independent
of the fake witness.

Nevertheless, the above sketch ignores the possibility of a trivial legitimate
crs whose trapdoor is also embedded to ¢ and available in public. Algorithm
M.Prv may use a trivial trapdoor for no-instances and a relevant witness for
yes-instances. But the witness we give to the algorithm is a fake one that does
not work properly. To handle such a case, the adversary must find the trivial
trapdoors in advance and use them for proofs. Although we do not know how
the trivial trapdoors are encoded into &, they can be extracted by running M.Prv
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on a number of instances and observing the trapdoors used therein. Since there
can be a bounded number of trivial legitimate crs’s embedded in o, sufficiently
repeating the proofs on random instances exhausts them with high probability.

Breaking Soundness. In the following proof, we construct adversary A attacking
soundness of M (against a challenger B) and use the above observation about
the legitimate crs to lower bound the success probability of A. Let ¢ > 2 be a
polynomial in the security parameter that represents the maximum number of
queries to O that M© can make in each invocation. Let ¢ > 1 be a constant.

[Soundness Game]

Step 1: Setup Phase.
The challenger generates a common reference string by & + M©(Crs, 1%).

Let Qieg be a list of legitimate common reference strings and their trapdoors
(0j,7j) that o; <— O(Crs, ;) appears in this phase.

Step 2: Self-Learning Phase.

Given &, adversary A repeats 7; < MO(Prv,d, (x;,2;), (wi, ;) and b;
MO (Vrf, 5, (z;,#;),7;) with uniformly sampled instances (x;,4;) and witness
(w;, ;) from L, x C,, for q° times.

Let Qv be a list of trivial CRS and its trapdoor, (oj,7;), that [ # L] <
O(PrvSim, 0, %,%,7;) or o; < O(Crs,7;) appear in an execution of M in this
phase.

Step 3: Forgery Phase.

Sample (z*,2*) € Cy, X C. by w* « {0,1}*, 2* < O(SmplINo, w*) and &* +
C.. Let 7 := O(SmplYes, w*). Apply instance swapping: define a partial oracle
O’ with entries (SmplYes, w*, 2*), (SmpINo, w*, Z), and (Prv, %, Z, %, w*, 1). Run
MO”(Prv7 g, (z*,&%), (w*, L)) where O” is an algorithm that simulates an oracle
in O as follows.

[Algorithm O”] Let Qinu be an initially empty list.

o If a given query is defined in O’, return the output accordingly.
« Given (Crs, [15]), return o; <= O(Crs, 7;) and record (o;,7;) t0 Qint-
+ Given (Prv, [o,], 2%, [¢;], w*) with valid ¢;, do as follows.
(a) If (oj,[15]) € Quiv U Qiny, return m; <— O(PrvSim, o, z*, ¢;,7;) and
register (Prv,o;,z*,¢;,w*, m;) to O'.
(b) Else return 7; < {0,1}5% and register (Prv,o;,z*,¢;,w*,7;) and
(Vrf, o5, 2*,¢;,m;,1) to O'.
 For every other query, forward it to O and return the output.

When M outputs a proof 7*, A outputs (z*,2*) and 7* as a forgery.

Step 4: Final Verification Phase.
Given (z*,2*) and 7*, the challenger outputs 1 if a* ¢ L., &* € L., and
1+ MO(Vrf, G, (z*,4*),7*) hold. It outputs 0, otherwise.

Lemma 3.2. The above adversary A breaks the simulation soundness of MO if
M is non-adaptive multi-theorem zero-knowledge and correct.
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We will use the following lemma. It states that if an event happens for n
successive independent attempts, the probability that it suddenly does not happen
is upper-bounded by an inverse polynomial of n. We use this lemma to claim
that, during the challenge phase, the adversary observes all trivial o; embedded
in o generated by the challenger.

Lemma 3.3 ( [52, Fact 4.6.1]). Let X1, - X,,11 be independent Bernoulli
random variables, where Pr(X; = 1] = p and Pr(X; = 0] = 1 —p fori =
1,---,n+1, and some p € [0,1]. Let E be the event that the first n variables are
sampled at 1, and X, 11 is sampled at 0. Then, Pr[E] < i, where e ~ 2.71 is
the base of the natural logarithm.

Proof. (of Lemma 3.2) We analyze the probability that the forged proof passes
the verification in the above game. Let pi (k) and peo(k) denote bounds for
non-adaptive multi-theorem zero-knowledge and correctness for M as defined in
Definitions 2.3 and 2.4, respectively. We consider these parameters as universal
for all O. Let P be the probability that challenger B outputs 1 in the final
verification phase. The probability is taken over the choice of O and all coin flips
by B and A.

Our goal is to show that P is not negligible. Towards that goal, we consider
a sequence of games that introduces arbitrarily small (though not necessarily
negligible) differences in the considered probability and eventually reach the
situation where B outputs 1 trivially. We denote the probability for the same
event in Game ¢ by P;. In first some games (Game 0 to Game 6) we exclude events
that happens only by chance and simplifies the game. Under the condition that
these events do not happen, O” simulates an oracle in O successfully making
the forgery a correct proof on a yes instance in the disjunctive relation. Then
in the succeeding games (Game 7 to 9) , we replace oracle O with O” with step
by step manner. In Game 7, we replace oracle O in the setup and self-learning
phase with O”. In Game 8 we do the same in the final verification and argue
that replacing oracle O with O” in the final verification would not be noticed if
M is zero-knowledge and relevant languages are hard. In the last Game 9, the
adversary does nothing but creating a proof for a yes instance and it must be
accepted in the final verification with high probability.

Game 0: The above soundness game. So Py = P.

Game 1: For every successful query to O.PrvSim or O.Prv with respect to some
0j, query O.Crs that generates o; must have been made in advance within the
same execution of M or in the setup phase. Similarly, for every successful query
to O.Vrf for verifying a proof, a query to O.PrvSim or O.Prv that outputs the
queried proof must have been made in advance. If any of these are not the case,
the game halts.

Any query to O.PrvSim and O.Prv with a crs without prior generation by O.Crs
will be successful only if the crs is in the domain of H.. It therefore happens
with probability at most 1/2% over the choice of H.. Any verification query
on a proof without prior generation by O.Prv or O.PrvSim will output 1 with
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probability at most 1/2%%. Given at most ¢ queries in an execution of M and 2¢°+3
executions of M throughout the game, there is at most q(2¢° + 3)(1/2% + 1/25%)
chance of halting the game by observing such a query in Game 1. We thus have
[P — Py| < q(2q¢ + 3)(1/2% +1/25%).

Game 2: Modify the final verification so that it does not check z* ¢ L, and
i g L,.

Since the condition is fulfilled due to the way that z* and £* are chosen, this
modification does not change the outcome of the game. We thus have P, = P;.

Game 3: Halt the game if A observes b; = 0 in the self-learning phase. This is to
exclude cases where the adversary learns nothing in the self-learning phase due to a
bad choice of random coins given to M.Prv. Since A behaves honestly in this phase,
it happens only if a correctness error occurs. We thus have |Ps — Pa| < ¢°peo(K).

Game 4: The game halts if there has been a query on w* or z* or £ made by M
invoked in the setup and self-learning phases.

Since w* is chosen uniformly, the event happens only by chance among at
most g + ¢°(1+ 2q) queries to O during the concerned phases. Hence | Py — P5| <
3(g+q°(1+2q))/2".

Game 5: The game halts if any of randomly assigned 7; at step (b) of O” appear
as a result of other O.Prv or O.PrvSim queries by the end of the forgery phase.

There could be at most ¢ + 2¢°*! + ¢ queries to O that may yield a proof
by the end of the forgery phase. Thus uniformly chosen 7; could duplicate with
probability at most (2¢ + 2¢°*1)/2%%. Taking union bound for at most q random
7;, we have |P5 — Py| < q(2q + 2¢°T1) /26",

Game 6: The game halts if, O” receives a query (PrvSim, [o;], z*, [¢;], [r;]) that
there exists (Prv,o;, 2", {;,w*,[r;]) in O’, and 7; # 7 # L holds for 7 <
O(PI’VSim,O'j,I*,Ej,Tj).

The modification is to exclude a case where a trapdoor 7; for some o; suddenly
appears for the first time in the forgery phase while o; itself has appeared so far.
First observe that (Prv,o;,x*, £;, w*, [m;]) that causes 7; # 7 exists in O only
if m; is randomly assigned at step (b) of algorithm O”. That step is executed
only if (o, 7;) is not in Qv U Qiny. Observe that (o, 7;) must then present in
Qieg as we consider the case where o; is generated in advance since Game 1. For
each (o,7) in Qieg, the probability that it does not appear in the self-learning
phase but appears for the first time in the forgery phase is upper-bounded by
2/(eq®) due to Lemma 3.3. (Though O” is used in the forgery phase whereas O is
in the self-learning phase, simulation by O” is perfect in this game until the time
the considered event happens. Hence we can apply Lemma 3.3.) Since there are
at most ¢ entries in Qeg, the probability that (o, 7;) in Qg appears for the first
time in the forgery phase is at most 2/(eq°~1). Accordingly, |Ps — Ps| < 2/(eq“™1).

