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Abstract. After Cheon et al. (Asiacrypt’ 17) proposed an approxi-
mate homomorphic encryption scheme, HEAAN, for operations between
encrypted real (or complex) numbers, the scheme is widely used in a
variety of fields with needs on privacy-preserving in data analysis. Af-
ter that, a bootstrapping method for HEAAN is proposed by Cheon et al.
(Eurocrypt’ 18) with modulus reduction being replaced by a sine func-
tion. In this paper, we generalize the Full-RNS variant of HEAAN proposed
by Cheon et al. (SAC, 19) to reduce the number of temporary moduli
used in key-switching. As a result, our scheme can support more depth
computations without bootstrapping while ensuring the same level of
security.
We also propose a new polynomial approximation method to evaluate
a sine function in an encrypted state, which is specialized for the boot-
strapping for HEAAN. Our method considers a ratio between the size of a
plaintext and the size of a ciphertext modulus. Consequently, it requires
a smaller number of non-scalar multiplications, which is about half of
the Chebyshev method.
With our variant of the Full-RNS scheme and a new sine evaluation
method, we firstly implement bootstrapping for a Full-RNS variant of ap-
proximate homomorphic encryption scheme. Our method enables boot-
strapping for a plaintext in the space C16384 to be completed in 52 sec-
onds while preserving 11 bit precision of each slot.

Keywords: Homomorphic Encryption · Bootstrapping.

1 Introduction

After the Gentry’s first blueprint for a fully homomorphic encryption scheme
[9], homomorphic encryption is regarded as one of the most important tools
for privacy-preserving. In various applications that need privacy-protection, ho-
momorphic operations between encrypted real number data are necessary. In
2017, Cheon et al. proposed a new homomorphic encryption scheme for efficient

? This work was done when the first author was in Seoul National University (SNU).
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operations between real number data, which is called HEAAN [8]. Through homo-
morphic operations on encrypted real numbers, a lot of methodologies, such as
logistic regression and Genome-side association study (GWAS), can be done in
encrypted states [4, 14, 11, 13, 16, 18, 17].

Recently, a lot of data analysis tools and methods come out into the world,
and they become more and more complicated. For examples, machine-learning
algorithms such as convolutional neural network (CNN) and deep neural network
(DNN) are extremely complicated. Therefore, modern data analysis algorithms
require faster homomorphic operations and huge depth, which makes them hard
to display their all ability in encrypted states without bootstrapping, since only
a limited number of levels is provided by homomorphic encryption schemes. For
example, since nGraph-HE [3], a deep-learning prediction on encrypted data,
does not use bootstrapping, it only supports a limited number of layers. Also, in
the case of logistic regression, solutions without bootstrapping [16, 18] support
only a small number of iterations. For these reasons, importance of efficient
homomorphic operations and bootstrapping become greater nowadays.

To solve these problems, a full-RNS variant of HEAAN (HEAAN-RNS) is proposed
by Cheon et al. [6]. The key idea of their work comes from the fast base conversion
in the full-RNS variant of the FV scheme [2]. By using the conversion, they can
expand and reduce basis without going through Chinese Remainder Theorem
(CRT) composition process. Since it does not need to use big integer arithmetic,
overall speed of its homomorphic operations becomes 4 to 10 times faster than
that of the original HEAAN scheme. After that, SEAL includes an implementation of
this scheme in version 3.0. To avoid using temporary moduli, they combined the
bit-decomposition technique and the RNS-decomposition technique3. Recently,
an improved method for the fast base conversion is introduced in [11], which
requires floating point operations to predict quotient parts.

In the case of the bootstrapping for HEAAN, the first method is proposed by
Cheon et al. [7] with modulus reduction being replaced by a sine function. More
precisely, they approximate the modulo q operation by the function q

2π sin( 2πx
q ).

Since HEAAN is an approximate homomorphic encryption scheme, additive noise
in bootstrapping, which is not that big, is acceptable. To evaluate the func-
tion q

2π sin( 2πx
q ) efficiently, they apply the Taylor approximation method to the

function in a small range and use double-angle formula. This method requires
a small number of homomorphic multiplications, but it needs the degree of an
approximate polynomial to be large (= O(logKq)), when x/q ∈ (−K,K). Af-
ter that, improved methods for linear transformation in the bootstrapping are
suggested in [5, 12], and another method for sine evaluation via the Chebyshev
polynomial approximation is proposed in [5]. By using the Chebyshev polyno-
mial approximation, they reduce the degree of an approximate polynomial a lot
without increasing the number of homomorphic multiplications much.

In this paper, to make the bootstrapping more practical, we generalize the
Full-RNS variant of HEAAN and improve a sine evaluation method for the boot-

3 After version 3.2, they use one temporary modulus instead of bit-decomposition as
in [17].
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strapping. Moreover, we implement our generalized HEAAN-RNS scheme and it’s
bootstrapping using a newly computed approximate polynomial which is opti-
mized for the bootstrapping.

1.1 Our Contribution

• We suggest a generalized key-switching method for the Full-RNS variant of
HEAAN. We combine the RNS-decomposition method in [2] and the tempo-
rary modulus technique in [10]. Compared to the HEAAN-RNS scheme, we use
a smaller number of temporary moduli while consuming lower complexity.
As a result, our scheme requires about half complexity for homomorphic
multiplication even with a larger security parameter.

• We propose a method which considers the size of a message in sine eval-
uation. More precisely, we evaluate a sine function by considering a ratio
between the size of a message and the size of a ciphertext modulus. As a re-
sult, our method only requires Max(logK+ 3 + 1

K (log ε− 1), log log q) levels,
where ε is a ratio between the size of a message and the size of a ciphertext
modulus. Furthermore, by using cosine instead of sine, we combine double-
angle formula for cosine with our approximation method. As a result, the
number of non-scalar multiplications is almost reduced by half compared to
the previous work [5].

• We put every technique together and implement the bootstrapping for our
Full-RNS variant of HEAAN. As a result, our bootstrapping only takes 52
seconds for a plaintext in the space C16384 while preserving 11 bit precision
of each slot.

1.2 Road Map

In Section 2, we briefly introduce the Chebyshev approximation, the HEAAN-RNS

scheme with its fast base conversion, and the bootstrapping for HEAAN. In Section
3, we discuss a generalized key-switching method for the Full-RNS variant of
HEAAN. In Section 4, we propose a better way of approximating a sine function
for the bootstrapping. In Section 5, we implement our Full-RNS variant of HEAAN
and its bootstrapping, and analyze results of our experiments. We complete the
paper with a suggestion of future works for improving the bootstrapping.

2 Preliminary

2.1 Chebyshev Approximation

For the range [a, b] and n > 0, choose n+ 1 Chebyshev points {ti}1≤i≤n+1 as

ti =
b+ a

2
+
b− a

2
· cos

(
2i− 1

2n+ 2
π

)
.
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For these points, the goal of the Chebyshev approximation of f(x) is to find the
degree n polynomial pn(t) satisfying pn(ti) = f(ti) for all 1 ≤ i ≤ n+ 1. Due to
the property of the Chebyshev points, there exists some ψt ∈ [a, b] which makes
the following inequality hold for t ∈ [a, b].

||f(t)− pn(t)|| ≤ |f
(n+1)(ψt)|
(n+ 1)!

· 1

2n
·
(
b− a

2

)n+1

(1)

Note that the additional term 1
2n is the reason why the Chebyshev method is

much better than the Taylor approximation method when the degree n is large.

2.2 Full-RNS HEAAN

In this section, we introduce the fast base conversion in [2] and the HEAAN-RNS

scheme in [6]. By using the fast base conversion which does not require CRT
decomposition, we can keep ciphertexts of the HEAAN-RNS scheme in residue
number systems (RNS) throughout homomorphic operations.

Fast Base Conversion. In the HEAAN-RNS scheme, a RNS representation

[a]C = (a(0), . . . , a(`−1)) ∈ Zq0 × · · · × Zq`−1

of an integer a with respect to ZQ can be easily converted into its RNS repre-
sentation with respect to ZP by the equation

ConvC→B([a]C) =

`−1∑
j=0

[a(j) · q̂−1j ]qj · q̂j (mod pi)


0≤i<k

,

where q̂j =
∏
j′ 6=j qj′ ∈ Z, P =

∏k
i=0 pi and Q =

∏l−1
j=0 qj . Since a+Qe ∈ ZP for

some small e is given as a result of this conversion, it includes the noise which
can be ignored in the case of the HEAAN-RNS scheme. Even though the effect of
this noise is negligible, we can reduce its size further by adapting the algorithms
introduced in [11].

