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Abstract. The Learning with Errors (LWE) problem is the fundamental
backbone of modern lattice based cryptography, allowing one to establish
cryptography on the hardness of well-studied computational problems.
However, schemes based on LWE are often impractical, so Ring LWE was
introduced as a form of ‘structured’ LWE, trading off a hard to quantify
loss of security for an increase in efficiency by working over a well chosen
ring. Another popular variant, Module LWE, generalizes this exchange
by implementing a module structure over a ring. In this work, we intro-
duce a novel variant of LWE over cyclic algebras (CLWE) to replicate
the addition of the ring structure taking LWE to Ring LWE by adding
cyclic structure to Module LWE. We show that the security reductions
expected for an LWE problem hold, namely a reduction from certain
structured lattice problems to the hardness of the decision variant of the
CLWE problem. As a contribution of theoretic interest, we view CLWE
as the first variant of Ring LWE which supports non-commutative multi-
plication operations. This ring structure compares favorably with Module
LWE, and naturally allows a larger message space for error correction
coding.
Key words. algebraic number theory, lattices, learning with errors, non-
commutative algebra, post-quantum cryptography.
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1 Introduction

With the predicted advent of quantum computers compromising the bulk of ex-
istent cryptographic constructions, lattice based cryptography has emerged as
a promising foundation for long term security. In particular, the Learning with
Errors (henceforth LWE) problem introduced in [42], as well as its variants over
rings (RLWE) [26] and modules (MLWE) [21], provides a natural intermediate
step to base cryptographic hardness on lattice short vector problems in a post
quantum setting. Indeed, second round submissions to the NIST post quantum
standardisation process such as NewHope [2] and KYBER [4] rely on the hard-
ness of LWE variants. Cryptography based on the classical LWE problem is
typically somewhat impractical, in part due to large key sizes. To solve this, the
ring variant was introduced as a way to provide extra structure in LWE to trade
a potential loss of security for an increase in efficiency. MLWE generalizes ring
and classical LWE, providing a smoother transition between security and effi-
ciency than the binary option presented by ring or classical LWE. The flexibility
of MLWE is highly desirable in practice, as demonstrated by third-round NIST
finalists KYBER and SABER, both based on MLWE [1].

Conceptually, one may view all these problems as variations on a single prob-
lem. The (search) LWE problem tasks a solver with recovering a secret vector
s ∈ Znq from a collection of pairs (ai, b = 〈ai, s〉 + ei), where 〈·, ·〉 denotes the
inner product, each ai ∈ Znq is uniformly random and the ei’s are small random
errors. In practice, we view this collection of equations in matrix-vector form:

As + e = b,

where all operations and entries are over Zq and the challenge is to recover s from
A,b. A popular ring variant replaces A, s, e with elements a, s, e from the ring

Rq :=
Zq [x]
xn+1 , requiring the solver to obtain s from samples ai · s+ ei. For power-

of-two n this can be expressed in matrix-vector form by considering the matrix
rot(a), the negacyclic matrix obtained from the coefficients of a. Explicitly, for
a = a0 +a1x+ ...+an−1x

n−1 and bold faced letters denoting coefficient vectors,
a sample from the RLWE distribution takes the form:

a0 −an−1 . . . −a1
a1 a0 . . . −a2
...

...
. . .

...
an−1 an−2 . . . a0

 s + e = b

where once again operations and entries are over Zq. This is exactly a structured
version of the classical LWE problem, where the uniformly random matrix A
has been replaced by the negacyclic matrix rot(a). Of course, this should be an
easier problem to solve, yet no substantial progress has been made in using the
structure of rot(a) to solve the problem efficiently. We can extend this matrix-
vector view to MLWE as well. An MLWE instance takes place in a module M of
dimension d over Rq, such that a solver has to recover s ∈ M from a collection
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of pairs (ai, 〈ai, s〉+ ei) where ai is a uniformly random element of M and each
ei is a small random element of Rq. A collection of such pairs can be viewed as
As + e = b, where the ambient space Zq has been replaced by Rq e.g. with d
samples: 

a1,1 a1,2 . . . a1,d
a2,1 a2,2 . . . a2,d

...
...

. . .
...

ad,1 ad,2 . . . ad,d

 s + e = b

where all operations are over Rq and each ai,j is uniformly random. Of course,
we could extend this to have operations over Zq by applying the rot(·) operation
coordinatewise, to obtain a structured LWE instance in dimension nd.

An advantage of these structured matrices is that they allow for streamlined
storage and operations. For example, storing a uniformly random matrix A re-
quires one to store all n2 of its entries, but rot(a) requires a factor n less mem-
ory since one need only store its first column. Equivalently, one RLWE sample
generates n LWE samples while reducing the storage space and key sizes. Mul-
tiplication can also be speeded up by using the Chinese Remaindering Theorem
(CRT) or other techniques.

This concept of improving efficiency by adding structure motivates this work;
can we perform an analog of the transformation taking an LWE matrix A to an
RLWE matrix rot(a) for the module M? We solve this by constructing a new
variant of the LWE problem over a certain non-commutative space known as a
cyclic algebra. In recent years, cyclic algebras have received significant attention
in the field of coding theory (see e.g. [24, 31, 44]) due to the particular nature
of the matrix lattices they induce, and we view them as a suitable option for
defining an LWE problem over a non-commutative ring. Though some efforts
have been made to construct non-commutative LWE problems, for example [7],
[15], the majority of non-commutative cryptography has relied on group theoretic
constructions, whose underlying hard problems are often less robust than those
of lattice cryptography. Somewhat informally, for a cyclic algebra A and well
chosen parameters there exists an automorphism θ of Rq and a γ ∈ Rq such that
an LWE style sample a · s+ e over A can be written in matrix-vector form

a0 γθ(ad−1) γθ2(ad−2) . . . γθd−1(a1)
a1 θ(a0) γθ2(ad−1) . . . γθd−1(a2)
a2 θ(a1) θ2(a0) . . . γθd−1(a3)
...

...
...

. . .
...

ad−1 θ(ad−2) θ2(ad−3) . . . θd−1(a0)

 s + e = b

where all entries and operations are now over Rq. Though more complex than
the transformation taking LWE to RLWE this fulfills our goal of providing a
structured version of MLWE, since we have replaced the uniformly random ma-
trix A over Rq with a structured matrix which we denote φ(a) that requires a
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factor of d less storage. Of course, by applying the rot(·) operation coordinate-
wise, one can extend this to a high dimensional version of the LWE problem,
now with two sets of structure lying on top of each other.

1.1 Contributions and Methodology

The main novel contribution of this work is a definition of Cyclic Algebra LWE
(CLWE), together with justifications for its construction and a polynomial time
reduction from short vector problems over matrix lattices induced by ideals in
a cyclic algebra to CLWE, establishing its security on the assumption that such
problems are hard. As in [26], the algorithm bases the security of CLWE on short
vector problems over ideal lattices in A; similarly to ideal lattices in K, these
have some extra underlying structure that might make computational problems
easier. However, we leave the relative complexity of these problems an open area
of investigation.

CLWE represents a middle ground between RLWE and MLWE. Cyclic al-
gebras are equipped with a proper ring multiplication which preserves the di-
mension of the lattice. Specifically, we consider the following advantages of our
CLWE construction:

– Efficiency. CLWE can be seen a structured variant of MLWE. Assuming for
simplicity that the public key in LWE based schemes is a sample (A,b), a
public key generated as A = rot(φ(a)) requires only as much storage as that
of an equivalent dimension RLWE public key1. Multiplication in cyclic alge-
bras can be implemented over a product of skew polynomial rings following
a CRT-style decomposition, for which well known fast algorithms, such as
those of [14] and [41], can applied to compute the operation A · s.