Game 7: Replace O in the setup and self-learning phase with algorithm O” with
partial oracle O’ defined at the end of the forgery phase after Game 4.

Since queries defined in O’ involves x* or T, they do not appear in the setup
and forgery phase. Any queries to O” not defined in O’ are answered by O. Thus
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this modification does not change the view in the relevant phases. We thus have
Pr = Ps.

Game 8: In this game, we use O” instead of O also in the final verification phase.

The view in the verification phase changes only if M.Vrf makes one of the
following queries whose output differs in O and O”. Let O’ be the partial oracle
defined at the end of the forgery phase.

« (PrvSim, [o;], *, [¢;], [1;]) that there exists (Prv,o;,x*, £;, w*, [r;]) in O’, and
m; # 7 # L holds for 7} <= O(PrvSim, o, 2*, £;, ;).

+ A query that is not in O’ but results in 7; already included in O’.

« A query included in O’.

Event that the first two queries are made can happen only by chance and we
can evaluate its probability similarly as done in Games 5 and 6 respectively.

The third case requires careful analysis. We briefly present our idea for
bounding the probability in the following. First observe that O’ includes two
types of queries. One is those involving witness w* and the other is those verifying
randomly assigned proofs. Regarding the first type, we follow the intuition that
if verification function M.Vrf can see a witness for a given instance it is no longer
zero-knowledge or the language itself is trivial. Regarding the second type, we
follow the intuition discussed at the beginning of this section; legitimate non-
trivial o; cannot be used to prove given instance otherwise zero-knowledgeness
will be lost. Here we claim the following bound and present details afterwards.

Claim 3.3. |Ps — P;| < 7/eq®™" + (3¢2 + 2¢°+2) /255 + 2¢/2% + éina(k) + 3pa(k)

Game 9: We then modify O” so that it no longer uses O but instead uses random
partial oracle R that, in combination with O’, makes O = O’||R be one of oracles
in O.

Since all queries to O” from M.Vrf in Game 8 actually answered by O are
consistent with partial oracle O’, replacing that part with also consistent R does
not change the distribution of the view of M.Vrf. Hence we have Py = Ps.

Now O” is an oracle in O, and the whole game is correctly creating 7* on
a (yes,no)-instance (x*,2*) with a correct witness with respect to O”. Thus
the created proof is accepted unless correctness error happens. We thus have
Py > 1— peo(k).

By summing up the above differences of probabilities, we have

P> 1= 5 = () ~ 30(6) — (6" + Dpol() — el)
where
e(r) :=q(2¢° + 3)(1/2" +1/2°%) + 3(¢ + ¢°(1 + 2¢)) /2"
+q(2q 4 2¢°T1) /255 + (3¢% + 2¢°T2) /255 4- 2¢ /2"

that is negligible in k. Accordingly, if M is correct and zero-knowledge and
language L is hard and constant ¢ is set so that the second term of the right-
hand-side of the above inequality is small enough, A is successful in breaking the
soundness of M with probability not negligible in . [
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Proof. (of Claim 3.3) For the first event, the same argument as that for Game
6 can be applied. We consider queries done by M.Vrf instead of M.Prv in the
self-learning phase and the verification phase but the analysis remains the same.
We thus have a bound for this event as 2¢q/(eq®).

For the second event, we apply the same argument as that for Game 5 except
for counting additional ¢ queries made during the verification itself. We thus
have a bound for this event as g(3q + 2¢°*1)/2".

Regarding the third event, observe that O’ contains two types of queries. One
is those that includes w*, i.e., (SmplYes, w*), (SmpINo, w*), (Prv, *, Z, *, w*), and
(Prv, *,2*, %, w*). By AskW we denote an event that one of those queries appears.
The other is queries of type (Vrf,x,z*, , [r;]) that verifies a randomly assigned
proof 7;. By VerPi we denote an event that this type of query happens.

We first evaluate the probability that AskW happens. Let Game 8.0 be Game
8. Let AskW?® denote the event that AskW happens in Game 8.i. It is important
to observe at this point that the view produced by O” with O’ is consistent, i.e.,
there exists a partial oracle that produces the same view, and what is done in
the forgery phase is creating a correct proof on a (yes,no)-instance with a correct
witness with respect to the partial oracle.

Game 8.1: Replace M.Crs in the setup phase and M.Prv in the forgery phase
with M.CrsSim and M.PrvSim, respectively. Note that the trapdoor output by
M.CrsSim is given to M.PrvSim.

We can show that | Pr[AskW®!] — Pr[AskW®]| < pu(k) by constructing
a distinguisher from the algorithm of A. Since witness w* is known to the
distinguisher, event AskW can be observed. We then claim that Pr[/—\skWS'l] <
q/2"%. The claim is justified by the fact that M.PrvSim no longer takes w* as
input and hence the view of M.Vrf in the final verification is independent of

w*. Hence the event happens only by chance among ¢ queries. We thus have
Pr[AskW] = Pr[AskW® ] < p, (k) 4 q/2".

Next we consider event VerPi. Recall that it captures the case where a
randomly assigned proof 7; is verified by the verifier. Suppose that we run
MO (Vrf,o,z,7) is done on a given input and observe that it makes a verification
query (Vrf,o;,2*,¢;,m;) to O”, it is not clear if the query is the one that causes
VerPi or not since we do not know whether 7; is a randomly assigned one or
not. Namely, event VerPi is not observable. This will be an obstacle when we
construct an adversary against zero-knowledgeness like done in the previous
case. We therefore consider an alternative event, VerCrs, that is observable and
happens almost whenever VerPi happens. Suppose that a query (Vrf,o;, 2*,¢;,7;)
happens in the final verification phase. We would like to see if the proof m; is
a randomly assigned one in step (b) of O” or not. Observe that it is the case
only if (0j,[7;]) € Quiv U Qiny is satisfied. If o; is not an internally generated
one, then it must have been generated in the setup phase. Furthermore, as
o; appears in the final verification, it should have appeared in a verification
during the self-learning phase as well. We thus define event VerCrs by final
verification MO (Vrf, 5, (z*, #*),7*) making a query (Vrf, [o;], 2%, [¢(;], [r;]) that
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satisfies ¢; € {0,1}*%, (0}, [75]) € Quiv, and 0; € Qune where Qp is a list of all
o; queried in the self-learning phase but not included in Qtny. This way, event
VerCrs is observable based on the view in the self-learning phase. Yet VerCrs can
miss the case where a o; generated in the setup phase appears for the first time
in the final verification. Applying Lemma 3.3, however, we can upper bound the
probability for such event by ¢/eq¢. Regarding Qn:, We thus have

Pr[VerPi] < Pr[VerCrs] + q/eq® .

Let Game 8.0’ be Game 8 and let VerCrs®? denote the event that VerCrs
happens in Game 8.7’.

Game 8.1": Replace M.Crs and M.Prv with M.CrsSim and M.PrvSim, respectively.

We claim that |Pr[VerCrss‘1/] - Pr[VerCrsS‘OIH < px(K) + 2¢/eq°. To show
this, we construct a zero-knowledge adversary that, given &, first execute the
self-learning phase, and send (z*,2*) and (w*, L) to the challenger. On receiving
7*, the adversary runs MO”(Vrf,g, (z*,2*),7*) and outputs 1 if event VerCrs
happens. It outputs 0, otherwise. If the challenger is working with M.Crs and
M.Prv, the view in the final verification (up to the point event VerCrs happens)
distributes as well as that in Game 8.0". If, on the other hand, the challenger is
working with M.CrsSim and M.PrvSim, the view in the final verification distributes
in the same way as as that in Game 8.1’.

In the above argument, however, the adversary cannot actually perfectly
capture event VerCrs since Qv and Q, the adversary obtains from its own self-
learning and used to capture event VerCrs can be different from the ones defined
for O”. This issue can be handled as follows. First, regarding o in Qyy, it suffices
to consider those included also in Qjeg. This is justified by observing that condition
(0,[15]) & Quriv U Qinu is equivalent to (o, [7;]) € (Quriv N Qieg) U Qiny because
every o; appeared during the final verification and present in Qv \ (Qtriv N Qleg)
must be in Qiny. Let Qf;, be the lists the adversary obtained. If Qp,;, U Qieg and
Quriv U Qieg differ, there exists (0;,7;) € Qieg that does not appear while in a
self-learning but does appear for the first time in the other self-learning. Thus, by
applying Lemma 3.3 we can upper bound the probability of having different Qv
and Q1,;, by ¢/eq®. The same argument applies to Qq:. This results in adding
2¢/eq® to the bound as claimed.