In [6], authors introduce two algorithms called ModUp and ModDown to expand
and to reduce a modulus space, respectively (Algorithm 1 and 2 in [6]):

ModUpC→D(·) :

`−1∏
j=0

Rqj →
k−1∏
i=0

Rpi ×
`−1∏
j=0

Rqj

:[a]C → (ConvC→B([a]C), [a]C),

ModDownD→C(·) :

k−1∏
i=0

Rpi ×
`−1∏
j=0

Rqj →
`−1∏
j=0

Rqj

:([a]B, [b]C)→ ([b]C − ConvB→C([a]B)) · [P−1]C ,

where D = {p0, . . . , pk−1, q0, . . . , q`−1}, B = {p0, . . . , pk−1}, C = {q0, . . . , q`−1},
and P =

∏k−1
i=0 pi. Note that ModUp expands the modulus space of a from C to D,
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and ModDown reverts the modulus space of a to the original and divide its value
further by P =

∏
pi. These algorithms are used for modulus switching before

and after key-switching, respectively.

Scheme Description. In this section,K is a (2N)-th cyclotomic field Q[X]/(XN+
1) and R is its ring of integers (= Z[X]/(XN + 1)) for a power-of-two integer N .
The residue ring modulo an integer q is denoted by Rq = R/qR.

Setup(q, L, η; 1λ). As a base integer q, a number of levels L, a bit precision η, and
a security parameter λ are given as inputs, we choose the followings according
to them.

• A power-of-two integer N .

• A secret key distribution χkey, an encryption key distribution χenc, and an
error distribution χerr over R.

• A basis D = {p0, . . . , pk−1, q0, q1, . . . , qL} for which qj/q ∈ (1−2−η, 1 + 2−η)
for 1 ≤ j ≤ L.

Next, we let B = {p0, . . . , pk−1}, C` = {q0, . . . , q`}, and D` = B∪C` for 0 ≤ ` ≤ L.

Also, we let P =
∏k−1
i=0 pi, Q =

∏L
j=0 qj , p̂i =

∏
0≤i′<k,i′ 6=i pi′ for 0 ≤ i < k, and

q̂`,j =
∏

0≤j′≤`,j′ 6=j qj′ for 0 ≤ j ≤ ` ≤ L. As the last step of Setup, we compute
the followings.

• [p̂i]qj and [p̂−1i ]pi for 0 ≤ i < k, 0 ≤ j ≤ L.

• [P−1]qj =
(∏k−1

i=0 pi

)−1
(mod qj) for 0 ≤ j ≤ L.

• [q̂`,j ]pi and [q̂−1`,j ]qj for 0 ≤ i < k, 0 ≤ j ≤ ` ≤ L.

KSGen(s1, s2). Sample (a′(0), . . . , a′(k+L)) ← U
(∏k−1

i=0 Rpi ×
∏L
j=0Rqj

)
and an

error e′ ← χerr first. With secret polynomials s1, s2 ∈ R given as inputs, compute
the switching key swk by

(
swk(0) = (b′(0), a′(0)), . . . , swk(k+L) = (b′(k+L), a′(k+L))

)
∈
k−1∏
i=0

R2
pi ×

L∏
j=0

R2
qj ,

where b′(i) ← −a′(i) · s2 + e′ (mod pi) for 0 ≤ i < k and b′(k+j) ← −a′(k+j) · s2 +
[P ]qj · s1 + e′ (mod qj) for 0 ≤ j ≤ L.

KeyGen. First, sample s← χkey and set the secret key as sk← (1, s) and the eval-

uation key as evk← KSGen(s2, s). Next, sample (a(0), . . . , a(L))← U
(∏L

j=0Rqj

)
and e← χerr and set the public key as

pk←
(

pk(j) = (b(j), a(j)) ∈ R2
qj

)
0≤j≤L

,

where b(j) ← −a(j) · s+ e (mod qj) for 0 ≤ j ≤ L.
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Encpk(m). First, sample v ← χenc and e0, e1 ← χerr. With a plaintext m ∈ R

given as a input, obtain the ciphertext ct =
(
ct(j)

)
0≤j≤L ∈

∏L
j=0R

2
qj , where

ct(j) ← v · pk(j) + (m+ e0, e1) (mod qj) for 0 ≤ j ≤ L.

Decsk(ct). Given a ciphertext ct =
(
ct(j)

)
0≤j≤` ∈

∏l
j=0R

2
qj , compute 〈ct(0), sk〉

(mod q0).

Add(ct, ct′). Given two ciphertexts ct =
(
ct(0), . . . , ct(`)

)
, ct′ =

(
ct′(0), . . . , ct′(`)

)
∈∏`

j=0R
2
qj , obtain the ciphertext ctadd =

(
ct

(j)
add

)
0≤j≤`

, where ct
(j)
add ← ct(j)+ct′(j)

(mod qj) for 0 ≤ j ≤ `.

Multevk(ct, ct′). Given two ciphertexts ct =
(

ct(j) = (c
(j)
0 , c

(j)
1 )
)
0≤j≤`

and ct′ =(
ct′(j) = (c

′(j)
0 , c

′(j)
1 )

)
0≤j≤`

, perform the following computations in turn and ob-

tain the ciphertext ctmult ∈
∏`
j=0R

2
qj .

• d(j)0 ← c
(j)
0 c
′(j)
0 (mod qj), d

(j)
1 ← c

(j)
0 c
′(j)
1 +c

(j)
1 c
′(j)
0 (mod qj), and d

(j)
2 ← c

(j)
1 c
′(j)
1

(mod qj) for 0 ≤ j ≤ `.
• ModUpC`→D`(d

(0)
2 , . . . , d

(`)
2 ) = (d̃

(0)
2 , . . . , d̃

(k−1)
2 , d

(0)
2 , . . . , d

(`)
2 ).

• c̃t = (c̃t
(0)

= (c̃
(0)
0 , c̃

(0)
1 ), . . . , c̃t

(k+`)
= (c̃

(k+`)
0 , c̃

(k+`)
1 )) ∈

∏k−1
i=0 R

2
pi×
∏`
j=0R

2
qj ,

where c̃t
(i)

= d̃
(i)
2 · evk(i) (mod pi) and c̃t

(k+j)
= d

(j)
2 · evk(k+j) (mod qj) for

0 ≤ i < k, 0 ≤ j ≤ `.
•
(
ĉ
(0)
0 , . . . , ĉ

(`)
0

)
← ModDownD`→C`

(
c̃
(0)
0 , . . . , c̃

(k+`)
0

)
and

(
ĉ
(0)
1 , . . . , ĉ

(`)
1

)
←

ModDownD`→C`

(
c̃
(0)
1 , . . . , c̃

(k+`)
1

)
.

• ctmult = (ct
(j)
mult)0≤j≤`, where ct

(j)
mult ← (ĉ

(j)
0 + d

(j)
0 , ĉ

(j)
1 + d

(j)
1 ) (mod qj) for

0 ≤ j ≤ `.

RS(ct). Given a ciphertext ct =
(

ct(j) = (c
(j)
0 , c

(j)
1 )
)
0≤j≤`

∈
∏`
j=0R

2
qj , compute

the ciphertext ct′ ←
(

ct′(j) = (c
′(j)
0 , c

′(j)
1 )

)
0≤j≤`−1

∈
∏`−1
j=0R

2
qj , where c

′(j)
i ←

q−1` ·
(
c
(j)
i − c

(`)
i

)
(mod qj) for i = 0, 1 and 0 ≤ j < `.

2.3 Bootstrapping for HEAAN

In this section, we briefly describe the overall process of the bootstrapping for
HEAAN suggested in [7], and the improvements introduced in [5, 12]. As in the
previous section, we let R = Z[X]/(XN + 1) for a power-of-two integer N and
Rq = R/qR. For a ∈ Zq, assign a the unique integer, which is equivalent to a
(mod q) and is contained in Z ∩ (−q/2, q/2], and denote it by [a]q. Extend this
definition to Rq by applying it component-wisely.

Let ct be a ciphertext of m(X) relative to the secret key sk and the ciphertext
modulus q. Note that m(X) = [〈ct, sk〉]q. The goal of the bootstrapping is to find
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an encryption of m(X) with a bigger ciphertext modulus. In other words, we
hope to find ct′ and a modulus Q > q satisfying m(X) = [〈ct′, sk〉]Q. The overall
process can be divided into four steps; Modulus Raising, Coefficients to Slots, Sine
Evaluation and Slots to Coefficients.