– Security. Recent works on quantum attacks on related ideal lattice problems
(e.g. [9], [16], [17], [13] amongst others) require that the underlying group, in
this case the unit group of OK , is commutative, see e.g. [19], which is untrue
for a non-commutative algebra. We conjecture that the security level is higher
than RLWE, but welcome further cryptanalysis. We actively avoid known
attacks on previous attempts to create structured MLWE (see Section 3.2).
We remark that solving ideal-SVP in a number field is not known to impact
the security of RLWE. For practical estimates, the security of RLWE and
MLWE only depends on their dimension and not on the structure (because
we do not know of a practical algorithm solving RLWE more efficiently
than MLWE); in theory, the underlying hard mathematical problem behind
RLWE and MLWE is the same, namely SIVP in modules of rank 2. So if
one manages to exploit the structure of the units of a number field to break
RLWE in polynomial time (for a sufficiently large choice of parameters), it
will very likely apply to MLWE too.

1 In practice, a seed is often used to generate the matrix A, which however requires a
pseudorandom generator under the random oracle model. By contrast, CLWE does
not require the random oracle model. Moreover, certain applications do not permit
the use of a seed, e.g., pseudorandom functions [6].
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– Decryption failure rates. The scalar multiplication of MLWE is dimension-
lossy. In other words, the message space of MLWE is restricted in Rq, whose
dimension is smaller than that of the module lattice. It leaves less room for
error correction coding in MLWE-based schemes (e.g., a KYBER instance for
a key size of 256 within Rq of dimension 256). In contrast, the dimension of
the message space of CLWE is that of the (non-commutative) ring, which is
higher by a factor of d. Thus, it accommodates better error correction coding
(see Section 5.2), and low decryption failure rates are desired under chosen
ciphertext attacks (CCA). Even trivial repetition coding can dramatically
reduce decryption failure rates (e.g., NewHope)2.

Our search-to-decision reduction is a mixture of two versions. We choose a
specific modulus q which allows efficient computation but suffers a loss in the
secret space, and another modulus q for which the secret space is full but the
efficiency of the scheme is unknown. Then, we apply the well-known modulus
switching technique [21, Theorem 4.8] to obtain the best of both versions, namely,
full secret space and computational efficiency.

1.2 Related Work and Organization

This work is related to a number of different areas: lattice-based cryptography,
information theory and number theory.

In lattice-based cryptography, an alternative construction for structured mod-
ule LWE, called multivariate-RLWE, was presented in [34,35], where they tensor
product two (or more) number fields in order to provide a structured module
matrix. However, an efficient implementation of [35] was attacked in [11], to-
gether with a warning about taking care when putting structure on a module. In
short, [11] attacks certain instances of multivariate-RLWE by providing a homo-
morphism to some underlying subfield K, dramatically reducing the dimension of
the lattice problem to be attacked. Fortunately for this work, a somewhat techni-
cal condition on the choice of γ known as the non-norm condition precludes such
a homomorphism existing to reduce the dimension of CLWE (see Section 3.2). It
is worth pointing out that that their problem has been addressed in [34], and in
fact this fix looks somewhat like our non-norm condition (e.g., unlike the original
version, full rank is maintained in [34]).

This paper is inspired by the abundant literature of space-time coding based
on cyclic division algebras (see the monographs [8, 31] and references therein).
On a high level, our construction is reminiscent of multi-block space-time codes
[20, 22], with the caveat of scaling up the number of blocks to make the codes
practically undecodable. In the context of space-time coding, our construction

2 The same result could be obtained in MLWE by increasing the public key and
ciphertext sizes by a factor 2: instead of sending a matrix A and vector b, Alice can
generate a square matrix B (corresponding to the same A and multiple secret keys).
This doubles the size of the public key since we send 2 matrices instead of 1 matrix
and 1 vector. Similarly the ciphertexts are transformed into 2 vectors instead of 1
vector and 1 element, which doubles its size.
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generalizes [20] and offers greater flexibility in the code parameters (the number
of blocks vs. the number of antennas). Multi-block space-time codes have been
used in [24] to achieve information-theoretic security over wiretap channels, as
opposed to computational security in a classic cryptographic setting of this pa-
per. There is a major difference between the roles of cyclic algebras in coding
and cryptography, though: the primary concern for coding is the non-vanishing
determinant (NVD), while the non-commutative ring structure becomes crucial
for cryptography. For efficient multiplication of elements in a cyclic algebra, we
heavily rely on the CRT technique of [32].

We present two approaches (subfields and compositum fields) to the con-
struction of novel cyclic division algebras, which enlarge the pool of algebras
and may find other applications. Specifically, our proof that the natural order of
the family of cyclic division algebras constructed in Theorem 2 (including those
in [20]) is in fact maximal, is an original contribution.

The rest of this paper is organized as follows. In Section 2 we provide nec-
essary background material on lattices, number fields, and cyclic algebras. In
Section 3 we provide a definition and discussion of CLWE, together with novel
constructions of cyclic division algebras for the CLWE problem. In Section 4 we
provide a reduction from structured lattice problems to search CLWE, as well as
a search-worst case decision reduction for CLWE. In Section 5 we show a sample
CLWE cryptosystem and provide an estimate of its asymptotic operation com-
plexity. Finally, the paper is concluded in Section 6 with a discussion of open
problems. For a smooth flow of the main text, certain proofs, sideline discussions
and technical details are deferred to appendices.

2 Preliminaries

2.1 Lattices

A lattice is a discrete additive subgroup of a vector space V . If V has dimension
n a lattice L can be viewed as the set of all integer linear combinations of a
set of linearly independent vectors B = {b1, ...,bk} for some k ≤ n, written

L = L(B) = {
∑k
i=1 zibi : zi ∈ Z}. If k = n we call the lattice full-rank, and

we will only consider lattices of full-rank. We can extend this notion of lattices
to matrix spaces by stacking the columns of a matrix. We recall two standard
lattice definitions.

Definition 1. Given a lattice L in a space V endowed with a metric ‖ · ‖, the
minimum distance of L is defined as λ1(L) = minv∈Λ/{0} ‖v‖. Similarly, λn(L)
is the minimum length of a set of n linearly independent vectors, where the length
of a set of vectors {x1, ...,xn} is defined as maxi(‖xi‖).

Definition 2. Given a lattice L ⊂ V , where V is endowed with an inner product
〈·, ·〉, the dual lattice L∗ is defined L∗ = {v ∈ V : 〈L, v〉 ⊂ Z}.
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2.2 Gaussian Distributions

Definition 3. For a vector space V with norm ‖ · ‖ and an r > 0, we define the
Gaussian function ρr : V → (0, 1] by ρr(x) = exp(−π‖x‖/r2).

We can use this function to define the spherical Gaussian distribution Dr

over V , which outputs v with probability proportional to ρr(v). Similarly, we
can sample an elliptical Gaussian Dr in a basis b1, ...,bn of V , for r = (r1, ..., rn)
a vector of positive reals, by sampling x1, ..., xn independently from the one
dimensional Gaussian distributions Dri and outputting

∑n
i=1 xibi.

When sampling a Gaussian over a lattice L we will use the discrete form of
the Gaussian distribution. We define the distribution DΛ,r over Λ by outputting

x with probability ρr(x)
ρr(L) for each x ∈ L. This version of the discrete Gaussian is

centered at 0, which in general need not be the case.
An important lattice quantity, known as the smoothing parameter, was in-

troduced in [30]. The motivation for the name is provided by Lemma 1 following
the definition.

