
On the Complexity of Collision Resistant Hash Functions:
New and Old Black-Box Separations

Nir Bitansky∗ Akshay Degwekar†

September 23, 2019

Abstract

The complexity of collision-resistant hash functions has been long studied in the theory of
cryptography. While we often think about them as a Minicrypt primitive, black-box separa-
tions demonstrate that constructions from one-way functions are unlikely. Indeed, theoretical
constructions of collision-resistant hash functions are based on rather structured assumptions.
We make two contributions to this study:

1. ANew Separation: We show that collision-resistant hashing does not imply hard problems
in the class Statistical Zero Knowledge in a black-box way.

2. New Proofs: We show new proofs for the results of Simon, ruling out black-box reductions
of collision-resistant hashing to one-way permutations, and of Asharov and Segev, ruling
out black-box reductions to indistinguishability obfuscation. The new proofs are quite
different from the previous ones and are based on simple coupling arguments.

∗Tel Aviv University. Email nirbitan@tau.ac.il. Member of the Check Point Institute of Information Security.
Supported by the Alon Young Faculty Fellowship, by Len Blavatnik and the Blavatnik Family foundation, and an ISF
grant 18/484.

†MIT. Email: akshayd@mit.edu. This work was done in part while visiting the FACT Center in IDC Herzliya,
supported in part by ISF grant 1861/16 and AFOSR Award FA9550-17-1-0069. Research supported in part by NSF
Grants CNS-1413920 and CNS-1350619, and by the Defense Advanced Research Projects Agency (DARPA) and the U.S.
Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.

Contents

1 Introduction 1
1.1 This Work . 2
1.2 More Related Work on Black-Box Separations . 2

2 Techniques 3
2.1 Collision Resistance When SZK is Easy . 3
2.2 Proving Simon & Asharov-Segev : A Coupling-Based Approach 5

3 Preliminaries 7
3.1 Conventions . 7
3.2 Coupling and Statistical Distance. 7

4 Separating SZK and CRHFs 8
4.1 Fully Black-Box Constructions of SZK Problems . 8
4.2 The Statistical Distance Oracle . 9
4.3 Insensitivity to Local Changes . 10
4.4 Collision Resistance in the Presence of SDO Oracle. 11

5 New Proofs of Old Separations 15
5.1 Oracle-Aided Indistinguishability Obfuscation . 15
5.2 Simon’s Collision Finding Oracle and Puncturing . 18
5.3 Smoothening for the Collision Finding Oracle . 20
5.4 Warm Up: One Way Permutations in the presence of Coll 20
5.5 Indistinguishability Obfuscation (and OWPs) in the Presence of Coll 24

References 31

A Proofs from [BDV17] 36

B Converting Advantage to Postive Advantage [BG11] 37

1 Introduction

Collision-resistant hash functions (CRHFs) are perhaps one of the most studied and widely used
cryptographic primitives. Their applications range from basic ones like “hash-and-sign" [Dam87,
Mer89] and statistically hiding commitments [DPP93, HM96] tomore advanced ones like verifiable
delegation of data and computation [Kil92, BEG+94] and hardness results in complexity theory
[MP91, KNY17].

Constructions. Collision resistance is trivially satisfied by randomoracles and in commonpractice,
to achieve it, we heuristically rely on unstructured hash functions like SHA. Accordingly, we often
think of CRHFs as a creature of Minicrypt, the realm of symmetric key cryptography [Imp95].
However, when considering theoretical constructions with formal reductions, collision resistance
is only known based on problems with some algebraic structure, like Factoring, Discrete Log,
and different short vector and bounded distance decoding problems (in lattices or in binary
codes) [Dam87, GGH96, PR06, LM06, AHI+17, YZW+17, BLVW19]. Generic constructions are
known from claw-free permutations [Dam87, Rus95], homomorphic primitives [OK91, IKO05],
and private information retrieval [IKO05], which likewise are only known from similar structured
assumptions. An exception is a recent work by Holmgren and Lombardi [HL18] which constructs
CRHFs from a new assumption called one-way product functions. These are functionswhere efficient
adversaries succeed in inverting two random images with probability at most 2−n−ω(log n). Indeed,
this assumption does not explicitly require any sort algebraic structure.

Understanding the Complexity of CRHFs. In light of the above, it is natural to study what are the
minimal assumptions under which CRHFs can be constructed, and whether they require any sort
of special structure. Here Simon [Sim98] provided an explanation for our failure to base CRHFs
on basic Minicrypt primitives like one-way functions or one-way permutations. He showed that
there are no black-box reductions of CRHFs to these primitives. In fact, Asharov and Segev [AS15]
demonstrated that the difficulty in constructing CRHFs from general assumptions runs far deeper.
They showed that CRHFs cannot be black-box reduced even to indistinguishability obfuscation (and
one-way permutations), and accordingly not to anyone of the many primitives it implies, like
public key encryption, oblivious transfer, or functional encryption.

CRHFs and SZK.An aspect common tomanyCRHF constructions is that they rely on assumptions
that imply hardness in the class SZK. Introduced by Goldwasser, Micali and Rackoff [GMR85],
SZK is the class of promise problems with statistical zero-knowledge proofs. Indeed, SZK hardness
is known to follow from various algebraic problems that lead to CRHFs, such as Discrete Log-
arithms [GK93], Quadratic Residuosity [GMR85], and Lattice Problems [GG98, MV03], as well
as from generic primitives that lead to CRHFs such as homomorphic encryption [BL13], lossy
functions [PVW08], and computational private information retrieval [LV16].

The formal relation between SZK and CRHFs is still not well understood. As possible evidence
that SZK hardness may be sufficient to obtain collision resistance, Komargodski and Yogev [KY18]
show that average-case hardness in SZK implies a relaxations of CRHFs known as distributional
CRHFs. Applebaum and Raykov [AR16] show that CRHFs are implied by average-case hardness
in a subclass of SZK of problems that have a perfect randomized encoding. Berman et al. [BDRV18]
showed that average-case hardness of a variant of entropy approximation, a complete problem for
the class of Non-Interactive SZK (NISZK), suffices to construct yet a different relaxation known as
multi-collision resistance.

1

Is hardness in SZK necessary for CRHFs? Our perception of CRHFs as a Minicrypt primitive,
as well as the result by Holmgren and Lombardi mentioned above, suggest that this should not be
the case. However, we do not know how to prove this. Meaningfully formalizing a statement of the
form “CRHFs do not require SZK hardness" requires care — it is commonly believed that SZK does
contain hard problems, and if this is the case then formally, CRHFs (or any other assumption for
that matter) imply hardness in SZK. To capture this statement we again resort to the methodology
of black-box separations; that is, we aim to prove that hard problems in SZK cannot be obtained
from CRHFs in a black-box way.

Recent work by Bitansky, Degwekar, and Vaikuntanathan [BDV17] showed that a host of
primitives, essentially, all primitives known to follow from IO, do not lead to hard problems in
SZK through black-box reductions. Their separation, however, does not imply a separation from
CRHFs; indeed, CRHFs are not known to follow from IO, and in fact according to Asharov and
Segev [AS15], cannot in a black-box way.

1.1 This Work

In this work, we close the above gap, proving that CRHFs do not imply hardness in SZK through
black-box reductions.

Theorem 1.1. There are no fully black-box reductions of any (even worst-case) hard problem in SZK to
CRHFs.

Here by fully black box wemean reductions where both the construction and the security proof
are black box in the CRHF and the attacker, respectively. This is the common type of reductions
used in cryptography. We refer the reader to the technical overview in Section 2 for more details.

New proofs of Simon and Asharov and Segev. Our second contribution is new proofs for the
results of Simon [Sim98], ruling out fully black-box reductions of CRHFs toOWPs,1 and of Asharov
and Segev [AS15], ruling out black-box reductions of CRHFs to OWPs and IO. The new proofs
draw from ideas used in [BDV17]. They are based mostly on simple coupling arguments and are
quite different from the original proofs.

1.2 More Related Work on Black-Box Separations

Following the seminal work of Impagliazzo and Rudich [IR89], black-box separations in cryptogra-
phy have been thoroughly studied (see, e.g., [Rud88, KST99, GKM+00, GT00, GMR01, BT03, RTV04,
HR04, GGKT05, Pas06, GMM07, BM09, HH09, BKSY11, DLMM11, KSS11, GKLM12, DHT12, Fis12,
BBF13, Pas13, BB15, GHMM18]). Most of this study has been devoted to establishing separations
between different cryptographic primitives and some of it to putting limitations on basing crypto-
graphic primitives on NP-hardness [GG98, AGGM06, MX10, BL13, BB15, LV16].

Perhaps most relevant to our works are the works of Simon [Sim98], Asharov and Segev [AS15]
and [BDV17] mentioned above, as well as the work by Haitner et al. [HHRS15] who gave an alter-
native proof for the Simon result (and extended it to the case of statistically-hiding commitments
of low round complexity).

1Simon also ruled out a stronger type of reductions known as semi-black-box reductions [RTV04]. We only rule out
the notion of fully black-box reductions described above.

2

We also note that [KNY18] claim to show that distributional CRHFs cannot be reduced to
multi-collision resistant hash functions in a black box way, which given the black-box construction
of distributional CRHFs from SZK hardness [KY18], would imply that SZK hardness cannot be
obtained from multi-collision resistance in a black box way. However, for the time being there
seems to be a gap in the proof of this claim [Per].

2 Techniques

We now give an overview of the techniques behind our results.

Ruling Out Black-Box Reductions. Most constructions in cryptography are fully black-box
[RTV04], in the sense that both the construction and (security) reduction are black box. In a
bit more detail, a fully black-box construction of a primitive P′ from another primitive P consists
of two algorithms: a construction C and a reduction R. The construction CP implements P′ for any
valid oracle P . The reduction RA,P , given oracle-access to any adversary A that breaks CP , breaks
the underlyingP . Hence, breaking the instantiation CP ofP′ is at least as hard as breakingP itself.

A common methodology to rule out fully black black-box constructions of a primitive P′ from
primitive P (see e.g., [Sim98, HR04, HHRS15]), is to demonstrate oracles (Γ, A) such that:

• relative to Γ, there exists a construction CΓ realizing P that is secure in the presence of A,

• but any construction C′Γ realizing P′ can be broken in the presence of A.

Indeed, if such oracles (Γ, A) exist, then no efficient reduction will be able to use (as a black-box)
the attacker A against P′ to break P (as the construction of P is secure in the presence of A).

We now move on to explain how each of our results is shown in this framework.

2.1 Collision Resistance When SZK is Easy

Our startingpoint is theworkby [BDV17]who showedoracles relative towhich Indistinguishability
Obfuscation (IO) andOne-Way Permutations (OWPs) exist and yet SZK is easy. We next recall their
approach and explain why it falls short of separating CRHFs from SZK. We then explain the
approach that we take in order to bridge this gap.

Black-box Constructions of SZK Problems. The [BDV17] modeling of problems in SZK follows
the characterization of SZK by Sahai and Vadhan [SV03] through its complete Statistical Difference
Problem (SDP). SDP is a promise problem, where given circuit samplers (C0 , C1), the task is to
determine if the statistical distance between their respective output distributions is large (> 2/3) or
small (< 1/3). Accordingly, we canmodel a black-box construction of a statistical distance problem
SDPΨ, relative to an oracleΨ, defined by

SDPΨY �

{
(C0 , C1) : SD(CΨ0 , CΨ1) ≥

2
3

}
,

SDPΨN �

{
(C0 , C1) : SD(CΨ0 , CΨ1) ≤

1
3

}
.

Jumping ahead, our eventual goal will be construct an oracle Γ � (Ψ, A) such that SDPΨ is easy in
the presence of A, and yetΨ can be used to securely realize a CRHF, in the presence of A. Here we

3

naturally chooseΨ to be a random shrinking function f , and for the SZK breaker A adopt the oracle
SDO f from [BDV17]. SDO f is a randomized oracle that takes as input a pair of oracle-aided circuits
(C(·)0 , C

(·)
1), computes the statistical distance s � SD(C f

0 , C
f
1), samples a randomvalue t ← (1/3, 2/3),

and outputs:

SDO f (C0 , C1; t) :�

{
N If s < t

Y If s ≥ t
.

This oracle is clearly sufficient to break (or rather, decide) SDP f . The challenge is in showing that
CRHFs exist in the presence of the oracle SDO f , which may make exponentially many queries to f
when computing the statistical distance.

One-Way Permutations in the Presence of SDO. Toward proving the existence of CRHFs in the
presence of SDO, we first recall the argument from [BDV17] as to why one-way permutations exist
relative to SDO, and then explain why it falls short of establishing the existence of CRHFs.

Consider the oracle Γ � (f , SDO f), where f is a randompermutation. Showing that f (x) is hard
to invert for an adversary A f ,SDO f (f (x))with access to f and SDO f relies on two key observations:

1. Inverting f requires detecting random local changes. Indeed, imagine an alternative experi-
ment where we replace f with a slightly perturbed function fx′→ f (x), which diverts a random
x′ to f (x). In this experiment, the attacker would not be able to distinguish x from x′ and
would output them with the exact same probability. Note, however, that if the attacker can
invert f in the real experiment (namely, output x) with noticeable probability, then thismeans
that the probabilities of outputting x and x′ in the original experiment must noticeably differ.
Indeed, in the original experiment x′ is independent of the attacker’s view. It is not hard to
show that without access to the oracle SDO f , such perturbations cannot be detected (this can
be shown for example via a coupling argument, as we explain in more detail in Section 2.2).