Game 8.2": Sample #* from C,. Namely, the instance (z*,%*) is chosen from
(yes,yes)-instances.

Any change in event VerCrs reduces to distinguishing £ and C. We thus
have \Pr[VerCrsis‘Ql] —APr[VerCr58‘1/]| < &ind(k) Where énq(k) is the advantage of
distinguishing £ and C.

Game 8.3": Sample z* from C,. Namely, the instance (z*,2*) is chosen from
(no,yes)-instances.

Due to the indistinguishability of £ and C, we have that |Pr[VerCrs8'3/] -
Pr[VerCrsg'Q/H is lower than ¢/2".
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Game 8.4’: Replace M.CrsSim and M.PrvSim with M.Crs and M.Prv, respectively.
Note that witness (L, %), where @ is a witness for #, is given as input.

We have |Pr[VerCrs8‘4/] - Pr[VerCrs8'3/]| < px(K) + 2q/eq”.

Since w* is no longer given, a valid proof m; on z* with a legitimate non-
trivial o; that makes event VerCrs®* to happen can be created only by chance by
guessing a relevant trapdoor or the witness, which already excluded in previous

games. Hence we conclude that Pr[VerCrs®4] = 0.
By summing up the above probabilities, we have

Pr[VerPi] < Pr[VerCrs] + q/eq < énd(k) + q/2% + 2p (k) + 5q/eq®.
Finally, we have

|Ps — Py7| < 2q/eq” + q(3q + 2¢°11) /2°% + Pr[AskW] + Pr[VerPi]
<T7/eq "+ (3¢% +2¢°%) /2% 4 2q/2" + &ina (k) + 3pux(r)

as claimed. [ |

4 Conjunctive Language Extension

4.1 Impossibility of AND-USS-NIZK from USS-NIZK

In this section, we consider non-labelled NIZKs. For that purpose, we drop the
labels from the definition of O in the previous section. The internal random
function H, is adjusted to Hj : {0, 1}* — {0, 1}4~.

We consider a class M of constructions where every M € M satisfies the
constraint that, roughly, all internally generated proofs m; must be verified in
the process of verifying the resulting proof. We call such M a construction in the
full verification model.

Definition 4.1. (Class of constructions with full verification.) M := {M} is a
class of black-box constructions of NIZK with respect to O such that, for every algo-
rithm M € M, the following condition is met: For all sufficiently large k > 0, for
every O € Oy, 7, T, w, and query/answer pair [m; # L] <= O(Prv, [o;], [x;], [w;])
observed during the evecution of [T # L] < MO(Prv,5,T,w), there exists a query
O(Vrf,0;,2;,m;) during the execution of MO (Vrf, 5,7, 7).

The condition captures the idea of properly using O as a proof system because
whatever was proven internally by a prover is then verified by a verifier. Requiring
“every” internal proof to appear also at verification is in fact needed for technical
reasons. In the proof of our separation, we construct an adversary that simulates
proofs m; by looking for query-answer pairs of O obtained during the challenge
phase. However, such a view is only with respect to M.Vrf executed by the
adversary itself and those with respect to M.PrvSim are not available, because
they are executed by the challenger. So if only a subset of the internal proofs are
verified in M.Vrf, the adversary cannot simulate the distribution of the internal
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proofs needed to run M.PrvSim. We do not know how to prove the separation if
this condition is relaxed to, for instance, “at least one”. It carries a resemblance
to the constraint used in [22, footnote 9] to show a black-box separation of
semantically secure encryption from chosen ciphertext secure ones. Their result
applies to a class of constructions where, for every decryption query, there must
exist a corresponding encryption query, or no encryption query can be made
during decryption (a.k.a. the shielding model). Note that, however, due to the
difference between the scenarios, shielding internal proof queries in the proof
algorithm (in our case) would make our oracle O mostly useless as a NIZK system,
because the verification queries without a corresponding proof query would not
be accepted for almost any inputs.

Theorem 4.1. (USS-NIZK # ., AND-USS-NIZK in the full verification model.)
Given any two hard languages L and L and any USS-NIZK system L for L,
there exists no fully black-box construction of USS-NIZK scheme M in class
M for LA L that is non-adaptive multi-theorem zero-knowledge and unbounded
stmulation sound.

Proof. Suppose that there exists a construction M in M that is non-adaptive
multi-theorem zero-knowledge and unbounded simulation sound. Let A be an
adversary playing the simulation soundness game against M with challenger
B. They are equipped with oracle O, chosen uniformly from O, which defines
languages L, and Cy. Let £ A L be the extended language that M is dedicated
for.

A chooses a target of forgery (z*,2*) uniformly from the no-instances of form
C. % EAH. A also chooses no-instances of the form z* x EAK, obtaining simulated
proofs for them from challenger . By this, A expects that the simulated proofs
contain proofs on z* generated by O. A then runs the prover algorithm M.Prv
using instance swapping, i.e., on the target (z*,2*) with a fake witness, say
(w*,%*). The only way for M.Prv to decide whether z* is a yes-instance or not is
to make a query to O on w*. Thus, when A sees such a query, it simulates O as if
x* was in the correct relation as a yes-instance with w*. Nevertheless, A cannot
simulate an answer to query O(Prv, o;, 2*, w*) with non-trivial o; whose trapdoor
is not known to A. For such a query, A must find the corresponding proof 7*
that satisfies 1 <— O(Vrf, 0, x*, 7*). We argue that the correct 7* is included in
the view of A during the challenge phase where the instances including z* have
been queried to the challenger. To show that the proof that A created will be
accepted by the legitimate verification, we follow a game transformation argument.
Starting from the simulation-sound game with the above A, we transform the
game to the one where A runs M.Prv on target (z*,2*), which is a yes-instance
relative to a modified oracle O*. Due to the zero-knowledge property of M and the
hardness of £, such transformation is not noticeable by the verification algorithm.
Accordingly, the proof will be accepted by the verification algorithm.

With the above outline in mind, we describe the simulation soundness game
in the following. We consider an adversary A separated into three stateful
polynomial-time oracle algorithms A := (Ag, A1, A2). Similarly, the challenger B
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is separated into two algorithms B := (B, B1). Let ¢ > 2 be a polynomial in the
security parameter that represents the maximum number of queries to O that
M© can make in each invocation.

[Simulation Soundness Game]

Step 1: Setup Phase.
By : Generate (7,5) by executing (7,5) < MO (CrsSim, 1).
Step 2: Challenge Phase.

A : Given & as input, sample w* < {0,1}* and let z* := O(SmplNo, w*) and
Z := O(SmplYes, w*). Also sample %1, ..., &4 uniformly and independently
from £, and send X := {(z*,#;)} to the challenger. On receiving simulated
proofs 7y, ..., 4, verify them by b; - MO(Vrf, 5, Z;, 7).

B; : On receiving T;, compute 7; < MO (PrvSim, &, Z;, 7) with fresh randomness
and return 7; to A;.

Let Quer be all successful verification queries to O of form (Vrf, [o;], z*, [7rj*])
observed by Aj;. Let Qv be a list of common reference strings and their trapdoors,
(0,7j), that [« # L] <= O(PrvSim, 0}, *,7;) or o; <= O(Crs, 7;) has been observed

by .A1.

Step 3: Forgery Phase.

As : Uniformly choose * € L, and its witness 0. Apply instance swapping: de-
fine partial oracle O’ with oracle entries (SmplYes, w*, z*), (SmplNo, w*, Z),
and (Prv,*,Z,w*, 1). Run MON(Prv75, (x*, &%), (w*, @*)) where O” is an
algorithm that simulates an oracle in O as follows.

[Algorithm O”] Let Qinu be an initially empty list.
- If a given query is defined in O’, return the output accordingly.
- Given (Crs, [75]), return o, < O(Crs, 7;) and record (0;,7;) t0 Qint-
- Given (Prv,o;, 2*, w*) with a valid ¢;, do as follows.
cl: If (Vrf, 05, 2%, [77]) in Quer, then return 7.
c2: Else if (0j, [15]) € Qtriv U Qiny, compute
mj <= O(PrvSim, o, z*, 7;) and return ;.
c3: Else return L.
- For every other query, forward it to O and return the received answer.

When M outputs 7%, output (z*,2*) and 7*.

Step 4: Final Verification.