Definition 4. For a lattice L and ε > 0, the smoothing parameter ηε(L) is
defined as the smallest r > 0 satisfying ρ1/r(L∗/{0}) ≤ ε.

The following is a special case of [30], Lemma 4.1.

Lemma 1. For a lattice L over Rn, ε > 0, r ≥ ηε(L), and x ∈ Rn, the statistical
distance between (Dr + x) mod L and the uniform distribution modulo L is
bounded above by ε/2. Equivalently, ρr(L+ x) ∈ [ 1−ε1+ε , 1] · ρr(L).

We introduce well known lemmas used to relate the smoothing parameter to
standard lattice properties. The first comes from [5], the second from [39].

Lemma 2. For a lattice L of dimension n and c ≥ 1 it holds that c
√
n/λ1(L∗) ≥

ηε(L) for ε = exp(−c2n).

Lemma 3. For a lattice L and ε ∈ (0, 1) it holds that ηε(L) ≤
√

log(1/ε)/π

λ1(L∗) .

2.3 Algebraic Number Theory

Definition 5. A number field K is a finite degree extension of the rationals Q.
Typically, we define a number field by adjoining some algebraic element α ∈ C
and set K = Q(α). The degree of K refers to its degree as a field extension.

To define a cyclic algebra, we will need to take an additional extension of K. In
particular, we will need the extension to be Galois over K, defined as follows.

Definition 6. Let L/K be an extension of number fields of dimension d. The
Galois group of L over K is the group Aut(L/K) of automorphisms of L that fix
K. We say that the extension is Galois if the subfield of L fixed by Aut(L/K) is
exactly K.
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We define a cyclic Galois extension L/K to be a Galois extension such that the
Galois group of L over K is the cyclic group generated by some element θ of
degree d := [L : K]. Finally, we require the ring of integers of a number field.

Definition 7. Given a number field K, its ring of integers OK is the ring con-
sisting of those elements of K whose minimal polynomial over Q lie in Z[x].

It is easy to check that if L/K is an extension of number fields thenOL∩K = OK .

The Canonical Embedding Let K = Q(α) be a number field of degree n. It is
a well known fact that there are exactly n distinct ring embeddings σi : K → C.
These embeddings correspond to the n distinct injective ring homomorphisms
mapping α to the roots of its minimum polynomial f . We split these embed-
dings and say that there are r1 real embeddings (whose image lie in R) and r2
conjugate pairs of complex embeddings (the complex embeddings come in pairs
since complex roots of f occur in conjugate pairs), such that r1 + 2r2 = n. The
standard convention is to order the embeddings such that the r1 real embeddings
come first and the complex embeddings are arranged such that σr1+j = σr1+r2+j
for 1 ≤ j ≤ r2.

Definition 8. Let K = Q(α) be a number field of degree n = r1 + 2r2. The
canonical embedding σ is the ring homomorphism σ : K → Rr1 × C2r2 defined
by

σ(x) = (σ1(x), ..., σn(x)).

Formally, σ maps into the space

H = {(x1, ..., xn) ∈ Rr1 × C2r2 |xr1+r2+j = xr1+j ∀1 ≤ j ≤ r2} ⊂ Cn,

which is isomorphic to Rn as an inner product space.

We can equip H with the orthonormal basis {hi}, where hi = ei for 1 ≤ i ≤ r1
and hj = 1√

2
(ej + ej+r2),hj+r2 =

√
−1√
2

(ej − ej+r2) for r1 < j ≤ r1 + r2, and

use the well defined `p norm induced by viewing H as a subset of Cn. Observe
that multiplication in K maps to coordinatewise multiplication in H. The `2
norm on H allows us to efficiently sample a Gaussian distribution Dr over K
by sampling such a Gaussian coordinatewise over H, although technically this
distribution is over the field tensor product KR = K ⊗Q R ∼= H. Furthermore, it
satisfies the property that for any x ∈ KR we have the equality of distributions
x · Dr and Dr′ , where r′i = ri · |σi(x)|. When we have an extension of number
fields L/K we will denote their respective canonical embeddings σL and σK as
maps into HL and HK to avoid confusion.

Relative Embeddings In the case of an extension L of a number field K it is
sometimes more convenient to apply a different order on its embeddings induced
by extending embeddings of K to those of L. Given a tower L/K/Q where
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K has degree n and L has degree d over K, there are precisely n embeddings
σ1, ..., σn of K into C. Assuming L/Q is Galois, each of these can be extended
to an embedding αi : L → C such that αi|K = σi. However, these extensions
are not unique, and it is easy to see that there are [L : K] = d choices for each
αi. In particular, in the case where L/K is a cyclic extension with Galois group
generated by θ it holds that the composite automorphisms αi ◦ θj(·), 1 ≤ j ≤ d,
run through the d choices of αi. Hence for a fixed choice of α1, ..., αn the nd
automorphisms of L can each be uniquely represented by some αi ◦ θj(·), which
we denote by αji (·), 1 ≤ i ≤ n, 1 ≤ j ≤ d. Given the usual ordering of embeddings
of K this induces two systematic orderings on the embeddings of L by running
through either the i or j coordinates first.

2.4 Cyclic Algebras

Definition 9. Let K be a number field with degree n, and let L be a Galois
extension of K of degree d such that the Galois group of L over K is cyclic of
degree d, Gal(L/K) = 〈θ〉. For non-zero γ ∈ K we define the resulting cyclic
algebra

A = (L/K, θ, γ) := L⊕ uL⊕ ...⊕ ud−1L

where ⊕ denotes the direct sum, u ∈ A is some auxiliary generating element of
A satisfying the additional relations xu = uθ(x),∀x ∈ L and ud = γ. We will
call d the degree of the algebra A. We call such an algebra a division algebra if
every element a ∈ A has an inverse a−1 ∈ A such that aa−1 = 1.

The relations among K, L and A are illustrated in Fig. 1. In fact, every
central simple algebra over a number field is cyclic.

𝐾 𝐿 𝒜
Cyclic Extension Attach 𝑢

Degree 𝑑 Degree 𝑑

Fig. 1. Structure of a cyclic algebra.

Since θ fixes K, the center of the cyclic algebra is precisely K. Oftentimes
the condition γ ∈ K is replaced by the stronger condition γ ∈ OK , and we will
use this condition in our work to guarantee the existence of a certain subring
known as the natural order. Note that the division property does not hold for
arbitrary γ, and such algebras are not always easy to construct, which we will
discuss later in this section.

We present a matrix representation of elements of A which proves useful for
computing multiplication in cyclic algebras. We can naturally view an element
a ∈ A as an d-dimensional vector Vec(a) over L, in which case we can view left
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multiplication of elements as matrix-vector operations. This is done by defining
the map φ : A → Md×d(L), where for x = x0 + ux1 + ... + ud−1xd−1 ∈ A with
each xi ∈ L,

φ(x) =


x0 γθ(xd−1) γθ2(xd−2) . . . γθd−1(x1)
x1 θ(x0) γθ2(xd−1) . . . γθd−1(x2)
x2 θ(x1) θ2(x0) . . . γθd−1(x3)
...

...
...

. . .
...

xd−1 θ(xd−2) θ2(xd−3) . . . θd−1(x0)

 .

We call this mapping a left regular representation of A, because it holds for
any a, b ∈ A that φ(a)Vec(b) = Vec(ab), and that φ(ab) = φ(a) · φ(b). In the
case where A is a division algebra it follows that each φ(a) is an invertible
matrix. Since θ is well defined on LR we abuse notation and extend this map to
φ :
⊕d−1

i=0 u
iLR →Md×d(LR). We derive lattices from subrings of a cyclic algebra

by vectorising their images under φ.

