
Multiple-Differential Mechanism for

Collision-Optimized Divide-and-Conquer Attacks

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang

Hardware & Embedded Systems Lab, School of Computer Science and Engineering,
Nanyang Technological University, Singapore.

CHOu@ntu.edu.sg,ASSKLam@ntu.edu.sg,gyjiang@ntu.edu.sg

Abstract. Several combined attacks have shown promising results in recovering cryp-
tographic keys by introducing collision information into divide-and-conquer attacks
to transform a part of the best key candidates within given thresholds into a much
smaller collision space. However, these Collision-Optimized Divide-and-Conquer At-
tacks (CODCAs) uniformly demarcate the thresholds for all sub-keys, which is unrea-
sonable. Moreover, the inadequate exploitation of collision information and backward
fault tolerance mechanisms of CODCAs also lead to low attack efficiency. Finally,
existing CODCAs mainly focus on improving collision detection algorithms but lack
theoretical basis. We exploit Correlation-Enhanced Collision Attack (CECA) to opti-
mize Template Attack (TA). To overcome the above-mentioned problems, we first in-
troduce guessing theory into TA to enable the quick estimation of success probability
and the corresponding complexity of key recovery. Next, a novel Multiple-Differential
mechanism for CODCAs (MD-CODCA) is proposed. The first two differential mech-
anisms construct collision chains satisfying the given number of collisions from several
sub-keys with the fewest candidates under a fixed probability provided by guessing
theory, then exploit them to vote for the remaining sub-keys. This guarantees that
the number of remaining chains is minimal, and makes MD-CODCA suitable for very
high thresholds. Our third differential mechanism simply divides the key into sev-
eral large non-overlapping “blocks” to further exploit intra-block collisions from the
remaining candidates and properly ignore the inter-block collisions, thus facilitating
the latter key enumeration. The experimental results show that MD-CODCA signif-
icantly reduces the candidate space and lowers the complexity of collision detection,
without considerably reducing the success probability of attacks.

Keywords: MD-CODCA, CODCA, guessing theory, candidate space, key enumera-
tion, collision attack, side-channel attack

1 Introduction

Implementations of cryptographic algorithms on devices produce unintentional leakages
such as power consumption [15], electromagnetic radiation [1] and cache patterns [24],
which pose security vulnerabilities to Side-Channel Attacks (SCAs). SCAs have been
demonstrated successfully on various chips and devices, such as PDAs [10], desktop com-
puters [11] and even cloud servers [14]. Existing SCAs can be divided into two general
approaches: divide-and-conquer and analytical. These approaches can exploit two types
of information: direct leakages and collision leakages. Analytical attacks such as collision
attack [17], recover the key through solving a system of equations and exploit more leakage
information than divide-and-conquer attacks, but are harder to launch.

Existing divide-and-conquer attacks, such as Correlation Power Analysis (CPA) [5]
and Template Attack (TA) [7], divide the huge key candidate space into several small

mailto:CHOu@ntu.edu.sg, ASSKLam@ntu.edu.sg, gyjiang@ntu.edu.sg

2 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

blocks (e.g. sub-keys) and conquer them one by one. They are often combined with key
enumeration [16,21] to avoid unnecessary guesses, but this is only feasible if the keys fall
within the enumerable space. In practice, keys are often located in spaces that cannot
be enumerated directly. To enhance the key recovery, several attacks introduced collision
information into the divide-and-conquer attacks to transform a part of best candidates
into a significantly smaller collision space. We call these attacks, Collision-Optimized
Divide-and-Conquer Attacks (CODCAs). However, existing CODCAs still encounter dif-
ficulty in candidate space transformation due to inefficient collision utilization, backward
fault tolerance mechanisms and time-consuming collision detection algorithms. Our work
overcomes this problem by proposing a highly-efficient Multiple-Differential mechanism
for CODCAs (MD-CODCA) and introducing guessing theory to enhance its key recovery
and evaluations.

1.1 Related Works

Existing CODCAs introduced information from a collision attack into a divide-and-conquer
attack to exploit more leakage information and transform a part of best candidates into a
significantly smaller collision space. We consider TA and Correlation-Enhanced Collision
Attack (CECA) [17] in this paper. CODCAs rank the candidates of each sub-key and
collision value (e.g. XOR value exploited in [17]) between two sub-keys in two attacks
from the most possible one to the least possible one and set thresholds for them. This
means, CODCAs only consider the best candidates within thresholds, and try to recover
the key from them. A collision happens if a pair of candidates of two sub-keys and their
corresponding collision value are within their corresponding thresholds simultaneously. A
collision chain includes one or several pairs of collisions. CODCAs only record desirable
chains that satisfy the given collision conditions. They eliminate the independence be-
tween sub-keys, and leave us with a collision space composed of collision chains. This new
space is much smaller than the one within threshold before CODCAs, thus significantly
lowering the complexity of future key recovery.

The first CODCA called Test of Chain (TC) was proposed in [3]. TC attempts to find
a long chain from the first sub-key to the last sub-key, which exploits 15 pairs of collisions
when attacking AES-128. Another CODCA named Fault-Tolerant Chain (FTC) was
proposed in [23], which only considers the most possible candidate of each collision value.
It aims to find 15 pairs of collisions between the first sub-key and the other 15 sub-keys,
and exhausts the first sub-key. Due to the insufficient usage of collision information, TC
and FTC need to enumerate a large number of chains. Since the remaining sub-keys are
only related to the first sub-key and are independent of each other, FTC performs fast
collision detection and results in very large candidate space to enumerate. The chains
of TC include all sub-keys, which facilitates the key verification. However, its space
transformation is very time-consuming. Therefore, TC is feasible only in situations where
thresholds of both two attacks are small.

Multiple-Differential Collision Attack (MDCA) in [2] exploits multiple differential
mechanisms to launch voting when measuring the similarity of two power traces (e.g.,
binary voting and ternary voting based on Euclidean distance between them). MDCA is
a single attack, not a combined collision attack like CODCAs. Information from CECA
was also introduced into CPA in [19], and an attack named Group Verification based
Multiple-Differential Collision Attack (GV-MDCA) was given. It votes a sub-key using
the collisions between its candidates and the candidates of the remaining 15 sub-keys
(i.e., the groups). The candidates are then ranked in descending order according to their
number of votes (i.e. collisions). The differential mechanism here discards candidates that
do not satisfy the required number of collisions, rather than those where the similarity is
greater than a given threshold as in [2]. GV-MDCA enables more sub-keys to be ranked
first, thus improving the attack efficiency. However, GV-MDCA does not alter the rank

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 3

of the key due to the unchanged probabilities or scores of the candidates. Thus, MDCA
and GV-MDCA have a different goal from our work.

TC and FTC only exploit 15 pairs of collisions, and the majority of 120 pairs of colli-
sions between 16 sub-keys of AES-128 algorithm are wasted. The insufficient utilization
of collision information makes it time-consuming for them to conquer the case wherein
sub-keys or collision values are deeply ranked. To optimize this, Group Collision Attack
(GCA) [18] was further proposed. The 16 sub-keys were divided into several big groups.
A part of sub-keys of each group overlap with its former and latter groups. Intra-group
collisions are used to perform the first round of chain construction within groups, and
inter-group collisions are used to perform another round of chain construction among
groups (see Section 2.4 for details). GCA exploits twice as many collisions as TC and
FTC. Thus, GCA extends their conquerable space. However, GCA still encounters great
difficulty when dealing with larger space (see Section 7 for details). Moreover, GCA has
no fault tolerance strategy, and is prone to mistakenly discarding sub-keys under such
strict collision conditions. This may lead to the failure in key recovery. Finally, FTC
and GCA in [18, 23] set a unified threshold for all sub-keys. To ensure that all sub-keys
are within the threshold, it shouldn’t be smaller than the one with the deepest position.
Obviously, a large number of additional undesirable candidates need to be considered,
which increases the complexity of key recovery.