Modulus Raising. Consider a polynomial t(X) = 〈ct, sk〉 of deg < N . Under
the assumption that the message m is much smaller than the ciphertext modulus
q, t(X) can be represented as t(X) = qI(X) + m(X), where I(X) ∈ R and all
the coefficients of I are bounded by a constant K which is determined by the
secret key distribution of the scheme. If we choose Q0 � q, then it follows that
t(X) = [〈ct, sk〉]Q0

. Therefore, ct can be regarded as an encryption of t(X) with
respect to the modulus Q0.

Coefficients to Slots. Before introducing about this step, we need to recall
encoding and decoding procedures of HEAAN. Let ξ be a primitive 2N -th root of
unity and ξi = ξ5i for 0 ≤ i < N/2. Since 5 has the order N/2 modulo 2N and
spans Z∗2N with -1, {ξi, ξ̄i : 0 ≤ i < N/2} is the set of all primitive 2N -th roots
of unity. Now, we can define a decoding map τ : R[X]/(XN + 1) → CN/2 by
τ(m(X)) = (m(ξj))0≤j<N/2. We say m(X) has values m(ξ0), · · · ,m(ξN

2 −1
) in its

slots or m(X) is the plaintext of (m(ξj))0≤j<N/2 in this case. If we identifying
each element m(X) = m0 + m1X + · · · + mN−1X

N−1 of R[X]/(XN + 1) with
m = (m0, · · · ,mN−1) ∈ RN , the decoding map can be considered as a linear
transformation from RN to CN/2, which is characterized by the matrix

U =


1 ξ0 ξ20 · · · ξN−10

1 ξ1 ξ21 · · · ξN−11
...

...
...

. . .
...

1 ξN
2 −1

ξ2N
2 −1
· · · ξN−1N

2 −1

 .

With this identification, the decoding process can be simply written as m 7→
U ·m for m ∈ RN . Moreover, an encoding map is just an inverse map of the
decoding map, and it can be checked that the encoding process can be written
as z 7→ 1

N (ŪT z + UT z̄) for z ∈ CN/2.
Given a polynomial t(X) = t0+t1X+· · ·+tN−1XN−1 from the previous step,

this step aims to get the ciphertext whose corresponding plaintext has values
t0, · · · , tN−1 in its slots. Since each plaintext can have at most N/2 values, it
is impossible that just one plaintext has those values. Thus, we will find two
ciphertexts that correspond to plaintexts of the vectors z1 = (t0, · · · , tN

2 −1
) and

z2 = (tN
2
, · · · , tN−1), respectively.

Let z = τ(t) ∈ CN/2 be the vector that corresponds to the ciphertext ct. If
we divide the matrix U into following two square matrices

V =


1 ξ0 · · · ξ

N
2 −1
0

1 ξ1 · · · ξ
N
2 −1
1

...
...

. . .
...

1 ξN
2 −1
· · · ξ

N
2 −1
N
2 −1

 and W =


ξ
N
2
0 ξ

N
2 +1
0 · · · ξN−10

ξ
N
2
1 ξ

N
2 +1
1 · · · ξN−11

...
...

. . .
...

ξ
N
2
N
2 −1

ξ
N
2 +1
N
2 −1
· · · ξN−1N

2 −1

 ,
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it follows that z1 = 1
N (V̄T z+VT z̄) and z2 = 1

N (W̄T z+WT z̄). These equations
mean that z1 and z2 can be obtained by applying linear transformations to z,
and thus we can also get corresponding ciphertexts by applying the same linear
transformations homomorphically to ct.

Sine Evaluation. This step is the hardest part of the bootstrapping for HEAAN.
This step aims to perform the function f(t) = [t]q homomorphically. More
precisely, given two ciphertexts ct1 and ct2 corresponding to z1 and z2, re-
spectively, we hope to obtain ciphertexts corresponding to the plaintexts of
z′1 = (m0, · · · ,mN

2 −1
) and z′2 = (mN

2
, · · · ,mN−1), where tj = qIj + mj for

0 ≤ j < N , by applying the function f to ct1 and ct2. However, the problem
is that the function f is hard to approximate by a polynomial. Therefore, the
function g(t) = q

2π sin( 2πt
q ) is used as an approximation of f . Since t can be

represented as t = qI + m, where |I| < K and m � q, the difference between
f(t) and g(t) is given as

|f(t)− g(t)| = q

2π

∣∣∣∣2πmq − sin(
2πm

q
)

∣∣∣∣ ≤ q

2π
· 1

6

∣∣∣∣2πmq
∣∣∣∣3,

which is small enough due to m � q. Also, since g is a smooth function, it is
easier to approximate it by a polynomial. For these reasons, the sine function
g is a good approximation of the modulus reduction function f , and the main
interest of this step becomes how to approximate g by a polynomial.

The ways to approximate g by a polynomial differ in previous works [7, 5]. In
[7], to evaluate sin(t), they first scale down t by a power of two to make it locate
close enough to the origin, and they use the Taylor polynomial approximation
for the evaluation of sine in a small interval around the origin. After that, they
compute the original sine value at t by using double angle formula. On the other
hand, in [5], they use the Chebyshev polynomial approximation instead of the
Taylor approximation.

Slots to Coefficients. This is the final step, and it is just a reverse process
of CoefficientstoSlots. Given two ciphertexts ct′1 and ct′2 corresponding to z′1 =
(m0, · · · ,mN

2 −1
) and z′2 = (mN

2
, · · · ,mN−1), respectively, the goal of this step is

to find the ciphertext whose plaintext is m(X) = m0 +m1X+ · · ·+mN−1X
N−1.

If we let z′ = τ(m), it follows that z′ = Um = Vz′1 + Wz′2. Therefore, we
can get the ciphertext that we want by taking the same linear combination
homomorphically to ct′1 and ct′2. As a result, through the bootstrapping process,
we can get a ciphertext ct′ which is an encryption ofm(X) relative to a ciphertext
modulus Q, which is smaller than Q0, but much bigger enough than q.

Remark 1. Improved linear transformation. Applying linear transformation to a
ciphertext with n slots originally requires O(n) homomorphic operations, and
it can be improved a lot by using special structure of the matrix U [5, 12]. In
[5, 12], they decompose the linear transformation part (including “Coefficients
to Slots” and “Slots to Coefficients”) and reduce the complexity to O(r logr n)
while consuming O(logr n) depth.
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3 Full-RNS variant of HEAAN

Before starting this section, we note that we use the same notation as in Sec-
tion 2. In the HEAAN-RNS scheme, since the decomposition methods are not used
for key-switching, it only requires one evaluation key for key-switching. Also,
since P =

∏k
i=0 pi should be much bigger than Q =

∏L−1
j=0 qj to effectively

reduce the size of noise added through key-switching, k, which indicates the
number of temporary moduli, should be ' L 4. On the other hand, SEAL (v
3.3) uses one temporary modulus and the RNS-decomposition technique, which
will be introduced later, to perform key-switching. In other words, they set the
number of temporary moduli k to 1.

Using large k (k ' L) and small k (k = 1) has pros and cons, respectively. By
using large k ' L, we only need one evaluation key for key-switching, and thus
smaller complexity for key-switching is required. However, since the security of
the scheme depends on the largest ciphertext modulus

∏k−1
i=0 pi ·

∏L
i=0 qi, the bit

size of
∏k−1
i=0 pi ·

∏L
i=0 qi should be fixed when we assume the same security level.

Therefore, using large k ' L forces us to use a smaller number of qj ’s, and it
follows that the less depth computations are supported by the scheme.

As noted above, there is a trade-off between the complexity of key-switching
and the number of levels supported by the scheme. Therefore, in many cases,
it is better to choose an appropriate value of k between 1 and L rather than
using extremely large k (k ' L) and extremely small k (k = 1). However,
the HEAAN-RNS scheme and SEAL (v 3.3) only support k ' L and k = 1 case,
respectively. Hence, the main goal of our scheme is to propose a generalized
HEAAN-RNS scheme, which also includes the scheme of SEAL (v.3.3), to make it
possible to use optimal k for each situation.