Bs: Given (z*,2*) and 7*, output 1 if (z*,2*) € X and (z*,3*) &€ L, X L.
and 1 « MO(Vrf, 5, (z*,2*), 7). Output 0, otherwise.
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Now, we analyze the probability that By outputs 1 in the above game. We say
that a common reference string o; is trivial if (o}, [7;]) is included in Qyer, or it is
generated within the algorithm execution in consideration. Let P be probability
that By outputs 1 in the simulation soundness game. It is over the choice of
O and all coin flips of B and A. Our goal is to show that P is non-negligible.
Towards that goal, we consider a sequence of games as in the case of conjunction.
Let P; denote probability that Bs outputs 1 in Game 1.

Game 0: The above simulation soundness game. Py := P.

Game 1: For every successful query to O.PrvSim or O.Prv with respect to some
oj, query O.Crs that generates o; must have been made in advance within the
same execution of M or in the setup phase. Similarly, for every successful query
to O.Vrf for verifying a proof, a query to O.PrvSim or O.Prv that outputs the
queried proof must have been made in advance. If any of these are not the case,
the game halts.

This modification is exactly the same as that in Game 1 for the case of dis-
junction in Section 3. Applying the same analysis with adjustment of parameters,
we have | Py — Py| < q(2¢° + 3)(1/2F + 1/2%%).

Game 2: Remove the conditions (z*,2*) ¢ X and (z*,2*) € L, x L, in the final
verification.

They are satisfied unless 2* € {#;} happens by chance, which happens with
probability at most ¢¢/|L.|. Hence |Py — Py| < ¢°/|L.|.

Game 3: Halt the game if A; observes b; = 0. Since the challenger behaves honestly,
it happens only if the simulation error occurs for input z; € X. However, recall
that no-instance simulation correctness is defined for instances uniformly chosen
from all no-instances. On the other hand, instances z; are chosen from z* X EAK
in this game. Furthermore, the challenges are repeated with the same o, whereas
the simulation correctness takes the choice of ¢ in the probability space. We will
fill this gap and obtain the following bound.

Claim 4.2. |Ps — Py| < 2 + ¢°(pk(K) + peo(K)).

Game 4: Let H, be H, except for H,(b||w*) := H,(1 — b||w*) for b = 0, 1. Let
O0* be O except for using H, instead of H,. In this game, we use O* instead
of O in the Setup and Challenge phases. Ag is modified so that it chooses
x* := O(SmplYes, w*) and z := O(SmplNo, w*).

First note that O* is a correct oracle that belongs to O@. The use of O* is not
noticeable unless a query including w* appear in the respective phases. Since
w* is information theoretically hidden from the view of M in these phases, it
appears among at most ¢(2¢¢ + 1) successful queries made during these phases
with probability at most ¢(2¢° + 1)/2%. We thus have |Py — P3| < ¢(2¢° + 1)/2".

Game 5: Use O* also in the forgery phase instead of O”.

Observe that algorithm O” simulates O* and the simulation is perfect unless
it runs into branch c3. Let AbortA be the event that the game aborts there. Since
Games 5 and 4 are the same unless AbortA happens, |Ps — Py| < Pr[AbortA]
holds. We then bound the probability of happening AbortA as follows.
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Claim 4.3. |Ps — Py| < Pr[AbortA] < px(k) + -2

eqc’

Game 6: Remove the challenge phase. Observe that, in Game 4, A simply
computes 7 < MO (Prv, &, (z*, #*), (w*, ®*)) in the forgery phase without using
any information from the challenge phase. Therefore, this modification does not

affect to the remaining phases of the game. We thus have Ps = Ps.

Game 7: Modify By so that it generates o by ¢ + I\/IO*(Crs, 17). In both Games
6 and 7, trapdoor T is not used. Hence it is straightforward to construct an
adversary against zero-knowledgeness of M that, given & as input, simulates the
game as described and distinguishes which is the case simply by following the
output of the final verification. We thus have |Pr — Fs| < px (k).

Game 8: Use O* also in the final verification phase instead of O.

The modification is noticed only if a query including w* is made in the final
verification phase. If, however, the verification algorithm is aware of a witness for
the instance in question, the system is not zero-knowledge or the language is trivial.
With a simple analysis and reduction, we can show |Ps — P7| < pux (k) + q/2".

Finally, we observe that Game 8 is nothing but the correctness checking where
a proof for a randomly chosen yes-instance is legitimately created and verified.
Therefore, Py > 1 — peo(k).

By summing up the above differences of probabilities, we have

P> % _ eq% — /1l = (¢° +3)pu() — (¢° + D)peolr) — (k)

where
e(r) :==(5q + 4¢°T1) /2" + (3¢ + 2¢°1) /2"

that is negligible in . Accordingly, if M is correct and zero-knowledge and
language L is hard and constant c is set so that the second term of the right-
hand-side of the above inequality is small enough, A is successful in breaking the
soundness of M with probability not negligible in .

Therefore, the adversary A4 breaks the simulation soundness of M over the
choices of O. Finally, by applying the standard argument that there exists an
oracle O in O according to Borel-Cantelli Lemma we complete the proof of
Theorem 4.1. |

Remark 4.1. Regarding the extended part of the language, the only property we
used in the above proof is that \LA',,.C|_1 is negligible in . Therefore, we can set
L, to be in BPP as long as the constraint on the size of the language is met. A
more precise analysis about the size of L, reveals that its size can be polynomial
in k as long as its inverse is sufficiently small. Setting |£,| to be O(¢°) with a
small constant factor suffices. The same is true for CAK.

Remark 4.2. Regarding branch c3 in algorithm O”, one may think of assigning a
random value to 7; and hope that it will not be verified by M.Vrf as we did in
the case of disjunction. Then the proof might work in the full generality rather
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than in the full verification model as well as the previous case. Unfortunately,
it does not work since M.PrvSim in the challenge phase may decide which proof
to be verified in M.Vrf depending on the concrete representation of 7;. A proof
m; that remains unverified by M.Vrf may become verified if its representation is
changed due to the random assignment.

For proofs of Claims 4.2 and 4.3, we use the following useful lemma that is a
variation of the splitting lemma [19,44].

Lemma 4.1. Let X and ) be distributions and R be a binary relation over
X x Y that satisfies Prycx yey[R(z,y) = 1] > 1 — € for some small €. It holds
that Pry. y[Pryc x[R(z,y) =1] > 1 —2¢] > 1/2.

Proof. (of Claim 4.2) Suppose that the instances in the challenge phase are
uniformly chosen from L, x L. According to Lemma 2.1, it holds that

(7,7) < M°(CrsSim, 1%) ;
P1 -=Pr T« L. X ﬁﬁ; 1+ Mo(Vl’f, g, E,’T\l:)
7 < M°(PnSim, 5,2, 7)
> 1 — (pok(k) + peo(k))

over the choice of O. Let © be the collection of (O, 7,7, x*), where it holds that

Tz ffﬁ ; = 5 X
rew il MO(Vrf,mm)] > 1-2(pk(K) + peo(K))

=Pr
bz [ 7+ MO(PnSim,5,Z,7)

According to Lemma 4.1, a uniformly generated (O, d,7,2*) belongs to © with
probability greater than 1/2. For a fixed (0,7, 7,z*) in O, let ExChal be the
event defined as

ExChal(0, 0,7, z") :=
{i 2" x L 7« MO(PnSim,&,%,7); 1+ MO(Vrf,Zii,%)}
where X + z* x L is a shorthand of sampling z; € x* X L independently
and letting X := (F1,...,Z4), and 7 < MO(PrvSim,,X,7) is a shorthand for
executing 7; < MO(PrvSim,5,7;,7) for every i to obtain 7 := (71,...,74e),

and 1 < MO(Vrf,5,%,7) is a shorthand of running b; < M®(Vrf, 5, 7;,7;) and
returning 1 if and only if b; = 1 for all ¢ € {1,...,¢°}. We then have

ps = Pr[ExChal(0,5,7,2")] = (p2)?" > 1 — 2¢°(pa(K) + peo(K)).
Accordingly, we have

0+ 0O;
ps :=Pr | (7,7) < MO(CrsSim,1%); : ExChal(0O,7,7,z*%)
¥ — Ly
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> Pr[(0,5,7,2*) € ©] - Pr[ExChal(0, 5,7, 2%)]

> % = 4 (pk(K) + peo(r))

where the experiment of p4 is the same as the setup and challenge phases in
Game 3. Therefore, the probability that .4; aborts in Game 3 is upper-bounded

by 1 —pa < 3 + ¢°(pak(K) + peo(K)). ]

Proof. (of Claim 4.3) To prove the bound, we use Lemma 3.3 that states, intu-
itively, that an event rarely happens for the first time if the event did not happen
during sufficient number of trials in the past. To argue in this way, we need to
match the distribution of A’s view in the challenge phase and the one in the
forgery phase so that they belong to the same probability space. By AbortA’ we
denote AbortA in the following Game i. Let Game 4.0 be Game 4.