1.2 Our Contributions

This paper aims to exploit information from CECA to optimize the key recovery of TA.
The main contributions are as follows:

- Firstly, we introduce guessing theory into TA to optimize its threshold setting ac-
cording to the available computing power. This also aids in rapid estimation of the
success probability and the corresponding considered guessing space.

- Secondly, a novel Multiple-Differential mechanism for CODCAs (MD-CODCA) is
proposed. The first differential mechanism considers the number of candidates of
each sub-key in TA under a fixed probability provided by guessing theory, and
extracts several sub-keys with the fewest candidates to construct chains, thus mini-
mizing the number of candidates. The second differential mechanism exploits these
chains to vote for the candidates of the remaining sub-keys. These guarantee that
the complexity of voting is almost the optimal and the remaining space is almost
the minimum.

- Finally, we discover unique advantages of performing key enumeration after COD-
CAs. Therefore, we construct another simple yet efficient differential mechanism on
the remaining candidates. Specifically, we divide the 16 sub-keys into several big
non-overlapping blocks, and further exploit collisions from the remaining candidates
within each of them. The collision information between blocks, which may have al-
ready been used, is properly ignored to facilitate the enumeration. Compared to the
existing CODCAs, the flexible differential mechanisms of our MD-CODCA make it
suitable for very large thresholds, and allow for a notable performance gap between
two combined attacks.

A good CODCA should reduce candidate space as much as possible without signif-
icantly reducing the probability of successful key recovery. The proposed MD-CODCA
well achieves this goal. Its success rate is close to the theoretical success probability of
TA provided by guessing theory, and is significantly higher than those of the existing
CODCAs.

4 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

1.3 Organization

The rest of the paper is organized as follows. The experimental setups, principles of TA
and collision attack, and the existing CODCAs are introduced in Section 2. The attack
flow of our MD-CODCA is given in Section 3. Guessing theory in TA including guessing
model, partial guessing metrics, success probability and complexity estimation, are given
in Section 4. The three differential mechanisms of our MD-CODCA are introduced in
detail in Sections 5 and 6. Experiments are performed on an AT89S52 micro-controller
in Section 7 to demonstrate its practicability and efficiency. Finally, Section 8 concludes
this paper.

2 Preliminaries

2.1 Experimental Setups

Our experiments are performed on the power traces leaked from an AT89S52 micro-
controller. The operating frequency of the AT89S52 system is 12 MHz. We use assembly
language to implement the AES-128 algorithm, and sample the leakage of its first round
execution. The sampling rate of our Picoscope 3000 is set to 125 MS/s. We finally ac-
quire 51200 power traces and perform CPA to select a Point-of-interest (POI) [9] with the
highest correlation coefficient for each S-box to perform the subsequent experiments.

2.2 Template Attack

Template Attack (TA) [7] is one of the most powerful side-channel attacks. It can be
divided into two stages: template construction and classification. For template construc-
tion, let xκ

j,i (1 ≤ i ≤ 256; 1 ≤ j ≤ 16; 1 ≤ κ ≤ N) denote the κ-th encryption of the i-th
value of the j-th plaintext byte, and tκ

j,i denote the corresponding POIs of the interme-
diate value (e.g. the S-box output in the first round of AES-128). TA profiles template
(mj,i,Cj,i) satisfying:

mj,i =
1

N

N
∑

κ=1

tκ
j,i (1)

and

Cj,i =
1

N

N
∑

κ=1

(

tκ
j,i −mj,i

) (

tκ
j,i −mj,i

)T

. (2)

Here mj,i denotes the mean power consumption vector, Cj,i denotes the noise covariance
matrix and symbol “T" denotes matrix transposition.

For classification, let X =
{

xκ
j

∣

∣1 ≤ j ≤ 16; 1 ≤ κ ≤ n
}

denote the encrypted n plain-

texts, K =
{

kj

∣

∣j = 1, . . . , 16
}

denote the key, and T =
{

tκ
j

∣

∣1 ≤ j ≤ 16; 1 ≤ κ ≤ n
}

denote
the corresponding POIs. The probability of tκ

j corresponding to template (mj,i,Cj,i) is:

p
(

tκ
j

∣

∣mj,i,Cj,i

)

=
e−

(mj,i−t
κ
j)·(Cj,i)−1

·(mj,i−t
κ
j)T

2

√

(2 · π)|mj,i| det (Cj,i)
, (3)

where |mj,i| represents the size of mj,i, i.e., the number of POIs used to profile each
template. The probability of a candidate to be the correct one in the improved TA given
in [25], is the product of the probabilities that all n power traces used for attacks are
classified into their corresponding templates according to it. If they are too many power
traces in attacks and the probability products are too small to be expressed, we can exploit
logarithmic function to transform the multiplication into addition.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 5

2.3 Collision Attacks

AES-128 performs 16 parallel S-box operations in its first round. A linear collision happens
if two S-boxes generate the same intermediate value:

Sbox (xj1
⊕ kj1

) = Sbox (xj2
⊕ kj2

) (4)

as shown in Fig. 1. Here ‘Sbox’ denotes the S-box operation. Eq. 4 means that these two
S-boxes accept the same input: xj1

⊕ kj1
= xj2

⊕ kj2
. In this case, this pair of collision

can determine the XOR value of two sub-keys:

δj1,j2
= kj1

⊕ kj2
= xj1

⊕ xj2
. (5)

This collision can also occur between two different plaintexts. For simplicity, we use
kj1
↔ kj2

to represent this pair of collision.

S-box

1
jx

1
jI

1
jk

2
jx

2
jk

2
jI

S-box

Figure 1: A pair of collision between two S-boxes in AES-128.

A specific implementation of Correlation-Enhanced Collision Attack (CECA) was given
in Algorithm 2 in [23]. Taking the collision between the first and second S-boxes of AES-
128 as an example, CECA divides their power traces into 256 classes according to their
plaintext byte values, and calculates the mean power consumption vector of each class. To
distinguish them from the templates of TA in Eq. 1, we use t̄j,i (1 ≤ j ≤ 16; 0 ≤ i ≤ 255)
to represent the mean power consumption of plaintext byte value i of the j-th sub-key.
The classic CECA then computes the correlation coefficient:

ρ
{(

t̄1,x1
, t̄2,x1⊕δ1,2

) ∣

∣x1 = 0, 1, 2, · · · , 255
}

(6)

under a guessing δ1,2 (see Eq. 5). It is noteworthy that CECA’s performance in [17] is
usually far inferior to the optimized divide-and-conquer attack TA. Therefore, we need to
consider more candidates for each δ than sub-keys. Here we exploit the templates profiled
in TA and 4th-order Minkowski distance to enhance CECA as:

4

√

√

√

√

n
∑

κ=1

(

tκ
2 −m1,xκ

1
⊕δ1,2

)4
, (7)

since higher-order distance means higher performance, but the performance improved by
Minkowski distance above the 4th order is very small. If we get ν XOR values:

δj1,j2
= kj1

⊕ kj2
,

δj3,j4
= kj3

⊕ kj4
,

...
δj2ν−1,j2ν

= kj2ν−1
⊕ kj2ν

,

(8)

6 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

in CECA, then we obtain a collision system as defined in [23]. Due to insufficient ex-
ploitation of collision information, a collision system often includes several chains, where
each contains several non-overlapping sub-keys. Therefore, to recover the key, we should
exhaust a sub-key for each chain.

2.4 Collision-Optimized Divide-and-Conquer Attacks

Traditional divide-and-conquer attacks conquer the sub-keys one at a time. Collision-
Optimized Divide-and-Conquer Attacks (CODCAs) introduce collision information into
them and eliminate the independency of sub-keys. Specifically, they rank the candidates
of each sub-key and each δ from the best one to the worst one separately, and exploit
the candidates of δ-s within threshold to transform a part of the best candidates in the
divide-and-conquer attack into a much smaller collision space, and try to recover the key
from it. Let τk = 10 and τd = 10 denote two thresholds for the improved TA and CECA
in Sections 2.2 and 2.3 respectively, which means only the best 10 candidates of each sub-
key and collision value δj1,j2

are considered. Experimental results performed on randomly
extracted 240 power traces are shown in Tables 1 and 2.

