
Revelio: A MimbleWimble Proof of Reserves

Protocol

Arijit Dutta, Saravanan Vijayakumaran
Department of Electrical Engineering

Indian Institute of Technology Bombay

arijit.dutta@iitb.ac.in, sarva@ee.iitb.ac.in

Abstract—We reveal Revelio, a new privacy-preserving proof of
reserves protocol for Grin exchanges. By design, Revelio allows
the detection of collusion between exchanges while hiding the
identities of the outputs owned by the exchange in a larger
anonymity set of outputs.

Index Terms—Cryptocurrency, MimbleWimble, Grin, proof of
reserves

I. INTRODUCTION

Grin is a MimbleWimble-based cryptocurrency which be-

came operational on January 15th, 2019 [1]. Despite being

a relatively new project, Grin has been listed on several

cryptocurrency exchanges [2]. Such exchanges enable their

customers to acquire Grin coins without mining them. As

customers do not control the private keys of the coins they hold

on the exchange, it is possible for dishonest exchanges to sell

more coins to their customers than the total reserves they hold.

To alleviate such concerns, proof of reserves protocols have

been proposed for Bitcoin [3]–[5] and Monero [6]. But the

design of Grin prevents the usage of these previously proposed

protocols for generating proofs of Grin reserves.

Our contribution: In this paper, we present Revelio, the

first privacy-preserving proof of reserves protocol for Grin

exchanges. The unspent outputs owned by an exchange are

hidden in a larger anonymity set of unspent outputs. While

the cryptographic primitives used in Revelio are not novel, we

believe that the protocol construction itself is not obvious and

will be of interest to the Grin community.

II. REVELIO PROOF OF RESERVES PROTOCOL

Being an implementation of the MimbleWimble protocol,

Grin does not have addresses [7], [8]. To transfer coins, the

sender and receiver have to interactively build a transaction

[9]. Coins are stored in outputs which contain a Pedersen

commitment C = kG + vH where k and v are scalars in

the prime field Fn with n equal to the order of the group in

the secp256k1 curve. Knowledge of both these scalars implies

ownership of the output. The scalar v represents the amount

stored in the output. The scalar k is chosen randomly to

conceal the amount and is called the blinding factor. G is

the base point of the secp256k1 curve and H is another point

on the secp256k1 curve whose discrete logarithm with respect

to G is not known. The output also has a range proof which

proves that the value v stored in the commitment C is in the

range {0, 1, . . . , 264 − 1}.

Like the proof of reserves protocols in Provisions [5] and

MProve [6], the Revelio protocol will output a Pedersen com-

mitment Cassets to an amount which is equal to the number of

coins owned by the exchange. Given a Pedersen commitment

Cliabilities to the total liabilities of the exchange, it can prove

solvency via a range proof which shows that the amount

committed to in Cassets − Cliabilities is non-negative.

Let Cunspent be the set of all unspent outputs on the Grin

blockchain. Let Cown be the set of unspent outputs owned by

the exchange. The exchange will choose a subset Canon of

Cunspent such that Cown ⊆ Canon. The set Canon represents the

anonymity set of unspent outputs which contains the unspent

outputs actually owned by the exchange. This anonymity set

will be revealed in the Revelio protocol. But an observer will

not be able to distinguish between members of Canon which

belong to Cown from those which do not.

If an exchange does not care about revealing the identity

of the unspent outputs it owns, then there is no need for the

Revelio protocol. The exchange can simply reveal Cown and

generate Cassets as

Cassets =
∑

C∈Cown

C. (1)

It can then prove knowledge of scalars k and v such that

Cassets = kG + vH by giving a proof of knowledge of the

representation of Cassets [10]. We compare the performance of

Revelio to this simple non-private protocol in Section II-E.

Any proof of reserves protocol for Grin should satisfy the

following requirements:

• Inflation resistance: An exchange should not be able to

generate a commitment to an amount which is greater

than the total number of coins it owns.

• Privacy of amounts: For an output Ci ∈ Cown such that

Ci = kiG+ viH , the amount vi should not be revealed.

This is to conform with the privacy-focused design of

Grin. So the point kiG should not appear as part of the

proof. Otherwise, an adversary can try to exhaustively

search through the possible values of vi which will result

in the commitment Ci.

• Proof of non-collusion between exchanges: Exchanges

may collude and share outputs to produce their respec-

tive proofs of reserves. The protocol should detect such

collusion if it is used by all the exchanges.