Game 4.1: Modify By and B; so that they execute & < MO (Crs, 1%) and 7; +
MO (Prv, &, Z;, (w*, 1)), respectively, where ; is a witness of #; in &;. The
trapdoor 7 is no longer generated but it has not been used in the previous game,
cither. We claim: |Pr [ AbortA*" | — Pr [AbortAzl'0 ]| < pax(r). To prove the claim,

we construct a distinguisher, D°”, playing the non-adaptive multi-theorem zero-
knowledge game for M©". The construction is indeed straightforward once we
observe that O* is a correct oracle belonging to O and every (z*, Z;) is a legitimate
yes-instance with respect to O* whose witness is (w*, ;). The distinguisher D©"
samples w* < {0,1}", and z* + O*(SmplYes, w*), and also samples instances
and witnesses as A; does. It then sends the instances and witnesses to the
challenger in the non-adaptive multi-theorem zero-knowledge game. Note that,
the challenge instances are chosen at once, non-adaptive multi-theorem zero-
knowledge suffices. On receiving & and proofs, D°" verifies them by running
MO” (Vrf,o,2;,7;) and creates Quer and Qyiv. It then follows the procedure of
Az and halts with output 1 if AbortA happens. If AbortA does not happen, D
outputs 0. DO can simulate A, correctly since Ay does not make any query on
w™* to its oracle unless event AbortA happens. Accordingly, if ¢ and the proofs
from the challenger are the real ones, DO has simulated the view of A, in Game
4.1, otherwise, Game 4.0.

Finally, we show that Pr [AbortA‘“] < &= Observe that, until the moment
that AbortA happens, the view of A is exactly the same as that of computing
M.Prv with respect to O*. Also observe that what the challenger in Game 4.1 is
doing is computing M.Prv with respect to O*. Besides, all instances are uniformly
chosen from the same distribution. Now we consider the condition that AbortA
happens. Event AbortA happens only if branch cl is not the case. It means that
(Vrf, 05,2, [7}]) is not observed by M.Vrf run by A in the challenge phase. It
then means that M.Prv run by B did not make query (Prv,o;,z*, w*) since M
is in the full verification model.® Also, AbortA happens only if branch ¢2 is not
the case. It means that o; is not trivial and generated by By in the setup phase.
For a specific o; generated by By, the probability that (Prv,o;, 2", w*) appears

3 This is where we use the condition that M is in the full verification model.
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for the first time in the forgery phase after having ¢¢ successful challenges is
upper-bounded by 1/eq¢ due to Lemma 3.3.* Since there could be at most g such
o; generated in the setup phase, taking the union bound for all of them, we have
the bound ¢/eq® as claimed. By summing up the above bounds, we have the
bound given in Claim 4.3. [ |

4.2 Constructing AND-USS-NIZK from labelled USS-NIZK

Contrary to the impossibility in the previous section, conjunctive language
extension is possible for USS-NIZKs if they support labels. Exploiting the integrity
of labels, an easy solution could be the following: to prove an instance (z1, z2)
under a label ¢ we can define a label for the USS-NIZK scheme ¢’ := x1||x2||¢
and run the prover algorithm in both pairs (z1,¢') and (z2,¢'). Such a simple
transformation works, as long as the underlying USS-NIZK can handle the longer
labels that we defined. We provide a transformation that is valid independently of
the label space of the underlying NIZK as long as it supports poly-length labels.
For a bitstring s, let f(s) be a Merkle encoding of s [39] as defined by
f(s) := sl||tag(s), where tag(s) is a bitstring representing the bit length of s minus
its hamming weight. The length of f(s) is exactly len(s) + [log,(len(s))]. Now,
let I(s) := {i|f(s); = 1} where f(s); is the i-th bit of f(s). It then holds that,
I(s) is not empty for any s, and for different s, s', I(s) € I(s") and vice versa.
Theorem 4.4. (LBL-SS-NIZK = LBL-AND-SS-NIZK.) Given any two lan-

guages L and L and two labelled USS-NIZKs for both L and ﬁ, thefe erists a
fully black-box construction of labelled USS-NIZK for language (L A L).

Proof. Let II; and I1s be two labelled USS-NIZKs for £ and Lo, respectively. We
construct a LBL-USS-NIZK, IT, for £; ALy with labels of length len(¢) := poly, (k).
Let u; be the label bit-size supported by II; and let v = min(uy,us). We
require u be polynomial in k so that polynomial number of random independent
samplings from {0, 1}* produces collisions with negligible probability. Let v :=
len(z1) + len(a2) + len(¢) where len(zp) (b = 1,2) denotes the bit length of the
instances in £, at security parameter k. Let n := v + [log,(v)].

« Given £ as input, IT.Crs runs oy; + IT;,.Crs(1%) for b € {1,2} and i € [n] and
outputs o := (611,021, - -, CT1n, T2 )-

« Given 7, T = (x1,2), a label £ and a witness w = (w1, wa), II.Prv chooses a
random u-bitstring r < {0, 1}* and computes proofs my; < ITp.Prv(ow;, Tp, 1, wp)
for every i € I(z||¢). It produces T by concatenating all the previous proofs
with r.

« Given 7, Z, £ and T as input, the verification algorithm IT.Vrf verifies the
proofs included in 7 on the corresponding op;, b € {1,2}, ¢ € I(Z||¢). It
accepts the proof if and only if all verifications succeed.

4 It may worth to note that this proof strategy does not work if O.Prv supports
labels since a unique random label may be included in every O.Prv query so that
proofs cannot be reused. Indeed we can construct LBL-(AND)-USS-NIZK from
LBL-USS-NIZK as stated in Theorem 4.4 and illustrated in Figure 1.
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The simulator algorithms are constructed accordingly and zero knowledge
holds immediately from II; and Il5. For unbound simulation soundness, suppose
that, after seeing simulated proofs 7; for chosen label-instance pairs (Z;,¢;), an
adversary outputs a proof 7* (comnsisting of 7;; and 7*) on a fresh (z*,£*). Let
b* € {1,2} be such that z}. is a no-instance with respective language, which
exists if the above is a valid forgery for the conjunction. Now, if there exists j
such that 7* = r;, let * be such that ¢* € I(z*||¢*) and i* & I(Z;]|¢;). Otherwise,
r* is fresh, let ¢* be any index from I(z*||¢*). Observe that (m}.,.,zi.,r") is a
forgery against II,~ with respect to o-, if every r; is unique as expected. That is
because the chosen (x.,r") is a fresh instance-label pair and z}. is a no-instance
of the respective language. [

5 Implications and Language Preserving Reductions

We first show that a labelled USS-NIZK for £ can be constructed from (non-
labelled) USS-NIZK for LA L.

Theorem 5.1. (AND-USS-NIZK = LBL-USS-NIZK) Given any NIZK system
for LN L that is unbounded simulation sound and adaptive zero-knowledge, there
exists a fully black-box construction of LBL-USS-NIZK for L.

Proof. Let IT := {Crs, Prv, Vrf, CrsSim, PrvSim} be a USS-NIZK for £ A L. Tt is
assumed that £ is efficiently and uniformly sampleable (with witnesses) and
includes a sufficiently large number of instances. We construct a LBL-USS-
NIZK IT for £ with labels len(f) := poly,(x) as follows. Let n be n := len(£) +
[logy(len(?)))] and function I as defined in Section 4.2.

« Given k, I1.Crs outputs & := (04, ..,0,), where o; « IT.Crs(1%).

« Given &, instance z € £, a label £ and a witness w, IT.Prv samples a random
yes-instance & < L, with corresponding witness . It then creates a proof 7
by concatenating & with all proofs IT.Prv(o;, (2, 2), (w,®)) for i € I(£).

« The verification algorithm I1.Vrf verifies the proofs in 7 with the corres-
ponding o; in i € I(¢). It accepts 7 only if all verifications succeed.

The simulators are constructed accordingly and the zero knowledge property
of IT is inherited from the one by IT. For unbound simulation soundness, consider
an adversary who produces a proof 7* on a fresh (z*, £*), where z* is a no-instance
of L. If a proof on (z*,¢) was never asked by the adversary for any ¢, 7* cannot
be valid due to the USS of IT. Otherwise, observe that if 7* = (2*, {7} };cr(e+))
is valid, the USS of IT is compromised, because there must exist an index i
such that (2*,2*) has not been proven with respect to o;, and however, 7} is a
valid proof for that instance. Observe that the above reasoning requires that the
probability of collisions when sampling & < L, is negligible, which is guaranteed
by the assumption on L. [ |
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The following result is obtained from Theorem 5.1 and Theorem 4.4.
Corollary 5.2. AND-USS-NIZK = LBL-AND-USS-NIZK

When £ is a hard language we can build a reduction from OR-USS-NIZK to
LBL-USS-NIZK.