Test of Chain (TC), the first CODCA given in [3], attempts to find a long chain from
the first sub-key to the 16-th sub-key including 15 pairs of collisions: k1 ↔ k2, k2 ↔ k3,
. . ., k14 ↔ k15 and k15 ↔ k16. The collision-pairs among the first three sub-keys built
from Tables 1 and 2 are given in Table 3. TC exploits collisions between k1 and k2, and k2

and k3, and its results are shown in Table 4. To recover the sub-keys 212, 153 and 7, we
only need to consider up to 12 chains, which demonstrates its benefits. The chain space
will be further reduced compared to the original space of TA within τk when considering
more sub-keys.

Table 2: The ranked candidates of δ-s
within threshold τd in the improved CE-
CA.

k1 k2 k3

75 204 17
72 182 52

212 14 105
169 150 44
62 82 100
35 58 222

167 41 142
191 236 169
130 153 77
128 8 128

δ1,2 δ1,3 δ2,3

77 84 136
43 141 181
71 197 173

116 178 192
72 176 251

136 10 253
193 92 175
49 182 243

235 248 134
56 189 20

Table 4: Chains of TC include k1 ↔ k2

and k2 ↔ k3.

k1 ↔ k2 k1 ↔ k3 k2 ↔ k3

212 236 75 142 182 77
212 153 212 17 82 169
62 182 212 105 236 17
35 8 212 44 236 44

167 150 212 100 236 100
128 8 212 222 153 17

212 128 153 52
62 52 153 44
62 142 153 100

167 17 8 142
130 52 8 128
130 222

k1 k2 k3

212 236 17
212 236 44
212 236 100
212 153 17

212 153 52
212 153 44
212 153 100
62 182 169
35 8 142
35 8 128
128 8 142
128 8 128

Fault Tolerant Chain (FTC), the second practical CODCA proposed in [23], tries
to find the collisions between the first sub-key and the other 15 sub-keys. The remaining

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 7

15 chains of FTC are shown in Table 5. Unlike TC, FTC has only the collision relationship
between the first sub-key and the remaining 15 sub-keys. In other words, the remaining
15 sub-keys are still independent of each other. In this case, we still need to enumerate
them using traditional key enumeration techniques under a certain candidate of k1.

Group Collision Attack (GCA), another CODCA given in [18], continuously veri-
fies long chains from short chains and greatly alleviates the growth of guessing space. It
divides the 16 sub-keys of AES-128 into 8 big “groups”, of which each contains 4 sub-keys.
For intra-group collisions, GCA detects k1 ↔ k3 after detecting k1 ↔ k2 and k2 ↔ k3. It
then detects k2 ∼ k4 and constructs the first group k1 ↔ k4, other groups are constructed
in the same way. For inter-group collisions, the first two candidates of each group are in the
former group and the last two are in the latter group. Take the 3 groups k1 ∼ k4, k3 ∼ k6

and k4 ∼ k8 output by an experiment in Fig. 2 as an example, 17 ↔ 242 and 192 ↔ 24
in 17↔ 242↔ 192↔ 24 are also in 212↔ 153↔ 17↔ 242 and 192↔ 24↔ 229↔ 126.
In this way, we obtain a longer chain 212↔ 153↔ 17↔ 242↔ 192↔ 24↔ 229↔ 126
including candidates of 8 sub-keys, although the sub-key k4 is 9 and this chain is incorrect.
Finally, a total of 32 pairs of collisions are exploited. The remaining candidates of GCA
performed on the candidates of the improved TA and CECA given in Tables 1 and 2 are
shown in Table 6, which are significantly fewer than TC and FTC.

212 153 17 242

17 242 192 24

192 24 229 126

Correct: 9

x

Figure 2: Key verification in GCA.

Table 6: Chains of GCA include k1 ↔
k2, k1 ↔ k3 and k2 ↔ k3.

k1 k2 k3

212 236 17
212 236 105
212 236 44
212 236 100
212 236 222
212 236 128
212 153 17

212 153 105
212 153 44
212 153 100
212 153 222
212 153 128
62 182 52
62 182 142
167 150 17

k1 k2 k3

212 236 17
212 236 44
212 236 100
212 153 17

212 153 44
212 153 100

3 Multiple-Differential Mechanism for CODCAs

Our novel Multiple-Differential mechanism for CODCAs (MD-CODCA) and its attack
flow is provided in Algorithm 1. We encrypt plaintexts set X, and acquire the corre-
sponding power trace set T. Then, we perform the improved CECA in Section 2.3 on
the extracted POIs and acquire the candidates ranks φ =

{

φj

∣

∣j = 1, . . . , 120
}

within

8 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

threshold τd (Step 1). Here φi
j denotes the i-th best candidate of δj . We then per-

form the improved TA in Section 2.2 in Step 2 exploiting the well profiled templates
{(

mi
j,C

i
j

) ∣

∣1 ≤ i ≤ 256; 1 ≤ j ≤ 16
}

, and acquire the ranked candidates ξ =
{

ξj

∣

∣j = 1, . . . , 16
}

for sub-keys under a success probability α (see Section 4). Here ξi
j denotes the i-th best

candidate of the j-th sub-key kj .

Algorithm 1: Multiple Differential Mechanism for CODCAs (MD-CODCA).

1 φ← ImprovedCECA
(

X,T,
(

mi
j ,C

i
j

)

, τd

)

;

2 ξ ← ImprovedTA
(

X,T,
(

mi
j,C

i
j

)

, α
)

;

3

(

ξ
′

1,...,ns
, ξ

′

ns+1,...,16

)

← SubkeySelection (ξ, ns);

4 Ω← ChainConstruction
(

ξ
′

1,...,ns
, φ, τσ

)

;

5 ξ
′

ns+1,...,16 ← RemainingSubkeyVoting
(

Ω, ξ
′

, τ
′

σ

)

;

6 B1,...,8 ← BlockDivision
(

ξ
′

, φ
)

;

7 r← KeyEnumeration (B1,...,8, k1,...,16);

We then perform the first two differential mechanisms of our MD-CODCA. Specifically,
we rank the number of candidates of 16 sub-keys in ξ in ascending order, and extract the
first ns sub-keys with the fewest candidates within threshold τk under a fixed probability α
(see Step 3). Next, we perform collision detection on these ns extracted sub-keys, and save
the chains with the number of collisions more than the threshold τσ to Ω, thus achieving
the first differential mechanism (Step 4). We further use these chains to vote for the
candidates of the remaining 16− ns sub-keys exploiting a new threshold τ

′

σ and complete
the second differential mechanism (Step 5). More details will be introduced in Sections 5
and 6.

It is worth noting that the collision detection would be very time-consuming in the
existing CODCAs if both τd and τk (provided by α) are very large. However, the first
two differential mechanisms of our MD-CODCA are very flexible and very suitable for
the situations where both τd and τk are very large. Therefore, we can build the third
differential mechanism of our MD-CODCA by simply dividing 16 sub-keys into 8 non-
overlapping blocks k1 ↔ k2, k3 ↔ k4, . . ., k15 ↔ k16 like GCA, and computing the
probability product of each pair of collision within each block (Step 6). Finally, key
enumeration is performed on them to recover the key (Step 7).