2. The SDO f oracle itself, and thus A f ,SDO f , can be made oblivious to random, local changes.
Hence, even given access to the SDO f oracle, the adversary cannot invert with non-trivial
probability. This is shown based on the idea of “smoothening”: any two circuits (C f

0 , C
f
1) can

be transformed into new circuits that do not make any specific query x with high probability.
This allows arguing that even if we perturb f at a given point, their statistical distance s does
not change bymuch. In particular, if s is moderately far from the random threshold t, chosen
by SDO, s′ the statistical distance of the perturbed circuits remains on the same side of t,
which means that SDO’s answer will remain invariant. Indeed, such “farness” holds with
overwhelming probability over SDO’s choice of t.

WhatAbout Collision Resistance? The above approach is not sufficient to argue that collisions are
hard to find (when f is replaced with a shrinking function). The reason is that collisions are “non-
local” — they are abundant, and it is impossible to eliminate all of them in a shrinking function.
In fact, as we shall show later on, a similar argument to the one above can be made to work relative
to an oracle that trivially breaks CRHFs (this leads to our new proofs of the separations of CRHFs
from OWPs and IO [Sim98, AS15]). Accordingly, a different approach is required.

Our Approach: Understanding What Statistical Difference Oracles Reveal. At high level, to
show that collisions in f are hard to find, we would like to argue that queries to SDO f leak

4

no information about any f (x), except for inputs x, which the adversary had already explicitly
revealedbyquerying f itself. Thiswould essentially reduce the argument to the standard argument
showing that random oracles are collision resistant — each new query collides with any previous
query with probability at most 2−m , where m is f ’s output length. Overall, an attacker making q
queries cannot find a collision except with negligible probability q22−m .

However, showing that SDO f reveals nothing is too good to be true. Rather, we show that this
is the case with overwhelming probability. That is, with overwhelming probability on any partial
execution, the value f (x) of any x not explicitly queried within the execution is uniformly random.
Roughly speaking, the property that such partial executions should satisfy is that all queries to
SDO f satisfy smoothness and farness conditions similar to those discussed above. The essential
observation is that when such conditions hold the answer of SDO f remains invariant not only to a
random local change, but to any local change. In particular, a partial execution transcript satisfying
these conditionswould remain invariant if we change the value f (x) for any x not explicitly queried
to any particular y , f (x).
A Note on Leakage from Random Oracles. Our approach is in part inspired by the works of
Unruh [Unr07] and Coretti et al. [CDGS18] on random oracles with auxiliary information. They show
that revealing short auxiliary information about f (so called leakage), essentially has the effect of
fixing f on a small set of values, while the rest of f remains hidden. This does not suffice for us,
because it does not restrict in any way which values are fixed. We need to ensure that all values
not explicitly queried remain hidden even under the leakage from the oracle SDO. (Our argument
is restricted though to the specific oracle SDO and does not say anything about arbitrary leakage.)

2.2 Proving Simon & Asharov-Segev : A Coupling-Based Approach

Next, we sketch the main ideas underlying the new proofs of Simon’s result that OWPs do not
imply CRHFs through fully black-box constructions, and the extended result by Asharov and
Segev, which consider not only OWPs, but also IO. In this overview, we focus on the simpler result
by Simon. We refer the reader to Section 5.4 for a complete proof of this result and to Section 5.5
for the extension to IO.

Simon’s Collision Finding Oracle. The oracle Γ � (f , Coll f) introduced by Simon consists of a
random permutation f and a collision finding oracle Coll f . The oracle Coll f given a circuit C f

returns a random w along with a random element that collides with w; namely a random w′ in the
preimage of y � C f (w). In particular, if the circuit C is compressing, then the oracle will output a
collision w , w′ with high probability, meaning that CRHFs cannot exist in its presence.

Our Proof. To prove that Coll does not help inverting f , Simon used careful conditional probability
arguments, whereas Haitner et al. [HHRS15], and then Asharov and Segev [AS15] adding also IO
to the picture, relied on a compression and reconstruction argument, originally due to Gennaro and
Trevisan [GT00](see Section 5.5.2 for a comparison).Our proof is inspired by the [BDV17] proof
that the statistical distance oracle SDO does not help inverting permutations (discussed above).
At high level, we would like to argue that the collision-finding oracle Coll, like the oracle SDO, is
oblivious to random local changes. Following the intuition outlined for SDO, an attacker that fails
to detect random local changes will also fail in inverting random permutations.

Punctured Collision Finders. To fulfil this plan, we consider a punctured version PColl of the oracle
Coll, where the function f can be erased at a given set of values S. Roughly speaking, PColl will

5

allow us to argue that Coll is not particularly sensitive to the value f (x) of almost any x. To define
PColl, we first give a more concrete description of Coll and then explain how we change it.

The oracle Coll, for any circuit C : {0, 1}k → {0, 1}∗, assigns a random input w ∈ {0, 1}k and
a random permutation π of {0, 1}k ' [2k]. It then returns (w , w′), where w′ is the first among
π(1), π(2), . . . such that C f (w) � C f (w′). The oracle PColl f

S is parameterized by a set of punctured
inputs S ⊆ {0, 1}n . Like Coll, for any C, it samples a random input w and a permutation π.
Differently from Coll, if C f (w) queries any x ∈ S, the oracle returns ⊥. Else, it iterates over the
inputs {0, 1}k according to π and finds the first value w′ such that (1) C f (w′)makes no queries to
any x ∈ S, and (2) C f (w) � C f (w′). The oracle outputs the collision (w ,w′).

The PColl oracle satisfies the following essential property. Let τ be a transcript generated by the
attacker A f ,Coll f and assume that for all Coll answers (w , w′) in τ, neither C f (w) nor C f (w′) query
any x ∈ S. Then A f ,PColl f

S generates the exact same transcript τ. Indeed, this follows directly from
the definition of the punctured oracle PColl.

Proving Hardness of Inversion by Smoothening and Coupling. Equipped with the punctured
oracle, we now explain how it can be used argue the hardness of inversion. We first consider
a smoothening process analogous to the one considered in the statistical distance separation
discussed above. That is, we make sure that (with overwhelming probability) all queries C made
to Coll are smooth in the sense that C f (w) does not query any specific input with high probability
when w is chosen at random. We then make a few small perturbations to our oracles, and argue
that they are undetectable by a coupling argument. Finally, we deduce univertability.

Step 1: Let x be the preimage that A f ,Coll f (f (x)) aims to find. We first consider, instead of Coll, the
punctured oracle PColl f

{x}. Due to smoothness, almost every transcript produced by A f ,Coll f (f (x))
is such that x is not queried by C f (w), C f (w′) for any query C and answer (w , w′) returned by
Coll . Any transcript satisfying the latter can be coupled with an identical transcript generated by

A
f ,PColl f

{x} (f (x)), and deduce that the probability of inversion (outputting x) in this new experiment
E1 is close to the probability in the original experiment E0.

Step 2: We perturb the oracle again. We sample a random x′ ← {0, 1}n and make the following
two changes: (1) we change the oracle f to fx′→ f (x), which diverts x′ to f (x), and (2) we puncture
at x′, namely, we consider PColl f

{x ,x′}.
We next observe that in this new experiment E2, x and x′ are symmetric. Accordingly, x and

x′ are output with the same probability in the experiment E2. To complete the proof, we apply a
coupling argument to show that x and x′ are output with almost the same probability also in the
previous experiment E1. This is enough as in E1 the view of the attacker is independent of x′,
which will allows us to deduce that the probability of inversion is negligible overall.

Let us describe the coupling argument more explicitly. Both experiments E1 and E2 are deter-
mined by the choice of f , x , x′ and randomness R � {w , π} for Coll. We can look at the events
X1 � X1(f , x , x′, R) and X2 � X2(f , x , x′, R), where X1 occurs when the attacker outputs x in the
experiment E1 and X2 occurs when it outputs x in E2. Similarly, we can look at X′1 and X′2, which
describe the events that x′ is output in each of the experiments. Then by coupling, we know that���Pr[X1] − Pr[X2]

��� ≤ Pr
f ,x ,x′,R

[IX1 , IX2] ,

6

where IX1 , IX2 are the corresponding indicators. The same holds for X′1, X′2. Thus, we can bound:���Pr[X1] − Pr
[
X′1

] ��� ≤ ���Pr[X1] − Pr[X2]
��� + ���Pr[X2] − Pr

[
X′2

] ��� + ���Pr
[
X′1

]
− Pr

[
X′2

] ���
≤ Pr

f ,x ,x′,R
[IX1 , IX2] + 0 + Pr

f ,x ,x′,R

[
IX′1
, IX′2

]
.

It is left to see that when fixing f , x , R the outputs in the two experiments E1 , E2 (and thus also
X1 ,X2 and X′1 ,X

′
2) are identical as long as x′ does not coincide with any of the queries to f , nor

with any of the queries induced by any PColl{x} answer (w , w′). Since the number of such queries
is bounded and x′ is chosen independently at random, this will almost surely be the case.

3 Preliminaries

In this section, we introduce the basic definitions and notation used throughout the paper.

3.1 Conventions

For a distribution D, we denote the process of sampling from D by x ← D. A function negl :
N → R+ is negligible if for every constant c, there exists a constant nc such that for all n > nc

negl(n) < n−c .

Randomized Algorithms. As usual, for a random algorithm A, we denote by A(x) the correspond-
ing output distribution. When we want to be explicit about the algorithm using randomness r, we
shall denote the corresponding output by A(x; r). We refer to uniform probabilistic polynomial-
time algorithms as PPT algorithms.

Oracles. We consider oracle-aided algorithms (or circuits) that make repeated calls to an oracle Γ.
Throughout, we will consider deterministic oracles Γ that are a-priori sampled from a distribution
Γ on oracles. More generally, we consider infinite oracle ensembles Γ � {Γn}n∈N, one distribution
Γn for each security parameter n ∈ N (each defined over a finite support). For example, we may
consider an ensemble f �

{
fn

}
where each fn : {0, 1}n → {0, 1}n is a random function. For such

an ensemble Γ and an oracle aided algorithm (or circuit) A with finite running time, we will often
abuse notation and denote by AΓ(x) and execution of A on input x where each of (finite number
of) oracle calls that A makes is associated with a security parameter n and is answered by the
corresponding oracle Γn . When we write AΓ1 , . . . , A

Γ
k for k algorithms, we mean that they all access

the same realization of Γ.

3.2 Coupling and Statistical Distance.

Definition 3.1 (Coupling). Given two random variables X,Y over X ,Y , a coupling of X,Y is defined to
be any distribution PX′Y′ on X ×Y such that, the marginals of PX′Y′ on X and Y are the distributions X, Y
respectively.

Denote by PXY the set of all couplings of X,Y.

Lemma 3.2. Given any two distributions X,Y supported on X ,

SD(X,Y) � inf
PX′Y′∈PXY

Pr
(x ,y)←PX′Y′

[
x , y

]
.

7

Furthermore, for distributions over a discrete domain X the infimum is attained: that is, there exists a
coupling PXY such that SD(X,Y) � Pr(x ,y)←PXY

[
x , y

]
.

The lemma allows us to bound the statistical distance between two random variables (hybrid
experiments in our case) by setting up a coupling between two experiments and bounding the
probability of them giving a different outcome. Looking ahead, in Lemma 5.11, we describe an
explicit coupling for the Simon’s collision finder oracle, of the form above that allows us to bound
the statistical distance between hybrids.

4 Separating SZK and CRHFs

4.1 Fully Black-Box Constructions of SZK Problems

The class of problems with Statistical Zero Knowledge Proofs (SZK) [GMR85, Vad99] can be
characterized by complete promise problems [SV03], particularly statistical difference, and the
transformation is black-box. In order to consider black-box constructions of hard problems in
SZK, we start by defining statistical difference problem relative to oracles. This modelling follows
[BDV17].

In the following definition, for an oracle-aided (sampler) circuit C(·) with n-bit input and an
oracleΨ, we denote by CΨ the output distribution CΨ(r)where r ← {0, 1}n . We denote statistical
distance by SD: for two distributions X and Y SD(X,Y) � 1

2
∑

x |Pr[X � x] − Pr[Y � x]|.

Definition 4.1 (Statistical Difference Problem relative to oracles). For an oracle Ψ, the statistical
difference promise problem relative toΨ, denoted as SDPΨ � (SDPΨY , SDPΨN), is given by

SDPΨY �

{
(C0 , C1) : SD(CΨ0 ,CΨ1) ≥

2
3

}
,

SDPΨN �

{
(C0 , C1) : SD(CΨ0 ,CΨ1) ≤

1
3

}
.

Next, we define formally define fully black-box reductions from CRHFs to SZK.

Definition 4.2 (Black-Box Construction of SZK-hard Problems). A fully black-box construction of a

hard statistical distance problems (SDP) from CRHFs consists of

• Black-box construction: A collection of oracle-aided circuit pairs Π(·) �
{
Π
(·)
n

}
n∈N

where Πn �{
(C(·)0 , C

(·)
1) ∈ {0, 1}n×2

}
such that each (C0 , C1) defines an SDP instance.

• Black-box security proof: A probabilistic oracle-aided reduction R with functions qR(·), εR(·) such
that the following holds: Let f be any distribution on functions. For any probabilistic oracle-aided A
that decides Π in the worst-case, namely, for all n ∈ N,

Pr
[
A f (C0 , C1) � B for all

(C0 , C1) ∈ Πn , B ∈ {Y,N}
such that (C0 , C1) ∈ SDP f

B

]
� 1

the reduction breaks collision resistance of f , namely, for infinitely many n ∈ N,

Pr
f

[
fn(x) � fn(x′) where (x , x′) ← R f ,A] ≥ εR(n) ,

8

where R makes at most qR(n) queries to any of its oracles (A, f) where each query to A consists of
circuits C0 , C1 each of which makes at most qR(n) queries to f .

Next, we state the main result of this section: that any fully black-box construction of SDP
problems from CRHFs has to either run in time exponential in the security parameter or suffer
exponential security loss.