Definition 10. Let A = (L/K, θ, γ) be a cyclic division algebra. A Z-order Λ in
A is a finitely generated Z-module such that Λ ·Q = A and that Λ is a subring of
A with the same identity element as A. We call Λ maximal if there is no Z-order
Γ such that Λ ( Γ ( A. Here, Λ ·Q = {

∑m
i=1 aiqi : ai ∈ Λ, qi ∈ Q,m ∈ Z≥1}.

Since we are only concerned with Z-orders in this paper, we will just refer to
them as orders.

Example 1. The ring of integers OK of a number field K is the unique maximal
order of a number field. In the case of cyclic algebras a maximal order is not
necessarily unique.

An order of particular interest that we will use in our LWE construction is
known as the natural order, defined as Λ :=

⊕d−1
i=0 u

iOL. Unlike in the case of
OK , this order is not necessarily maximal (however, we are going to work with
natural orders that are also maximal). Note that in order for Λ to be closed
under multiplication the element γ must lie in OK .

Non-Norm Condition It is not a priori obvious whether well-defined cyclic
division algebras or orders actually exist. As observed earlier, the existence of
γ enforcing the division algebra condition is a key component in constructing
such objects. Fortunately, it is sufficient for γ to satisfy the so called ‘non-norm
condition’ [44].

Proposition 1. The cyclic algebra A = (L/K, θ, γ) of degree d is a division
algebra if and only if none of the elements γt, 1 ≤ t ≤ d−1, appears in NL/K(L),
where NL/K represents the relative norm of L into K.

In other words, this condition states that the lowest power of γ that is norm
of some element of L, is γd.
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Order Ideals Analogous to the use of OK ideals in RLWE, we will be interested
in ideals of an order Λ of a cyclic division algebra A. Although Λ is a ring, it
is non-commutative - thus there are three types of ideals. A left (respectively
right) ideal I of Λ is an additive subgroup of Λ such that for any i ∈ I, r ∈ Λ,
we have r · i ∈ I (respectively i · r ∈ I). A two-sided ideal of Λ is an additive
subgroup that is closed under left and right scaling by Λ, i.e. a right ideal that
is also a left ideal. The sum and product of two ideals I,J are defined as usual;
I + J = {i+ j : i ∈ I, j ∈ J } and I · J = {

∑m
l=1 il · jl : il ∈ I, jl ∈ J ,m ∈ N}.

In the case of two-sided ideals we have the standard notion of a fractional ideal;
I is a fractional ideal of Λ if cI = J for a two-sided ideal J and some c ∈ K.
In the rest of this paper, a (fractional or integral) ideal is always restricted to
be two-sided, unless otherwise stated.

We remark that the structure of the collection of two-sided ideals of the
natural order is not as simple as those of OK , or indeed those of an arbitrary
maximal order. In a maximal order, the group of two-sided ideals is a free abelian
group generated by the prime (e.g. maximal) ideals [43, Theorem 22.10], from
which one can deduce obvious definitions of inverse and coprime ideals. For a
general order Λ, we define its prime ideals as its maximal two-sided ideals and
the inverse of an ideal I ⊂ Λ is

I−1 = {x ∈ A : I · x · I ⊂ I},

which lines up with the expected definition in the two-sided case (e.g. I · I−1 =
I−1 · I = Λ).

For the case of the natural order we do not have such a well-behaved ideal
group, but a nice exposition is given in [32, Section 3]. In particular, for a two-
sided ideal I ⊂ Λ, I∩OK is an ideal ofOK . For an ideal I ⊂ OK , (I·Λ)∩OK = I,
from which it follows that this intersection map is a surjection onto the ideals of
OK . However, it is not in general an injection since several ideals of Λ may have
the same intersection with OK . Since the ideals of Λ do not in general form a
finitely generated abelian group, we define two ideals I,J of Λ to be coprime if
I + J = Λ.

Nonetheless, since the orders to be constructed in Theorem 2 are both natural
and maximal, it will always hold for a two-sided ideal I that I ·I−1 = I−1 ·I = Λ
and (I−1)−1 = I. These properties will be required in the proofs of Lemmas 6
and 7.

Some Useful Ideals For an order Λ we define the codifferent ideal

Λ∨ = {x ∈ A : Tr(xΛ) ⊂ Z}

where Tr refers to the reduced trace, defined Tr(a) := TrK/Q(Trace(φ(a))). Sim-
ilarly, for an ideal I we define the dual ideal

I∨ = {x ∈ A : Tr(xI) ⊂ Z}.

Since the matrix trace satisfies Trace(AB) = Trace(BA), this definition is two-
sided. Note that the codifferent ideal and a general dual ideal may be fractional
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ideals rather than full ideals, and they satisfy the equality I∨ = Λ∨ · I−1 for any
ideal I.

We will also be interested in principal ideals, but must take more care with
these than in commutative settings. For a central element t ∈ K, we can define
simply 〈t〉 = t ·Λ, the set of elements of Λ divisible by t. However, for a general t
that does not lie in the center of Λ we need the slightly more complex definition

〈t〉 =

{
m∑
i=1

ritsi : ri, si ∈ Λ,m ∈ N

}
,

which can easily be seen to be a two-sided ideal, moreover the smallest one that
contains t.

Orders and Ideals as Lattices Any order Λ of a cyclic algebraA = (L/K, θ, γ)
has dimension nd2 over Z and thus generates a lattice of dimension nd2 over Z.
We will consider the following representation of these lattices, which extends nat-
urally to ideals of orders as well. Consider an element x =

⊕d−1
i=0 u

ixi ∈ Λ. We can
consider x as a vector overHL of dimension d by σA(x) := {σL(x0), σL(x1), ..., σL(xd−1)}.
Then, the collection σA(Λ) forms a lattice of dimension nd2 over Z. We will refer
to this representation as the “module representation” and will sometimes dou-
ble index the element x, denoting by xi,j the embedding σj(xi), and extend this

notation in the obvious manner to the space
⊕d−1

i=0 u
iLR. Though this represen-

tation is conceptually simple, we remark that it has some drawbacks in the case
where |σi(γ)| 6= 1 for some i when considering sizes of lattice elements; we will
choose γ carefully in our constructions to remove this issue.

As in (R)LWE, we will need to sample Gaussian distributions over our ambi-
ent space in certain norms. In the case of RLWE, the continuous Gaussians are
sampled in KR ∼= H. Since a cyclic algebra A can be viewed as a d-dimensional
algebra over L, we use the visualization from the previous subsection and sample
our error distributions over

⊕d−1
i=0 u

iLR, which has the same structure as a vector

space as HL
d. For simplicity we restrict ourselves to the case when |σi(γ)| = 1

for each i. Although this is a strong condition on γ it holds in the case where
it is a root of unity, which we will enforce later. In this case, the norm is sub-
multiplicative. Otherwise, in order to control the loss, the norm and shape of γ
must be considered.

Explicitly, we just consider the norm of an element of A to be equal to the
norm of the corresponding module element in Ld of dimension nd2 used in [21],
e.g. ‖x‖ = ‖(σL(x0), σL(x1), ..., σL(xd−1))‖2 for x = x0 + ux1 + ...+ ud−1xd−1 ∈
A. It is straightforward to check that this is indeed a norm in the case where
|σi(γ)| = 1 for each i, since γ is fixed under θ and multiplying by γ does not
change the norm of an entry of σL. It is clear that this norm extends to any
y ∈

⊕d−1
i=0 u

iLR in a natural manner. Now that we have defined a norm, it is
easy to define a Gaussian distribution Dr on A, or its discrete analogue on Λ by
sampling over the module LR

d.
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The CRT In this subsection we state the CRT for order ideals, and deduce
some important consequences. We note that the following lemmas are merely
adaptations of those in [26, Section 2.3.8] extended to the case of cyclic algebras.
The first is just the CRT.