4 Guessing Theory in TA

4.1 Guessing Model

We profile template for each intermediate value using 100 power traces, and randomly
extract 160 ∼ 360 out of the remaining 25600 power traces in each of 200 repetitions to
perform the improved TA introduced in Section 2.2. We then normalize and rank the
probabilities of each sub-key in descending order to satisfy the guessing model in guessing

theory, and obtain pj =
{

p1
j , p

2
j , . . . , p

|Kj|
j

}

satisfying

|Kj |
∑

i=1

pi
j = 1 (9)

and
p1

j > p2
j > . . . > p

|Kj|
j (10)

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 9

as introduced in [8]. Here |Kj | denotes the number of candidates of kj (e.g. 256 candidates
for each sub-key of AES-128), and pi

j denotes the i-th largest probability corresponding

to its i-th best candidate ξi
j .

Considering the above sub-key kj , guessing theory aims to evaluate the efficiency of
an attacker trying to recover it given access to an oracle for queries “is ξi

j = kj?” In

this case, it needs to evaluate the probability that the sub-key kj = ξi
j . The optimal

brute-force attack proved by guessing theory in [8] is that, the attacker will achieve the
minimum number of candidates that he needs to guess if he guesses the candidates of
a sub-key according to their probabilities from the largest to the smallest. The average
probability of successfully recovering the first sub-key under different number of guesses
is shown in Fig. 3. With the increasing number of power traces n, the success probability
of key recovery by guessing its first several best candidates also increases.

0 5 10 15 20 25 30 35 40 45
The number of candidates

0.4

0.5

0.6

0.7

0.8

0.9

1

Su
cc

es
s

pr
ob

ab
ili

ty

n=160

n=200

n=240

n=280

n=320

n=360

Figure 3: The average probability of successfully recovering the first sub-key under differ-
ent number of guesses and different number of power traces.

4.2 Partial Guessing Metrics

Guessing entropy given in [22] provides the expected position of a sub-key. However, as
stated in [4], entropy metrics failed to model the tendency of real-world attackers to avoid
guessing the most difficult cases. For example, they may choose a small part of candidates
with high probabilities to guess and discard most candidates with low probabilities in TA,
such as only enumerating the first 240 full-key candidates with the greatest probabilities
from the total space 2128 of AES-128 in key enumeration. This often happens when the
computing power is limited.

Suppose that an attacker tries to recover the sub-key kj only from its first a few best
candidates that satisfy the given probability value α ∈ (0, 1):

µα (Kj) = min

i
′

∣

∣

∣

i
′

∑

i=1

pi
j ≥ α

, (11)

which is named as α-work-factor in [20]. We rank all the 16 lists of candidates of AES-128
in ascending order according to their α-work-factor, and evaluate their corresponding
average number of guesses under different number of power traces. Each evaluation is
repeated 200 times. To be consistent with the experiments in Section 7, we set α to 0.996,
and obtain the results shown in Fig. 4. The average number of candidates and probability
distribution of the re-ranked sub-keys vary greatly in TA. Moreover, with the increasing
number of power traces n, the average number of candidates of the 8 sub-keys with the

10 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

largest µα-s decreases significantly. However, the average number of candidates of the 5
sub-keys with the smallest µα-s is less than 25 when n ≥ 200.

0 2 4 6 8 10 12 14 16
The re-ranked sub-keys

0

25

50

75

100

125

150

A
ve

ra
ge

 n
um

be
r

of
 c

an
di

da
te

s

n=160

n=200

n=240

n=280

n=320

n=360

Figure 4: The average number of candidates of 16 re-ranked sub-keys.

4.3 Success Probability and Complexity

Previous works such as FTC and GCA, set a unified threshold for all sub-keys in TA, the
smallest threshold should just be the position of the deepest sub-key. Obviously, most
of the sub-keys are not ranked at such a depth, and thus a large number of additional
undesirable candidates need to be considered. This significantly increases the cost of chain
construction. For MD-CODCA, the number of candidates of different sub-keys under the
same α-work-factor defined in Section 4.2 can be very different, each sub-key can also
have an independent threshold. Success probability and the corresponding candidate space
are two core factors to determine the thresholds. The larger probability also leads to huger
candidate space and makes the key recovery more difficult. The existing CODCAs and
our MD-CODCA can transform the original huge candidate space within thresholds into
a much smaller chain space, thus reducing the complexity and guarantee the key recovery
at a high probability.

The probabilities of 16 sub-keys of AES-128 in TA are independent. Therefore, the
probability of the 16-byte key falling within the threshold α = (α1, α2, . . . , α16) is:

pα ≥

16
∏

j=1

αj . (12)

Standaert et al. defined partial success rate and global success rate in [22], the former is
like the success probability of a sub-key of AES-128, the latter is like the success probability
of the first-round key. However, the success probability here is different from success rate,
since the former represents the theoretical expectation of success and the latter represents
the success in practice. The size of candidate space under given α = (α1, α2, . . . , α16) for
AES-128 algorithm with 16 sub-keys is:

Ψ =

16
∏

j=1

µαj
(Kj) . (13)

It is noteworthy that TC, FTC, GCA and MD-CODCA vote and discard some candidates
for each sub-key when they transform the original candidate space to a collision space.
Therefore, they will reduce the probability of success. The probability of successful key
recovery should be equal to the global success probability of the remaining candidates (i.e.
satisfying Eq. 12).

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 11

5 Differential Mechanisms on Chains Construction for Vot-

ing

Our MD-CODCA extracts several sub-keys with the smallest µα-s provided by guessing
theory introduced in Section 4. Then, fault tolerance on sub-keys in TA and additional
fault tolerance on collision values δ-s in CECA are performed in the first differential
mechanism (see Steps 3 ∼ 4 in Algorithm 1). The former (latter) is to allow a part of
sub-keys (δ-s) beyond threshold τk (τd), thus guaranteeing the remaining sub-keys (δ-s)
can be within threshold with a large probability. Here let ns denote the number of sub-
keys with the fewest candidates extracted as given in Step 3 in Algorithm 1. The collision
chains among them can be established for voting the remaining 16− ns sub-keys.

5.1 Sub-keys Selection

CODCAs introduce collision information from CECA to transform a part of the best
candidates in divide-and-conquer attacks to a collision space. They need to theoretically
provide relaxed filtering conditions to reduce the possibility of mistakenly deleting sub-
keys, and optimization is required in this case. Therefore, we rank the sub-keys according
to their number of candidates µα in guessing theory optimization in our MD-CODCA,
and extract the ns sub-keys with the fewest candidates to vote for the remaining 16− ns

sub-keys. Voting here means that only candidates of a sub-key satisfying the number of
required collisions are considered. The collision chains among them are almost the fewest,
and the number of candidates of the remaining 16− ns sub-keys they can exclude is also
almost the largest.

5.2 Fault Tolerance on Sub-keys in TA

Since the probability distribution of each sub-key of AES-128 in TA is independent, the
probability Pr that X of ns sub-keys fall within the threshold µα follows the Bernoulli
distribution X ∼ B (ns, α):

Pr (X = κ) =

(

ns

κ

)

ακ (1− α)
ns−κ

. (14)

Here κ = 0, 1, 2, . . . , ns and
(

ns

κ

)

=
ns!

κ! (ns − κ)!
. (15)

Actually, our fault tolerance on sub-keys in TA is to improve the success rate in theory. In
this case, if we set ns and α to 6 and 0.996, and a sub-key out of its threshold τk = µα is
allowed, the success probability will reach Pr (X = 6 or 5) = 0.9966 +6 ·

(

0.9965
)

·0.0041 =
0.9998, compared to Pr (X = 6) = 0.9966 = 0.9762. If α = 0.90, Pr (X = 6 or 5) = 0.8857
and Pr (X = 6) = 0.5314, which shows significant improvements in success probability
and illustrates the effectiveness of our fault tolerance mechanism.