Theorem 5.3. (OR-USS-NIZK = LBL-USS-NIZK) Any NIZK system for LVLE
for a hard language L that is unbound simulation sound and adaptive zero-
knowledge, can be transformed into a LBL-USS-NIZK for L in a black-box way.

Proof. (Sketch) The transformation is analogous to the one provided in the proof
of Theorem 5.1. The difference is that Z is chosen to be a no-instance from én and
its witness @ together with Z is included in the proof 7. The verifier algorithm
checks that Z € C, using w. Everything else remains unchanged. [ |

Finally, the previous results lead to the following.
Corollary 5.4. NIZK #-, USS-NIZK in the full verification model.

Proof. Suppose that a USS-NIZK for £ is black-box constructable from a NIZK
for £ in the full verification model. Then, by applying the construction to
L := (L' AL, we can construct a USS-NIZK for (£’ A £') from a NIZK for
(L' A L'). Since USS-NIZK implies NIZK, we could start from a USS-NIZK for
L' to construct a USS-NIZK for (£’ A £'), which contradicts Theorem 4.1. m

5.1 On the full verification model

Some of our impossibility results (marked with ) are in the full verification
model (FVM), i.e., we focus on a restricted class of black-box constructions: those
where all the internal proofs generated by the prover algorithm must be verified
by the verification algorithm (see Definition 4.1). That is a technical requirement
used in the proof of Theorem 4.1 and also affects the results derived from it. In
this section we argue that the full verification model has a little impact in the
conclusion that can be derived from our results in terms of generality.

First, the model covers a considerably wide variety of constructions that use
the given oracle as a proof system. Second, constructions excluded by the model
must exploit unverified proofs in some meaningful manner, which we believe is
not possible.

In particular, we informally argue that for every black-box construction (not
in the full verification model) there exists an equivalent black-box construction
that is in the FVM. First of all, note that if all internal proofs are included
in the final proof, but not all are verified, we can just modify the verification
algorithm to verify every single proof (and abort if some of them does not pass
the internal verification), without compromising zero-knowledge nor soundness.
Furthermore, completeness would not be compromised either because every proof
has been honestly generated. Now, consider a black-box construction whose prover
algorithm calls the underlying prover, producing a set of proofs, and suppose that
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only a subset of them are included in the final proof. The non-included proofs
may be used to decide (in an arbitrary manner) how the subsequent proofs are
created. We claim that, if the black-box construction implements a secure NIZK
system, the probability distribution induced by the internal proofs (that are not
included) can be simulated without actually producing such proofs. That would
imply that there exists an equivalent black-box construction which includes every
internal proof in the final proof and (as explained above) there would exist an
equivalent black-box construction in the FVM.

The key point of the previous argument is that the black-box construction
must work for every possible underlying NIZK system. To illustrate this idea,
consider a black-box construction such that it includes in the final proof only
the internal proofs that start with a 0 in their binary representation. Observe
that such a construction cannot implement a valid NIZK in a black-box manner,
because if the underlying NIZK is such that the binary representation of its
proofs starts with 1, the prover of the main construction will not produce an
output.

To conclude, we would like to stress that our impossibility results, even in
the full verification model, should be valid as a strong motivation to look for
non-black-box approaches to the corresponding problems.

6 Signatures from USS-NIZK w/o Language Extension

6.1 A Simple Case

We begin with a simple yet useful case where a USS-NIZK system II for hard
language L is perfectly no-instance simulation correct, i.e., II.PrvSim works for
any no-instances in C. Let H be a family of functions H := {H,, : K, x M,; — C.}
that maps messages in M, to a subset of no-instances C;, C C,,. We construct a
signature scheme X' := (Setup, Sign, Vrf) as follows.

X Setup(1”) : X.Sign(pk, sk, m) : Y Nrf(pk,m, o) :
(0,7) < II.CrsSim(1%) (0, K) < pk (0,K) « pk
K+ Ky T + sk x <+ Ho(K,m)
pk = (0, K) x <+ Hq(K,m) b« II.Vrf(o,z,0)
sk =T o < II.PwSim(o,z,7)  returnd
return (pk, sk) return o

Since each message is mapped to a no-instance exclusively, simulation sound-
ness is literally translated into EUF-CMA: It is hard to find new message m* (new
no-instance x*) and valid signature o* (valid proof 7*) after seeing signatures o;
(simulated proofs ;) for arbitrary messages m; (arbitrary no-instances x;). A
formal statement follows.

Theorem 6.1. The above X is a EUF-CMA secure signature scheme for message
space M, if, II is a perfectly no-instance simulation correct USS-NIZK system
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for hard language L accompanied by C, and H is a family of efficiently sampleable
injections from M, to any Cl. C C,.

Proof. Correctness is immediate from the perfect no-instance correctness of IT
and the fact that H is an injection. For EUF-CMA security, a straightforward
reduction works. We construct an adversary A playing the simulation soundness
game for IT using an adversary B playing the EUF-CMA game for X' as a black-
box. Given a o, A selects K <+ K, and invokes B with (¢, K) as a public-key.
When B makes a signing query m € M, A computes x < H,(K, m) and sends
x to its proof oracle. On receiving a simulated proof 7, A returns o := 7 to B.
If B finally outputs a forgery (o*,m*), A outputs (7*,2*) := (¢, H, (K, m*)).
Due to the perfect no-instance correctness and the fact that H is injective, the
simulated proofs given to B pass the verification as signatures. Thus, B outputs
a valid forgery with sufficiently high probability as assumed. Since the fresh
message m* is mapped to a fresh no-instance z* due to the injection H,, the
final output from A is a valid forgery. [ |

Note that no hardness of £ is required for the proof. It is only required that
L, and C, be disjoint. Also note that the construction allows several variations
and relaxations: H, can be relaxed to a collision-resistant hash function family,
and II can be a designated prover simulation sound quasi-adaptive NIZK as
shown in [3] where the authors develop an efficient structure-preserving signature
scheme as a concrete application of this result.

6.2 General Case

We now address a more general case where the underlying USS-NIZK is not per-
fectly no-instance simulation correct. We introduce building blocks and establish
some technical lemmas before presenting the construction.

Extended Target-Collision-Resistant Functions. A family of functions {H} is
target-collision-resistant if any p.p.t. adversary A wins in the following experiment
only with negligible probability, say € A chooses an input = and it is given a
random key K; A wins if it can produce a different input =’ such that H(K,z) =
H(K,z'). This notion was extended by Halevi and Krawczyk [28] in such a way
that the adversary is allowed to select a different key for the second evaluation,
i.e., the probability that the adversary comes up with a new z’ and K’ satisfying
H(K,x) = H(K',2') is upper bound by a negligible function ee,. Hiilsing
et al. [30] considered a further extension called multi-target extended target-
collision-resistant (m-eTCR) hash functions, where the above experiment is hard
even if the adversary is allowed to choose several targets. More precisely:

Definition 6.1. A family of functions H = {H : {0,1}F() x {0,1}™(%) —
{0, 13"} en (for certain polynomials k,m,h in k) is said to be €meter-multi-
target extended target-collision-resistant if for every p.p.t. adversary A and every
sufficiently large k, it holds that

Pr| (&, K) « AX0)(1%)

< €metcr (H)

Iz, K;) € Q such that & # xz; and
H(K,2) = H(K;, x;)



32 M. Abe, M. Ambrona, M. Ohkubo

where Key(-) is an oracle that on input x; € {0,1}™") samples K; uniformly at
random from {0,1}*"%) | stores the pair (z;, K;) in Q and returns K;.

Clearly, €meter < ¢ - €eter holds for up to ¢ queries. Though we use m-eTCR
in our construction for simplicity of the argument, the same argument holds
with standard single-target e TCR with polynomial loss in the security bound.
We also note that, according to [40], eTCR can be constructed easily from
TCR by appending the key to the output. That is, H(K,m)||K is extended
target-collision-resistant if H is target-collision-resistant.

We next establish some lemmas with respect to eTCR and NIZK simulation
functions. We begin by introducing a result about the distribution of the outputs
from eTCR functions. Ideally, we would like to have the property that the no-
instances generated from messages are indistinguishable from yes-instances. That
could be achieved if our function that produces no-instances from messages would
distribute uniformly over the range of Dc.