The Revelio protocol satisfies the above requirements. Addi-

tionally, Revelio provides output privacy in the sense that an

observer who is given the set of outputs Canon is not able to

identify which outputs belong to Cown.

A. Proving Statements About Discrete Logarithms

In this section, we recall constructions of non-interactive

zero-knowledge (NIZK) proofs of knowledge for three state-

ments involving discrete logarithms using the notation pro-

posed by Camenisch and Stadler [10], [11]. We use additive

notation to represent the group operation for consistency with

the protocol construction presented in the next section.

Let G be a cyclic group of prime order n. Let G,G′, H each

be generators of the group G. Suppose that computing discrete

logarithms of random group elements in G is infeasible with

respect to any of these generators. Also suppose that the dis-

crete logarithms of each of these three generators with respect

to the other two are not known. Let H : {0, 1}∗ 7→ Zn be a

cryptographic hash function which is modelled as a random

oracle. For notational convenience, we will use a comma to

represent the concatenation operator ‖ in the arguments of H,

i.e. we will write H(X,Y, Z) instead of H(X‖Y ‖Z).

Definition 1. A pair of scalars (c, s) ∈ Z
2
n is a NIZK proof

of knowledge (PoK) of the discrete logarithm of an element

X ∈ G with respect to a generator G if they satisfy

c = H (G,X, sG+ cX) .

Such a pair will be denoted by PoK {α | X = αG}.

This proof is a Schnorr signature which can be generated by

choosing r randomly from Zn, calculating c = H(G,X, rG),
and setting s = r − cα mod n.

By the representation of an element X ∈ G with respect to

generators G,H , we mean the scalars (α, β) ∈ Z
2
n such that

X = αG+ βH .

Definition 2. A triple of scalars (c, s1, s2) ∈ Z
3
n is a NIZK

proof of the knowledge and equality of the representations of

elements X,Y ∈ G with respect to the generator pairs G,H
and G′, H respectively, if they satisfy

c = H (S, s1G+ s2H + cX, s1G
′ + s2H + cY )

where S = G‖G′‖H‖X‖Y . Such a triple will be denoted by

PoK {(α, β) | X = αG+ βH ∧ Y = αG′ + βH} .

A prover with knowledge of α, β can generate such a proof

as follows:

• She chooses r1, r2 randomly from Zn and calculates

c = H (S, r1G+ r2H, r1G
′ + r2H) .

• She sets s1 and s2 as

s1 = r1 − cα,

s2 = r2 − cβ.

In the Revelio protocol, we requires proofs of statements

which are disjunctions of the two types of statements given

in the above definitions. The main idea behind the following

construction was first proposed by Cramer et al. [12].

Definition 3. A 5-tuple of scalars (c1, c2, s1, s2, s3) ∈ Z
5
n is

a NIZK proof of either

(i) the knowledge and equality of the representations of

elements X,Y ∈ G with respect to the generator pairs

G,H and G′, H respectively, or

(ii) knowledge of the discrete logarithm of the element Y ∈ G
with respect to the generator G′,

if they satisfy

c1 + c2 = H (S, V1, V2, V3)

where S = G‖G′‖H‖X‖Y and

V1 = s1G+ s2H + c1X,

V2 = s1G
′ + s2H + c1Y, (2)

V3 = s3G
′ + c2Y.

Such a 5-tuple will be denoted by

PoK {(α, β, γ) |

(X = αG+ βH ∧ Y = αG′ + βH) ∨ (Y = γG′)} .

Suppose the prover knows γ such that Y = γG′. Then she

can generate a proof as follows:

• She chooses r3, c1, s1, s2 randomly from Zn and calcu-

lates c2 as

c2 = H(S, V1, V2, r3G
′)− c1, (3)

where S = G‖G′‖H‖X‖Y , V1 = s1G + s2H + c1X ,

and V2 = s1G
′ + s2H + c1Y .

• She sets s3 as

s3 = r3 − c2γ. (4)

Note the similarity with the proof generation for the statement

in Definition 1.

Now consider the case when the prover knows α, β such

that X = αG+ βH and Y = αG′ + βH . She can generate a

proof as follows:

• She chooses r1, r2, c2, s3 randomly from Zn and calcu-

lates c1 as

c1 = H(S, r1G+ r2H, r1G
′ + r2H,V3)− c2, (5)

where S = G‖G′‖H‖X‖Y and V3 = s3G
′ + c2Y .