5.3 Fault Tolerance on δ-s in CECA

Suppose that the 4 sub-keys k1, k2, k3 and k4 have the fewest candidates in an experiment.
A simplified example of voting on the 5-th sub-key in TA is shown in Fig. 5, wherein the
sub-key k1 beyond τk is tolerated. Benefiting from this, MD-CODCA skips the consider-
ation of collisions between it and other sub-keys including the one to be voted. In other
words, δ-s between it and the other 4 sub-keys k2 ∼ k5 in Fig. 5 are allowed to be beyond
τd. It is noteworthy that not all δ-s beyond τd are related to the fault-tolerant sub-keys,
and the fault tolerance on δ-s correlating to other sub-keys also needs to be considered.

12 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

For example, the collision value in 153 ↔ 26 (i.e. 153 ⊕ 26) beyond τd is additionally
tolerated in Fig. 5.

212

1
x

2
x

3
x

5
x

153 17 26

192

4
x

k
t

Figure 5: Sub-key k1 and its related δ-s beyond τk and τd are tolerated, and the δ between
k2 and k4 is additionally allowed to be beyond τd.

It’s noteworthy that it is not flexible to perform fault tolerance on fixed δ-s. A good
fault tolerance mechanism should allow δ-s between any two sub-keys to be beyond τd.
Therefore, we perform cyclic fault tolerance on δ-s when detecting collisions. Specifically,
let ψ

(

ξi1

j1
, ξi2

j2

)

denote the collision detection function of ξi1

j1
and ξi2

j2
, if the collision estab-

lishes, i.e., ξi1

j1
⊕ ξi2

j2
∈

{

φ1
j1,j2

, · · · , φτd

j1,j2

}

, this function returns 1. Otherwise, it returns 0,

which means ξi1

j1
and ξi2

j2
is not a pair of collision. It satisfies:

ψ
(

ξi1

j1
, ξi2

j2

)

=

{

1, ξi1

j1
⊕ ξi2

j2
∈

{

φ1
j1,j2

, · · · , φτd

j1,j2

}

0, otherwise.
(16)

Here φi
j1,j2

denotes the i-th best candidate of δ between sub-keys kj1
and kj2

as introduced
in Step 1 of Algorithm 1. Not only all possible chains are used for voting but also their
corresponding total number of collisions should be recorded. Suppose that ξi1

1 ↔ ξi2

2 ↔

. . .↔ ξ
ins
ns is a chain, its total number of collisions is:

η
(

ξi1

1 ↔ ξi2

2 ↔ . . .↔ ξ
ins
ns

)

=

ns−1
∑

j1=1

ns
∑

j2=j1+1

ψ
(

ξ
ij1

j1
, ξ

ij2

j2

)

. (17)

5.4 Thresholds Selection

To reduce the repetitive detection of collisions, we firstly detect chains from the ns sub-
keys with the fewest candidates within threshold τk = µα, then directly use them for

voting. There will be a total of

(

ns

2

)

δ-s among these selected sub-keys. Fault tolerance

on sub-keys used for voting in TA is to guarantee that the remaining ones are still within
τk with a high probability, collision values δ-s between them and the remaining sub-keys
(including the one to be voted) should be also allowed, just as we explained in Section 5.3.

If σ1 sub-keys of them are beyond threshold τk, a total of

(

ns

2

)

−

(

ns − σ1

2

)

δ-s associated

with them should be ignored, and the differential threshold should be set to:

τσ1
=

(

ns − σ1

2

)

. (18)

Taking σ1 = 1 and σ1 = 2 under ns = 6 as an example, the threshold τσ1
is only 10 and

6 respectively. In other words, 10 (or 6) δ-s between other 5 (or 4) sub-keys are required
when constructing a chain.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 13

Compared to fault tolerance on sub-keys in TA, if we only consider fault tolerance
on δ-s in CECA and σ2 of them are allowed to be out of threshold τd, the differential
threshold can be set to:

τσ2
=

(

ns

2

)

− σ2. (19)

It is worth noting that δ-s between the selected sub-keys except the σ1 fault-tolerant ones,
may still be out of τd as we have explained before. Therefore, an efficient differential
mechanism should consider both these two cases. If σ1 sub-keys in TA and additional σ2

δ-s in CECA are allowed to be beyond thresholds when constructing chains for voting,
the differential threshold is:

τσ = τσ1,σ2
=

(

ns − σ1

2

)

− σ2. (20)

5.5 Chain Construction Algorithm

In principle, the performance of the collision detection algorithms wherein all collisions
are not repetitively detected would be better. However, it is difficult to achieve this
goal in fault tolerance mechanism. Since any sub-key or δ can exceed their thresholds
and cyclic fault tolerance is needed to allow these situations to occur, thus guaranteeing
a high probability of successful key recovery. We vote the other 10 sub-keys by using
ns = 6 sub-keys with the fewest candidates within the fixed µα, where one sub-key and
an additional δ (σ1 = 1, σ2 = 1) are allowed to be beyond thresholds τk and τd in turn.
We first find collisions between these sub-keys used for voting and obtain all chains with
the number of collisions no less than the threshold τσ (as shown in Algorithm 2).

Algorithm 2: Chain construction performed on the sub-keys selected for voting.

1 for j from 1 to ns do

2 ξ
′′

← FaultTolerance
(

ξ
′

, ξ
′

j

)

;

3 Ω
′

j ← ξ
′′

1 ; η
′

← 0;

4 for r from 1 to ns − 2 do

5 for each chain ξ
′′

1 ↔ · · · ↔ ξ
′′

r in Ω
′

j do

6 for each candidate within µα of ξ
′′

r+1 do

7 record η
′

(

ξ
′′

1 ↔ · · · ↔ ξ
′′

r

)

+
∑

1≤i≤r ψ
(

ξ
′′

i , ξ
′′

r+1

)

to η
′

j+1;

8 record ξ
′′

1 ↔ · · · ↔ ξ
′′

r ↔ ξ
′′

r+1 to Ω
′

j+1;

9 end

10 end

11

(

Ω
′

j+1, η
′

j+1

)

← ChainFilter
(

Ω
′

j+1, η
′

j+1, τσ

)

;

12 update Ω
′

j , η
′

j with Ω
′

j+1, η
′

j+1;

13 end

14 record chains in Ω
′

j to Ω;

15 record the number of collisions in η
′

j to η;

16 end

Let k
′

r (k
′′

r) denote the sub-key with the r-th fewest number of candidates within the
fixed µα before (after) fault tolerance on sub-keys k

′

j , and ξ
′

r (ξ
′′

r) denote the corresponding

candidates (1 ≤ r ≤ ns − 1). We first remove the candidates of ξ
′

j from ξ
′

, and construct
chains on the remaining ns − 1 selected sub-keys (see Step 2 of Algorithm 1). We further
use Ω

′

j to record the chains without sub-key k
′

j , and exploit η
′

j to record their number of

14 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

collisions (Step 3). Here η
′

j satisfies the definition given in Eq. 17, and Ω
′

j is initialized by

ξ
′′

1 . For each sub-key added subsequently, we detect the total number of collisions between
its candidates and each chain in Ω

′

j , and record the possible new chain to Ω
′

j+1 (Steps

7 and 8). We then perform chain filtering after traversing all candidates of ξ
′′

r+1 within
threshold (Steps 11 and 12). Since σ2 = 1 and only a δ beyond τd is allowed except for
the δ-s associated with the fault-tolerant sub-key k

′

j in Step 2, we initialize the differential

threshold τσ =

(

ns − 1
2

)

− 1 = 9 according to Eq. 20. The filtering results are saved to

Ω
′

and η
′

. They are finally saved to the chains set Ω and η used for voting after finishing
fault tolerance on the sub-key k

′

j (Steps 14 ∼ 15).