Theorem 4.3. For any fully black-box construction (Π, R, qR , εR) of SDPs from CRHFs, the following
holds:

1. (The reduction runs in exponential time.) qR(n) ≥ 2n/10. Or,

2. (Reduction succeeds with exponentially small probability.) εR(n) ≤ 2−n/10.

We prove the theorem by describing an oracle Γ � (f , A) such that, A solves SDP f but f is a
CRHF relative to Γ. The rest of the section is devoted to describing this oracle and proving the
theorem. We start by describing the adversary that breaks SDP: the statistical distance oracle.

4.2 The Statistical Distance Oracle

Next we describe the statistical distance oracle SDO from [BDV17] that solves SZK instances.

Definition 4.4 (Oracle SDOΨ). The oracle consists of t � {tn}n∈N where tn : {0, 1}2n → (13 , 2
3) is

a uniformly random function. Given n-bit descriptions of oracle-aided circuits C0 , C1 ∈ {0, 1}n , let
t∗ � tn(C0 , C1), and let s � SD(CΨ0 ,CΨ1), return

SDOΨ(C0 , C1; t) :�

{
0 If s < t∗

1 If s ≥ t∗

It is immediate to see that SDOΨ decides SDPΨ in the worst-case.

Claim 4.4.1. For any oracleΨ,
SDPΨ ∈ PΨ,SDOΨ .

Remark 4.5 (On the Oracle Used). Our separation is sensitive to the oracle used. Subsequent to
[BDV17], [KY18] observed that the Simon’s collision finding oracle Coll can be used to decide SZK.
Clearly, no separation between CRHFs and SZK holds relative to the Simon’s oracle. It turns out
that Simon’s oracle can be used to estimate a different measure of distance between distributions,
the Triangular Discrimination,2 which like statistical distance also gives an SZK-complete promise
problem [BDRV19]. Our separation does hold with a variant of Coll and SDO that measures
triangular discrimination, but does not output a collision.

2The triangular discrimination is defined asTD(X,Y) � 1
2
∑

x
(Pr[X�x]−Pr[Y�x])2
(Pr[X�x]+Pr[Y�x]) . Thismeasure also lies in the interval

[0, 1] and is a metric.

9

4.3 Insensitivity to Local Changes

Next, we recall the notions of smoothness and farness from [BDV17] that are used to argue that
the SDOΨ oracle is insensitive to local changes. Roughly speaking farness says that the random
threshold t used for a query (C0 , C1) to SDOΨ is “far” from the actual statistical distance. [BDV17]
show that with high probability over the choice of random threshold t, farness holds for all queries
(C0 , C1)made to SDOΨ by any (relatively) efficient adversary. This intuitively means that changing
the distributions (CΨ0 ,CΨ1), on sets of small density, will not change the oracle’s answer. The proofs
are included in Appendix A for completeness.

Definition 4.6 ((Ψ, t , ε)-Farness). Two oracle-aided circuits (C0 , C1) ∈ {0, 1}n satisfy (Ψ, t , ε)-farness
if the statistical difference s � SD(CΨ0 ,CΨ1) and threshold t are ε-far:

|s − t | ≥ ε .

For an adversaryA, we denote by farness(A,Ψ, ε) the event that every SDO query (C0 , C1)made byAΨ,SDOΨ

satisfies (Ψ, t , ε)-farness, where t � tn(C0 , C1) is the threshold sampled by SDO.

Lemma 4.7 ([BDV17](Claim 3.7)). Fix anyΨ and any oracle-aided adversary A such that AΨ,SDOΨ makes
at most q queries to SDOΨ. Then

Pr
t
[farness(A,Ψ, ε)] ≥ 1 − 6qε ,

where the probability is over the choice t of random thresholds by SDO.

We now turn to define the notion of smoothness. Roughly speaking we will say that an oracle-
aided circuit C is smooth with respect to some oracle Ψ if any specific oracle query is only made
with small probability. In particular, for a pair of smooth circuits (C0 , C1), local changes to the
oracleΨ should not change significantly the statistical distance s � SD(CΨ0 ,CΨ1).

Definition 4.8 ((Ψ, ε)-Smoothness). A circuit C(·) is (Ψ, ε)-smooth, if every location x ∈ {0, 1}∗ is
queried with probability at most ε. That is,

max
x

Pr
w

[
CΨ(w) queriesΨ at x

]
< ε .

For an adversary A, we denote by smooth(A,Ψ, ε) the event that in every SDO query (C0 , C1) made by
AΨ,SDO

Ψ both circuits are (Ψ, ε)-smooth.

Lemma 4.9 ([BDV17](Claim 3.9)). LetΨ,Ψ′ be oracles that differ on at most c values in the domain. Let
C0 and C1 be (Ψ, ε)-smooth. Let s � SD(CΨ0 , CΨ1) and s′ � SD(CΨ′0 , CΨ

′
1) then |s − s′ | ≤ 2cε.

The above roughly means that (under the likely event that farness holds) making smooth
queries should not help the adversary detect local changes in the oracleΨ. [BDV17] show that we
can always “smoothen” the adversary’s circuit at the expense of making (a few) more queries to
Ψ, which intuitively deems the statistical difference oracle SDOΨ useless altogether for detecting
local changes inΨ.

In what follows, a (q′, q)-query algorithm A makes at most q′ queries to the oracle Ψ and q
queries to SDOΨ such that for each query (C0 , C1) to SDO, the circuits C0 , C1 themselves make at
most q queries toΨ on any input.

10

Lemma 4.10 (Smoothing Lemma for SDO [BDV17](Lemma 3.10)). For any (q , q)-query algorithm A

and β ∈ N, there exists a (q + 2βq2 , q)-query algorithm S such that for any input z ∈ {0, 1}∗ and oracles
Ψ, SDOΨ:

1. SΨ,SDOΨ(z) perfectly simulates the output of AΨ,SDOΨ(z),

2. SΨ,SDOΨ(z) only makes queries (C0 , C1) where both C0 , C1 are (Ψ, ε)-smooth queries to SDOΨ with
probability:

Pr
S
[smooth(S,Ψ, ε)] ≥ 1 − 2−εβ+log(2q2/ε) ,

over its own random coin tosses.

4.4 Collision Resistance in the Presence of SDO Oracle.

In this section, we prove the oracle separation between collision resistant hash functions and SZK.
Let Fn be the set of all functions from {0, 1}n to {0, 1}m(n) where m(n) < n is a shrinking

function. Let F � {Fn}n∈N denote the family of these sets of functions. Let T � {Tn}n∈N where
Tn denotes the set of threshold functions t : {0, 1}n → (1/3, 2/3). 3

Definition 4.11 (The Oracle f). The oracle f �
{

fn
}

n∈N on input x ∈ {0, 1}n returns fn(x) where
fn : {0, 1}n → {0, 1}m is a random function from Fn .

The oracle we consider is Γ � (f , SDO f). It is easy to see that all SDP f ∈ P f ,SDO f . What remains
to show is that f is still collision resistant in the presence of the SDO f oracle. We do so next.

Theorem 4.12. Let A be a (q , q)query adversary for q � O(2m/10). Then,

Pr
[

fn(x) � fn(x′) where (x , x′) ← A f ,SDO f (1n)
]
≤ 2−m/10 .

Proof. Fix oracle f−n �
{

fk
}

k,n arbitrarily. Consider the (q + 2βq2 , q)query smooth version S, of A
given by Lemma 4.10 for β � 2m/5 · m and ε � 2−m/5. We assume w.l.o.g that Smakes no repeated
oracle queries and that whenever S outputs a collision (x , x′), x is its last oracle query and x′ is a
previous query (both to the f oracle).

The first assumption is w.l.o.g because S may store a table of previously made queries and
answers. The second is w.l.o.g because Smay halt once its f -queries include a collision and output
that collision; also, if one, or both, outputs x , x′ have not been queried, S can query it at the end
(and if needed change the order of the output so that x is queries last). The latter costs at most two
additional queries, and does not affect the smoothness of S.

Next, we define some notation about transcripts generated in the process.

Transcripts. A transcript π consists of all queries asked and answers received by S to the oracle
(f , SDO f). Let xi denote the i-th query to the f -oracle. We say that x < π if the location x is not
among the queries explicitly made in π.

The Underlying Joint Distribution. The proof infers properties of the joint distribution (f , t , π)
consisting of the oracle f , the SDO oracle’s random thresholds t and the transcript generated by

3While we describe the threshold function as a real valued function, it can be safely discretized because statistical
distance for any pair of circuits C0 , C1 : {0, 1}m → {0, 1}∗, takes values that are multiples of 2−(m+1). We omit the details
here.

11

S. The distribution is generated as follows: f ← F and t ← T and π ← S f ,SDO f ;t where SDO f ;t

denotes running the SDO oracle with random thresholds t. Denote this distribution by PFTΠ.
Note that given f , t, the transcript π is generated in a deterministic manner as S is deterministic

and the oracle’s behavior is completely specified. Furthermore, we also consider partial transcripts
obtained by running S and stopping after i queries. This transcript is denoted by π<i , xi : that is
the π<i consists of queries and responses received and xi is the next query to the oracle f . Note
that xi is a deterministic function of π<i . Given the distribution PFTΠ, the conditional distributions
PFT |Π�π or PFT |Π�π<i are well defined: these consist of uniform distribution on pairs (f , t) that
when run using S result in the transcript being π (or π<i).

The Good Event. We define the concept of Good transcripts. Roughly speaking, these are
transcripts π that satisfy sufficient smoothness and farness so to guarantee that that the value f (x)
at any x < π is completely hidden.

Definition 4.13 (Good). A tuple (f , t , π, x , ε) is good, denoted by good(f , t , π, x , ε) if the following
hold:

1. π � S fx→⊥ ,SDO fx→⊥ ;t (1n), where fx→⊥ is the function equal to f everywhere except at x where it takes
the value ⊥.

2. (x is not explicitly queried:) x < π.

3. (Transcript is smooth:) Every SDO-query made by S fx→⊥ ,SDO fx→⊥ ;t (1n) is (fx→⊥ , 2ε)-smooth. Denote
this event by smooth(fx→⊥ , t , π, 2ε).

4. (Transcript is far:) Every SDO-query (C0 , C1) made by S fx→⊥ ,SDO fx→⊥ ;t (1n), satisfies (fx→⊥ , t , 12ε)-
farness where t � t(C0 , C1). Denote this by far(f , t , π, 12ε).

The key reason for using fx→⊥ instead of f in the definition is that when an execution of
S fx→⊥ ,SDO fx→⊥ ;t generates a transcript π while making only smooth and far queries, all executions
of S fx→z ,SDO fx→z ;t for all z, also generate π while not necessarily being smooth or far themselves.

A tuple (f , t , π, ε) is good if for all x < π, good(f , t , π, x , ε) holds.

Lemma 4.14. Let PFTΠ as defined above. Then,

Pr
(f ,t ,π)←PFTΠ

[
good(f , t , π, ε)

]
≥ 1 − 16qε − 2−βε+log(2q2/ε)

The same holds for i-length partial transcripts generated as well, for all i.

Lemma 4.15. For any transcript π and query x < π such that

Pr
(f ,t ,π)←PFTΠ

[
good(f , t , π, x , ε)

]
> 0 ,

it holds that, {
f (x) : (f , t) ← PFT |Π�π,good(f ,t ,π,x ,ε)

}
≡ Um .

Next, we prove Theorem 4.12 assuming Lemmas 4.14 and 4.15. Then, we prove the two lemmas.

12

Let hit(π) denote the event that π contains two queries x , x′ such that fn(x) � fn(x′). Then,

Pr
f ,t

[
fn(x) � fn(x′) ∧ (x , x′) � S f ,SDO f ;t (1n)

]
� Pr

f ,t ,π
[hit(π)]

≤ Pr
f ,t ,π

[
hit(π) ∧ good(f , t , π, ε)

]
+ Pr

f ,t ,π

[
good(f , t , π, ε)

]
.

We will bound the two terms separately. The first term will involve using Lemma 4.15 while
the second term is bound using Lemmas 4.7 and 4.10. We begin by bounding the first term. This
is done by decomposing the probability of hitting a collision by the first query that hits a collision:

Pr
f ,t

[
hit(π) ∧ good(f , t , π, ε)

]
≤

∑
i

Pr
f ,t

[
hit(π≤i) ∧ hit(π<i) ∧ good(f , t , π<i , ε)

]
�

∑
i

Pr
f ,t

[
f (xi) ∈ hitSet(π<i) ∧ hit(π<i) ∧ good(f , t , π<i , ε)

]
,

where xi < π denotes the i-th f query made by S and hitSet(π<i) denotes the answers to f -queries
in π<i ,

�
∑

i

∑
π<i ,xi

Pr
f ,t

[
(π<i , xi) � S f ,SDO f ;t (1n) ∧ good(f , t , π<i , xi , ε)

]
· Pr

f ,t←PFT |Π�π<i ,good

[
f (xi) ∈ hitSet(π<i)

]
The last equality follows from the definition of conditional probability. At this point, we can use
Lemma 4.15 to argue that,

Pr
f ,t←PFT |Π�π<i ,good(f ,t ,π<i ,xi ,ε)

[
f (xi) ∈ hitSet(π<i)

]
≤ i

2m

because f (xi) is uniformly random and |hitSet(π<i)| ≤ i. Hence, we get that,

≤
∑

i

i
2m ·

∑
π<i ,xi

Pr
f ,t

[
(π<i , xi) � S f ,SDO f ;t (1n) ∧ good(f , t , π<i , xi , ε)

]
≤

q′∑
i�1

i
2m ≤

q′2

2m ,

where q′ � q + 2βq2 + 2, the number queries that Smakes to f .
Hence, by Lemma 4.14, the algorithm’s success probability is bounded by

Pr
f ,t

[
fn(x) � fn(x′) ∧ (x , x′) � S f ,SDO f ;t (1n)

]
≤ Pr

f ,t

[
hit(π) ∧ good(f , t , π)

]
+ Pr

f ,t

[
good(f , t , π)

]
≤
(q + 2βq2 + 2)2

2m + 16qε + 2−βε+log(2q2/ε)

≤ O(q4β22−m
+ 16qε + q2/ε2−εβ)

≤ O(2−m/10) .

when substituting ε � 2−m/5, β � 2m/5 · m, and q ≤ 2m/10.