• She sets s1 and s2 as

s1 = r1 − c1α,

s2 = r2 − c1β. (6)

This is similar to the proof generation for the statement in

Definition 2.



B. Proof Generation

Let G be the base point of the secp256k1 elliptic curve.

Let G′ be another generator of the secp256k1 curve whose

discrete logarithms with respect to G and H are not known.

Let H be equal to the SHA256 hash function.

The Revelio proof of reserves protocol proceeds as follows:

1. The exchange chooses a long-term secret key kexch uni-

formly from Zn. This key must remain the same in all the

Revelio proofs generated by the exchange, i.e. this key is

chosen when the exchange generates a Revelio proof for

the first time and subsequently remains unchanged.

2. The exchange chooses a list of unspent outputs Canon =
(C1, C2, . . . , CN ) from the Grin blockchain such that it

owns the outputs in a subset Cown of Canon. The list Canon

is made public by the exchange. Ownership of an output

Ci ∈ Cown is equivalent to knowledge of scalars ki and

vi such that Ci = kiG + viH . For Ci ∈ Canon \ Cown, the

exchange may know the value vi if it was the sender in

the transaction which created Ci. But it does not know the

blinding factor ki for such an output.

3. For each Ci ∈ Canon such that Ci = kiG + viH , the

exchange generates a curve point Ii as

Ii =

{

kiG
′ + viH if Ci ∈ Cown,

yiG
′ if Ci /∈ Cown,

(7)

where yi = H (kexch, Ci). The points (I1, I2, . . . , IN )
are published by the exchange. Note that the Iis are a

deterministic function of the respective Cis (for a fixed

long-term secret key kexch).

4. For each i = 1, 2, . . . , N , the exchange uses the method

described in Section II-A to generate a NIZK PoK σi =
(ci1, c

i
2, s

i
1, s

i
2, s

i
3) of the form

PoK {(α, β, γ) | (Ci = αG+ βH ∧ Ii = αG′ + βH)

∨ (Ii = γG′)} .

The proofs (σ1, σ2, . . . , σN ) are published by the exchange.

5. The exchange claims that the commitment Cassets given by

Cassets =

N
∑

i=1

Ii (8)

is a Pedersen commitment of the form xtotG
′+vtotH where

vtot is the total amount of Grin it owns.

Note that the blinding factor xtot is multiplying G′ and not

G in the commitment Cassets. The proof of solvency needs to

take this into account by generating the Cliabilities commitment

to have the form yG′ + vH .

The intuition behind the protocol construction is as follows.

The NIZK PoK σi proves that if the exchange does not own

the output Ci then Ii is a commitment to the zero amount.

Furthermore, it proves that in case the exchange does own

the output Ci it can generate Ii as a commitment only to the

amount vi which is committed to by Ci. These two properties

of Ii force the Cassets calculated in (8) to be a commitment

to an amount which is at most equal to the total amount

of Grin owned by the exchange. Cassets is not necessarily a

commitment to an amount equal to the total amount owned

by the exchange because the exchange can choose Ii to be a

commitment to the zero amount in spite of owning Ci.

The above argument does not clarify the need for intro-

ducing the generator G′ or the need for setting yi equal

to H (kexch, Ci). The former is needed to detect collusion

between exchanges while the latter is needed to prevent

identification of outputs belonging to the exchange.

Let us consider the need for G′ first. One can get the same

guarantees regarding Cassets by defining Ii as follows for Ci =
kiG+ viH .

Ii =

{

xiG+ viH if Ci ∈ Cown,

yiG if Ci /∈ Cown,
(9)

where the xis are chosen uniformly from Zn and yi ∈ Zn.

Note that for Ci ∈ Cown the blinding factor in Ii is different

from the blinding factor in Ci but the amounts in both

commitments are the same. One can prove that Ii has this

structure by giving a NIZK PoK of the form

PoK {(α, β, γ, δ) |

(Ci = αG+ βH ∧ Ii = δG+ βH) ∨ (Ii = γG)} .

While this definition of Ii guarantees that the Cassets calculated

in (8) has the right properties, it does not prevent collusion

between exchanges. Two exchanges could share an output Ci

to generate their respective asset proofs without being detected

as the blinding factors xi in (9) can be chosen freely. By

forcing Ii to have the structure given in (7), we are ensuring

that Ii is a deterministic function of Ci for Ci ∈ Cown.