Full-RNS decomposition. First, we will introduce the RNS-decomposition
technique in [2]. The RNS-decomposition method can be represented by the
following equations:

RNS-DecompC(a(x)) = ([a(x) · q̂0−1]q0 , . . . , [a(x) · q̂L−1]qL) ∈ RL+1

RNS-PowerC(b(x)) = (b(x) · q̂0, b(x) · q̂1, . . . , b(x) · q̂L) ∈ RL+1,

where C = {q0, q1, . . . , qL}, q̂i =
∏
j 6=i qj and a(x), b(x) ∈ R. Here, f(x) · c

indicates the multiplication between each coefficient of polynomial f(x) and
c. Those functions work similarly as the bit-decomposition and power of two
technique:

a(x) · b(x) = 〈RNS-DecompC(a(x)),RNS-PowerC(b(x))〉 ∈ RQ,

where Q =
∏L
i=0 qi. Since the sizes of coefficients of RNS-DecompC(a(x)) are

less than max0≤i≤L(qi)� Q, the functions can be used for key-switching. More

4 In practice, pi’s are chosen to have maximum sizes within the word size (< 64 bits).
On the other hand, sizes of qj ’s are depend on the precision of applications, and
usually they are 40 ∼ 45 bits.
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precisely, we can replace the multiplication of a(x) and s(x)2 in key-switching
with

〈RNS-DecompC(a(x)),RNS-PowerC(s(x)2) + Encs(x)(0)〉 mod Q.

Here, we add the term Encs(x)(0) not to reveal information on s(x)2. In this
method, since both vectors have length L+1, the complexity of the inner product
is quadratic to L, which is not favorable. Furthermore, the noise growth through
key-switching is about ||efresh|| ·max(||qi||), which is quite large compared to the
size of a plaintext.

Overview of Idea. To solve those problems stated above, we will reduce the
length of the vectors and control the noise growth using temporary moduli 5.

First, we use the partial products {Qj}0≤j<dnum = {
∏(j+1)α−1
i=jα qi}0≤j<dnum, where

α = (L + 1)/dnum for a pre-fixed parameter dnum, instead of using {qi}0≤i≤L
in the RNS-decomposition. Then, it follows that P =

∏k−1
i=0 pi only needs to be

bigger than max0≤j<dnumQj to effectively reduce the size of noise added through
key-switching. Therefore, we can set the number of temporary moduli k to α.
In addition, we apply the fast base conversion to avoid CRT composition in
re-linearization (key-switching in multipication). The brief sketch about our re-
linearization method can be represented as follows:

0. For k = (L+ 1)/dnum, set an evaluation key as evk = RNS-PowerC′(s(x)2) +

Encs(x)(0) mod PQ, where P =
∏k−1
i=0 pi,Q =

∏L
i=0 qi and C′ = {Qj}0≤j<dnum.

1. For a given ciphertext (c(x), b(x), a(x)) such that c(x) + b(x) · s(x) + a(x) ·
s(x)2 = m+ e mod Q, we compute

(b′(x), a′(x)) = 〈RNS-DecompC′(a(x)), evk〉 mod PQ.

In RNS-DecompC′(a(x)) mod PQ computation, we avoid CRT composition
using the fast base conversion.

2. We apply modulus-switching using ModDown to reduce the size of noise:

(b′′(x), a′′(x)) = b(b′(x), a′(x))/P c mod Q

3. Return (c(x) + b′′(x), b(x) + a′′(x)).

Since we just make differences in key-switching, we only need to revise
KSGen(s1, s2), KeyGen, and Multevk(ct, ct′) in Section 2. We remark that the case
of dnum = 1 is same as the HEAAN-RNS scheme. Using larger dnum increases the
number of evaluation keys, but it reduces the dimension of ring or increases the
parameter L when we assume the same level of security. Detailed comparisons
with HEAAN-RNS and SEAL (v.3.3) are contained in Section 3.2.

5 In the case of SEAL v3.2, they use the bit-decomposition technique with the RNS-
decomposition to reduce the noise growth. But, this method also has a drawback.
It increases the length of the public key vector for key-switching further, which is
directly related to the complexity of the process.
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3.1 Scheme description

We will focus on differences between the HEAAN-RNS scheme and ours. The other
parts which are not mentioned in this section are same as the scheme in Section 2.
In this section, let

C′ = {Qj}0≤j<dnum =

(j+1)α−1∏
i=jα

qi


0≤j<dnum

for a given integer dnum > 0 and α = (L+ 1)/dnum. Also, let Q̂j =
∏
i 6=j Qi and

P =
∏k−1
i=0 pi, and assume |P | ≥ max0≤j<dnum(Qj).

KSGen(s1, s2, dnum). For given secret polynomials s1, s2 ∈ R, sample (a′(0), . . . ,

a′(k+L)) ← U
(∏k−1

i=0 Rpi ×
∏L
j=0Rqj

)
and sample an error e′ ← χerr. Output

switching keys {swkj}0≤j<dnum as

(
swk

(0)
j = (b′

(0)
j , a′

(0)
j ), . . . , swk

(k+L)
j = (b′

(k+L)
j , a′

(k+L)
j )

)
∈
k−1∏
i=0

R2
pi ×

L∏
i=0

R2
qi ,

where b′
(i)
j ← −a′

(i)
j · s2 + e′ (mod pi) for 0 ≤ i < k and b′

(k+i)
j ← −a′(k+i)j · s2 +

[P ]qi · [Q̂j ]qi · s1 + e′ (mod qi) for 0 ≤ i ≤ L.

KeyGen. First, sample s← χkey and set a secret key as sk← (1, s) and evaluation

keys as {evki}0≤j<dnum ← KSGen(s2, s).

For convenience, let Ci = {q0, . . . , qi}, C′i = {qiα, . . . , q((i+1)α−1} and let Di =
(∪0≤j<iC′j) ∪ {p0, . . . , pk−1}.

Multevk(ct, ct′). Given two ciphertexts ct =
(

ct(j) = (c
(j)
0 , c

(j)
1 )
)
0≤j≤`

and ct′ =(
ct′(j) = (c

′(j)
0 , c

′(j)
1 )

)
0≤j≤`

, perform the followings and return the ciphertext

ctmult ∈
∏`
j=0R

2
qj .

1. For 0 ≤ j ≤ `, compute

d
(j)
0 ← c

(j)
0 c
′(j)
0 (mod qj),

d
(j)
1 ← c

(j)
0 c
′(j)
1 + c

(j)
1 c
′(j)
0 (mod qj),

d
(j)
2 ← c

(j)
1 c
′(j)
1 (mod qj).

2. RNS-Decompose:
2-1. Zero-padding and Split: Let β = d(`+ 1)/αe,

d′
(i)
2,j =

{
d
(jα+i)
2 · [Q′]qjα+i

if jα+ i ≤ `
0 otherwise

for 0 ≤ i < α, 0 ≤ j < β and Q′ =
∏αβ−1
i=`+1 qi.
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2-2. RNS-Decompose:

d′
(i)
2,j ← d′

(i)
2,j · [Q̂−1j ]qjα+i

for 0 ≤ i < α and 0 ≤ j < β with jα+ i ≤ `.
3. Modulus-Raise: compute d̃2,j = ModUpC′j→Dβ

(d′2,j).

4. Inner Product: compute

c̃t = (c̃t
(0)

= (c̃
(0)
0 , c̃

(0)
1 ), . . . , c̃t

(k+`)
= (c̃

(k+`)
0 , c̃

(k+`)
1 )) ∈

k−1∏
i=0

R2
pi ×

∏̀
j=0

R2
qj ,

where c̃t
(i)

=
∑β−1
j=0 d̃

(i)
2,j · evk

(i)
j (mod pi) for 0 ≤ i < k and c̃t

(k+i)
=∑β−1

j=0 d̃
(k+i)
2,j · evk

(k+i)
j (mod qi) for 0 ≤ i < αβ.

5. Modulus-Down: compute(
ĉ
(0)
0 , . . . , ĉ

(`)
0

)
← ModDownDβ→C`

(
c̃
(0)
0 , . . . , c̃

(k+αβ−1)
0

)
,(

ĉ
(0)
1 , . . . , ĉ

(`)
1

)
← ModDownDβ→C`

(
c̃
(0)
1 , . . . , c̃

(k+αβ−1)
1

)
.

6. Output the ciphertext ctmult = (ct
(j)
mult)0≤j≤`, where ct

(j)
mult ← (ĉ

(j)
0 +d

(j)
0 , ĉ

(j)
1 +

d
(j)
1 ) (mod qj) for 0 ≤ j ≤ `.

Figure 1 shows the overall process of our multiplication algorithm from Step
2 to Step 4, which are the key parts of our algorithm. The gray area in Figure 1
indicates temporary moduli {p0, p1, . . . , pk−1}.

Fig. 1. Overview of our algorithm from Step 2 to Step 5.