Lemma 4. Let I1, ..., Ir be pairwise coprime ideals of an order Λ of a cyclic
algebra A, and let I =

∏r
i=1 Ii. Then, the natural map Λ→

⊕r
i=1(Λ/Ii) induces

an isomorphism Λ/I →
⊕r

i=1(Λ/Ii).

We call a CRT basis for a set of coprime order ideals I1, ..., Ir a basis C =
{c1, ..., cr} of elements of Λ satisfying ci = 1 mod Ii, ci = 0 mod Ij for i 6= j.

Lemma 5. Given pairwise coprime ideals I1, ..., Ir of an order Λ, there is a
deterministic polynomial time algorithm that outputs a CRT basis c1, ..., cr ∈ Λ
for those ideals.

The proof is the same as in the ring case [26, Lemma 2.13]. Using Lemma 5
we can efficiently invert the natural CRT isomorphism. Given a = (a1, ..., ar) ∈⊕r

i=1(Λ/Ii), it can be easily checked that its inverse is b =
∑r
i=1 aici mod I.

The next two lemmas will be required later to construct an efficiently invert-
ible bijection between quotient spaces I/〈q〉 · I and Λ/〈q〉.

Lemma 6. Assume q is unramified in L. Let I be an ideal of the natural order
Λ which is maximal and let J = q · Λ = 〈q〉 · Λ, where q is a prime integer and
〈q〉 =

∏r
i=1 qi is a decomposition into prime ideals in OK . Assume γ /∈ qi for

each i. Then, there exists an element t ∈ I ∩OK such that the ideal t · I−1 ⊂ Λ
is coprime to J , and we can compute such a t efficiently given I and the prime
factorization of J .

Remark 1. The condition on γ will be immaterial in our use case, since when
γ is a unit the only OK ideal that contains γ is OK itself. Meanwhile, the
unramification of q will arise (relatively) naturally in the work, so it is not really
a restriction.

Proof. For an ideal I denote by I its intersection with K, which is a non-trivial
ideal of OK (see [32, Section 3]). We apply the corresponding [26, Lemma 2.14]

to obtain t ∈ I such that t · I−1 and J are coprime as ideals of OK and
t ∈ I \

⋃r
i=1 qi · I. Assume, for a contradiction, that t · I−1 + J 6= Λ i.e. the

ideals are not coprime. Then, there is some maximal ideal M of Λ containing
t·I−1 and J . Since q is unramified in L and γ /∈ qi, by [32, Propositions 1 and 4],
this ideal must be one of the ideals qi ·Λ since it contains J . Then t ·I−1 ⊂ qi ·Λ
and consequentially t ∈ qi · I because I · I−1 = Λ in a maximal order. Since t
and qi are central it follows that t ∈ qi · I, a contradiction.

The next lemma will be the one we use in our reduction. As in RLWE, in
practice we are interested in the case where J = 〈q〉 for a prime integer q and
P = Λ∨. We will use the familiar notation Iq := I/q · I for an ideal I and q ∈ Z
throughout the paper.
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Lemma 7. Let Λ, γ and q be given in Lemma 6. Let I,J be ideals of Λ, with
t ∈ I∩OK chosen as above such that t·I−1 and J are coprime as ideals, and let P
denote an arbitrary fractional ideal of Λ. Then, the function χt : A → A defined
as χt(x) = t · x induces a module isomorphism from P/J · P → I · P/I · J · P.
Furthermore, in the case J = 〈q〉 for a prime integer q we can efficiently compute
the inverse.

Proof. The proof is similar to that of [26]. Since t lies in the center of Λ it is
clear that multiplication by t induces a module homomorphism. Given the map
χt : P → I · P/I · J · P and j ∈ J · P, χt(j) = t · j ∈ I · J · P, so it is clear that
J · P is in the kernel of this map. Conversely, if χt(x) = 0 then t · x ∈ I · J · P,
from which it follows that I−1 · t · x ⊂ J · P. From the definition of coprime,
t · I−1 + J = Λ, from which it follows that there exists a ∈ t · I−1, b ∈ J such
that a + b = 1. Hence x = (a + b) · x = a · x + b · x. Since a · x, b · x ∈ J · P it
follows that x ∈ J · P, from which injectivity follows immediately.

To demonstrate efficient invertibility, we must work slightly harder. Now let
J = 〈q〉. Compute t as in Lemma 6 and observe that the bijection χt : Λq → Iq
is an additive homomorphism. Thus, it suffices to compute the inverse of all
elements of a Z basis of Iq, since then any element can be inverted by computing
its representation in this basis and inverting that. We construct such a basis as
follows. First, choose n2 · d4 elements xi, i = 1, ..., n2 · d4 from Λq uniformly at
random and compute yi = χt(xi) for each i. It follows that each yi is a uniformly
random element of Iq. Then, with high probability the yi’s form a spanning set
of Iq (see the proceeding lemma), which we can reduce to a Z basis y′1, ..., y

′
n·d2 .

This basis satisfies the desired property that each element has a known inverse. If
this algorithm fails (e.g. there is no suitable basis y′1, ...y

′
n·d2), we repeat, choosing

a fresh set of elements x1, ..., xn2·d4 until we succeed.

Lemma 8. Given a set of n2 · d4 independent and uniformly random elements
Ξ ⊂ Zn·d2q , the probability that Ξ contains no set of n · d2 linearly independent
vectors (over Zq) is exponentially small in d.

This lemma is a straightforward adaptation of Corollary 3.16 of [42].

2.5 Lattice Problems

Computational problems on lattices represent the foundations of the security
of (R)LWE, and will do so for our Cyclic LWE as well. The standard lattice
problems are as follows.

Definition 11. Let ‖ · ‖ be some norm on Rn and let ξ ≥ 1. Then the ap-
proximate Shortest Vector Problem (SVPξ) on input a lattice L is to find some
non-zero vector x such that ‖x‖ ≤ ξ · λ1(L).

Definition 12. Let ‖ · ‖ be some norm on Rn and let ξ ≥ 1. Then the (approx-
imate) Shortest Independent Vectors Problem (SIVPξ) on input a lattice L is to
find n linearly independent non-zero vectors x1, ...,xn such that maxi(‖xi‖) ≤
ξ · λn(L).
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Definition 13. Let ‖ · ‖ be some norm on Rn, let L be a lattice, and let d <
λ1(L)/2. Then the Bounded Distance Decoding problem (BDDL,d) on input y =
x + e for x ∈ L and ‖e‖ ≤ d is to compute x, or equivalently e.

The above problems are all well investigated, and believed to be sufficiently
hard to base post-quantum cryptographic security on; there are no known algo-
rithms for any of these problems (for suitable parameters) running in polynomial
time in dimension n.

Unfortunately, these problems are not directly suitable for CLWE, where
we will be interested in their adaptations to lattices generated by order ideals,
similarly to how ideal lattices are used the ring case. Specifically we have the same
problems on lattices that they induce under the map σA(·). So, SVP becomes:

Definition 14. Let A be a cyclic algebra, let I be some (possibly fractional)
ideal of the natural order Λ. Then, for an approximation factor ξ ≥ 1, the A-
SVPξ is to find a non-zero element a ∈ I such that |a| := ‖σA(a)‖2 ≤ ξ · λ1(I),
where as usual λ1(I) denotes the minimal length of non-zero elements of I in
the given norm.