6 Efficient Voting and Key Recovery Mechanisms

6.1 Voting Mechanism on the Remaining Sub-keys

Based on the outputs Ω and η of Algorithm 2, we then exploit these chains to vote for the
remaining sub-keys. The Voting mechanism exploited on the candidates of a remaining
sub-key k

′

j (ns + 1 ≤ j ≤ 16) is shown in Algorithm 3. For each candidate to be voted,
we simply traverse each chain of Ω, and detect the total number of collisions (Step 4). A
candidate having collisions more than the differential threshold τ

′

σ will pass the candidate
filter and be reserved. Otherwise, we discard it (Step 7). Here τ

′

σ is set to 14 compared
to τσ = 9 in Algorithm 2 of our experiments, since a sub-key and an additional δ have
been tolerated and the remaining 14 δ-s will fall into the threshold τd with a very high
probability. Actually, τ

′

σ is not a fixed threshold, and it can be set to a large value in the
voting (e.g. 12 or 13) to achieve more flexible fault tolerance. It is also noteworthy that
we can save a candidate once the number of collisions between it and the candidates on
a chain is greater than τ

′

σ, rather than traverse all chains. This will significantly improve
the efficiency of voting.

Algorithm 3: Voting mechanism on the remaining sub-keys.

1 for j = ns + 1, . . . , 16 do

2 for each candidate within µα of ξ
′

j do

3 for each chain ξ
′′

1 ↔ · · · ↔ ξ
′′

ns−1 in Ω do

4 η
′

j ← η
′

(

ξ
′′

1 ↔ · · · ↔ ξ
′′

ns−1

)

+
∑

1≤i≤ns−1 ψ
(

ξ
′′

i , ξ
′

j

)

;

5 end

6 end

7 ξ
′

j ← CandidateFilter
(

ξ
′

j , η
′

j , τ
′

σ

)

;

8 end

6.2 Key Enumeration in MD-CODCA

The key recovery will become much easier after CODCAs compared to traditional enu-
meration. However, CODCAs have their own limitations. For example, all chains are
considered when splicing the long ones from the short ones, thus making the final key
recovery very time-consuming. In this case, we can omit some collision information and
use key enumeration to optimize them. If we keep the 4 big non-overlapping groups after
GCA and ignore the collision information between them, 4 big independent lists of nor-
malized probabilities can be obtained for key enumeration. The number of candidates to

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 15

enumerate will be very small since the collision information has been used once, and these
4 groups are already the remaining chains.

The number of candidates of the first ns = 6 sub-keys in Fig. 4 will not change signif-
icantly in a wide range of number of measurements. Therefore, The number of possible
chains in Ω is usually very small. Moreover, the flexible voting mechanism introduced in
Section 6.1 makes it easy for our MD-CODCA to vote for the other 16−ns sub-keys, which
may be deeply ranked. The above unique differential mechanisms make our MD-CODCA
very suitable for the situations where both τk and τd are very large, thus guaranteeing
that the sub-keys and δ-s are within their thresholds with a very large probability.

Benefiting from the above mentioned advantages, we can build another very simple
differential mechanism in our MD-CODCA, thus facilitating our later key enumeration.
Specifically, we simply divide the 16 lists of remaining candidates into 8 big “blocks”:
k1 ↔ k2, k3 ↔ k4, . . ., k15 ↔ k16, and detect the collisions within them, just like the 4 big
non-overlapping “blocks” in GCA: k1 ↔ · · · ↔ k4, k5 ↔ · · · ↔ k8, . . ., k13 ↔ · · · ↔ k16.
To make them independent, other collision information is ignored in this stage. We then
compute the probability product of each pair of collision, and normalize their probabilities.
Key enumeration is then performed on the 8 lists of probability products of collisions
output by this third differential voting mechanism to recover the key as introduced in
Section 3.

7 Experiments Results

The main purpose of MD-CODCA is to introduce collision information from CECA into
divide-and-conquer attacks, and transform a part of the best candidates to a much smaller
collision space, thus facilitating the latter key recovery. The performance of the improved
CECA and TA will be given in Section 7.1. Important parameters except for τk = µα,
such as threshold τd for CECA and the number of power traces n, are involved in our
MD-CODCA. We will discuss them separately in Sections 7.2 and 7.3. Power traces
are randomly extracted to launch attacks, and each experiment is repeated 200 times
(100 times for TC). Histogram based key rank estimation in [21] is directly performed
on the original space and the remaining space of FTC, the 4 big “blocks” in GCA and
the 8 big “blocks” in MD-CODCA as introduced in Section 3. α is set to 0.996 and the
corresponding global success probability is 0.99616 = 0.9372.

7.1 Performance of Improved CECA and TA

To satisfy the guessing theory model, this paper uses the improved TA given in [25], which
achieves performance significantly better than the traditional CECA. We need to set τd

much larger than τk in this case. Otherwise, the collision information is difficult to be
exploited in the existing CODCAs. To facilitate the performance comparison, we simply
improved CECA in Section 2.3. Although their performance is still quite different as the
guessing entropy [22] shown in Fig. 6, CECA’s performance is significantly improved.

It’s noteworthy that the two improved attacks given in Sections 2.2 and 2.3 exploit
templates information, which indicates that both of them are profiled attacks. However,
unlike the existing schemes TC, FTC and GCA, MD-CODCA doesn’t need to strictly
balance their performance. This is because our MD-CODCA is a relatively flexible differ-
ential mechanism, which allows for obvious performance differences between the combined
divide-and-conquer attacks and collision attacks. Experiments in Sections 7.2 and 7.3 will
show that it can still work well.

16 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

100 250 500 750 1000 1250 1500 1750 2000

Number of power traces

0

25

50

75

100

125

150

G
ue

ss
in

g
en

tr
op

y

(a) original CECA

100 200 300 400 500 600 700 800

Number of power traces

0

5

10

15

20

25

G
ue

ss
in

g
en

tr
op

y

(b) Improved CECA and TA

Improved TA
Improved CECA

Figure 6: Guessing entropy of the improved TA and CECA under different number of
power traces.

7.2 The Influence of τd

We set the number of power traces used in each repetition to 240, and investigate how
τd affects the performance of our MD-CODCA. We only compare the performance of
TC, FTC, GCA and our MD-CODCA in this section, and leave the introduction of the
original candidate space under 240 power traces in Section 7.3 (see Fig. 9). The success
rates under different τd-s are shown in Fig. 7. Computing power in this figure means the
enumeration power. For example, abscissa 30.0 and ordinate 0.7 indicate that we can
achieve a success rate of 0.7 by enumerating at most 230 candidates. With the increase of
τd, more candidates satisfying the collision conditions of FTC, GCA and MD-CODCA are
maintained, and the remaining candidate space gradually increases. Significant changes
also occur in the rank of the key.

0 10 20 30 40 50
Computing power (log

2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s

R
at

e

(a) FTC

0 10 20 30 40
Computing power (log

2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s

R
at

e

(b) GCA

0 10 20 30 40
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(c) MD-CODCA

d
=20

d
=30

d
=40

d
=50

d
=60

d
=70

d
=80

Figure 7: Success rates under different thresholds τd.

The smaller the τd, the better the rank of the key, and the lower the success rate (as

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 17

shown in Fig. 7). This indicates that fewer candidates (including the correct and wrong
ones) satisfy the collision conditions. This also tells us that smaller τd requires more
flexible collision conditions and better fault tolerance mechanisms. The success rates of
FTC and GCA increase rapidly when τd is from 20 to 80, but are still relatively low. They
only reach 0.68 and 0.65 at τd = 80. MD-CODCA achieves success rate of about 0.80
at τd = 20, which fully illustrates its high efficiency. The success rates of MD-CODCA
are very close when τd reaches 40, so τd = 40 is a good threshold when n = 240. The
success rates of our MD-CODCA are very close to the theoretical probability 0.9372 and
significantly higher than FTC and GCA, which fully illustrates its superiority.

-2 -1 0 1 2 3 4

Time consumption (log 10)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pe
rc

en
ta

ge

(a) GCA without enumeration

d
=10

d
=15

d
=20

d
=25

d
=30

-1.5 -1 -0.5 0 0.5 1

Time consumption (log 10)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pe
rc

en
ta

ge

(b) GCA with enumeration

10
=10

10
=15

10
=20

10
=25

10
=30

10
=35

-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4

Time consumption (log 10)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pe
rc

en
ta

ge

(c) TC

d
=4

d
=6

d
=8

d
=10

d
=12

Figure 8: Time consumption (seconds) of TC and GCA (with or without key enumera-
tion).