Given a message m, we will output a no-instance by computing © = H (K, m)
for a randomly chosen K € K and then returning De¢(z). One could expect that
the output of eTCR functions distributes uniformly over all possible values, but
collision-resistance is not enough to guarantee such a property. (Consider an
eTCR family of functions that output bitstrings where the last bit is constantly
zero, i.e., non-uniform.) To overcome this limitation, we assume an additional
property on the m-eTCR family: €..g-regularity. Roughly, every function in the
family must be statistically close to the uniform distribution over its output.

Definition 6.2. We say a family of functions H = {H : {0,1}**) x {0,1}(*) —
{0, 1309}, oy s ereg-reqular if for every sufficiently large k and every x €
{0, 1Y) the distribution D, defined as D, := (K < {0,1}F): return H (K, z))
is statistically close to the uniform distribution over {0, l}h(”’). More precisely,

1
APz, Upw) = 5 > |Pr[De =] = Pr[Upg) = o] | < ereg(r) -
N— ———

h(k)
(Xe{071} 1/2;1(%)

The following lemma allows us to argue that the distribution of no-instances
produced from messages (think of messages as m(x)-bitstrings in this case) is
indistinguishable from yes-instances (see Definition 2.1).

Lemma 6.1. Let L,; be a eng-hard language (with respect to C,;) with sampling
distributions (Dr,,, D¢, ) where D¢, : {0,115 — C,. (for certain polynomial
hin k). Let H = {H : Ky x M,, — {0,1}%)}, cn be a emeter-multi-target
extended target-collision-resistant function family that is ereg-regqular. Consider
the distribution Dy, defined as K < K,;return D¢, (H (K, m)). For everym € M,
and every sufficiently large k, A(Dy,, De,.) < €reg(K).

Proof. Observe that for every pair of random variables X,Y and every function
F whose domain is the range of X and Y, it holds® A(F(X), F(Y)) < A(X,Y).

® We abuse notation and write F(X) to denote the composition F o X, i.e., the
distribution z <— X ; return F(z).
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o X .Setup(1%) : « X.Sign(pk, sk,m) : « X.Vrf(pk,m,0) :
(0,7)1.CrsSim(17%) K «+ Ky parse o as (7, K)
pk:=(0,Hx,De,) y:=7De,(Hi(K,m)) y:=7Dec,(H.(K,m))
sk:=rT1 T 4 I1.PnSim(o,y,T)  return IL.Vif (o, y, )
return (pk, sk) o:=(m K)

return o

Fig. 2: Construction of signature scheme from SS-NIZK

In our case, for every m € M, and every sufficiently large x,

A(Dim, De,.) = A(K « Ky ; returnDe, (H(K,m)), € < Up(y) ; returnDe, (z))
SA(K + Ki 5 return H(K, m), Up(yy) < €reg(K) - [ |

We expect that distribution D¢, is close to injection and hence has a small
collision probability as defined in the following. It implies that instances in C has
a short witness.

Definition 6.3 (Collision probability). A function f : {0,1}™*) — {0, 1}7(*)
for some polynomials m,n in k is said have ecp-collision probability (for some
function e, in k) if for every sufficiently large k, it holds

Hm € {0,133y € {0,1}™%) such that x #y A f(z) = f(y)}’ < eep(k) -2

Let (L,,Cx) be a eng-hard promise problem over efficiently sampleable dis-
tributions (D, , D¢, ) where De, : {0,1}"®) — C, (for certain polynomial h in
k) has ecp-collision probability. Let H := {H, : K., x M, — {0, 1}h(“)},€eN be
a €meter-multi-target extended target-collision-resistant function family that is
ereg-regular. Let IT := (Crs, Prv, Vrf, CrsSim, PrvSim) be a simulation sound non-
interactive zero-knowledge proof system. Figure 2 defines the signature scheme
X .= (Setup, Sign, Vrf). For correctness we only show the bound here.

Theorem 6.2 (Correctness). The signature scheme X defined above is correct.
Concretely, for every message m € M, and for every sufficiently large k,

Pr[ (pk, sk) < X.Setup(1”) ; o « X.Sign(pk, sk,m) : 1 = X Vrf(pk,m,o) ] >

1 — e (K) — €co(K) — €nd(K) — 2€reg(K) -
Proof. For every m € M,,
Pr [ (pk, sk) « X.Setup(17) ; o + X.Sign(pk, sk,m) : 1 = L.Vrf(pk,m, o) |
is equal to

K + K.{o,T) < II.CrsSim(1")

P
"y = Do, (Ho(K,m));r < ITPwSim(, y, 7)

: 1= I.Vrf(o,y, )
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which, by Lemma 6.1 (and for every sufficiently large x) is greater or equal than

y < De, (o, 7)  I1.CrsSim(1")
r

P
7 4 I.PrSim(o,y,T)

1= H.Vrf(o,y,ﬁ) - 2€reg('y’3)

which, by Lemma 2.2, is greater than
1 — €xk(K) = €co(k) — €nd(K) — 2€reg(K) - u

Theorem 6.3 (Unforgeability). The signature scheme X defined above is
existentially unforgeable against adaptive chosen message attacks. In particular,
for every p.p.t. adversary A against the EUF-CMA experiment of X that makes
at most q queries to its signing oracle, there exists a p.p.t. algorithm B such that

AdVEELfE\_CMA(“) < AdVlIJYS,IS’j‘(“) + €meter () + qup(“) + 2q€reg<“)

and Time(B) ~ Time(A) + poly(k) where poly(k) is independent of Time(A).
(Note that factor ¢ multiplies to statistical errors only.)

Proof. For every adversary A against the signature scheme, we build an attacker
B against the simulation soundness of the underlying IT primitive. B is given
the security parameter x and a common reference string ¢ and oracle access
to II.PrvSim(o, -, 7), where 7 is the trapdoor associated to o. B wins the game
if it can produce a valid proof on a no-instance that was not queried to its
oracle. B sends the public key pk = (0,H,,Dc,.) to A. A is allowed to ask
for valid signatures of messages of its choice. On input m;, B produces a valid
signature by sampling K; < K, computing y; = De¢, (H.(K;, m;)) and calling
its oracle, getting m; = I1.PrvSim(o,y;, 7). Now, B returns o; = (m;, K;) as to
A as a signature for m;. Eventually, A will come up with a pair (/m,5) such
that 7 # m; for every i. At this moment, B parses 6 as (#, K ) and computes
§ = De, (H(K,m)) and returns (7, #) as the solution for its challenge.

Note that B succeeds in simulating the EUF-CMA experiment correctly. In
fact, A cannot determine whether it is interacting with B or the genuine signer.
Observe that some signing queries can result into invalid signatures (although
only with negligible probability), i.e., for some indices i, it is possible to have
I1.Vrf(o,y;, m;) = 0. However, this is not a problem of the simulation, since in
the real EUF-CMA experiment this event occurs with the same probability. We
define the bad event, Bad = ‘There exists i such that y; = §j’. Note that, if Bad
does not occur, then B wins if so does A. More precisely,

Pr[B wins] > Pr[A wins | -Bad] > Pr[A wins| — Pr[Bad]

or equivalently, Pr[A wins] < Pr[B wins]+ Pr[Bad]. We will show an upper bound
for Pr[Bad]. Note that Pr[Bad] < max {Pr[En]}, where for a fixed M, the
p.p.t.

probability of event Fj; is defined as

(o,7) = II.CrsSim(1%) _3(mi, Ky, m;) € Q such that

P ; . : )
Y|, (R, 7))« M0 (0, Hy, De,) * De, (Ho(Kiymi)) = De, (He(K, 1))
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where Sign(-) is an oracle that, on input m;, samples K; < K,, computes
yi = De, (H(K;,m;)) and m; = I1.PrvSim(o,y;, 7), adds (my, Ky, m;) to Q and

outputs (7;, K;). For every p.p.t. M, there exists a p.p.t. M such that the above
probability is upper-bounded by the following (M is given the trapdoor 7):

Pr (o,7) < II.CrsSim(1") ~3(mi, Ki) € Q such that
(1, K) = M"Y (0,7, H,De,) "~ De,. (He(Ki,mi)) = D, (Ha (K, 1))

where Key(+) is an oracle that, on input m;, samples K; «+ K, adds (m;, K;)

to @ and returns K;. Note that the sampling of the (o,7) using II.CrsSim

requires polynomial time, and therefore, that operation can be included inside

the machine M. Then, we have that max {Pr[Ey]} < max_ {Pr[EM]} where
p.p-t. M p.p.t. M

the probability of event F i for a fixed algorithm M is defined as

N D —Key(-) /1K 3(m, K;) € Q such that
Pr| (m, K) « M*¥0O(1 yHe,De,.) : De. (He(Ks.my)) = Do, (Ha (K1)

Now, let X, be the set of inputs to D¢, that share an image, i.e.,

X, = {x € {0,1}"" : 3y € {0,1}"*%) such that = # y A D¢, (x) = De,(y)} .