Remark 2. When we use these problems in our security reductions, we will as-
sume that the ideals are in fact integral ideals (e.g. we exclude fractional ideals).
Observe that this may be done without loss of generality, since solving the A-
SVP problem on the fractional ideal I may be done by solving it on the integral
ideal cI (where c ∈ K is the element such that cI is integral) and rescaling the
solution.

Essentially we have a specialized version of the SVP problem; we must find
an element of I with minimal norm (up to approximation factor) in the ideal
I. The extension of SIVP to A-SIVP is analogous, but since we consider our
objects as Z-lattices we require the independent ‘vectors’ a1, ..., ar to be linearly
independent over Z. For BDD, we need a suitable ambient space, and use the
following definition.

Definition 15. Let A be a cyclic algebra, let I be some (possibly fractional) ideal
of a maximal Z-order Λ, and let δ < λ1(I)/2. Then the A-BDDI,δ problem, on

input y = x + e for x ∈ I and e ∈
⊕d−1

i=0 u
iLR satisfying |e| ≤ δ, is to compute

x.

2.6 The Learning With Errors Problem

We will briefly recall the initial Learning With Errors (LWE) problem here; in
Section 3 we will extend it to cyclic algebras. The problem comes in two forms;
search and decision, both of which are based on the LWE distribution. Let n and
q be positive integers, and let α > 0 be some error parameter. Define T := R/Z,
the unit torus.

Definition 16. For a secret s ∈ Znq , a sample (a, b) ← As,α is taken by sam-
pling a uniformly random vector a ∈ Znq and e ← Dα and outputting (a, b) =
(a, 〈a, s〉/q + e mod Z).
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Given the above distribution, the LWE problem comes in two forms.

Definition 17. The search LWE problem is to recover s from a collection of
samples As,α. The decision LWE problem on input a collection of samples on
Znq × T is to decide whether they are uniform samples or were taken from As,α

for some secret s, where s is drawn uniformly at random from Znq .

Typically, the number of samples provided in each of these problems depends on
the application. Since the decision problems has a probabilistic element, we will
be interested in the advantage of the algorithms that solve it, which is defined as
the difference between their acceptance probabilities on samples from an LWE
distribution As,α and the uniform distribution. In practice, the decision problem
is of more interest in cryptography.

We will not define the popular extensions of these problems to number fields
or modules, known as Ring-LWE and Module-LWE, but the unfamiliar reader
may find details in [26] and [21] respectively, both of which we reference fre-
quently in this work.

3 The CLWE Problem

In this section we present the general definition of CLWE together with justi-
fications for choices made in the definition, as well as constructions of specific
algebras to use. We will save the security properties for Section 4.1.

Definition 18. Let L/K be a Galois extension of number fields of dimension
[L : K] = d, [K : Q] = n with cyclic Galois group generated by θ(·). Let
A := (L/K, θ, γ) be the resulting cyclic algebra with center K and invariant
u with ud = γ ∈ OK . Let Λ be an order of A. For an error distribution ψ over⊕d−1

i=0 u
iLR, an integer modulus q ≥ 2, and a secret s ∈ Λ∨q , a sample from the

CLWE distribution Πq,s,ψ is obtained by sampling a← Λq uniformly at random,

e← ψ, and outputting (a, b) = (a, (a ·s)/q+e mod Λ∨) ∈ (Λq,
⊕d−1

i=0 u
iLR)/Λ∨.

Remark 3. Unlike in commutative spaces, the order of multiplication of a and s
is important; our choice is (a · s), but similar security properties would hold if
one took (s · a) instead. Also observe that our modulo reduction in the second
coordinate of the pair is well defined, since (a · s) ∈ Λ∨q .

As usual, the associated CLWE problem will come in search and decision vari-
ants.

Definition 19. Let Ψ be a family of error distributions over
⊕d−1

i=0 u
iLR. The

search CLWE problem, which we denote by CLWEq,s,ψ, is to recover s from a
collection of independent samples from Πq,s,ψ for arbitrary s ∈ Λ∨q and ψ ∈ Ψ .

We do not state the number of samples allowed for this (or the next) problem,
as typically it depends on the application.
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Definition 20. Let Υ be some distribution on a family of error distributions
over

⊕d−1
i=0 u

iLR and UΛ denote the uniform distribution on (Λq, (
⊕d−1

i=0 u
iLR)/Λ∨).

Then, the decision CLWE problem, written D-CLWEq,Υ , is on input a collec-
tion of independent samples from either Πq,s,ψ for a random choice of (s, ψ)←
U(Λ∨q )×Υ or from UΛ, to decide which is the case with non-negligible advantage.

3.1 Discussions

Relation to Module-LWE First, we explain why we choose the order of
multiplication a · s. As discussed in the introduction, the transformation from a
(primal) RLWE sample to n related LWE samples provides our motivation. Here,

one RLWE sample a ·s+e, where a, s, e ∈ Rq ∼= Zq [x]
xn+1 , generates n LWE samples

by considering the multiplication operation as As + e, where A := rot(a) is a
negacyclic matrix. For appropriate choices of error distributions, this is precisely
n LWE samples with the exception that there is some structure in the matrix
A. By ordering the multiplication a · s, we get a similar transform from CLWE
to MLWE. Assuming for now that we have a discretized form of CLWE, and
observing that for q ∈ Z we have Λq ∼=

⊕d−1
i=0 u

iOL/qOL (see [32]), we transform
a CLWE sample a · s+ e into matrix-vector form to get φ(a) · s + e, where s and
e are vectors of dimension d over OL/qOL. Setting A = φ(a), one can see that
for appropriate choices of error distribution this is similar to d samples from the
MLWE distribution with some additional structure in the matrix A, as intended.

The Natural Order vs. Maximal Order In this work we consider the case
where the natural order Λ of A is also a maximal order. The benefit of using the
natural order is that it is simple to construct and represent, whereas finding a
maximal order is computationally slow. Additionally, the natural order is some-
what orthogonal, in the sense that it has the same span in each ui coordinate
independently of the other coordinates. This is advantageous when considering
the relation to MLWE, where the module is always taken to be the full module
OdK .

As mentioned above, two-sided ideals in a maximal order form a free abelian
group, which is not necessarily the case in the natural order. Further, as lattices,
a maximal order gives denser (maximally so) sphere packing than the natural
order, since the latter is a sublattice (of at least one maximal order). Fortunately,
we will construct in Theorem 2 cyclic algebras whose natural order is also max-
imal, thus enjoying both the simplicity of the natural order and the convenience
of a maximal order.

Example 2. Quaternion algebra over Q is defined by H = {x+ jy : x, y ∈ Q(i)},
with the usual relations i2 = j2 = −1 and ij = −ji. It can be seen as a cyclic
division algebra (Q(i)/Q, (·),−1) where (·) denotes the complex conjugate and
−1 is a non-norm element. A quaternion has matrix representation(

x −y
y x

)
.
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The Lipschitz integers L ⊂ H form the (non-maximal) natural order L =
{x+ jy : x, y ∈ Z[i]} . The maximal Hurwitz order is given by

H = {a+ bi+ cj + d(−1 + i+ j + ij)/2 : a, b, c, d ∈ Z} .

It is easy to check that, as Z-lattices of dimension 4, the Lipschitz order is a
sublattice of the Hurwitz order, of index 2.

A Pair of Number Fields In MLWE, we are free to choose the dimension of
our module over the underlying number field K. However, in the cyclic algebra
case we are restricted to cases where we can find L,K, and γ such that A =
(L/K, θ, γ) is well defined. From a theoretical standpoint it is not immediately
clear whether we want to consider asymptotic security in terms of n or d, but
following our motivation from MLWE we suggest that n is likely the suitable
choice since the module dimension d is typically small in applications using
MLWE, whereas the dimension of the underlying field K is large. However,
there seems to be no a priori reason why with the right techniques one could not
consider both n and d asymptotically; the only case a cyclic algebra precludes
is high dimensional MLWE over a low dimension number field L, because the
parameter d occurs in both the module and field dimension.