13

Proof of Lemma 4.14. Theproof follows from the observation if S f ,SDO f outputs πwith all the queries
being both smooth, and far, then, the same holds for S fx→⊥ ,SDO fx→⊥ with slightly degraded param-
eters. That is,

Pr
(f ,t ,π)←PFTΠ

[
good(f , t , π, ε)

]
� Pr

f ,t ,π

[
∧x<πgood(f , t , π, x , ε)

]
≥ Pr

f ,t ,π

[
smooth(f , t , π, ε) ∧ farness(f , t , π, 8ε)

]
≥ 1 − 16εq − 2−βε+log(2q2/ε)

Hence, to complete the proof, we need to show that, for any (f , t) if S f ,SDO f (1n) outputs π with all
the queries being (f , ε)-smooth, and (f , t , 16ε)-far, then, S fx→⊥ ,SDO fx→⊥ (1n) generates π with all the
queries being (f , 2ε-smooth and (f , t , 12ε)-far.

First observe that by Lemma 4.9, since 16ε-farness and ε-smoothness hold, answers by SDO fx→⊥

are identical to those by SDO f . Accordingly, the transcript π � S fx→⊥ ,SDO fx→⊥ (1n).
Next, we show that 2ε-smoothness holds with respect to SDO fx→⊥ . Indeed, any SDO-query

(C(·)0 , C
(·)
1) is ε-smooth with respect to f , accordingly the probability that either circuit Cb queries

any individual z is bounded by

Pr
[
C fx→⊥

b queries z
]
≤ Pr

[
C fx→⊥

b queries x
]
+ Pr

[
C f

b queries z
]
≤ 2ε .

Finally, to conclude the proof, we show that 12ε-farness holds with respect to fx→⊥. Indeed,
for any query (C0 , C1), let s � SD(C f

0 , C
f
1) be the statistical distance with respect to f , then by

ε-smoothness with respect to f , the statistical distance sx � SD(C fx→⊥
0 , C fx→⊥

1)with respect to fx→⊥
is at most 2ε-far from s. Letting t � t(C0 , C1) be the threshold chosen by SDO, we know by 16ε-
farness that |s − t | ≥ 16ε and thus |sx − t | ≥ 12ε, which implies the require farness with respect to
fx→⊥.

The above argument holds unaltered for partial transcripts output by S as well. Even there,
when a partial trancript is output by S f ,SDO f with all queries being (f , ε)-smooth and (f , t , 16ε)-far,
then, S fx→⊥ ,SDO fx→⊥ (1n) generates the same partial transcript with all the queries being (f , 2ε)-
smooth and (f , t , 12ε)-far. �

Proof of Lemma 4.15. Given π, x < π, for any y

Pr
f ,t←PFT |Π�π,good(f ,t ,π,x ,ε)

[
f (x) � y

]
�

Pr f ,t

[
π � S f ,SDO f ;t (1n) ∧ f (x) � y ∧ good(f , t , π, x , ε)

]
Pr f ,t

[
π � S f ,SDOt (1n) ∧ good(f , t , π, x , ε)

]
In order to show that, the distribution

{
f (x) : f ← PF |Π�π,good

}
is uniform, it suffices to show that

for all y1 , y2 ∈ {0, 1}m ,

Pr
f ,t

[
π � S f ,SDO f ;t (1n) ∧ f (x) � y1 ∧ good(f , t , π, x , ε)

]
� Pr

f ,t

[
π � S f ,SDO f ;t (1n) ∧ f (x) � y2 ∧ good(f , t , π, x , ε)

]
To prove this, it suffices to show that that for every (f , t)where f (x) � y1,

π � S f ,SDO f ;t (1n) ∧ good(f , t , π, x , ε) � 1 ⇐⇒ π � S fx→y2 ,SDO
fx→y2 ;t

(1n) ∧ good(fx→y2 , t , π, x , ε)

14

This followsbecause asgood(f , t , π, x , ε)holds, π � S fx→⊥ ,SDO fx→⊥ ;t (1n) andeveryquerymade to
SDO fx→⊥;t is both 12ε-far and 2ε-smooth. Hence, when we change the oracle to (fx→y2 , SDO

x→y2),
each query is answered identically to fx→⊥ , SDO fx→⊥;t . Indeed, for any query (C0 , C1), let s �

SD(C fx→⊥
0 , C fx→⊥

1) be their statistical distance with respect to fx→⊥, then by 2ε-smoothness with
respect to fx→⊥, the statistical distance s′ � SD(C fx→y2

0 , C
fx→y2
1) is at most 4ε-far from s. As the

threshold t � t(C0 , C1) is more than 12ε far by farness, the answer will be unchanged to this query.
Hence, S(fx→y2 ,SDO

x→y2)will also returnπ as the answer. Also, bydefinition, good(fx→y2 , t , π, x , ε)
will hold because π � S fx→⊥ ,SDO fx→⊥ ;t (1n) and every query made to SDO fx→⊥;t is both 12ε-far and
2ε-smooth. Hence, the claim follows.

�

This completes the proof of Theorem 4.12. �

5 New Proofs of Old Separations

In this section, we give new proofs of results by Simon [Sim98] and Asharov-Segev [AS16].

5.1 Oracle-Aided Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (IO) was introduced by Barak et al. [BGI+01] and the
first candidate construction was demonstrated in the work of Garg et al. [GGH+13]. Since then, IO
has given rise to a plethora of applications in cryptography and beyond. Nevertheless, Asharov
and Segev [AS15, AS16] demonstrated that IO is insufficient to achieve some cryptographic tasks,
most notably (domain-invariant) one-way permutations, collision-resistant hashing. To formally
show such a statement, they introduced the framework of indistinguishability obfuscation for
oracle-aided circuits. We given a different proof for their result that IO does not imply collision
resistance, for which We follow their framework.

We begin by recalling the notion of two oracle-aided circuits being equivalent, and move on to
defining IO relative to oracles.

Definition 5.1. Let C0 and C1 be two oracle-aided circuits and let f be a function. C0 and C1 are said to
be functionally equivalent relative to f , denoted as C f

0 ≡ C f
1 , if for every input x, C f

0 (x) � C f
1 (x).

Definition 5.2. Let C � {Cn}n∈N be a class of oracle aided circuits, where each C ∈ Cn is of size n.4 A PPT
algorithm O is an indistinguishability obfuscator for C relative to an oracle Γ � {Γn}n∈N if the following
conditions are met:

1. Functionality. For all n ∈ N and for all C ∈ Cn it holds that

Pr
Γ,O

[
CΓ ≡ ĈΓ | Ĉ← OΓ(1n , C)

]
� 1 .

4As in [AS15], we assume throughout that the size of the obfuscated circuits equals the security parameter. This is
only for simplicity of notation, and is without loss of generality as the circuits can be padded up if they are too small,
and the security parameter can be polynomially increased if the circuits are too large.

15

2. Indistinguishability. For any non-uniformPPT distinguisher D � (D1 ,D2) there exists a negligible
function negl such that for all n ∈ N

AdviO
Γ,O ,C ,D(n) �

����Pr
[
ExptiO

Γ,O ,C ,D(n) � 1
]
− 1

2

���� ≤ negl(n)

where the random variable ExptiO
Γ,O ,C ,D(n) is defined via the following experiment:

(a) b ← {0, 1}.
(b) (C0 , C1 , state) ← DΓ1 (1n) where C0 , C1 ∈ Cn and CΓ0 ≡ CΓ1 .

(c) Ĉ← OΓ(1n , Cb).
(d) b′ � DΓ2 (state, Ĉ).
(e) If b � b′ output 1 else output 0.

We further say that O satisfies δ-indistinguishability if the above negligible advantage is at most δ.

We will also consider the following definition of “Positive Advantage” in the security game
above.

Definition 5.3. For any oracle Γ and non-uniform admissible PPT distinguisher D � (D1 ,D2), define the
positive advantage of D, denoted by PAdviO

Γ,O ,C ,D(n) defined as follows:

PAdviO
Γ,O ,C ,D(n) � Pr

[
ExptiO

Γ,O ,C ,D(n) � 1
]
− 1

2

where the random variable ExptiO
Γ,O ,C ,D(n) is defined as above in Definition 5.2.

Bydefinition,AdvO
Γ,O ,C ,D(n) � |PAdvO

Γ,O ,C ,D(n)|. Note that for adistinguisher tohavePAdvO
Γ,O ,C ,D(n) >

0 is a stronger condition than AdvO
Γ,O ,C ,D(n) > 0 because this requires the distinguisher to correctly

predict which circuit was obfuscated better than chance, instead of just being sufficiently far away
from a chance outcome, either good or bad, in the case of standard advantage. Brakerski and
Goldreich showed that there is an efficient transformation that can transform any distinguisher
with non-negligible advantage to another distinguisher with non-negligible positive advantage.
Below we state their result tailored to our application.

Lemma 5.4 (Brakerski-Goldreich [BG11]). Given any distinguisher D � (D1 ,D2) such that

E
Γ

[
AdviO

Γ,O ,C ,D(n)
]
> ε(n) ,

for some function ε, there exists a distinguisher D′ � (D′1 ,D′2) that makes O(1) black-box invocations of D
such that

E
Γ

[
PAdviO

Γ,O ,C ,D(n)
]
> 2ε(n)2 .

Their proof adapted to this setting is sketched in Appendix B.

16

5.1.1 Fully Black Box Constructions of CRHFs from IO and OWPs

We begin by defining oracle-aided constructions of CRHFs and then specialize it to the setting of
IO (and OWPs).

Definition 5.5 (Oracle-AidedCollision-Resistant Function Families). Apair of polynomial-time oracle-
aided algorithms (Gen,Hash) is a collision-resistant function family relative to an oracle Γ if it satisfies the
following properties:

• The index-generation algorithm Gen is a probabilistic algorithm that on input 1n and oracle access to
Γ outputs a function index σ ∈ {0, 1}m(n).

• The evaluation algorithm Hash is a deterministic algorithm that takes as input a function index
σ ∈ {0, 1}m(n) and a string x ∈ {0, 1}n , has oracle access to Γ, and outputs a string y � HashΓ(σ, x) ∈
{0, 1}n−1.

Definition 5.6 (Black-Box Construction of CRHFs from OWPs). A fully black-box construction of

a Collision Resistant Hash Functions (CRHFs) from One-Way Permutations consists of a pair of PPT
oracle-aided algorithms (Gen,Hash), an oracle-reduction R along with functions qR(n), εR(n) such that the
following two conditions hold:

• Correctness: For any n ∈ N, for any permutation f , and for any function index σ produced by
Gen f (1n), it holds that Hash f (σ, ·) : {0, 1}n → {0, 1}n−1.

• Black-box security proof: For any permutation f and probabilistic oracle-aided algorithm A, if

Pr
[
Hash f (σ, x) � Hash f (σ, x′) ∧ x , x′

]
≥ 1

2

where the experiment is σ ← Gen f (1n) and (x , x′) ← A f (1n , σ), for infinitely many n, then the
reduction breaks f , namely, for infinitely many n ∈ N either

Pr
x←{0,1}n

f ,A

[
RA, f (fn(x)) � x

]
≥ εR(n) ,

for infinitely many values of n where R makes at most qR(n) queries to the oracles A, f and for every
circuit D(·) queried to A makes at most qR(n) queries to f on any input.

Definition 5.7 (Black-Box Construction of CRHFs from IO and OWPs). A fully black-box construc-

tion of a Collision Resistant Hash Functions (CRHFs) from OWPs and Indistinguishability Obfusca-

tion for a class C � {Cn}n∈N of all polynomial-sized oracle-circuits consists of a pair of PPT oracle-aided
algorithms (Gen,Hash), an oracle-reduction R along with functions qR(n), εR(n) such that the following
two conditions hold:

• Correctness: For any n ∈ N, for any permutation f and any function iO such that iO(C; r) f ≡ C
for all C ∈ C and r ∈ {0, 1}∗, and for any function index σ produced by Gen f ,iO(1n), it holds that
Hash f ,iO(σ, ·) : {0, 1}n → {0, 1}n−1.

• Black-box security proof: For any permutation f and any function iO such that iO(C; r) f ≡ C
for all C ∈ C and r ∈ {0, 1}∗, for any probabilistic oracle-aided algorithm A, if

Pr
[
Hash f ,iO(σ, x) � Hash f ,iO(σ, x′) ∧ x , x′

]
≥ 1

2

17

where the experiment is σ ← Gen f ,iO(1n) and (x , x′) ← A f ,iO(1n , σ), for infinitely many n, then
the reduction breaks either f or iO, namely, for infinitely many n ∈ N either

Pr
x←{0,1}n

A

[
RA, f ,iO(fn(x)) � x

]
≥ εR(n) ,

or

AdviO
(f ,iO),iO,CRA(n) ≥ εR(n) ,

for infinitely many values of n. The random variable AdviO
(f ,iO),iO,CRA represents the reduction’s

advantage in the IO security game (Definition 5.2) relative to (f , iO) where R makes at most qR(n)
queries to the oracles A, f , iO and for every oracle-aided circuit query C(·)to iO, C itself makes at most
qR(n) queries to f . Furthermore, every query to A consisting of a circuit D(·) follows the conditions
above: that is qR(n) queries in total to the oracles f , iO, with each iO query making at most qR(n)
queries to the f oracle.