Remark 2 (Correctness). The correctness of our scheme is directly followed from
the correctness of ModUp, ModDown, RNS-Decomp, RNS-Power. Detailed proof for
the correctness and noise growth is contained in Appendix.

Remark 3 (Security). In our scheme, we change the key generation and the mul-
tiplication algorithm. A way of generating evaluation key is changed, but our
evaluation key is also an addition of information about secret key and encryp-
tion of zero. Therefore, the security of our scheme is also based on the Ring-LWE
problem (same as HEAAN-RNS).
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Remark 4 (Quantization and Batching). The homomorphic encryption scheme
in Section 2 is described for a plaintext m(x) ∈ R = Z[X]/(XN + 1). To en-
crypt a vector of complex numbers, we use an isomorphism between CN/2 and
R[X]/(XN + 1). Choose an isomorphism ρ : CN/2 → R[X]/(XN + 1) and de-
fine Encode(m, ∆) = d∆ · ρ−1(m)c = m(x) ∈ R. The HEAAN-RNS scheme uses
the same scaling factor ∆ for all levels by letting qi ' ∆ for all i. However, this
method yields additional noise in Rescale process. Therefore, as in SEAL, we use
different scaling factors for each level, which means that we just regard Rescale

process as dividing scaling factor by qi.

3.2 Comparison

In this section, we compare our scheme with HEAAN-RNS and SEAL v3.3. We note
that the HEAAN-RNS scheme and SEAL v3.3 can be regarded as (dnum = 1)-case
and (dnum = L+1)-case of our scheme, respectively. Before comparison, we check
the complexity of the homomorphic multiplication of our scheme.

Complexity of Homomorphic Multiplication. We assume that ciphertexts
and evaluation keys are NTT (Number-theoretic transform) transformed in ad-
vance. Also, we only count the the number of multiplications in Zpi or Zqi for
complexity. The followings are complexity for each step of the multiplication.
Here, we ignore the last step which only needs some additions (no multiplica-
tion).

Step 1. This step computes tensor product of two vectors (with length 2). By
performing in the sense of Karatsuba multiplication, it only requires 3 polynomial
multiplications. Therefore, this step requires 3 Hadamard multiplications and 3
inverse NTT transformations for each ring Rqi

6: 3(`+ 1)N + 3(`+ 1)N logN

Step 2-2. Step 2-1 just rearranges the vector and zero-padding, which requires
no complexity, and the multiplications in Step 2-1 can be merged into the mul-
tiplications in Step 2-2. Hence, we can ignore this part. In Step 2-2, ` modulus
multiplications are needed: ` ·N .

Step 3. ModUp requires n(m − n) multiplications for input vector size n and
output vector size m. Hence, the complexity for ModUpCj→Dβ is α(αβ + k − α).
Since we have to perform it β times for each coefficient, the total complexity is
αβ(αβ + k − α)N .

Step 4. This step can be divided into the following 4 sub-steps:

1. NTT transform: we need to apply the NTT algorithm for each {d̃(i)2,j}0≤i<k+αβ :

β(k + αβ)N logN

2. Hadamard Mult.: 2β(k + αβ)N .
3. Summation: there is no multiplication.
4. Inverse NTT transform: (k + αβ)N logN .
6 In Step 1, inverse NTT transform is needed for the next step (modulus raising).
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N `+ 1 k log2 PQ λ log2(Total Complexity)

65536 24

1 1136 147.6 29.67 SEAL v3.3
2 1181 144.2 28.94
3 1227 141.3 28.60
4 1272 138.3 28.39
6 1363 132.4 28.16
8 1454 128.3 28.05 λ > 128
12 1635 118.2 27.96
24 2180 94.3 27.97 HEAAN-RNS

Table 1. Complexity of homomorphic multiplication for fixed `.

N log2 PQ λ `+ 1 k log2(Total Complexity)

65536 1450 133.7

15 15 27.13 HEAAN-RNS

20 10 27.64
24 6 28.16
27 3 28.88
29 1 30.17 SEAL v3.3

Table 2. Complexity of homomorphic multiplication for fixed log2 PQ and λ.

Step 5. ModDown requires m(n −m) multiplications for input vector size n and
output vector size m. Hence, the complexity for ModDownDβ→C` is `(k+αβ− `).
Since we have to perform it for each coefficient, the total complexity of this step
is ` · (k + αβ − `) ·N .

If we set k to α and regard all parameters except k as constants, the total
complexity of the multiplication is approximately

N
{

(l + logN) · k + (2 + logN)l2 · (1/k)
}

+ (constant)

since α · β ' l. Hence, the total complexity is minimized when k =
√

2+logN
l+logN · l.

As a result, from the point of view of complexity, it is better to use proper k
between 1 and l.

Comparison. Now, we compare various parameter sets for our scheme, which
have different k values. First, Table 1 shows parameter sets with various k for
fixed `, and corresponding complexity of homomorphic multiplication. Note that
the first and the last row correspond to SEAL v3.3 and HEAAN-RNS scheme7,
respectively. Suppose that we need an optimal parameter set which has `+1 = 24
and ensures λ > 128. Then, it is better to set k to 8, which requires the lowest
complexity among the values that ensure enough security.

Table 2 shows parameter sets with various ` and k for fixed log2 PQ, and
corresponding complexity of homorphic multiplication. As seen from the table,
HEAAN-RNS can only support depth 14 computation without bootstrapping. On

7 Here, SEAL v.3.3 and HEAAN-RNS indicate the scheme corresponding to each paper
and library.
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the other hand, SEAL v3.3 supports depth 28 computation, but it requires the
largest complexity and public key size for re-linearization. Since there is a trade-
off between supported depth computation and complexity, it is important to
choose proper k depending on the situation that we are in.

4 Better Homomorphic Sine Evaluation

As mentioned in Section 2.3, the key part of the bootstrapping for HEAAN is a
homomorphic evaluation of a sine function. In other words, the way to approx-
imate a sine function by a polynomial is important in the bootstrapping for
HEAAN. Also, all the previous works [5, 7] can be simply represented by

[t]q '
q

2π
sin( 2π

q t) ' p(t)

for some suitable polynomial p(t) ∈ R[X], and the difference between those
works [5, 7] occurs in the step of approximating a sine function by a polynomial.

Recall that an input value t can be represented as t = qI+m for some |I| < K
and m� q. Hence, t

q locates close enough to some integer, and it is the reason
why the first approximation of the modulus operation with the sine function
is reasonable. However, all the previous works [5, 7] do not use this property
in the second approximation. In other words, they just find a polynomial that
approximates a sine function well in a global sense. Therefore, there is a room
for finding a better approximate polynomial p(t) based on the property.

From now on, by scaling and shifting t, we approximate cos(2πt) instead of
sin( 2πt

q ). This enables us to use the hybrid method that combines polynomial
approximation and double angle formula. Now, the condition for an input t
changes to t ∈ ∪K−1i=−K+1Ii, where Ii = [i− 1

4 − ε, i−
1
4 + ε].

4.1 Our Method

When a sufficiently smooth function is estimated by an interpolation polynomial,
an error, difference between a real value and an estimated value, can be simply
represented due to the following theorem.

Theorem 1 (polynomial interpolation). Let f be a function in Cn+1[a, b]
and pn be a polynomial of degree ≤ n that interpolates the function f at n + 1
distinct points t0, t1, · · · , tn ∈ [a, b], i.e. pn(ti) = f(ti) for all 0 ≤ i ≤ n. Then,
for each t ∈ [a, b], there exists a point ψt ∈ [a, b] such that

f(t)− pn(t) =
f (n+1)(ψt)

(n+ 1)!
·
n∏
i=0

(t− ti). (2)

Let pn(t) be the interpolation polynomial of degree ≤ n that interpolates
cos(2πt) at n + 1 distinct points. Then, the error bound between cos(2πt) and
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pn(t) can be computed through Equation 2. Even though the term f(n+1)(ψt)
(n+1)! in

Equation 2 is hard to be estimated exactly, it is bounded by the constant when f
is cos(2πt). Thus, the error bound of polynomial approximation mainly depends
on the other term

w(t) =

n∏
i=0

(t− ti)

for pre-determined t0, t1, . . . , tn ∈ [a, b] which are called nodes. Therefore, we
need to choose {ti}1≤i≤n appropriately to minimize the maximum value of w(t)
in a specified domain of t. In the case of the Chebyshev method, the nodes are
chosen by ti = b+a

2 + b−a
2 · cos( 2i−1

2n+2π) for 1 ≤ i ≤ n+ 1 in the range [a, b], and

these nodes make the upper bound of w(t) in the whole interval 1
2n · (

b−a
2 )n+1

(which is ( b−a2 )n+1 in the case of the Taylor approximation).