3.2 Evading BCV Style Attacks

In our CLWE construction we have enforced that γ is selected so that A is
a division algebra. We do this to avoid attacks in the style of [11] on the m-
RLWE protocol. For m = 2, the m-RLWE protocol of [35] can be considered as
a structured variant of MLWE, where the matrix A in the operation As + e is
a negacyclic matrix over some ring Rq. More explicitly, 2-RLWE considers the
tensor product of two fields K = K1⊗K2 and runs the LWE assumption in the
ring of integers Rq. The example use case given in [35] considers power-of-two
cyclotomics K1,K2 defined by the polynomials xk1 + 1 and yk2 + 1 respectively,

claiming that the resulting problem in Rq =
Zq [x,y]

(xk1+1,yk2+1)
effectively corresponds

to an RLWE problem of dimension k1 · k2 due to an obvious homomorphism
between K and the two-power cyclotomic field L of degree k1 · k2. The problem

also represents a structured MLWE instance over
Zq [x]

(xk1+1)
of dimension k2.

However, the observation of [11] is that there is a smaller field K ′ containing
K1 such that there is a homomorphism from K into K ′ with a well defined image
for y. This is because the roots of distinct two-power cyclotomic polynomials are
algebraically related. For example, in the case k1 = 8, k2 = 4, it is clear that the
map taking y to x2 and fixing K1 is a well defined homomorphism from K to K1.
Using this homomorphism, [11] simplifies the problem of solving one 2-RLWE
instance by considering it as four RLWE instances in dimension k1 rather than
one instance in dimension k1 · k2, essentially removing the module dimension k2
from the problem.

We argue that the non-norm condition of γ precludes the existence of a
homomorphism removing the module structure by taking a well defined cyclic
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algebra A = (L/K, θ, γ) to a smaller subfield containing K. We restrict our
search to maximal subfields of A, since any subfield is contained in at least
one maximal subfield. It is a well known result on division algebras that any
maximal subfield E of A contains K and satisfies [E : K] = d, and that in the
case of a cyclic division algebra A there is a choice of u′ ∈ A such that the
cyclic algebra A′ :=

⊕
j u
′jE is isomorphic to A (see Section 15.1, Proposition

a of [40]). Assume, for a contradiction, that we had such a homomorphism χ :
A → L, where without loss of generality we assume the maximal subfield is
L by the aforementioned proposition. Since L is Galois, the restriction of χ to
L is an automorphism of L. It is clear that χ must agree on conjugates, since
χ(u) · χ(`) = χ(u · `) = χ(θ(`) · u) = χ(u) · χ(θ(`)) for any ` ∈ L. However, this
contradicts χ being injective on L and it follows that no such homomorphism
exists. Hence we conclude that the attack style of [11] does not threaten our
algebraic structure.

3.3 Concrete Algebras for CLWE

In order to apply the CLWE assumption in a practical cryptosystem one must
choose a concrete algebra as an ambient space. More generally, we are inter-
ested in finding families of algebras suitable for CLWE that allow for asymptotic
analysis and varied security levels. Our search for algebras is motivated by the
restrictions and conditions discussed in the previous section. In particular, we
are interested in cyclic division algebras satisfying the following properties:

– The non-norm element γ must lie in OK to keep the natural order closed
under multiplication, and should satisfy |γ| = 1 in order to maintain both
the coordinatewise independence and sub-multiplicative properties of the
norm3.

– The dimension n := [K : Q] of the division algebra should be large and the
degree d := [L : K] should be small. This is to maintain the analogy with
structured MLWE (the degree corresponds to the module rank) and follows
from the search-decision reduction, which takes time polynomial in n but
not in d.

– The base field K should be cyclotomic and q should split completely in K.
This is also a result of the methodology of the search-decision reduction,
which uses the well understood factorization of 〈q〉 in OK . In addition, since
the bulk of lattice based cryptography is done over cyclotomic fields, we
consider algebras which are small extensions of these as somewhat natural.
We observe that an improved proof of decision security may allow this point
to be dropped, whereas the other two points feel more integral.

Although significant effort has been expended by coding theorists to construct
cyclic division algebras satisfying a variety of conditions, such as in [44] or [20],
we find ourselves with a fairly unique set of restrictions. In particular, for reasons

3 We abbreviate the condition |σi(γ)| = 1 for all i by |γ| = 1, since in fact these are
equivalent for algebraic γ.
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relating to desired applications, the majority of algebras used in coding theory
are either of small total dimension or have small [K : Q] and scale asymptotically
in [L : K]. Since we are interested in scaling up K asymptotically, we will have
to build novel algebras satisfying the above requirements ourselves. We will,
however, make heavy use of the following theorem as an intermediate step. Here
ζm denotes a primitive mth root of unity where ϕ(m) = n is the degree of the
base field K = Q(ζm).

Theorem 1 ( [20]). Let m = pa be a prime power and let K = Q(ζm). Then,
there exist infinitely many cyclic Galois extensions M/K of degree m such that
ζim is not a norm of M/K for 0 < i < m.

We remark that the theorem is effective in the sense that it provides an ex-
plicit description of M , and we provide a summary of the recipe for constructing
M . The crucial aspect of its construction is that M is a subfield of some cyclo-
tomic extension of K, K(ζq′) for a prime q′, but we present its full description
for completeness.

First, find some prime q′ such that q′ = 1 mod pa but q′ 6= 1 mod pa+1, so
that pa is the highest power of p dividing q′ − 14. Set M ′ = K(ζq′) so that by
coprimality M ′ = Q(ζmq′). Then Gal(M ′/K) is a cyclic group of order q′ − 1
generated by some automorphism σ. Denote by M the subfield of M ′ fixed by
σm. Then [M : K] = m by the fundamental theorem of Galois theory and the
extension is both cyclic and Galois. Finally, localization theory is used to show
that the powers of ζm are not norms in this extension. In this way, the theorem
constructs M explicitly.

The part of this theorem of our interest is that it allows us to scale K asymp-
totically, but this comes with a drawback of very high degree M , i.e., it only
permits a degree-m extension M of a degree-ϕ(m) base field K. We present a
new method that uses this theorem as a starting point to construct good alge-
bras satisfying our restrictions. More precisely, our construction will begin with
Theorem 1 and then use elementary methods from Galois theory to build more
favourable fields.

Constructions Using Subfields We squash the field M from Theorem 1 to
a subfield L of small index over the base K satisfying the necessary properties
to generate a cyclic algebra.

Theorem 2. Let K = Q(ζm), where ϕ(m) = n, be a prime power cyclotomic
with m = pa for some integer a and prime p. Then, there exists a cyclic Galois
extension L/K of any index d dividing m within which ζm satisfies the non-norm
condition.

Remark 4. Since the proof will provide an explicit description of L, the correct
interpretation of this theorem is that we can construct cyclic division algebras

4 It is easy to show that infinitely many primes satisfying this condition always exist
by appealing to classical theorems of Chebotarev or Dirichlet.
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A = (L/K, θ, γ) with 〈θ〉 = Gal(L/K), γ = ζm,K = Q(ζm), and [L : K] is any
divisor of m = pa. Fig. 2 shows all possible cases of intermediate field L between
K and M .