Table 7: Time consumption (seconds) under different thresholds τd.

τd 20 30 40 50

FTC 0.037 0.038 0.046 0.058

GCA with enumeration 0.21 0.57 1.28 2.60

MD-CODCA 0.77 1.25 1.36 1.57

τd 60 70 80 −

FTC 0.067 0.093 0.091 −

GCA with enumeration 5.41 13.21 37.50 −

MD-CODCA 1.83 1.92 2.08 −

In terms of algorithm runtime, GCA is significantly affected by the threshold τd. The
time consumption of GCA with or without key enumeration is given in Figs. 8(a) and
8(b). Here GCA without key enumeration means it has to splice long chains from short
chains as described in Section VI-B. However, FTC and MD-CODCA do not change much
under different thresholds τd (see Table 7). In fact, τd also has a significant impact on
MD-CODCA. However, we can mitigate its impact by selecting 6 sub-keys having the
fewest candidates within τk in the first differential voting mechanism of MD-CODCA,
which makes the number of chains used for voting smaller when n = 240 (see Fig. 3),
and improves the efficiency of voting. Moreover, Algorithm 3 flexibly exits the rotating
fault tolerance on sub-keys when there exists a chain making a candidate satisfy the
fault-tolerant conditions, which notably reduces collision detection time.

The chain construction in FTC is quick, but the other 15 sub-keys are still independent
of each other under a guessing k1 and traditional key enumeration is required. TC and
GCA construct long chains from short ones. GCA exploits a lot of collision information,
and it leaves very small space for key recovery. However, TC exploits very limited collision
information, which may produce a large number of chains under very large τd and τk

as we consider in this paper. In fact, a small increase in τd and τk will bring much
huger candidate space. For example, the candidate space 416 = 232 becomes 816 = 248

18 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

if τk is improved from 4 to 8. The time consumption increases dramatically when we
keep τk constant and adjust τd from 4 to 12, and randomly extract 240 power traces for
experiments (see Fig. 8(c)). About 10% (5%) of experiments consume more than 100
(1000) seconds when τd = 12. TC ran for two days under τd = 20, but only finished 3
repetitions. Therefore, it is difficult for TC to deal with very large thresholds.

7.3 The Influence of the Number of Traces

The number of power traces plays an important role in attacks, more power traces will
provide more leakage information and reduce the number of guesses of sub-keys under a
fixed probability α (i.e. µα), thus reducing the candidate space. Although τd = 40 is
a good threshold when the number of power traces n = 240 (Fig. 7), fewer power traces
need larger threshold. Therefore, we set τd to 60, and the experimental results when
the number of traces n ranges from 160 to 320 are shown in Fig. 9. We also show the
corresponding guessing spaces within τk since they are dramatically affected by n. For
example, the probability of guessing space within τk = µα larger than 70 bits is almost
1.00 when n ≤ 180, and only 50% when n = 240, and decreases to about 0.00 when n

reaches 280. The estimated ranks of keys from the improved TA in Fig. 9 are also much
better.

0 20 40 60 80 100
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(b) n=180

0 20 40 60 80 100
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1
Su

cc
es

s
R

at
e

(c) n=200

0 20 40 60 80 100
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(d) n=220

0 20 40 60 80
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(e) n=240

0 20 40 60 80
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(f) n=260

0 10 20 30 40 50 60
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(g) n=280

0 10 20 30 40 50 60
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(h) n=300

0 10 20 30 40 50 60
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(i) n=320

guessing space
TA
FTC
GCA
MD-CODCA

0 20 40 60 80 100
Computing power (log

2
)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

(a) n=160

Figure 9: Success rates under different number of traces.

The keys in FTC rank deeper than those in GCA (with enumeration) and MD-CODCA.
The success rates of FTC and GCA with enumeration are similar and relatively low. They
only reach 0.70 and 0.61 respectively when n = 320, and are much lower than 0.82 of MD-
CODCA under n = 160. This fully demonstrates that our MD-CODCA significantly

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 19

improves the success rate without notably increasing the considered candidate space and
the difficulty of key recovery. More power traces exploited in MD-CODCA will make its
success rate closer to the theoretical success probability. The difference between them is
about 0.07 at n = 160 and decreases to 0.03 when n = 320. These results demonstrate
the superiority of MD-CODCA over FTC and GCA.

Table 8: Time consumption (seconds) under different number of traces.

n 160 180 200 220 240

FTC 0.66 0.39 0.21 0.29 0.068

GCA with enumeration 707.84 213.92 75.27 17.91 5.95

MD-CODCA 651.77 106.53 17.74 6.083 1.920

n 260 280 300 320 −

FTC 0.030 0.019 0.012 0.007 −

GCA with enumeration 2.89 1.35 0.63 0.35 −

MD-CODCA 0.564 0.146 0.061 0.026 −

The runtime of GCA with enumeration is still most severely affected by the number of
power traces (as shown in Table 8). The number of candidates of the selected 6 sub-keys
are quite large when n is too small (e.g. about 25 for the second and about 60 for the 6-th
re-ranked sub-keys in average as shown in Fig. 3). This also makes it time-consuming for
MD-CODCA to perform fault tolerance on sub-keys and collision values δ-s outside the
thresholds τk and τd. It is worth noting that the parameter α can be flexibly adjusted
according to our computing power. For example, we can set α = 0.9 when n = 160, and
α = 0.998 when n = 320. MD-CODCA can easily obtain the success probability of key
recovery of TA and determine the candidate space it needs to deal with (see Section 4.3).
It also facilitates the choice of a reasonable threshold τd.

-2 -1 0 1 2 3 4 5 6

Time consumption (log
10

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e

pe
rc

en
ta

ge

n=320,
d
=30

n=320,
d
=20

n=300,
d
=20

n=280,
d
=20

Figure 10: Time consumption (seconds) of TC under different number of power traces.

The time consumed by TC under different number of power traces when τd = 20
is shown in Fig. 10. As more power traces are exploited, the number of candidates of
each sub-key under α = 0.996 in the improved TA is rapidly reduced. Although we
keep the threshold τd of the improved CECA unchanged, both the number of collision-
pairs to be detected and the time consumption are significantly reduced. However, TC
is still infeasible under huge threshold τd = 60 when n reaches 320. When τd = 30, the
corresponding success rate is 0.47. About 10% (5%) of experiments take more than 100
(103) seconds, and a few experiments even take more than 104 seconds. Therefore, the

20 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

evaluation is very time-consuming. Only one experimental result was obtained in three
days when we adjusted τd from 30 to 40. It’s even worse when n = 280, about 10% of
the experiments take more than 104 seconds. Obviously, TC takes more time than GCA
with enumeration, while our MD-CODCA takes the least amount of time. Although FTC
is fast, it leaves us a very huge candidate space. Moreover, MD-CODCA’s flexible fault
tolerance mechanisms enable it to achieve significantly higher success rate while notably
reducing the difficulty of key recovery of the existing CODCAs. All these demonstrate
the superiority of MD-CODCA.

8 Conclusion

This work introduces guessing theory into TA to optimize the number of guesses of each
sub-key, and provide the attacker with quick estimation of the difficulty and success prob-
ability of key recovery. Moreover, to better transform a part of the best candidates in
divide-and-conquer attacks into smaller collision space, we propose MD-CODCA to ex-
ploit collision information from CECA to optimize TA. Our MD-CODCA includes three
differential mechanisms, of which the first two exploit several sub-keys with the fewest can-
didates within threshold to construct chains to vote for the candidates of the remaining
sub-keys. Benefiting from its flexibility, MD-CODCA is very suitable for large threshold-
s. In this case, most of collision values are within the threshold, and MD-CODCA can
build another differential mechanism to further divide the 16 sub-keys into 8 big non-
overlapping “blocks” and perform collision detection on the remaining candidates within
each of them. The collision information between blocks, which may have already been
utilized in the first two differential mechanisms, is properly ignored, thus facilitating the
later key enumeration. A good CODCA should significantly reduce the original candidate
space of divide-and-conquer attacks, without significantly lowering the success rate. Our
MD-CODCA well achieves this goal, and has made significant improvements compared to
the existing CODCAs.