Although the Chebyshev method gives fairly good error bound in a global
sense, it is not appropriate for our purpose because it does not consider the
condition that t is near one of the points. Therefore, we focus on the bound of
w(t) for t ∈ ∪K−1i=−K+1Ii, where Ii = [i − 1

4 − ε, i −
1
4 + ε], and propose a better

method for this setting.

Our Optimized Nodes. We choose nodes as the Chebyshev method in each
interval Ii = [i − 1

4 − ε, i −
1
4 + ε] for all −K < i < K. More precisely, in the

interval Ii, we choose di nodes ti,j = i − 1
4 + ε · cos

(
2j−1
2di

π
)

for 1 ≤ j ≤ di.

Let n =
∑
di − 1 and pn be the polynomial of degree ≤ n that interpolates the

function cos(2πt) at n+1 distinct points ti,j (−K < i < K, 1 ≤ j ≤ di). In other
words, pn satisfies the following equation:

pn(ti,j) = cos(2πti,j) for −K < i < K, 1 ≤ j ≤ di

Then, as in Equation 1, we can deduce the following upper bound of ||w(t)||:

||w(t)|| ≤ 1

2di−1
· εdi ·

K−1−i∏
j=1

(j + ε)di+j ·
K−1+i∏
j=1

(j + ε)di−j ,

when t ∈ Ii = [i − 1
4 − ε, i − 1

4 + ε]. Therefore, || cos(2πt) − pn(t)|| = O(εdi)
on Ii, which means that the error bound decreases as ε, representing the ratio
between the size of a message and the size of a cipertext modulus, gets smaller.
In contrast, the error between cos(2πt) and pn(t) obtained from the Chebyshev

method is bounded by (2π)n+1

(n+1)! ·
Kn+1

2n , which is not affected by ε. In sum, let

Mi = Maxt∈Ii ||w(t)||, then we obtain

|| cos(2πt)− pn(t)|| ≤ (2π)n+1

(n+ 1)!
·Max{M−K+1,M−K+2, . . . ,MK−1} (3)

for t ∈ ∪K−1i=−K+1Ii, where Ii = [i− 1
4 − ε, i−

1
4 + ε].
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How to choose d−K+1, . . . , dK−1. For each integer i, we have to decide di,
the number of nodes in the interval Ii = [i− 1

4−ε, i−
1
4 +ε], and it is done by the

following algorithmical way. We first initialize di = 1 for all i. With these di’s,
we compute each Mi and find the index that has a maximum Mi value. Then,
if i0 = argmaxMi, we increase di0 by 1. We repeat this process until the total
degree (=

∑
di - 1) becomes target degree.

Comparison. We conduct an experiment to compare our method and the
Chebyshev method. We compare the experimental error bound of our method
with that of the other method. Figure 2 shows experimental error bounds be-
tween the function cos(2πt) and its approximate polynomials obtained from each
method. Figure 2(a) is obtained by fixing n = 76 and varying ε and Figure 2(b)
is obtained by fixing log2 ε = −10 and varying n. Since we bound the term
f(n+1)(ψt)

(n+1)! in Equation 2 by a constant, an exact error bound is smaller than the

theoretical error bound explained above.
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(b) Fix log2 ε = −10 and vary n

Fig. 2. Error bounds log2(||f − pn||) for our optimized interpolation (K = 12).

As seen in Figure 2, our method far outperforms the Chebyshev method. For
fixed n = 76, for example, log2 value of the experimental error bound of ours
is about -25.6 when log2 ε = −10, but that of the Chebyshev method is about
-1.1 independent of ε. Also, for fixed log2 ε = −10, the degree of an interpolation
polynomial of the Chebyshev method needs to be greater than 103 to yield the
same level of the experimental error bound as the interpolation polynomial of
degree 76 of ours.

4.2 Homomorphic evaluation of pn(t)

After we get an approximate polynomial of degree ≤ n using our optimized
method, we need to evaluate a value of the function at t in a homomorphic way.
Naive approach is to compute ti for all i ∈ {0, 1, . . . , n} first and then evaluate
pn(t) =

∑n
i=0 pi · ti. Unfortunately, due to the un-stability of the coefficients,

this way of computation not only can yield a lot of numerical errors but also
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make homomorphic evaluation difficult. Especially, extremely small pi values
make homomorphic evaluation inept since we need to multiply a huge modulus
to encrypt these values. To avoid this problem, we represent the polynomial with
the Chebyshev basis instead of ti’s.

The Chebyshev polynomials Ti’s on [−1, 1] are defined recursively by

T0(t) = 1, T1(t) = t,

Ti(t) = 2tTi−1(t)− Ti−2(t) for i ≥ 2

Then, Ti satisfies the equation Ti(cos θ) = cos(iθ) for all θ, thus |Ti(t)| ≤ 1 for
all |t| ≤ 1. Since the domain of our approximate polynomial is [−K,K], we use
T̃i(t) = Ti(

t
K ) instead of Ti for each i. Note that |T̃i(t)| ≤ 1 for all |t| ≤ K.

Since each T̃i is a polynomial of degree i, {T̃i}ni=0 forms a basis for the
vector space of polynomials of degree ≤ n. Hence, pn(t) can be represented by a
linear combination of {T̃i}ni=1 as pn(t) =

∑n
i=0 ci · T̃i(t) for some c0, · · · , cn ∈ R.

Well, these ci values also can be un-stable as in the case of the original ti basis
representation. However, since |T̃i(t)| ≤ 1 for all |t| ≤ K, the term ci · T̃i(t)
with extremely small ci has little effect on the value of pn(t). Therefore, we
can simply ignore the term having extremely small ci, which not only causes
numerical errors but also makes the homomorphic evaluation inefficient.

Algorithm 1 Baby-step Giant-step algorithm

1: Input : A polynomial of degree n, p =
∑n

i=0 ciTi.
2: Let m be the smallest integer satisfying 2m > n and l ≈ m/2.
3: Evaluate T2(t), T3(t) · · · , T2l(t) inductively.
4: Evaluate T2l+1(t) · · · , T2m−1(t) using the equation T2i(t) = 2Ti(t)

2 − 1.
5: Find polynomials q and r of degree < 2m−1 which satisfy p = q ·T2m−1 +r in forms

of a linear combination of Chebyshev basis.
6: Evaluate q(t) and r(t) recursively. (Repeat 5 with p being replaced by q and r until

the degree of a quotient and a remainder become smaller than 2l)
7: Evaluate p(t) with q(t), r(t) and T2m−1(t).
8: Output : p(t)

Next, we can use the Baby-step Giant-step algorithm (Algorithm 1) to evalu-
ate the polynomial pn(t). This algorithm enables us to evaluate pn(t) in 2

√
2n+

1
2 log2 n+O(1) non-scalar multiplications and dlog2 ne depth consumption. More
precisely, with m the smallest integer satisfying 2m > n and l ≈ m/2, we can
evaluate pn(x) with 2l + 2m−l +m− l− 3 non-scalar multiplications while con-
suming m depth.

Also, we can use the Paterson-Stockmeyer algorithm for Chebyshev polyno-
mials suggested in [5]. In [5], authors modify the original Paterson-Stockmeyer
algorithm [19] to evaluate polynomials represented in the Chebyshev basis. They
propose an algorithm that enables evaluating a polynomial of degree n repre-
sented in the Chebyshev basis with

√
2n + log2 n + O(1) non-scalar multiplica-

tions, see [5] for more details. By using this algorithm, we can evaluate pn(t)
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with
√

2n + log2 n + O(1) non-scalar multiplications while consuming dlog2 ne
depth. More precisely, with k ≈

√
n/2 and the smallest integer m satisfying

(2m − 1)k > n, we can evaluate pn(t) with 2m−1 + 2m+ k− 4 non-scalar multi-
plications while consuming dlog2 ke+m depth.

Even though the Paterson-Stockmeyer algorithm is asymptotically better
than the Baby-step Giant-step algorithm, it does not mean that the Paterson-
Stockmeyer algorithm outperforms the Baby-step Giant-step algorithm in a prac-
tical sense. The degree of an approximate polynomial that we use is not so big in
practical, and we can reduce it further by using the hybrid method which will be
introduced in the next section. Moreover, when the degree n is small, the effect
of the term log2 n becomes greater, especially in the Paterson-Stockmeyer algo-
rithm. In fact, the Baby-step Giant-step algorithm shows the better performance
based on our experiment when degree n is small. For these reasons, we use the
Baby-step Giant-step algorithm instead of the Paterson-Stockmeyer algorithm.