Consequently, it plays the role of a key image of Ci which

enables detection of collusion between exchanges. In case the

same Ii appears in the proofs of reserves of two different

exchanges, collusion between them is revealed. This structure

of Ii is the main innovation in the Revelio protocol.

Finally, the reason for setting yi = H (kexch, Ci) is to make

Ii a deterministic function of Ci even when Ci /∈ Cown,

without revealing the nonmembership of Ci in Cown. Suppose

Ii was not a deterministic function of Ci for Ci 6∈ Cown. For

example, the yis could simply be chosen uniformly from Zn

every time an exchange generated a Revelio proof (the yi
values in the current Revelio proof will be independent of

the yi values in the previous Revelio proofs). It is realistic

to assume that a proof of reserves protocol will need to be

executed multiple times by an exchange. In this scenario, the Ii
points corresponding to Ci ∈ Canon \Cown will keep changing

in each Revelio proof while the Ii points corresponding to

Ci ∈ Cown will remain the same. Outputs Ci which appear

in multiple Revelio proofs of an exchange with the same Ii
will be identified as outputs belonging to Cown. Outputs Ci

which appear in multiple Revelio proofs with different Ii will

be identified as outputs not belonging to Cown.1 Of course, the

method of making the yis a deterministic function of Ci using

1Our earlier proposal had this flaw. One of the anonymous reviewers of
our submission identified this flaw and suggested the fix.



H and kexch is largely a matter of convenience. An exchange

could also implement such a function using a lookup table

where the yis are chosen uniformly and independently from

Zn once and reused in all subsequent Revelio proofs.

C. Proof Verification

The output of an exchange in the Revelio protocol consists

of the following:

• The list Canon = (C1, C2, . . . , CN ).
• The key image commitment list (I1, I2, . . . , IN ).
• The proofs σi = (ci1, c

i
2, s

i
1, s

i
2, s

i
3) for i = 1, 2, . . . , N .

Verification involves the following operations:

1. The verifier checks that the list Canon consists of only

unspent outputs.

2. For each i = 1, 2, . . . , N , the verifier verifies the proof σi

using the pair (Ci, Ii).
3. The verifier also checks that none of the key image com-

mitments Ii published by the exchange appear in the proofs

of reserves published by other exchanges. If a key image

commitment is common to the proofs published by two

different exchanges, collusion is declared.

D. Security Properties

The security of the Revelio protocol against asset inflation

by an exchange and undetected collusion between exchanges

follows from the unforgeability of the NIZK proofs σi.

• In order to generate a Cassets commitment to an amount

which is greater than the total amount it owns, an

exchange would have to create an Ii which is either a

commitment to the amount in Ci when it does not own

Ci or a commitment to an amount larger than the amount

in Ci. But this would be a forgery of the NIZK proof

σi. So a probabilistic polynomial time (PPT) exchange

can possibly achieve asset inflation with only a negligible

probability of success.

• When Ii is a commitment to the amount in Ci, the NIZK

proof σi guarantees that Ii is a deterministic function

of Ci except with negligible probability. This ensures

that collusion between exchanges (via output sharing) is

detected.

Revelio also provides output privacy in the sense that a

PPT adversary cannot distinguish between those outputs in the

anonymity set which belong to the exchange and those which

do not. To make this notion precise, consider the following

experiment (which we call OutputPriv).

Let the anonymity set Canon consist of a single unspent

output C1 = k1G + v1H owned by the exchange. Let A
be a PPT adversary whose running time is bounded by a

polynomial in the security parameter λ.

1. The exchange chooses a bit b uniformly from {0, 1} and a

long-term secret key kexch uniformly from Zn.

2. The adversary specifies a polynomial p(λ) number of

proofs to be generated by the exchange.

3. If b = 0, the exchange generates a list of p(λ) Revelio

proofs (C1, I1, σ
i
1) where i = 1, 2, . . . , p(λ), I1 = y1G,

and y1 = H (kexch, C1).

4. If b = 1, the exchange generates a list of p(λ) Revelio

proofs (C1, I1, σ
i
1) where i = 1, 2, . . . , p(λ) and I1 has the

same representation as C1 with respect to generators G′

and H , i.e. I1 = k1G
′ + v1H .