With the introduction of collision information into divide-and-conquer attacks, COD-
CAs make it possible to recover the key ranked at very deep space, thus bringing new
opportunities for key recovery. Several works in [6,12,13] have provided the upper bound
of security level of their improved CECA to show the performance. However, CODCAs
require the lower bound rather than the upper bound of CECA to guarantee the remain-
ing collision values except for the fault-tolerant ones, can be within threshold with a very
large probability (e.g. close to 1.00). This will facilitate the fault tolerance on collision
values and its corresponding threshold setting, ad makes the CODCAs more flexible. Our
future work will focus on solving this issue. In addition, we also plan to optimize the
collision detection algorithms discussed in Sections 5 and 6.1 to make them feasible in
much larger guessing space.

References

[1] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-Channel(s).
In Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International

Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, pages
29–45, 2002.

[2] A. Bogdanov. Multiple-Differential Side-Channel Collision Attacks on AES. In Cryp-

tographic Hardware and Embedded Systems - CHES 2008, 10th International Work-

shop, Washington, D.C., USA, August 10-13, 2008. Proceedings, pages 30–44, 2008.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 21

[3] A. Bogdanov and I. Kizhvatov. Beyond the Limits of DPA: Combined Side-Channel
Collision Attacks. IEEE Trans. Computers, 61(8):1153–1164, 2012.

[4] J. Bonneau. The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million
Passwords. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012,

San Francisco, California, USA, pages 538–552, 2012.

[5] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model.
In Cryptographic Hardware and Embedded Systems - CHES 2004: 6th International

Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, pages 16–29, 2004.

[6] N. Bruneau, C. Carlet, S. Guilley, A. Heuser, E. Prouff, and O. Rioul. Stochastic
Collision Attack. IEEE Trans. Information Forensics and Security, 12(9):2090–2104,
2017.

[7] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In Cryptographic Hardware

and Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores,

CA, USA, August 13-15, 2002, Revised Papers, pages 13–28, 2002.

[8] M. O. Choudary and P. G. Popescu. Back to Massey: Impressively Fast, Scalable and
Tight Security Evaluation Tools. In Cryptographic Hardware and Embedded Systems -

CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,

Proceedings, pages 367–386, 2017.

[9] F. Durvaux and F. Standaert. From Improved Leakage Detection to the Detection
of Points of Interests in Leakage Traces. In Advances in Cryptology - EUROCRYPT

2016 - 35th Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pages
240–262, 2016.

[10] C. H. Gebotys, S. Ho, and C. C. Tiu. EM Analysis of Rijndael and ECC on a Wire-
less Java-Based PDA. In Cryptographic Hardware and Embedded Systems - CHES

2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005,

Proceedings, pages 250–264, 2005.

[11] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer. Stealing Keys from PCs
Using a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation. In
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International

Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, pages 207–228,
2015.

[12] B. Gérard and F. Standaert. Unified and Optimized Linear Collision Attacks and
Their Application in a Non-profiled Setting. In E. Prouff and P. Schaumont, editors,
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th Internation-

al Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428 of
Lecture Notes in Computer Science, pages 175–192. Springer, 2012.

[13] C. Glowacz and V. Grosso. Optimal Collision Side-Channel Attacks. In S. Belaïd
and T. Güneysu, editors, Smart Card Research and Advanced Applications - 18th

International Conference, CARDIS 2019, Prague, Czech Republic, November 11-13,

2019, Revised Selected Papers, volume 11833 of Lecture Notes in Computer Science,
pages 126–140. Springer, 2019.

[14] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar. Cache Attacks
Enable Bulk Key Recovery on the Cloud. In Cryptographic Hardware and Embedded

Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA,

August 17-19, 2016, Proceedings, pages 368–388, 2016.

22 Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

[15] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in

Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 15-19, 1999, Proceedings, pages 388–397, 1999.

[16] Y. Li, S. Wang, Z. Wang, and J. Wang. A strict key enumeration algorithm for
dependent score lists of side-channel attacks. In T. Eisenbarth and Y. Teglia, editors,
Smart Card Research and Advanced Applications - 16th International Conference,

CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers,
volume 10728 of Lecture Notes in Computer Science, pages 51–69. Springer, 2017.

[17] A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In Cryptographic Hardware and Embedded Systems, CHES 2010,

12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Pro-

ceedings, pages 125–139, 2010.

[18] C. Ou, Z. Wang, D. Sun, and X. Zhou. Group Collision Attack. IEEE Trans.

Information Forensics and Security, 14(4):939–953, 2019.

[19] C. Ou, Z. Wang, D. Sun, X. Zhou, and J. Ai. Group Verification Based Multiple-
Differential Collision Attack. In Information and Communications Security - 18th

International Conference, ICICS 2016, Singapore, November 29 - December 2, 2016,

Proceedings, pages 145–156, 2016.

[20] J. O. Pliam. On the Incomparability of Entropy and Marginal Guesswork in Brute-
Force Attacks. In Progress in Cryptology - INDOCRYPT 2000, First International

Conference in Cryptology in India, Calcutta, India, December 10-13, 2000, Proceed-

ings, pages 67–79, 2000.

[21] R. Poussier, F. Standaert, and V. Grosso. Simple Key Enumeration (and Rank
Estimation) Using Histograms: An Integrated Approach. In Cryptographic Hardware

and Embedded Systems - CHES 2016 - 18th International Conference, Santa Barbara,

CA, USA, August 17-19, 2016, Proceedings, pages 61–81, 2016.

[22] F. Standaert, T. Malkin, and M. Yung. A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks. In Advances in Cryptology - EUROCRYP-

T 2009, 28th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, pages
443–461, 2009.

[23] D. Wang, A. Wang, and X. Zheng. Fault-Tolerant Linear Collision Attack: A Com-
bination with Correlation Power Analysis. In Information Security Practice and

Experience - 10th International Conference, ISPEC 2014, Fuzhou, China, May 5-8,

2014. Proceedings, pages 232–246, 2014.

[24] Y. Yarom, D. Genkin, and N. Heninger. CacheBleed: A Timing Attack on OpenSSL
Constant Time RSA. In Cryptographic Hardware and Embedded Systems - CHES

2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,

Proceedings, pages 346–367, 2016.

[25] H. Zhang. How to Effectively Decrease the Resource Requirement in Template At-
tack? In Advances in Information and Computer Security - 9th International Work-

shop on Security, IWSEC 2014, Hirosaki, Japan, August 27-29, 2014. Proceedings,
pages 119–133, 2014.

	Introduction
	Related Works
	Our Contributions
	Organization

	Preliminaries
	Experimental Setups
	Template Attack
	Collision Attacks
	Collision-Optimized Divide-and-Conquer Attacks

	Multiple-Differential Mechanism for CODCAs
	Guessing Theory in TA
	Guessing Model
	Partial Guessing Metrics
	Success Probability and Complexity

	Differential Mechanisms on Chains Construction for Voting
	Sub-keys Selection
	Fault Tolerance on Sub-keys in TA
	Fault Tolerance on -s in CECA
	Thresholds Selection
	Chain Construction Algorithm

	Efficient Voting and Key Recovery Mechanisms
	Voting Mechanism on the Remaining Sub-keys
	Key Enumeration in MD-CODCA

	Experiments Results
	Performance of Improved CECA and TA
	The Influence of d
	The Influence of the Number of Traces

	Conclusion