4.3 Hybrid Method

Recall that, in [7], authors scale down an input t by a power of two and use
double-angle formula to make it locate close enough to the origin before they
use the Taylor approximation. We can also apply this idea to our method simply
by using double angle formula of cosine8.

Suppose we scale down t by 2r before using our method and let t′ = t/2r.
We say the number of scaling is r in this case. Then, we need to approximate
cos(2πt′) based on the fact that t′ is contained in one of the intervals Ĩi =
[ 1
2r (i − 1

4 − ε),
1
2r (i − 1

4 + ε)]. Naturally, we choose di nodes in each interval Ĩi

by t̃i,j = 1
2r

(
i− 1

4 + ε · cos
(

2j−1
2di

π
))

for 1 ≤ j ≤ di and |i| < K to apply

our method. Then, we can see from Equation 2 that all the terms in w(t) =∏n
i=0(t − ti) decrease by a factor of 2r compared to before, and thus degree n

can be smaller while ensuring the same level of error bounds as before. However,
since the other term 1/(n+ 1)! is difficult to predict how it changes as n varies,
it is hard to predict an exact value of degree that yields the same level of error
bounds as the method without scaling.

We conduct an experiment to find the degree that gives the same level of er-
ror bound as the original method (the method without scaling) for each number
of scaling. The result of the experiment is given in Table 3. The first column
indicates the degree of approximate polynomials from the original method and
the other columns represents the minimum degree of approximate polynomials
that ensure the same level of error bounds for each number of scaling and cor-
responding depth consumption. Note that we need to consume dlog2 ne detph
to evaluate pn(t) in a homomorphic way and require r more depth for double
angle formula for a cosine function when the number of scaling is r. As our
expectation, the degree of an approximate polynomial gradually decreases as

8 Previous method uses a sine function and double angle formula for a sine function
needs both cos(t) and sin(t) to compute sin(2t).
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Degree Depth
# of scaling

1 2 3
Degree Depth Degree Depth Degree Depth

76 7 49 6+1 31 5+2 24 5+3
86 7 57 6+1 40 6+2 28 5+3
96 7 65 7+1 45 6+2 34 6+3
106 7 72 7+1 51 6+2 38 6+3
116 7 80 7+1 57 6+2 43 6+3
126 7 88 7+1 63 6+2 49 6+3
136 8 94 7+1 70 7+2 55 6+3

Table 3. Minimum degree of an approximate polynomials to ensure the same level of
error bound for each number of scaling and corresponding depth consumption. (K = 12
and log2 ε = −10)

the number of scaling increases. However, even the coefficients of the Cheby-
shev basis representation become more stabilized and the number of non-scalar
multiplications decreases, it does not necessarily mean that the scaling is always
favorable because depth consumption can increase.

In the case of degree 76, if we scale by a factor of 4, we can compute the
approximate polynomial with depth consumption 7 as the original while the
number of non-scalar multiplications based on Algorithm 1 decreases from 24
to 13. Therefore, the scaling is unconditionally favorable in this case. However,
in the case of degree 116, if we scale by a factor of 2, even the number of non-
scalar multiplications decreases, we need to consume one more depth compared
to the original method. Therefore, in this case, we need to consider the trade-off
between the number of non-scalar multiplications and the depth consumption.
In conclusion, we need to conduct an experiment to decide whether we use the
hybrid method or not, and decision will depend on the trade-off between the
number of non-scalar multiplications and the depth consumption9.

4.4 Overall Comparison

In this section, we compare our method with the previous work [5]. In [5], authors
use the approximate polynomial of degree 119 obtained from the Chebyshev
method.10 In our case, we choose degree 74 because the approximate polynomial
of degree 74 obtained from our method gives the same level of error as the
inevitable error occurs between t and 1

2π sin(2πt) under the parameter sets that
used by the previous work [5]. The comparison between our method and the
previous work [5] is given in Table 4. As seen from the table, by using the hybrid
method with the number of scaling 2 and evaluating the obtained approximate
polynomial of degree 30 with Algorithm 1, we can decrease the number of non-
scalar multiplications almost by half while consuming the same depth.

9 The code for finding an approximate polynomial for the cosine function can be found
at [15].

10 In fact, they use the nodes ti = K cos (iπ/n) for 0 ≤ i ≤ n instead of nodes ti =
K cos ((2i− 1)π/(2n+ 2)) for 1 ≤ i ≤ n+ 1. But, there is no big difference.
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Method Degree # of Scaling
Degree Non-scalar

Depth
(After scaling) Multiplication

Ours 74
0 74 24 (Alg 1) 7
1 49 16+1 (Alg 1) 6+1
2 30 11+2 (Alg 1) 5+2

[5] 119 - - 20 (PS alg) 7

Table 4. Comparison between our method and the previous work. [5] (K = 12 and
log2 ε = −10)

4.5 Put Everything Together

Using the scheme in Section 3 and the above sine evaluation method, we can
do a better bootstrapping for Full-RNS variant of HEAAN. Recall that the boot-
strapping can be divided into four steps: modular raising, linear transformation,
sine evaluation, and inverse linear transformation. For linear transformation and
the inverse part, we used the techniques proposed in [12, 5].

Sine Evaluation. To approximate a sine function, we use the polynomial in-
terpolation method with our optimized nodes, which performs better than the
other methods because an input for a sine function is restricted to some small
intervals. Also, we further improve it by using the hybrid method, which com-
bines our method with double angle formula of cosine, and it can decrease the
number of non-scalar multiplications a lot while consuming the same depth.

With the approximate polynomial obtained from our method, we evaluate it
with the Baby-step Giant-step algorithm, which shows better performance when
the degree of an approximate polynomial is small. In our implementation, we fix
log2 ε = −10 and use the approximate polynomial of degree 30 obtained from
the hybrid method with the number of scaling 2.

Scaling Factor Control. After each homomorphic multiplication and rescal-
ing, the scaling factor changes. Therefore, the bootstrapping process can also
change the scaling factor, and this can be a problem when we want to do some
operations with an output of the bootstrapping and fresh ciphertexts. Even
though they are in the same level, their scaling factor can be different, and thus,
for example, homomorphic addition between these two ciphertexts can yield an
un-expected result.

To solve this problem, at the last step of the bootstrapping, evaluation, we
multiply ∆′ and perform RS(·) with a constant ∆′ for which (∆′·∆)/qL′ = ∆L′−1,
where ∆L′−1 is the scaling factor at level L′ − 1 and ∆ is the current scaling
factor. This requires one level consumption, but we can optimize it by merging
this process with the last step of linear transformation in the bootstrapping.

5 Implementation

We implement our full-RNS variant of HEAAN in Section 3 and its bootstrap-
ping. The experiments are conducted in PC with Intel(R) Core(TM) i9-9820X
CPU @ 3.30GHz using single-thread.
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5.1 Performance of basic homomorphic operations.

First, the performance of the basic homomorphic operations is given in Table 5.
The results again show why it is better to use a proper dnum. By using 1 <
dnum < L+ 1, we can reduce the complexity of the homomorphic multiplication.
For example, in Table 5, the best timing result is almost two times faster than
the dnum = 24 case which is used in the SEAL library. In addition, the first row
(dnum = 1), which corresponds to the HEAAN-RNS scheme, not only does not
satisfy the 128-bit security condition based on the Martin’s LWE estimator [1],
but also gives a 1.8 times slower result compared to the second row11.

log qi L dnum Enc Dec Mult Rescale

N = 216 45 23

1

103 ms 5 ms

773 ms

60 ms

HEAAN-RNS

4 436 ms
6 487 ms
12 660 ms
24 958 ms SEAL v3.3

Table 5. Performance of our Full-RNS variant of HEAAN with 215 slots.

5.2 Bootstrapping Performance.

For an experiment on the bootstrapping, we set two parameter sets as in Table 6
using the Martin’s LWE estimator. The bit size of each prime in modulus chain
is set to 40 for Param 1 and 45 for Param 2, and log q0 is 50 and 55, respectively.
In the case of Param 1, we used large dnum = 10 to make the security parameter
> 100. This enables us to use log2N = 15 which should be 16 if we use dnum = 1.
In our experiment, we use the approximate polynomial of degree 30 with 2 times
of scaling for sine evaluation (See 3rd parameters of our method in Table 4).