5. Given the proofs (C1, I1, σ
i
1), i = 1, 2, . . . , p(λ), and the

amount v1, an adversary A outputs a bit b′, i.e.

b′ = A
(

C1, I1, σ
1
1 , σ

2
1 , . . . , σ

p(λ)
1 , v1

)

. (10)

6. The adversary succeeds if b′ = b. Otherwise, it fails.

We give the amount v1 as an input to A to model the

pessimistic scenario of the adversary having knowledge of the

amount in C1 (due to being the sender in the transaction which

created C1). Not knowing v1 only makes it harder for A to

succeed. If A succeeds in estimating the bit b with a proba-

bility which is non-negligibly better than 1
2 , then the proof of

reserves protocol leaks information about output ownership.

As the Iis and σis corresponding to different outputs are

independent, an adversary who succeeds in detecting output

ownership when the anonymity set has a size larger than one

must be able to succeed in the above experiment.

Definition 4. The Revelio protocol provides output privacy

if every PPT adversary A succeeds in the OutputPriv

experiment with a probability which is negligibly close to 1
2 .

If we model the hash function H as a random oracle,

each σi
1 = (ci1, c

i
2, s

i
1, s

i
2, s

i
3) is uniformly distributed on Z

5
n

irrespective of the bit b (see the calculations in (3), (4),

(5), and (6)). So an adversary can only hope to estimate b
via (C1, I1, v1). The adversary can obtain the point k1G by

calculating C1 − v1H . It can also calculate I1 − v1H which

is given by

I1 − v1H =

{

y1G
′ − v1H if b = 0,

k1G
′ if b = 1.

(11)

We make the following observations:

• For b = 1, the triple (k1G,G′, I1 − v1H) is a Diffie-

Hellman triple. To see this, let α = k1 and G′ = βG for

some β ∈ Zn, and observe that I1−v1H = k1G
′ = αβG.

Thus

(k1G,G′, I1 − v1H) = (αG, βG, αβG). (12)

• For b = 0, I1 = y1G is uniformly distributed over the

group G as y1 = H (kexch, C1) and H is a random oracle.

This implies that I1 − v1H is uniformly distributed over

the group G. Thus

(k1G,G′, I1 − v1H) = (αG, βG, γG), (13)

where γ is uniformly distributed over Zn and independent

of α and β.

So the task of estimating b is as hard as the task of identi-

fying Diffie-Hellman triples. As long as the decisional Diffie-

Hellman assumption holds in the group G, no PPT adversary

can estimate b with a probability which is non-negligibly

better than 1
2 . This argument essentially proves the following



TABLE I
PROOF GENERATION AND VERIFICATION PERFORMANCE

Canon Cown Revelio Revelio Revelio Simple Simple Simple

Size Size Proof Size Gen. Time Ver. Time Proof Size Gen. Time Ver. Time

100 25 0.02 MB 1.13 s 1.14 s 0.92 KB 21.96 ms 22.00 ms

100 50 0.02 MB 1.14 s 1.15 s 1.74 KB 22.12 ms 22.17 ms

100 75 0.02 MB 1.15 s 1.16 s 2.57 KB 22.38 ms 22.40 ms

1000 250 0.22 MB 11.98 s 11.98 s 8.34 KB 23.52 ms 23.56 ms

1000 500 0.22 MB 11.80 s 11.86 s 0.01 MB 25.42 ms 25.42 ms

1000 750 0.22 MB 11.73 s 11.84 s 0.02 MB 27.46 ms 27.46 ms

10000 2500 2.26 MB 109.57 s 110.23 s 0.08 MB 41.36 ms 41.28 ms

10000 5000 2.26 MB 109.87 s 110.78 s 0.16 MB 60.36 ms 60.18 ms

10000 7500 2.26 MB 109.57 s 110.46 s 0.24 MB 79.10 ms 78.73 ms

theorem. We defer the formal proof to an extended version of

this paper.

Theorem 1. The Revelio protocol provides output privacy in

the random oracle model under the decisional Diffie-Hellman

assumption.

E. Performance

To the best of our knowledge, Revelio is the first proof of

reserves protocol for Grin exchanges which provides output

privacy. So there is no existing benchmark which can be used

to evaluate the relative performance of Revelio. Instead, we

compare Revelio to the simple non-private protocol described

in (1). The simulation code was implemented in Rust using

the rust-secp256k1-zkp library [13]. It is available at [14].