We remark that ruling out black-box reductions as defined inDefinition 5.7where the reduction
has to break the OWP or IO given an adversary that breaks CRHFs w.p. over 1/2 only makes our
result stronger. In the standard setting, the reduction has to break IO (or OWP) given an adversary
that succeeds with any noticeable probability.

5.2 Simon’s Collision Finding Oracle and Puncturing

Recall that the Simon’s collision finding oracle is defined as follows:

Definition 5.8 (Simon’s Oracle CollΨ). Given any description of a circuit C with m-bit inputs, the oracle’s
randomness contains a random input wC ∈ {0, 1}m and a random permutation πC : {0, 1}m → {0, 1}m .
The CollΨ oracle returns the following:

CollΨ(C) :� (wC , w′C) where w′C � πC(i) for the smallest i such that CΨ(wC) � CΨ(πC(i)).
W.l.o.g, along with (wC ,w′C), let Coll also return the queries made toΨ, and their answers, when evaluating
CΨ(wC) and CΨ(w′C).

The collision-finding oracle breaks any oracle-aided collision resistant hash function.

Lemma 5.9 ([Sim98]). Let Γ � (Ψ, CollΨ). Let C(·) : {0, 1}n → {0, 1}n−1 be any candidate construction
of CRHFs. Then,

Pr
[
CΨ(w) � CΨ(w′) ∧ w , w′ where, (w ,w′) ← CollΨ(C)

]
≥ 1

2
where the randomness is over the randomness of Coll.

Proof. Fix Ψ and omit it from the notation. For any string y ∈ {0, 1}n−1, let ay �
��{x : C(x) � y

}��.
Then,

Pr[w , w′] �
∑

y∈Supp(C)
Pr

w ,w′←C−1(y)
[w , w′] · Pr

w

[
C(w) � y

]
�

∑
y∈Supp(C)

ay − 1
ay
·

ay

2n

�
∑

y∈Supp(C)

ay

2n −
∑

y∈Supp(C)

1
2n ≥ 1 − 2n−1

2n ,

18

where the second inequality follows fromthe fact thatPrw ,w′←C−1(y)[w , w′] � Prw′←C−1(y)[w′ , w] �
ay−1

ay
. �

Next we define a variant of the Simon’s oracle, dubbed as the punctured Simon’s oracle. This
collision finding oracle allowsΨ to be punctured, that is, a set of values inΨ are erased. As wewill
show later, this oracle returns the same answers as CollΨ most of the time, and we can characterize
when it does not.

Definition 5.10 (Punctured Simon’s Oracle PCollΨS). Let Ψ : {0, 1}∗ → {0, 1}∗ be an oracle. Let
S ⊆ {0, 1}∗ be a subset of inputs. The oracle PColl’s randomness contains for any circuit C with m-bit
inputs, a random input wC ∈ {0, 1}m and a random permutation πC : {0, 1}m → {0, 1}m . The PCollΨS
oracle returns the following:

PCollΨS (C) � ⊥, if CΨ(wC) queries any x ∈ S.

Else,
PCollΨS (C) :� (wC , w′C)

where w′C � πC(i) for the smallest i such that CΨ(wC) � CΨ(πC(i)) and CΨ(πC(i)) does not query any
x ∈ S. Alongwith (wC ,w′C), let it also return the queries made toΨwhen evaluating CΨ(wC) and CΨ(w′C).
We refer to these queries asΨ queries induced by the Coll oracle.

There are twokeyproperties of the punctured oracle: (1) The answers of PCollΨS are independent
of the values of the oracle Ψ on all of S; and (2) there is a natural coupling between CollΨ and
PCollΨS such that, as long as there is no explicit query x ∈ S to Ψ, the two oracles return identical
answers. This is captured by the following lemma.

Lemma 5.11. LetΨ : {0, 1}∗ → {0, 1}∗ be an oracle, let S ⊆ {0, 1}∗. Consider the coupling of CollΨ and
PCollΨS that instantiates the two oracles with identical randomness. Let A be any deterministic oracle-aided
algorithm. Let τ be the transcript generated by AΨ,CollΨ . Then,

AΨ,PColl
Ψ
S � τ if and only if,Ψ-set(τ) ∩ S � ∅ ,

whereΨ-set(τ) is the set of all queries made toΨ in the execution. This includes the queries toΨ returned
by the Coll oracle.

Proof. Every direct query toΨ by A is returned identically in both the executions. Furthermore, in
any transcript τ, such thatΨ-set(τ)∩S � ∅, all queries to CollΨ and PCollΨS are answered identically.
This follows from the definition of PColl because for every query C to Coll and response (wC , w′C),
all the queries made to Ψ when evaluating CΨ(wC) and CΨ(w′C) are explicitly made directly to
Ψ, and are thus in Ψ-set. In more detail, for any query CΨ made to CollΨ with answer (wC , w′C),
CΨ(wC) does not make any queries in S, and thus PColl, will also return wC. In addition, any w′′

that is lexicographically prior to w′C will not be returned because it either induces queries in S, or
if it does then it is such that CΨ(w′′) , CΨ(wC). In contrast, C(w′C) does not make any queries to S,
and is such that C(w′C) � C(wC). Hence w′C will also be returned by PColl (and likewise the queries
toΨ induced by wC , w′C).

�

19

AWord of Caution. In Lemma 4.15, we showed that the distribution f (x)when conditioned on a
transcript τ is close to uniformly random.5{

f (x) : f ← PF |Π�π,good
}
≡ Um

Lemma 5.11 seems to suggest the same for the collision finding oracle. That is, the oracle reveals
no information about f (x) for any location x not explicitly queried in τ. Unfortunately, we do not
know how to show this. The key reason for this is that the probability of seeing this transcript τ
could itself depend on the value of f (x). This issue is not new: it also comes up with the SDO

oracle. We are able to remedy this issue in the case of the SDO oracle in part because of its short
output: it allows us to define the notion of farness which shows that the SDO oracle is robust to
any small changes to the SDO oracle. Puncturing only allows us to erase a value, and not set it to a
different one.

5.3 Smoothening for the Collision Finding Oracle

Similar toLemma4.10,we can show that any algorithmAΨ,Coll
Ψ canbe transformed to a smoothened

algorithm SΨ,Coll
Ψ that with high probability makes only smooth queries to the CollΨ oracle.

A (q′, q)-query algorithm Amakes at most q′ queries to the oracle f and q queries to Coll f such
that each for each query C to Coll, the circuit C makes at most q queries to f on any input.

Lemma 5.12 (Smoothing Lemma for Coll). For any (q , q)-query algorithm A and β ∈ N, there exists a
(q + βq2 , q)-query algorithm S such that for any input z ∈ {0, 1}∗ and oraclesΨ, CollΨ:

1. SΨ,CollΨ(z) perfectly simulates the output of AΨ,CollΨ(z),

2. SΨ,CollΨ(z) only makes queries that are (Ψ, ε)-smooth queries to CollΨ with probability:

Pr
S
[smooth(S,Ψ, ε)] ≥ 1 − 2−εβ+log(q2/ε) ,

over its own random coin tosses.

The proof of the lemma is identical to that of Lemma 4.10, the bound differs in a factor of 2:
(q + βq2) instead of (q + 2βq2) in case of Lemma 4.10 because Coll oracle takes only one circuit as
input.

5.4 Warm Up: One Way Permutations in the presence of Coll

In this section, we show that CRHFs cannot be constructed from OWPs in a black-box manner
(Definition 5.6). That is, we show,

Theorem 5.13. Let (Gen, Eval, R, qR , εR) be a fully black-box construction of CRHFs from OWPs. Then,
either

1. (Large Running Time) R makes at least qR(n) ≥ 2n/6 queries. Or,

2. (Large Security Loss) εR(n) ≤ 2−n/6.
5We are using τ for transcript here to avoid the ambiguity with the Coll oracle randomness π.

20

To prove the theorem, we consider the oracle Γ � (f , Coll f) where f is a random permutation.
We show that a random permutation f is hard to invert even given access to Coll f . We start by
defining the oracle. In what follows, Pn denotes the set of permutations of {0, 1}n .

Definition 5.14 (The Oracle f). f �
{

fn
}

n∈N on input x ∈ {0, 1}n answers with fn(x) where fn is a
random permutation fn ← Pn .

It is clear that Coll f breaks any potential CRHF construction with probability at least 1/2. Our
main result states that f cannot be inverted, except with exponentially small probability, even
given an exponential number of oracle queries to f and Coll f . Here, consistently with the previous
subsection, we say that an adversary A is q-query if A f ,Coll f makes at most q queries to f and q
queries to Coll f , and any query made to Coll f consists of oracle-aided circuit C that makes at most
q queries to f , on any specific input.

Theorem 5.15. Let q ≤ O(2n/6). Then for any (q , q)-query adversary A,

Pr
f ,Coll,x

[
A f ,Coll f (f (x)) � x

]
≤ O(2−n/6) .

Proof. We, in fact, prove a stronger statement: the above holds when fixing the oracles f−n :�{
fk
}

k,n . Let ε � 2−n/3 and β � 2n/3 · n. Fix a q-query adversary A and let S be its smooth
(q + βq2 + 2q2 , q) query simulator given by Lemma 4.10. The extra 2q2 queries are incurred by the
fact that along with each collision w , w′ from Coll f (C), the queries made to f in computing C f (w)
and C f (w′) are also returned. Since S perfectly emulates A, it is enough to bound the probability
that S successfully inverts. To bound S’s inversion probability, we consider six hybrid experiments
{Hi}i∈[6] given in Table 1. Throughout, for a permutation f ∈ Pn and x , y ∈ {0, 1}n , we denote by
fx→y the function that maps x to y and is identical to f on all other inputs (in particular, fx→y is
no longer a permutation when x , f −1(y)).

Hybrid H1 (Real) H2 H3 H4 H5 H6 (Ideal)
Permutation fn ← Pn

Preimage x ← {0, 1}n
2nd Preimage z ← {0, 1}n

Planted
Image y ← {0, 1}n

Challenge f (x) y
Oracle f , Coll f f , PColl f

{x} fz→ f (x) , PColl
f
{x ,z} fx→y , PColl

f

{ f −1(y),x} f , PColl f

{ f −1(y)} f , Coll f

Winning
Condition Find x

Table 1: The hybrid experiments.

HybridH1 is identical to the realworldwhere Swins if it successfully inverts the permutation at
a random output. We show that the probability that the adversary wins in any of the experiments
is roughly the same, and that in hybrid H6 the probability that Swins is tiny.

Claim 5.15.1. |Pr[S wins in H1] − Pr[S wins in H2]| ≤ O(2−n/6)

Proof. The difference between the two hybrids is in the collision finding oracle: in H1, S gets the
standard Coll f oracle, while inH2, punctured oracle PColl f

{x}, punctured at x. Note that by coupling

21

the two experiments, we can bound the statistical distance (and hence the winning probabilities)
in H1 and H2 as follows:

���Pr[Swins in H1] − Pr[Swins in H2]
��� ≤ Pr

f ,x ,z
Coll

[
S f ,Coll f (f (x)) , S

f ,PColl f
{x} (f (x))

]
Let smooth � smooth(S(f (x)), f , ε) be the event that all Coll-queries made by S f ,Coll f (f (x)) are

(f , ε)-smooth (Definition 4.8). And let collHit � collHit(S, f , x , z) denote the event that the collision
finder oracle Coll f for some query C returns an answer (w , w′) such that C f (w) or C f (w′) queries x
during the evaluation. Note that collHit does not occur when f is queried at x by S, but only when
its indirectly queried by Coll f .

Observe that by Lemma 5.11, as long as punctured set {x} is not queried by a collision returned,
that is as long as collHit event does not occur, the two oracles Coll f and PColl

f
{x} would return

identical answers. Hence,

Pr
f ,x ,z
Coll

[
S f ,Coll f (f (x)) , S

f ,PColl f
{x} (f (x))

]
≤ Pr

f ,x ,z
Coll

[collHit]

We bound the probability of collHit as:

Pr[collHit] ≤ Pr
[
smooth

]
+ Pr[smooth ∧ collHit]

By the smoothness lemma, 5.12,

Pr
[
smooth

]
≤ 2−εβ+log(2q2/ε) ,

and, when smooth holds, we can bound the probability of a collHit.

Pr[smooth ∧ collHit] ≤ 2qε

This follows from the fact that for any (f , ε)-smooth circuit C, and any x, the following holds:

Pr
r

[
C f (r) queries x

]
≤ ε

Hence, as the marginal of each coordinate of a collision returned by the Coll oracle is uniformly
random, by a union bound, the probability of collHit occurring for this particular Coll query C is at
most 2 · ε. Hence the total probability is bounded by q · (2ε) as desired.

Hence, we can bound the difference between H1 and H2 by

2−εβ+log(2q2/ε)
+ 2qε ≤ O(2−n/6)

when setting ε � 2−n/3, β � 2n/3 · n and recalling that q ≤ O(2n/6). �

Claim 5.15.2. |Pr[S wins in H2] − Pr[S wins in H3]| ≤ O(2−n/6).

22

Proof. The difference between the two hybrids is that in H2, S receives the normal f oracle, while
in H3, it receives the planted oracle fz→ f (x). And it receives PColl f

{x} in H2 while receiving PColl f
{x ,z}

in H3. In what follows, we denote by zHit � zHit(S, f , x , z) the event that S f ,PColl f
{x} (f (x)) queries f

on z, either directly or indirectly through a collision returned.