L dnum N logQ logQ+ logP Security

Param 1 19 10 32768 810 910 110.4

Param 2 27 7 65536 1270 1452 127.2

Table 6. Parameter sets

Using those two parameter sets, we ran our bootstrapping with various num-
ber of slots ns. Here, Amortized Time indicates bootstrapping time per each
slot. Because of computational errors generated in the linear transformation
part, large ns implies lower precision. Here, the precision means − log2 e, where
e is average noise generated through the bootstrapping. For example, precision
15.5 in the first row in Table 7 means that noise with average size 2−15.5 is added
through the bootstrapping.

11 Here, SEAL v.3.3 and HEAAN-RNS indicate the schemes corresponding to each library
and paper
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ns Boot Time Precision After Level Amortized Time

Param 1

20 6.8 s 15.5 5 7.1 s
21 7.0 s 16.8 3 3.5 s
22 7.5 s 15.0 3 1.87 s

Param 2

25 28 s 18.5 9 0.87 s
210 37.6 s 15.3 7 0.036 s
214 52.8 s 10.8 7 0.0032 s

Table 7. Performance of the bootstrapping in our scheme

In our experiment, we used fixed ε = 2−10. Because of the difference between
t and sin t 12, the maximum precision for the bootstrapping is limited to ' ε2 =
2−20. From the ns = 25 case with Param 2, which ensures 18.5 precision, we can
see that sine evaluation with our method yields an accurate enough result.

Comparison. The last row of Table 4 in [5] and Table 2 in [12] use similar
parameter sets to the last row of Table 7. Timing results were 158 seconds in [5]
and 127 seconds in [12], which is just 52.8 seconds in our experiment. In other
words, using the Full-RNS variant with proper dnum and the improved method
for sine approximation gives a 3 and 2.5 times faster result than the previous
works, respectively.

6 Conclusion

In this work, we suggest the generalized key-switching method for Full-RNS
variant of HEAAN and propose a better method for approximating a sine function.
With these improvements, we increase the efficiency of the bootstrapping for
Full-RNS variant of HEAAN. Our method of approximating a sine function is
specialized in the setting when inputs for a function are restricted to union
of small intervals. Hence, we can also apply our method effectively to another
functions which has a restricted domain as in the case of the bootstrapping for
HEAAN.

So far, the research on approximating a modulus function is based on a
sine function. Therefore, it has the limitation because of the inevitable error
generated from the approximation of [t]q with 1

2π sin(2πt). We expect that we
can overcome this limitation by finding another approximation of [·]q operation.
We think it can be a new breakthrough of improving the bootstrapping.
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A Correctness and Noise Growth of Homomorphic
Multiplication

Before proving the correctness of the homomorphic multiplication, first remind
the properties of ModUp and ModDown with the following three equations:

‖CRTC∪B(ModUp([a(x)]q0 , [a(x)]q1 , . . . , [a(x)]q`))‖∞ ≤ (`+ 1) ·Q, (A.1)

CRTC∪B(ModUp([a(x)]q0 , [a(x)]q1 , . . . , [a(x)]q`)) ≡ a(x) mod Q, (A.2)

∥∥∥∥CRTC(ModDown([a(x)]q0 , . . . , [a(x)]q` , [a(x)]p0 , . . . , [a(x)]pk−1))−
⌊
a(x)

P

⌉∥∥∥∥
∞
< k,

(A.3)

where B = {p0, . . . , pk−1} and C = {q0, . . . , q`}. With the above three equations and
properties of RNS-Decompose and RNS-Power, we can prove the correctness of
the homomorphic multiplication in our scheme.

Theorem 2. The algorithm Multevk(ct0, ct1) returns (b3(x), a3(x)) such that

b3(x) + a3(x) · s(x) = M1(x) ·M2(x) +M0(x) · e1(x) +M1(x) · e0(x) + ε(x),

where ‖ε(x)‖∞ < ‖s(x)‖1, when P > 2βNefresh · (max0≤i<β Qi). Here, cti =
(bi(x), ai(x)) ∈ R2

Q, and bi(x) + ai(x) · s(x) = Mi(x) + ei(x) for i = 0, 1.

Proof. For simplicity, we assume that ` = L and (`+1) is a multiple of α. First,
a vector (d0(x), d1(x), d2(x)) which satisfies

d0(x) + d1(x) · s(x) + d2(x) · s(x)2 = (M0(x) + e0(x)) · (M1(x) + e0(x))

= M0(x) ·M1(x) +M0(x) · e1(x) +M1(x) · e0(x) + e0(x) · e1(x)

= M0(x) ·M1(x) + e2(x) ∈ RQ.

is obtained after Step 1.
In Step 2, since ` = L and (L + 1) is a multiple of α, β equals to dnum and

the zero-padding part can be omitted. Then,

([d2(x) · Q̂−10 ]Q0
, . . . , [d2(x) · Q̂−1dnum−1]Qdnum−1

) = RNS-DecompC′(d2(x))

is returned after RNS-Decompose step.
Also, Modulus-Raise step returns vectors of length k + `+ 1,

([d̃
(i)
2 (x)]q0 , . . . , [d̃

(i)
2 (x)]q` , [d̃

(i)
2 (x)]p0 , . . . , [d̃

(i)
2 (x)]pk−1

)

= ModUpCi→C∪B([d2(x) · Q̂−1i ]qiα , . . . , [d2(x) · Q̂−1i ]q(i+1)α−1
),

where d̃
(i)
2 (x) ∈ RPQ, for 0 ≤ i < dnum. From Equation A.1 - A.2, we can check

that d̃2(x) satisfies the following equations:

d̃
(i)
2 (x) ≡ d2(x) · Q̂−1i mod Qi and

∥∥∥d̃(i)2 (x)
∥∥∥
∞
≤ (α+ 1) ·Qi. (A.4)
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Note that the norm of d̃2
(i)

(x) is still much smaller than PQ, and for this reason,
ModUp does not harm the functionality of RNS-Decompose and RNS-Power.

Next, we suppose that evaluation keys evki = (Bi(x), Ai(x)) ∈ R2
PQ which

satisfy Bi(x) + Ai(x) · s(x) = P · Q̂i · s2(x) + Ei(x) ∈ RPQ, where ‖Ei(x)‖∞ <
efresh, are generated in the key generation step. Then, the inner product step

returns (B′(x), A′(x)) =
∑β−1
i=0

[
d̃2

(i)
(x) · (Bi(x), Ai(x))

]
and it satisfies the fol-

lowing equation:

B′(x) +A′(x) · s(x) = P

β−1∑
i=0

(
d̃2

(i)
(x) · Q̂i · s2(x)

)
+

β−1∑
i=0

(
d̃2

(i)
(x) · Ei(x)

)
= P · d2(x) · s2(x) + E′(x) ∈ RPQ,

where ‖E′(x)‖∞ < N
∑

0≤i<β Qi · efresh ≤ N · β · efresh · (max0≤i<β Qi) and N is
the dimension of the ring.

After that, we apply modulus-down process to revert the modulus space from
RPQ to RQ and to reduce the size of E′(x). Let (B̃(x), Ã(x)) be the return
of modulus-down step with CRT decomposed representation. From the modulus
switching technique and Equation A.3, we can see that (B̃(x), Ã(x)) has the
following property:

B̃(x) + Ã(x) · s(x) = d2(x) · s2(x) +

⌊
E′(x)

P

⌉
+ ε(x) ∈ RQ,

where ‖ε(x)‖∞ < ‖s(x)‖1. Since P > 2 · N · β · efresh · (max0≤i<β Qi), each
coefficient of E′(x)/P is in the range (−0.5, 0.5), and thus rounding of the poly-
nomial becomes a zero polynomial. Therefore, it follows that B̃(x)+Ã(x) ·s(x) =
d2(x) · s(x)2 + ε(x) ∈ RQ.

At the last step, we compute and return (b3(x), a3(x)) = (d0(x)+B̃(x), d1(x)+
Ã(x)). Then, from the equation

b3(x) + a3(x) · s(x) = d0(x) + d1(x) · s(x) + d2(x) · s(x)2 + ε(x)

= M0(x) ·M1(x) + e2(x) + ε(x),

the correctness of homomorphic multiplication is followed. Furthermore, the size
of the noise after multiplication is given by M0(x) ·e1(x)+M1(x) ·e0(x)+e0(x) ·
e1(x) + ε(x), where ‖ε(x)‖∞ < ‖s(x)‖1. ut