The performance of the Revelio proof generation and ver-

ification algorithms is given in Table I for anonymity list

Canon having sizes 100, 1000, and 10000. For each case,

the percentage of known addresses is either 25%, 50%, or

75%. The table also shows the performance of the simple

non-private protocol as a function of Cown size (the Canon

parameter is irrelevant for this protocol). The execution times

were measured on a single core of an Intel i7-7700 3.6 GHz

CPU. The Revelio protocol is orders of magnitude slower and

its proof size an order of magnitude larger compared to the

simple non-private protocol. Nevertheless the proof sizes and

running times of Revelio are practical and the higher values

are justified by the privacy it provides. As the NIZK proof

generation and verification for different outputs can proceed

in parallel, running times can be reduced by parallel execution.

III. CONCLUSION

We have presented the design of the first privacy-preserving

collusion-resistant proof of reserves protocol for Grin ex-

changes. Our simulations show that the proof generation and

verification times are practical. Here are two potential areas

for improvement.

• The collusion-resistance property of Revelio works only

if all the exchanges generate their proofs using the same

blockchain state. If an exchange generates a Revelio

proof and then transfers some coins to another exchange

before the latter generates its Revelio proof, then these

two exchanges end up effectively sharing some coins.

Enforcing simultaneous proof generation is an interesting

direction for future research.

• Revelio provides output privacy in the sense that a PPT

adversary cannot tell where an output in Canon belongs

to Cown or Canon \ Cown. But this level of privacy is far

from perfect as the adversary knows that the exchange

owns some outputs in Canon. Since the proof sizes and

generation/verification times in Revelio increase linearly

with the size of Canon, simply setting Canon to be equal

to the whole unspent output set Cunspent is not a scalable

strategy. Development of more efficient proof of reserves

protocols which will enable perfect output privacy is

another interesting direction for future research.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

comments which have improved this paper and informed

our discussion of the potential areas for improvement in

the concluding section. Special thanks to the reviewer who

found a flaw in our earlier design and suggested a fix for

it. We also acknowledge the support of the Bharti Centre for

Communication at IIT Bombay.

REFERENCES

[1] Grin project website. [Online]. Available: https://grin-tech.org/
[2] Exchanges information sharing for Grin. [Online]. Available:

www.grin-forum.org/t/exchanges-information-sharing-for-grin/2343
[3] Z. Wilcox, “Proving your Bitcoin reserves,” Bitcoin

Talk Forum Post, May 2014. [Online]. Available:
https://bitcointalk.org/index.php?topic=595180.0

[4] C. Decker, J. Guthrie, J. Seidel, and R. Wattenhofer, “Making bitcoin
exchanges transparent,” in 20th European Symposium on Research in

Computer Security (ESORICS), 2015, pp. 561–576.
[5] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provi-

sions: Privacy-preserving proofs of solvency for Bitcoin exchanges,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (ACM CCS), New York, NY, USA, 2015, pp.
720–731.

[6] A. Dutta and S. Vijayakumaran, “MProve: A proof of reserves protocol
for Monero exchanges,” Cryptology ePrint Archive, Report 2018/1210,
2018, https://eprint.iacr.org/2018/1210.

[7] T. E. Jedusor, “Mimblewimble,” 2016. [Online]. Available:
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

[8] A. Poelstra, “Mimblewimble,” 2016. [Online]. Available:
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

[9] Introduction to MimbleWimble and Grin. [Online]. Available:
https://github.com/mimblewimble/grin/blob/master/doc/intro.md

[10] J. Camenisch, “Group signature schemes and payment systems based on
the discrete logarithm problem,” Ph.D. dissertation, ETH Zurich, 1998.

[11] J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” Dept. of Computer Science, ETH Zürich,
Tech. Rep. 260, Mar 1997.

[12] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowl-
edge and simplified design of witness hiding protocols,” in Advances in

Cryptology — CRYPTO ’94, 1994, pp. 174–187.
[13] Grin rust-secp256k1-zkp github repository. [Online]. Available:

https://github.com/mimblewimble/secp256k1-zkp/
[14] Revelio simulation code. [Online]. Available:

https://github.com/avras/revelio

https://grin-tech.org/
www.grin-forum.org/t/exchanges-information-sharing-for-grin/2343
https://bitcointalk.org/index.php?topic=595180.0
https://eprint.iacr.org/2018/1210
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/secp256k1-zkp/
https://github.com/avras/revelio

	Introduction
	Revelio Proof of Reserves Protocol
	Proving Statements About Discrete Logarithms
	Proof Generation
	Proof Verification
	Security Properties
	Performance

	Conclusion
	References