Consider the execution of S f ,PColl f
{x} in H2, every query S makes to the oracle is answered

identically in H3, unless the event zHit occurs. This follows because the f oracle itself differs
only at z in the two hybrids, and the PColl oracle returns the same value by Lemma 5.11 unless
zHit occurs. Hence, as S receives the same answers and hence asks the same questions in both
hybrids, it would have the same output, unless zHit occurs. As z is picked uniformly at random,
independent of everything else in H2,

Pr[zHit] ≤ 2−n ·
��total f -queries made by S

�� ≤ 2−n · (q + βq2
+ 2q2) ≤ O(2−n/6)

when setting ε � 2−n/3, β � 2n/3 · n and recalling that q ≤ O(2n/6). �

Claim 5.15.3. Pr[S wins in H3] � Pr[S wins in H4].

Proof. First, by symmetry, observe that in H3, the probability of S outputting x is the same as that
of S outputting z, because they are completely symmetrical in this hybrid. Then observe that these
two hybrids H3 and H4 are relabellings of each other: z ↔ x, f (x) ↔ y and x ↔ f −1(y). This
implies that the probability of the probability of S outputting z in H3 is the same as that of S
outputting x in H4. This completes the argument.

�

Claim 5.15.4. |Pr[S wins in H4] − Pr[S wins in H5]| ≤ O(2−n/6).

The difference between the two hybrids is two fold: the f and PColl oracles differs at x and are
identical otherwise. Note that x is independent of the adversary’s view in H5. The proof of this
claim is identical to that of Claim 5.15.2 and is omitted.

Claim 5.15.5. |Pr[S wins in H5] − Pr[S wins in H6]| ≤ O(2−n/6).

The only difference between the two hybrids is that the Coll oracle from H6 is punctured at
f −1(y) in H5. The proof of this claim is identical to that of Claim 5.15.1, relies on smoothness, and
is omitted.

To conclude the proof of Theorem 5.15, we observe that

Claim 5.15.6. Pr[S wins in H6] ≤ 2−n .

Proof. The view of S in this hybrid is completely independent of the random choice of x. �

This completes the proof of Theorem 5.15. �

23

5.5 Indistinguishability Obfuscation (and OWPs) in the Presence of Coll

In this section, we prove the main theorem of this section:

Theorem 5.16. Let (Gen, Eval, R, qR , εR) be a fully black-box construction of CRHFs from IO and OWPs.
Then, one of the following conditions holds:

1. (Large Running Time) R makes at least qR(n) ≥ 2n/12 queries. Or,

2. (Large Security Loss) εR(n) ≤ 2−n/12.

To prove the theorem, we consider an oracleΨ that realizes both indistinguishability obfusca-
tion (IO) and one-way permutations (OWPs) and show that neither break in the presence of the
collision finding oracle CollΨ. We start by defining the oracle Ψ. In a nutshell, the oracle realizes
OWPs through a random permutation oracle.

In what follows, Pn denotes the set of permutations of {0, 1}n , Fm
n denotes the set of functions

mapping {0, 1}n to {0, 1}m , and Im
n denotes the set of injective functionsmapping {0, 1}n to {0, 1}m .

Definition 5.17 (The OracleΨ). The oracleΨ � (f ,O , Eval f ,O) consists of three parts:

• f �
{

fn
}

n∈N on input x ∈ {0, 1}n answers with fn(x), where fn is a random permutation fn ← Pn .

• O � {On}n∈N on input (C, r) ∈ {0, 1}n×{0, 1}n answers with Ĉ :� On(C, r)where On is a random
injective function On ← I5n

2n into {0, 1}5n .

• Eval f ,O given Ĉ ∈ {0, 1}5n , x ∈ {0, 1}∗ computes (C, r) � O−1
n (Ĉ), interprets C as an oracle-aided

circuit, and returns C f (x). If Ĉ does not have a unique preimage, or the input size of C is inconsistent
with |x |, the oracle returns ⊥.

In the next two subsections, we show that the oracle Ψ securely realizes OWPs and IO in the
presence of the Simon’s collision finding oracle oracle CollΨ. Throughout, we address adversaries
with oracles Ψ � (f ,O , EvalO , f) and CollΨ. We will say that such an adversary is

(
q′, q

)
-query if

they make only:

1. q′ queries to f ,O , Eval in total, where each circuit query C to O makes at most q queries to
f , and for each query Ĉ to Eval and any circuit C such that Ĉ ∈ O(C, ∗), C makes at most q
queries to f .

2. q queries to CollΨ, and any circuit query D to CollΨ, makes at most q-queries toΨ with each
O or Eval query being a circuit that itself makes at most q queries to f on any input.

5.5.1 One-Way Permutations

We show that f cannot be inverted, except with exponentially small probability even given an
exponential number of oracle queries toΨ � (f ,O , Eval f ,O) and CollΨ.

Theorem 5.18. Let q(n) ≤ O(2n/12). Then for any (q , q) query adversary A

Pr
Ψ�(f ,O ,Eval)

Coll,x

[
AΨ,Coll

Ψ(f (x)) � x
]
≤ O(2−n/6) .

24

Proof. We will, in fact, prove a stronger statement: the above holds when fixing the oracles f−n :�{
fk
}

k,n , O � {On}n∈N. We prove the theorem by a reduction to the case that Ψ only consists
of the permutation f (and does not include O , Eval). Concretely, fix any (q , q)-query adversary
A that inverts the random permutation fn given access to Ψ � (f ,O , Eval) and CollΨ, we show
how to reduce it to a (O(q2),O(q2))-query adversary B f ,Coll f (fn(x)) that inverts fn for a random
x ← {0, 1}n with the same probability as A, given oracle access to (f , Coll f). The proof then
follows from Theorem 5.15. The new adversary B f ,Coll f (fn(x)) emulates AΨ,CollΨ(fn(x)) answering

Ψ-queries as follows:

• f queries: answered according to B’s oracle f . This translates to at most q queries to f .

• O queries: answered according to the fixed oracle O. This does not add any calls to f .

• Eval f ,O queries: given query (Ĉ, x) to Eval, invert the fixed oracle O to find (C, r) � O−1(Ĉ).
If no such preimage exists, return ⊥. If a preimage does exist, using the f -oracle, compute
C f (x) and return the result. This translates to at most q2 queries to f : q queries by C, for
each of the q queries Ĉ to Eval.

• CollΨ queries: given query (C0 , C1), where Cb makesΨ-queries translate to D0 ,D1 that only
make f -queries, where each query toΨ � (f ,O , Eval) is translated to a query to f according
to the previous three items. The resulting oracle-aided (D0 ,D1)may thus make up to q + q2

queries f : q corresponding to the first item, and q2 corresponding to the third.6

Overall B f is (O(q2),O(q2))-query and perfectly emulates the view of AΨ. The theorem now
follows from Theorem 5.15. �

5.5.2 Indistinguishability Obfuscation

We now turn to show thatΨ also realizes an indistinguishability obfuscator that does not break in
the presence of CollΨ.

Construction 5.19 (The Obfuscator OΨ). Let Ψ � (f ,O , Eval f ,O). Given an oracle-aided circuit
C ∈ {0, 1}n , OΨ(1n , C) samples a random r ← {0, 1}n , computes Ĉ � O(C, r), and returns an oracle
aided circuit EĈ that given input x, computes Eval f ,O(Ĉ, x).

It is easy to see that O f ,O ,Eval satisfies the functionality requirement of Definition 5.2 for the
class C of f -aided circuits; indeed, this follows by the fact that O is injective, and by the definition
of O and the oracles O , Eval. We now show that it also satisfies indistinguishability, with an
exponentially small distinguishing gap, even given an exponential number of oracle queries to
Ψ � (f ,O , Eval f ,O) and the statistical difference oracle CollΨ.

Theorem 5.20. Let q(n) ≤ O(2n/6). Then for any (q , q)-query adversary A,

E
Ψ

[
PAdviO

(Ψ,CollΨ),iO,C ,A(n)
]
≤ O(2−n/6)

where the random variable PAdviO
Γ,iO,C ,A(n) denotes the adversary’s positive advantage in the IO security

game (Definition 5.3) relative toΨ � (f ,O , Eval f ,O) and CollΨ.
6We note that while there is a bound on the number of queries that they make, we do not put any restrictions on

their size, which allows to hardwire the fixed O and f−n as required in the previous three items. Indeed, Theorem 5.15
does not put any restriction on the size of these circuits.

25

Note that bounding the positive advantage suffice because of Lemma 5.4 At a very high-
level, the proof of the theorem follows a similar rationale to the proof of Theorem 5.15 showing
that one-way permutations do not break in the presence of the collision finding oracle. Roughly
speaking, we show that in order to break the above construction of IO, the adversary must be able
to detect local changes in the oracles realizing it, whereas the collision finding oracle is insensitive
of these changes. At a technical level, the case of IO requires somewhat more care than the case
of one-way permutations. For once, it has a more elaborate interface consisting not only of a hard
to invert mapping O, but also of the evaluation oracle Eval f ,O . In particular, a single change to
O may introduce many changes to Eval f ,O , which could potentially be detected by the statistical
difference oracle. Another aspect that complicates the proof is that the IO game is more interactive
in its nature. In particular, we need to deal with the fact that the actual circuits of the IO challenge
are chosen adaptively, after the adversary had already interacted with all the oracles. We now turn
to the actual proof.

Proof. We prove a stronger statement: the above holds when fixing the oracles f and O−n �

{Ok}k,n . We begin by refining the notion of smoothening: we place no requirement of smoothness
on the Eval oracle, while requiring smoothness to hold for O.

Definition 5.21. LetΨ � (f ,O , Eval f ,O). A query DΨ to oracle CollΨ is (O , ε)-smooth if: 7

max
(C,r)∈{0,1}2n

Pr
w

[
DΨ(w) queries O at (C, r)

]
≤ ε .

The Smoothening lemma (Lemma 5.12) applies to this definition aswell with an identical proof,
which is omitted.

Fix a (q , q)-query adversary A � (A1 , A2)8 and let S � (S1 , S2) be its smooth (q + βq2 + 2q2 , q)-query
simulator given by Lemma 5.12, where the additional 2q2 queries are induced by the Coll oracle
(see Definition 5.8). That is, the algorithm makes at most q + 2βq2 + 2q2 queries in total to the O
and Eval oracles and every query C(·) it makes to Coll f ,O ,Eval in turn makes at most q queries to the
O or Eval oracle.

We will specify β later. Since S perfectly emulates A, it suffices to prove the theorem for S.

To bound S’s advantage in breaking O, we consider four hybrid experiments {Hi}i∈[4] given in
Table 2. We introduce some notation that will be useful to describe the hybrids:

• We use regular expressions to describe sets. In particular, the ∗ expression. We denote by
(∗, r) � {(C, r) : C ∈ {0, 1}∗ and, |C | � |r |} and O(∗, r) � {O(C, r) : C ∈ {0, 1}∗ and, |C | � |r |}.

• For a function O �
{
Ok : {0, 1}2k → {0, 1}5k

}
k∈N, a pair (C, r) ∈ {0, 1}n×2, and Ĉ ∈ {0, 1}5n ,

we denote by O(C,r)→Ĉ the function that maps (C, r) to Ĉ and is otherwise identical to O.
If Ĉ � ⊥, then Eval f ,O(Ĉ, z) returns ⊥ for all inputs z. This puncturing operation naturally
extends to sets: given two ordered sets U,V of the same size, OU→V maps the corresponding
element from U to V .

7Note that the f oracle is fixed. We do not consider it here because it is completely available to the adversary.
8In this section, we completely ignore all the queries to f . The adversary has complete access to f and can hard code

it in the circuits. We do not limit the size of the circuits, but the number of queries they make.

26

• For a function O �
{
Ok : {0, 1}2k → {0, 1}5k

}
k∈N, we denote by Γ(f ,O) the oracle

Γ(f ,O) :� f ,O , Eval f ,O , Coll f ,O ,Eval f ,O
, aaaaaa

and by ΓT(f ,O) the oracle

ΓT(f ,O) � f ,O , Eval f ,O , PColl
f ,O ,Eval f ,O

T ,

where PColl is the punctured oracle given by Definition 5.10.

• For a function O �
{
Ok : {0, 1}2k → {0, 1}5k

}
k∈N, a string Ĉ ∈ {0, 1}5n , and a circuit C, we

denote by Γ(f ,O , Ĉ, C) the oracle

Γ(f ,O , Ĉ, C) :� f ,O , Eval f ,O

Ĉ,C
, Coll

f ,O ,Eval f ,O

Ĉ,C ,

where Eval f ,O

Ĉ,C
is an oracle that

– Given (D̂ , x)where D̂ , Ĉ, acts like Eval f ,O(D̂ , x). Namely, it computes (D , r) � O−1(D̂),
and returns D(x), or ⊥ in case there is no unique preimage or the size of x does not
match the input size of D.

– Given (Ĉ, x) returns C(x), or ⊥ in case C � ⊥, or the size of x does not match the input
size of C.

(In both oracles Γ(f ,O) and Γ(f ,O , Ĉ, C), the fixed O−n , f are also a part of Γ and the oracles
of Eval and Coll. These are omitted from our notation for the sake of simplicity.)

Hybrid H1 (Real) H2 H3 H4 (Ideal)
Obfuscator
Function On ← I5n

2n

Challenger
Randomness b ← {0, 1}, r ← {0, 1}n

Planted
Obfuscation Ĉ← {0, 1}5n \ Image(On)

Prechallenge
Punctured Set T (∗, r) ∪ O(∗, r)

Prechallenge
Oracle Γ(f ,O) ΓT(f ,O(∗,r)→⊥) Γ(f ,O)

Challenge
Obfuscation O(Cb , r) Ĉ

Postchallenge
Punctured Set U {(Cb , r)} ∪ (Ĉ, ∗) {(Cb , r)} ∪ (O(Cb , r), ∗)

Postchallenge
Oracle Γ(f ,O) ΓU(f ,O) ΓU(f ,O(Cb ,r)→Ĉ) Γ(f ,O , Ĉ, C0)

Winning
Condition b � b′ where b′ is the guess.