Since D¢, has ep-collision probability, we have |X,| < € - 2h(%)  Now, the
probability of Bad is upper-bounded by

max_ {Pr [(m,f() — MKSY(')(lK,HmDCN) :

3(m,, K;) € Q such that :| }
p.p.t. M

Hn(Kiymi) :Hﬂ(k,ﬁ'b)
) I(ms, K;) € Q such that :| }

max {Pr {L — MKGY(‘)(IH,HH,DCN) :
p.p.t. M HN(Ki7mi) € Xx

The €meter-multi-target extended target-collision-resistance of function H, guar-

antees that the first summand of the above expression is upper-bounded by
€meter (k). On the other hand, if machine M performs ¢ queries to its oracle Key(+),
the second summand is upper-bounded by ¢(2€.eg(k) + €cp(k)), because, thanks
to the erg-regularity of H,, for every m € M, (and for sufficiently large ),

Pr[K < Kx: He(K,m) € Xe] < Pr[2{0,1}"" 12 € Xu] + 2¢req(r)

upper-bounded by e, (k) +2€reg (), SO We apply the union bound over all g queries.
For every adversary A against the signature scheme, the described B is an
adversary against the simulation soundness of the underlying NIZK such that

AdvggITACMA(n) < Advg,sg(/i) + €meter (K) + ecp(K) + 2¢€reg (k) -
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7 Concluding Remarks and Open Questions

On the limitations of our impossibility result. The restriction on the class of
black-box constructions that we consider seems inherent to our proof strategy
as our adversary does not make a guess on the internal queries visible only to
the challenger. Like the unconditional separation about succinct non-interactive
arguments presented in [21], the meta-reduction paradigm [8,13] may help for
eliminating our restriction. Our proof of separation essentially relies on the model
of simulation soundness, where the challenger accepts no-instances. Hence, it is
of a theoretical interest to study whether true-simulation soundness [15] can be
separated or not.

Missing relations. We leave as an open problem the study of the relations that have
not been considered in Figure 1 (the missing arrows). In particular, disjunctive
language extensions could have a tremendous impact in many applications and
we believe that developing methods (or arguing their inexistence) for upgrading
OR-NIZKs to any kind of USS-NIZK in a black-box manner is an appealing
target for future work.
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A Proofs of the Main Body

A.1 Proofs of Section 2

Proof of Lemma 2.1. Let R be a relation associated to L. For every &, fix (x,w)
that satisfies R(z,w) = 1, and consider a p.p.t. algorithm A := (A;, A2) where
A takes o as input and outputs (z, ¢, w, st) where st = o, and Ay takes st
and 7 as input and outputs 1 if and only if 1 # Vrf(o,z,¢, 7). Since A is a
p.p-t. algorithm and IT is zero-knowledge, for every sufficiently large «, we have

Pr (o,7) < CrsSim(17) ; (z, £, w, st). +— Ai(o); L1 Ao(st, )
w < PrSim(o, z, ¢, T)
_Pr |: o< Crs(17); (z,4,w, st) < Ai(o); < enlr) .

: 1+ As(st,
7w+ Prv(o, z, 0, w) 2(s W)]

Now, correctness of IT implies that

Prio < Crs(17); (z, £, w, st) <A1 (0); 7 < Prv(o,x, ¢, w) : 1+ Az(st, )]
= Prlo + Crs(1%);7m + Prv(o,z, L, w) : 1 # Vrf(o,2,4,7)] <€co(K) -

We thus have

Pr[(o,7) < CrsSim(17) : 1 # Vrf(o,z,PrvSim(o,z,£,7)) |

|: (o,7) < CrsSim(1%) ;  (z,¢,w, st) < Ai(0)

=Pr
7 < PrvSim(o, z, ¢, )

s 1+ Ag(st,w)}

o« Crs(1%); (z,4,w, st) < Ai(o)

< €& +P
cu(x) f [ 7w <+ Prv(o,z, 4, w)

R Az(st,w)}
which is lower than e, (k) + €co(k) for every x € L. ]

Proof of Lemma 2.2. For an arbitrary label £ € {0,1}P°%:(%)  consider the fol-
lowing algorithm that on input z € L£,; UC, outputs a bit:

A(z) : (0,7) + CrsSim(1%); 7 < PrvSim(o,z,4,7); returnVrf(o,z, £, m) .

We may think of A as a distinguisher for the hardness of the language L, (with
respect to C,). Since A is a p.p.t. algorithm, the hardness of £, ensures that
Pr(z+D,, : 1+ A(z)] — Pr[z+Dg, : 1+ A(x)] < eng(x). Therefore,
Pr[(o,7) < CrsSim(17); z + D¢, : 1= Vrf(o,z,PnSim(o,z,¢,7)) ]
=Pr{z+ D, : 1+ A(z)]
>Pr(z<« Dz, : 1+ A(z)] — ena(k)
= (Zweﬁm Pr[l+ A(x)]-Pr{y<«Dg, : y== ]) —end(k) (by Lemma 2.1)
> (1= ) = (W) (L ep, Priy < De : y=a]) = ena(k)
=1- Ezk(li) — Eco(li) — Ehd(li) . ]
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A.2 Proofs of Section 3

Proof of Lemma 3.1. The L° satisfies:

o Hard Promise Problem: Observe that L, and C, are disjoint because H, is

injective and their witnesses are disjoint due to the unique 1-bit prefix. Over
the choice of H,, the instances of £, UC, distribute uniformly over {0,1}2"
therefore, they are perfectly indistinguishable. Note that it is true even in
the presence of other functions in O.

Correctness and Simulation Correctness: L° as a NIZK is perfectly cor-
rect because, for any o generated as o < O(Crs,7) and any yes-instance
x < O(SmplYes, w), it holds that L ¢ H.(7), z = H,(1||w) and (o||z||¢) =
H, ' (Hpy(ol|z]|¢)). Thus, the verification always outputs 1. It is perfectly
simulation correct for both yes and no-instances because, for any crs-trapdoor
pair satisfying ¢ = H.(7) and any instance z satisfying | # H_'(z),
LO.PrvSim computes a proof 7 + H,(c||z||¢) that always passes the ver-
ification (o||x||¢) = H;l(w).

Adaptive Zero-knowledge: Observe that L°.Crs and L°.CrsSim differ only
in their interface and actually compute the same O(Crs, 1%). Additionally,
observe that the proof created by O(Prv, o, x, £, w) is equal to the one created
by O(PrvSim, o, z,¢,7) for any ¢ and z that are sampled correctly by O.Crs
and O.SmplYes. Therefore, the system is same-string perfect adaptive zero-
knowledge.

Simulation Soundness: Let A be an adversary that is given access to O and
wins the simulation soundness game with a challenger. Namely, A° is given
o generated by (o,7) + L°(CrsSim, 1%) for certain 7 chosen uniformly at
random from {0,1}". A is then allowed to send arbitrary instances z to
the challenger and receives the corresponding simulated proofs 7 generated
by 7 < LO(PrvSim, 0, z,¢,7). After making such queries up to ¢; times, A
eventually outputs (z*,¢*,7*) that satisfies x = O(SmplNo,w) for some
w € {0,1}* and 1 < O(Vrf, o, z*, ¢*,7*), and z* has never been queried to
the challenger. Let ¢ be the number of queries from A4 to O. Since (z*, £*, 7*)
passes the verification, it satisfies 7* = H,,(o||z*||¢*). Observe that z* has
never appeared in the conversations with the challenger. Hence, H, has
never been evaluated on (o||z*||¢*) by the challenger. The same is true with
respect to the process of generating o. Thus, Hy(o||z*||¢*) could have been
evaluated directly by interacting with O.Prv or O.PrvSim. However, calling
O.Prv is not useful as it returns L for any no-instance z*. On the other hand,
calling O.PrvSim on ¢ requires the correct trapdoor 7, which can only be
identified by making queries to O.Crs or O.PrvSim on a random candidate
7. (Making a query O(PrvSim, o, x, ¢, 7') with a valid instance x results in a
valid proof if and only if 7" is the correct one.) Now, after ¢, queries to O,
such a guess succeeds with, at most, probability g»/2%. If Hy(o||z*||€*) has
never been evaluated, the final verification will be successful only if H, ! (7*)
has already been evaluated. Since H, lis evaluated only inside O.Vrf, the
adversary A (who must make queries to O.Vrf on fresh random candidates
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of m*) can trigger the event (o|lz*||(*) = H,'(n*) with probability lower
than q2/(25% — q1 — (g2 — 1)) < 2q2/25% for q1,q2 < 2°%. Therefore, the
probability that 4 wins the simulation soundness game is upper-bounded by

q2/2% + 2q2/2%%, which is negligible in k. -
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