Table 2: The hybrid experiments.

27

Hybrid H1 is identical to the real world where Swins if it produces functionally equivalent C0 , C1,
and it successfully guesses the bit b. We show that the probability that the simulator wins in any
of the experiments is roughly the same, and that in hybrid H4 the probability that S wins is 1/2.
Throughout the hybrids, we denote by (C0 , C1) the circuits output by S1 in the prechallenge phase.
These are w.l.o.g included in the state that S1 outputs for the postchallenge phase.

Claim 5.21.1. |Pr[S wins in H1] − Pr[S wins in H2]| ≤ O(2−n/6)

Proof. There are two differences between the two hybrids. The first is in the oracle that S1 is given
in the prechallenge phase: Γ(f ,O) in H1, and its tweaked version ΓT(f ,O(∗,r)→⊥), in H2, where
T � (∗, r)∪O(∗, r). The seconddifference between the twohybrids is in the postchallenge oracle that
S2 is given: the normalColl oracle inH1 and the punctured PCollU inH2 whereU � {(Cb , r)}∪(Ĉ, ∗).

We can bound the difference between the winning probabilities in H1 and H2 as follows:���Pr[Swins in H1] − Pr[Swins in H2]
���

≤ Pr
S1 ,O
b ,r,Γ

[
S
Γ(f ,O)
1 (1n) , S

ΓT (f ,O(∗,r)→⊥)
1 (1n)

]
+ Pr

S,O
b ,r,Γ

[
S
Γ(f ,O)
2 (state,O(Cb , r)) , S

ΓU (f ,O)
2 (state,O(Cb , r))

��� state � S
Γ(f ,O)
1 (1n)

]
,

We will, in fact, show that the above is bounded for any fixed b ∈ {0, 1}. Indeed, for the rest of
the claim, fix b ∈ {0, 1}.

Claim 5.21.2.
Pr
S1 ,O
r,b ,Γ

[
S
Γ(f ,O)
1 (1n) , S

ΓT (f ,O(Cb ,r)→⊥)
1 (1n)

]
≤ O(2−n/6) .

Proof. In what follows, we denote by hit � hit(O , S1 , r) the event that O is queried at (C, r) for any
C ∈ {0, 1}n or Eval is queried at (O(C, r), z), for any C, z. The event hit occurs when the queries
are made either directly by S1 or induced through one of the Coll queries: that is, by D f ,O ,Eval(w)
or D f ,O ,Eval(w′)where D is a query to Collwith answer (w , w′).

Lemma 5.11 implies that, as long as the hit event does not occur, the two hybrids have identical
results in the prechallenge phase. Hence,

Pr
S1 ,O
r,b ,Γ

[
S
Γ(f ,O)
1 (1n) , S

ΓT (f ,O(Cb ,r)→⊥)
1 (1n)

]
≤ Pr

r
[hit] ≤

(β + 2)q2 + q
2n ≤ O(2−n/6) .

Above we use the fact that r is independent of S1’s execution in H1 and is drawn at random
from a set of size 2n . For any query (C′, r′) to O, the probability of r′ � r, that is a hit, is at most 2−n .
Similarly, using the fact that O is injective, for any Eval query (Ĉ, z), the probability that Ĉ ∈ O(∗, r)
is at most 2−n . We then use a union, considering all queries to O or Eval—at most q direct queries,
βq2 queries due to smoothening, and 2q2 induced by answers from Coll. �

Next, we bound the second term. In what follows, let collHit � collHit(S2 ,O ,U) denote the event
that one of the queries induces by the collision finder oracle Coll f ,O ,Eval hits U. That is, collHit
happens when some query Coll f ,O ,Eval(D) returns an answer (w , w′) such that D f ,O ,Eval(w) or

28

D f ,O ,Eval(w′) queries the oracle at a point inside set U � (Cb , r), (Ĉ, ∗) . Split the collHit into two
events: collHitO happens when the oracle O is queried at (Cb , r) and collHitEval happens when Eval

is queried at (Ĉ, z) by some indirect query. Note that, a collHit event does not occur when S directly
queries (O , Eval) inside U, but only via an induced Coll query.

Then, we claim that,

Claim 5.21.3.

Pr
S,O
r,Γ

[
S
Γ(f ,O)
2 (state,O(Cb , r)) , S

ΓU (f ,O)
2 (state,O(Cb , r))

��� state � S
Γ(f ,O)
1 (1n)

]
≤ Pr[collHit]

Proof. We argue that whenever the complement collHit occurs,

S
Γ(f ,O)
2 (state,O(Cb , r)) � S

ΓU (f ,O)
2 (state,O(Cb , r))

The two oracles in the two executions differ only on the Coll oracle where one of them gets Coll
oracle while the other gets the oracle punctured at PCollU . By Lemma 5.11, as long as punctured
set U is not queried by a collision returned, that is as long as collHit event does not occur, the two
oracles Coll and PCollU return identical answers. The claim follows. �

To complete the proof, we bound the probability of collHit by bounding the probability of both
collHitO and collHitEval. We start by bounding collHitEval’s probability.

Since Ĉ is picked at random, independent of the execution in H1, for any query D to Coll that
makes at most q queries,

Pr
Ĉ

[
(DΨ(w) or DΨ(w′) queries Eval f ,O(Ĉ, z) for some z)

]
≤

2q
|{0, 1}5n \ Image(On)|

≤ 2−2n ,

where (w ,w′) ← CollΨ(D). Hence, as there are at most q such queries in total, the probability of
collHitEval is bounded by 2−n .

Next, we bound the probability of collHitO . For this, we rely on smoothness. Let smooth �

smooth(S2 , f ,O , ε) be the event that all Coll-queries made by S
Γ(f ,O)
2 are (O , ε)-smooth (Defini-

tion 5.21). Then
Pr[collHitO] ≤ Pr

[
smooth

]
+ Pr[smooth ∧ collHitO]

By the smoothness lemma, 5.12,

Pr
[
smooth

]
≤ 2−εβ+log(2q2/ε) .

To bound Pr[smooth ∧ collHitO], observe that,

Pr[smooth ∧ collHitO] � Pr
[
smooth ∧ (DΨ(w) or DΨ(w′) queries O(Cb , r) for some query D)

]
Next, for each (O , ε)-smooth circuit D, the following holds: For a uniformly random w,

Pr
w

[
D f ,O ,Eval(w) queries O at (Cb , r)

]
≤ ε

Hence, as w , w′ answered by Coll each have uniform marginals, by a union bound,

Pr
w ,w′←CollΨ(D)

[
D f ,O ,Eval(w) or D f ,O ,Eval(w′) queries O at (Cb , r)

]
≤ 2ε

29

The bound now follows from a union bound over all the q queries to Coll. Hence,

Pr[smooth ∧ collHitO] ≤ 2qε .

Overall, we can bound the difference between H1 and H2 by

2−n
+ 2−εβ+log(2q2/ε)

+ 4qε ≤ O(2−n/6)

when setting ε � 2−n/3, β � 2n/3 · n and recalling that q ≤ O(2n/6).
�

Claim 5.21.4. Pr[S wins in H2] � Pr[S wins in H3].

Proof. The difference between the two hybrids is that starting from the challenge phase, we switch
the roles of O(Cb , r) and Ĉ. We argue that the two hybrids are actually identically distributed.
First, note that in both hybrids the adversarial view before the challenge phase is independent of
O(Cb , r) and Ĉ. Now, fix O everywhere, but on (Cb , r), before the challenge. Then, in the rest of
the experiment, we sample O(Cb , r) and Ĉ jointly as a random pair of distinct elements outside the
image of O(Cb ,r)→⊥. Note that the joint distribution of the pair is invariant to switching the order
of the two elements. Accordingly, the adversarial view in the two experiments is identical.

�

Claim 5.21.5. |Pr[S wins in H3] − Pr[S wins in H4]| ≤ O(2−n/6).

Proof. There are two differences between the hybrids. The first is in the oracle that S1 is given before
the challenge phase: Γ(f ,O) in H4, and its tweaked version ΓT(f ,O(∗,r)→⊥) in H3. The second is in
the oracle that S2 is given after the challenge phase: ΓU(f ,O , Ĉ, C0) in H4, and Γ(f ,O(Cb ,r)→Ĉ , Ĉ, C)
in H3. We can thus bound the difference between the winning probabilities in H3 and H4 as
follows: ���Pr[Swins in H4] − Pr[Swins in H3]

���
≤ Pr

S1 ,O
r,Γ

[
state :� S

Γ(f ,O)
1 (1n) , S

ΓT (f ,O(∗,r)→⊥)
1 (1n)

]
+ Pr

S,O
r,Γ

[
S
Γ(f ,O ,Ĉ,C0)
2 (state, Ĉ) , S

ΓU (f ,O(Cb ,r)→Ĉ)
2 (state, Ĉ)

���� state � S
Γ(f ,O)
1 (1n)

]
,

where the probabilities are over the coins of S � (S1 , S2) and Γ (specifically, Coll) and the choice
of r ← {0, 1}n , and O ← I5n

2n , and b ← {0, 1}. We again bound the two terms separately in the
following claims.

Claim 5.21.6.
Pr
S1 ,O
r,Γ

[
state :� S

Γ(f ,O)
1 (1n) , S

ΓT (f ,O(∗,r)→⊥)
1 (1n)

]
≤ O(2−n/6) .

The claim itself is identical to Claim 5.21.2. Hence, we omit the proof. We bound the second
term next.

30

Claim 5.21.7.

Pr
S,O
r,Γ

[
S
Γ(f ,O ,Ĉ,C0)
2 (state, Ĉ) , S

ΓU (f ,O(Cb ,r)→Ĉ)
2 (state, Ĉ)

���� state � S
Γ(f ,O)
1 (1n)

]
≤ O(2−n/6) .

Proof. There are two differences between H3 and H4 in the post-challenge phase: (1) On querying
O at (Cb , r), in H4, we get back O(Cb , r) while in H3, we get back Ĉ; (2) On querying Eval at
(O(Cb , r), z), in H4, we get back C f

b (z) while in H3, we get back ⊥. Crucially, note that because C f
0

and C f
1 are functionally identical, Eval(Ĉ, z) is answered identically in both H3 and H4.

Let the event hit � hit(S2 ,O , r) occur if in H4, the oracle queries either O at (Cb , r) or
Eval(O(Cb , r), z) for some z. Note that r is completely independent of the execution in H4. Hence,
as the oracles only differ at (Cb , r) and (O(Cb , r), ∗), by Lemma 5.11,

Pr
S,O
r,Γ

[
S
Γ(f ,O ,Ĉ,C0)
2 (state, Ĉ) , S

ΓU (f ,O(Cb ,r)→Ĉ)
2 (state, Ĉ)

���� state � S
Γ(f ,O)
1 (1n)

]
≤ Pr

r
[hit] ≤

(β + 2)q2 + q
2n ≤ O(2−n/6) ,

where we crucially used that r is independent of the entire execution in H4 and followed the same
calculation as in Claim 5.21.2.

�

�

Claim 5.21.8. Pr[S wins in H4] � 1
2 .

The claim follows because in this hybrid, the challenge is completely independent of the
expected answer b.

To complete the proof of Theorem 5.20, observe that,

E
Ψ

[
PAdviO

(Ψ,CollΨ),iO,C ,A(n)
]
� Pr
Ψ,CollΨ ,
A,b ,r

[b � b′] − 1
2
≤ O(2−n/6) .

�

Our Approach and the Compression Argument Approach. The proof of Asharov and Segev is
based on a compression argument developed in [GGKT05, Wee07, HHRS15, AS15]. At a high
level, the compression argument shows that a OWP inverter or an IO breaker that succeeds with
non-negligible probability, implies a succinct description of the underlying oracle (e.g., concretely
of a random function or permutation), which is information theoretically impossible.

Our proof has the form of common indistinguishability based arguments in cryptography.
We show, via a sequence of hybrids, that the adversary’s behavior in the real experiment is
indistinguishable from that in an ideal experiment where the security is obvious. Proving that
the hybrids are indistinguishable is done via coupling arguments that demonstrate insensitivity
to local changes. This rather direct approach leads to a relatively short and simple proof.

We note that while the proofs are different there are some analogous aspects to them, such as
smoothening,which effectively occurs in bothproofs (there by the nameof “direct hit elimination”).

31

References

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On Basing
One-way Functions on NP-hardness. In STOC, 2006.

[AHI+17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod
Vaikuntanathan. Low-Complexity Cryptographic Hash Functions. In ITCS, 2017.

[AR16] Benny Applebaum and Pavel Raykov. On the Relationship Between Statistical Zero-
Knowledge and Statistical Randomized Encodings. In CRYPTO, 2016.

[AS15] GiladAsharov andGil Segev. Limits on the Power of Indistinguishability Obfuscation
and Functional Encryption. In FOCS, 2015.

[AS16] Gilad Asharov and Gil Segev. On constructing one-way permutations from indistin-
guishability obfuscation. In TCC. Springer, 2016.

[BB15] Andrej Bogdanov and Christina Brzuska. On Basing Size-Verifiable One-Way Func-
tions on NP-Hardness. In TCC, 2015.

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box reductions,
revisited. In ASIACRYPT, 2013.

[BDRV18] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan.
Multi-Collision Resistant Hash Functions and Their Applications. In EUROCRYPT,
2018.

[BDRV19] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan.
Statistical Difference Beyond the Polarizing Regime. In (ECCC), 2019.

[BDV17] Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. Structure vs. Hardness
through the Obfuscation Lens. In CRYPTO, 2017.

[BEG+94] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. Algorithmica, 12(2/3):225–244, 1994.

[BG11] Zvika Brakerski and Oded Goldreich. From Absolute Distinguishability to Positive
Distinguishability. InStudies inComplexity andCryptography.Miscellanea on the Interplay
between Randomness and Computation, pages 141–155. Springer, 2011.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating Programs. In CRYPTO,
2001.

[BKSY11] Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits on the
Power of Zero-Knowledge Proofs in Cryptographic Constructions. In TCC, 2011.

[BL13] Andrej Bogdanov and Chin Ho Lee. Limits of provable security for homomorphic
encryption. In CRYPTO, 2013.

32

[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs.
Worst-case hardness for LPN and cryptographic hashing via code smoothing. In
EUROCRYPT, 2019.

[BM09] Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle Puzzles Are Optimal - An
O(n2)-Query Attack on Any Key Exchange from a RandomOracle. In CRYPTO, 2009.

[BT03] Andrej Bogdanov and Luca Trevisan. OnWorst-Case to Average-Case Reductions for
NP Problems. In FOCS, 2003.

[CDGS18] Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random Oracles
and Non-Uniformity. In EUROCRYPT, 2018.

[Dam87] Ivan Damgård. Collision free hash functions and public key signature schemes. In
EUROCRYPT, 1987.

[DHT12] Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the instantiability of hash-and-
sign RSA signatures. In TCC, 2012.

[DLMM11] Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin. On
the black-box complexity of optimally-fair coin tossing. In TCC, 2011.

[DPP93] Ivan Damgård, Torben P. Pedersen, and Birgit Pfitzmann. On the existence of statisti-
cally hiding bit commitment schemes and fail-stop signatures. In CRYPTO, 1993.

[Fis12] Marc Fischlin. Black-box reductions and separations in cryptography. In
AFRICACRYPT, 2012.

[GG98] Oded Goldreich and Shafi Goldwasser. On the Possibility of basing Cryptography on
the assumption that P , NP. IACR Cryptology ePrint Archive, 1998.

[GGH96] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from
lattice problems. IACR Cryptology ePrint Archive, 1996:9, 1996.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate Indistinguishability Obfuscation and Functional Encryption for
all Circuits. In FOCS, 2013.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the
efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005.

[GHMM18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ameer Mo-
hammed. Limits on the power of garbling techniques for public-key encryption.
In CRYPTO, 2018.

[GK93] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system for a
problem equivalent to the discrete logarithm. Journal of Cryptology, 6(2):97–116, 1993.

[GKLM12] VipulGoyal, VirendraKumar, SatyanarayanaV. Lokam, andMohammadMahmoody.
On black-box reductions between predicate encryption schemes. In TCC, 2012.

33

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious transfer.
In FOCS, 2000.

[GMM07] Yael Gertner, Tal Malkin, and Steven Myers. Towards a Separation of Semantic and
CCA Security for Public Key Encryption. In TCC, 2007.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of
Interactive Proof-Systems (Extended Abstract). In STOC, 1985.

[GMR01] Yael Gertner, TalMalkin, andOmer Reingold. On the impossibility of basing trapdoor
functions on trapdoor predicates. In FOCS, 2001.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In FOCS, 2000.

[HH09] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent
encryption. In TCC, 2009.

[HHRS15] Iftach Haitner, Jonathan J Hoch, Omer Reingold, and Gil Segev. Finding collisions in
interactive protocols—tight lower bounds on the round and communication complex-
ities of statistically hiding commitments. SIAM Journal on Computing, 44(1):193–242,
2015.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic Hashing from Strong One-Way
Functions (Or: One-Way Product Functions and Their Applications). In FOCS, 2018.

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In CRYPTO, 1996.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In CRYPTO, 2004.

[IKO05] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions for collision-
resistant hashing. In TCC, 2005.

[Imp95] Russell Impagliazzo. A Personal View of Average-Case Complexity. In CCC, 1995.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In STOC, 1989.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In STOC, 1992.

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity
of search problems: Ramsey and graph property testing. In FOCS, 2017.

[KNY18] Ilan Komargodski, Moni Naor, and Eylon Yogev. Collision resistant hashing for
paranoids: Dealing with multiple collisions. In EUROCRYPT, 2018.

[KSS11] Jeff Kahn, Michael E. Saks, and Clifford D. Smyth. The dual BKR inequality and
rudich’s conjecture. Combinatorics, Probability & Computing, 20(2):257–266, 2011.

34

[KST99] Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of
one-way permutation-based hash functions. In FOCS, 1999.

[KY18] Ilan Komargodski and Eylon Yogev. On distributional collision resistant hashing. In
CRYPTO, 2018.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized Compact Knapsacks Are
Collision Resistant. In ICALP, 2006.

[LV16] Tianren Liu and Vinod Vaikuntanathan. On Basing Private Information Retrieval on
NP-Hardness. In TCC, 2016.

[Mer89] Ralph C. Merkle. A Certified Digital Signature. In CRYPTO, 1989.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theo-
rems and computational complexity. Theor. Comput. Sci., 1991.

[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical Zero-Knowledge Proofs with Effi-
cient Provers: Lattice Problems and More. In CRYPTO, 2003.

[MX10] Mohammad Mahmoody and David Xiao. On the power of randomized reductions
and the checkability of SAT. In CCC, 2010.

[OK91] Wakaha Ogata and Kaoru Kurosawa. On claw free families. In ASIACRYPT, 1991.

[Pas06] Rafael Pass. Parallel Repetition ofZero-KnowledgeProofs and thePossibility of Basing
Cryptography on NP-Hardness. In CCC, 2006.

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-malleable
commitments. In TCC, pages 334–354, 2013.

[Per] Personal communication with the authors of [KNY18].

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In TCC, 2006.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO, pages 554–571, 2008.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In TCC, 2004.

[Rud88] Steven Rudich. Limits on the Provable Consequences of One-Way Functions. PhD thesis,
University of California, Berkeley, 1988.

[Rus95] Alexander Russell. Necessary and sufficient condtions for collision-free hashing. J.
Cryptology, 8(2):87–100, 1995.

[Sim98] Daniel R Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In EUROCRYPT, 1998.

[SV03] Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge.
Journal of the ACM (JACM), 50(2):196–249, 2003.

35

[Unr07] Dominique Unruh. Random Oracles and Auxiliary Input. In CRYPTO, 2007.

[Vad99] Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

[Wee07] Hoeteck Wee. One-way Permutations, Interactive Hashing and Statistically Hiding
Commitments. In TCC, 2007.

[YZW+17] Yu Yu, Jiang Zhang, Jian Weng, Chun Guo, and Xiangxue Li. Collision resistant
hashing from learning parity with noise. IACR Cryptology ePrint Archive, 2017:1260,
2017.

A Proofs from [BDV17]

In this appendix, we include the omitted proofs of lemmas from [BDV17].

Lemma 4.7 ([BDV17](Claim 3.7)). Fix anyΨ and any oracle-aided adversary A such that AΨ,SDOΨ makes
at most q queries to SDOΨ. Then

Pr
t
[farness(A,Ψ, ε)] ≥ 1 − 6qε ,

where the probability is over the choice t of random thresholds by SDO.

Proof. This follows from the fact that, for any query (C0 , C1) to SDOΨ with s � SD(CΨ0 ,CΨ1), ε-
farness does not hold only if the threshold t∗ � t(C0 , C1), chosen at random for this query, happens
to be in the interval (s− ε, s+ ε), which occurs with probability at most |(s − ε, s + ε)|/

�� (1
3 ,

2
3
) �� � 6ε.

The lemma then follows by a union bound over at most q queries. �

Lemma 4.9 ([BDV17](Claim 3.9)). LetΨ,Ψ′ be oracles that differ on at most c values in the domain. Let
C0 and C1 be (Ψ, ε)-smooth. Let s � SD(CΨ0 , CΨ1) and s′ � SD(CΨ′0 , CΨ

′
1) then |s − s′ | ≤ 2cε.

Proof. For either b ∈ {0, 1},

SD(CΨb , C
Ψ′

b) ≤
Pr
r

[
CΨb (r) , CΨ

′

b (r)
]
≤

Pr
r

[
CΨb (r) queriesΨ at x whereΨ(x) , Ψ′(x)

]
≤∑

x:Ψ(x),Ψ′(x)
Pr
r

[
CΨb (r) queriesΨ at x

]
≤ c · ε .

The claim then follows by the fact that

|s − s′ | :�
��SD(CΨ0 , CΨ1) − SD(CΨ′0 , CΨ

′
1)

�� ≤ SD(CΨ0 , CΨ
′

0) + SD(CΨ1 , CΨ
′

1) ≤ 2cε .

�

Lemma 4.10 (Smoothing Lemma for SDO [BDV17](Lemma 3.10)). For any (q , q)-query algorithm A

and β ∈ N, there exists a (q + 2βq2 , q)-query algorithm S such that for any input z ∈ {0, 1}∗ and oracles
Ψ, SDOΨ:

36

1. SΨ,SDOΨ(z) perfectly simulates the output of AΨ,SDOΨ(z),

2. SΨ,SDOΨ(z) only makes queries (C0 , C1) where both C0 , C1 are (Ψ, ε)-smooth queries to SDOΨ with
probability:

Pr
S
[smooth(S,Ψ, ε)] ≥ 1 − 2−εβ+log(2q2/ε) ,

over its own random coin tosses.

Proof. The simulator S emulates A and whenever A makes a query (C0 , C1) to Ψ, the simulator S
first evaluates each of the two circuits CΨ0 , C

Ψ
1 on β random inputs and stores all the queries they

make to Ψ along with their answers in a table T. It then generates a new query consisting of
circuits (C′0 , C′1) that have the table T hardwired in them. Each C′b emulates Cb , but whenever the
emulated Cb makes an oracle query toΨ, C′b first tries to answer using the table T, and only if the
answer is not there turns to the oracleΨ.

This process incurs 2βq queries to Ψ for each SDOΨ(C0 , C1) query for smoothening. As there
are q such queries, we incur at most 2βq2 additionalΨ-queries.

By construction, S perfectly emulates the view of A. We now bound the probability that S
generates a circuit that is not (Ψ, ε)-smooth. Fix any query (C0 , C1) and let x be a heavy query in the
sense that it is queried with probability larger than ε by one of the two circuits. Then the query
x will be put in the table T except with probability (1 − ε)β ≤ 2−εβ. Furthermore, each one of the
two circuits makes at most q oracle queries and thus each has at most q/ε inputs x as above. The
claim now follows by a union bound over at most q queries (C0 , C1) and at most q/ε heavy inputs
that each of the two has. �

B Converting Advantage to Postive Advantage [BG11]

The distinguisher D′ is constructed from D in a straightforward manner. D′ estimates the sign of
the advantage on the current oracle Γ by running D twice. If both outputs agree on the sign, and
then runs D in the actual experiment and either forwards the output of D or negates it based on
its estimate of the sign. Else, it outputs a random value. A formal proof follows.

Proof of Lemma 5.4. Consider the following distinguisher D′ � (D′1 ,D′2):
Pre-challenge D′1(1n):

1. For i ∈ {1, 2}:
(a) Run D1(1n), with fresh randomness each time, forwarding all oracle queries

to Γ till it outputs (C0,i , C1,i) and state.
(b) Pick bi ← {0, 1}, ri ← {0, 1}n .
(c) Obtain b′i � D2(state,O(Cb , r)).
(d) Output binary Wi :� bi � b′i .

2. If W1 � W2, set σ � W1, else set σ � ⊥.
3. Run D1(n) with fresh randomness, generate state, which includes challenge
(C0 , C1). Forward the challenge as is and set state′ � (state, σ) as the state.

37

Post-challenge D′2(1n , state′ � (state, σ), Ĉ):
1. Obtain b′ � D2(1n , state, Ĉ). All the while forwarding all oracle queries to Γ.
2. If σ � ⊥, return a random value, else if σ � 1, return b′, else return b′.

To analyze this, we calculate the postitive advantage of D′ for any oracle Γ. WLOG, let
PAdviO

Γ,O ,C ,D(n) > 0, the other case is identical. Let δ � AdviO
Γ,O ,C ,D(n). Then, we have the following

three cases for the positive advantage of D′ on Γ, PAdviO
Γ,O ,C ,D′(n) based on σ:

PAdviO
Γ,O ,C ,D′(n) �

0 if σ � ⊥,
δ if σ � 1,
−δ if σ � 0.

(Note that we are abusing notation slightly here because the postive advantage is defined for the
whole algorithm, and not conditioned on σ.) And the probability of each of them happening is the
following: Pr[σ � 1] � (12 + δ)2, Pr[σ � 0] � (1/2− δ)2 and Pr[σ � ⊥] � 2(1/2+ δ)(1/2− δ). Hence,
the positive advantage of D′ on oracle Γ is,

PAdviO
Γ,O ,C ,D′(n) � (1/2 + δ)2 · δ + (1/2 − δ)2 · (−δ) � 2δ2 .

Hence, averaging out over all the oracles gives us the required bound. �

38

	Introduction
	This Work
	More Related Work on Black-Box Separations

	Techniques
	Collision Resistance When SZK is Easy
	Proving Simon & Asharov-Segev : A Coupling-Based Approach

	Preliminaries
	Conventions
	Coupling and Statistical Distance.

	Separating SZK and CRHFs
	Fully Black-Box Constructions of SZK Problems
	The Statistical Distance Oracle
	Insensitivity to Local Changes
	Collision Resistance in the Presence of SDO Oracle.

	New Proofs of Old Separations
	Oracle-Aided Indistinguishability Obfuscation
	Simon's Collision Finding Oracle and Puncturing
	Smoothening for the Collision Finding Oracle
	Warm Up: One Way Permutations in the presence of Coll
	Indistinguishability Obfuscation (and OWPs) in the Presence of Coll

	References
	Proofs from BDV17
	Converting Advantage to Postive Advantage BG