Proof. Let K = Q(ζm) for a fixed m = pa with prime p and integer a. Following
the construction of Theorem 1 fix a cyclic Galois extension M/K of degree m
such that ζim is not a norm of an element of M into K for any i = 1, 2, . . . ,m−1.
We will choose L as a suitable intermediate extension M/L/K. Let σ denote the
generator of Gal(M/K), an automorphism of degree m. For d dividing m, σd

fixes an extension L of K with [M : L] = |Gal(M/L)| = m/d and it follows
from the tower lemma that [L : K] = d. We will show that L is a satisfactory
extension of K.

First, since Gal(M/L) is a normal subgroup of Gal(M/K) we see that L/K is
a normal, and hence Galois5, extension. It follows from standard Galois Theory
that

Gal(L/K) ∼= Gal(M/K)/Gal(M/L).

Both groups in the quotient are cyclic, and so Gal(L/K) is cyclic with some gen-
erator θ. Furthermore, this isomorphism also allows us to deduce |Gal(L/K)| =
d.

We’ve shown that L/K is a cyclic Galois extension of degree d; we are left
to show that ζim is not a norm for i = 1, . . . , d − 1. Let M denote NM/K(M×)

and L denote NL/K(L×). Say ζim ∈ L, fixing x ∈ L such that NL/K(x) = ζim.
Now by transitivity of the norm,

NM/K(x) = NL/K(NM/L(x))

= NL/K(xm/d)

= ζ(m/d)im

where the first equality follows from x ∈ L and the second since the norm is
multiplicative. M does not contain any power of ζm except ζmm = 1 since ζm is a
non-norm element in M/K, so it follows that m|(m/d)i and so d|i. From this we
conclude that ζm, ζ

2
m, . . . , ζ

d−1
m do not lie in L and so ζm satisfies the non-norm

condition.

Remark 5. We presented the proof in the above form for ease of legibility, but
it is straightforward to extend the argument in the final paragraph to show that
ζjd+1
m satisfies the non-norm condition for any j = 0, 1, . . . , (m/d)− 1.

This is an effective construction that allows us to build cyclic division algebras
of the form A = (L/K, θ, γ) where |γ| = 1, K is an arbitrary prime power
cyclotomic, and L is an extension of K with degree divisible by the prime p. For
cryptographically relevant examples, we can consider degree 2 or 4 extensions

5 Since in this case all extensions are separable.



22 C. Grover et al.

Fig. 2. Cyclic subfields between M and K from Galois correspondence. 〈σi〉 denotes
the group generated by σi, where σ is the generator of Gal(M/K).

of a 2-power cyclotomic or degree 3 extensions of a 3-power cyclotomic. Given
the impossibility result of Appendix A and the restriction on the absolute value
of γ we view these algebras as essentially the best possible, at least for the case
where K is a prime-power cyclotomic.

As discussed in Section 3.1, the natural order is not necessarily a maximal
order. Nevertheless, the following theorem shows that the specific family of al-
gebras we have constructed in Theorem 2 represents a lucky case (its proof is
given in Appendix B).

Theorem 3. For the family of cyclic division algebras A = (L/K, θ, ζm) con-
structed in Theorem 2, the natural order of A is maximal.

This makes our constructed family of algebras very attractive, as it enjoys
both the simplicity of the natural order and the nice property of a maximal
order.

Remark 6. In the context of multiblock space-time coding [20], the construction
of Theorem 1 allows for a space-time code for m antennas and ϕ(m) blocks,
i.e., a relatively small number of blocks. With our new construction Theorem 2,
any number ϕ(mk), k ∈ N such that mk is a power of p, of blocks becomes
possible. Further, using a maximal order leads to optimum coding gains; it was
not realized in [20] that the natural order from Theorem 1 is actually maximal.

Constructions Using Compositum Fields The algebras with prime-power
cyclotomic centers of the previous subsection use the field construction technique
of Theorem 2, and as such they are restricted to algebras whose dimension
N is in the form pk(p − 1) for a prime p and integer k. We present another
method of constructing algebras using compositum fields that allows us to target
dimensions not achievable in this setting.
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This method starts from extensions which are nearly what we are looking
for and applies field compositums (cf. [43, Chapter 30]). Say we have a Galois
field extension L′/K ′ with non-norm element γ ∈ OK′ whose Galois group is
cyclic of degree d. Let F be some other Galois number field with F ∩ L′ = Q.
Then Gal(L′F/K ′F ) ∼= Gal(L′/K ′) and γ is a non-norm element in L′F/K ′F .
Relabelling this extension as L/K and letting θ denote the cyclic generator of the
Galois group gives a cyclic field extension with non-norm γ such that [L : K] = d
and [K : Q] = [K ′ : Q] · [F : Q]. The relations among these fields are illustrated
in Fig. 3(a).

One can generalize this method to the case where the base field can not be
written conveniently as a compositum of two fields. Let L′/K ′ be a cyclic Galois
extension of degree d with non-norm element γ and let K be another Galois
number field which contains K ′. Then KL′/K is a cyclic Galois extension of
degree k for some k dividing d, and in particular if K ∩L′ = K ′ then k = d since
the fields are linearly disjoint above K ′. See Fig. 3(b) for the relations among
these fields.

Fig. 3. Constructions using field compositums: (a) base field K is a compositum K′F ,
(b) K cannot be written as a compositum.

Similar to the subfield method, we also have the following theorem for the
compositum field method (the proof is given in Appendix B).

Theorem 4. Let K = Q(ζn) where n = pr and p is prime, L/K be a finite
cyclic extension of degree d with Gal(L/K) = 〈θ〉 and Gal(L/Q) abelian, and
F = Q(ζqt) where F ∩L = Q. Suppose the natural order Λ ⊂ A = (L/K, θ, ζn) is
maximal. Then, if [F : Q] and d are coprime, the natural order Λ′ of the cyclic
division algebra A′ = (LF/KF, θ′, ζn) is also maximal.
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3.4 Sample Parameters

Now that we have discussed our techniques for constructing suitable number
fields we proceed to demonstrate that these methods are able to attain crypto-
graphically relevant dimensions. In this section, we present a small selection of
proof-of-concept dimensions in Table 1 where we take our motivation for choices
of dimension from KYBER and NewHope, since they are the successful second
round NIST candidates whose methods are most similar to our own. Thus we
aim for dimensions in the region of between 512 and 1024, dimensions proposed
for both NewHope and KYBER (which also achieves dimension 768). Of course,
these schemes are restricted to having power-of-two ring dimension n and so
their choices of dimension may not be optimal in general, but FrodoKEM [12],
a plain LWE scheme, suggests dimensions in around the same range, specifically
640, 976, and 1344, so we consider dimensions in this region a sensible starting
point. Corresponding to KYBER and other MLWE based schemes we will set a
small ‘module’ rank d := [A : L]. We are constricted in our choice of fields by
the fact that d appears as a square in the total dimension N = nd2, but for the
most part we are able to work around this problem.

Table 1. Sample Parameters of Cyclic Algebras. The subfield method is given in
Section 3.3, while the compositum method is given in Appendix 3.3.

Method Center K n = [K : Q] d = [L : K] Total Dimension N = nd2 of A
Subfield Q(ζ81) 54 3 486

Subfield Q(ζ256) 128 2 512

Subfield Q(ζ64) 32 4 512

Subfield Q(ζ512) 256 2 1024

Subfield Q(ζ128) 64 4 1024

Subfield Q(ζ243) 162 3 1458

Compositum Q(ζ192) 64 3 576

Compositum Q(ζ576) 192 2 768

Compositum Q(ζ384) 128 3 1152

Subfields

Two-Power Cyclotomic K We begin with straightforward cases where we can
apply Theorem 2 immediately to obtain fields in suitable dimensions. Let K be
a two-power cyclotomic field, K = Q(ζ2k), with dimension n := 2k−1. Since the
rank d = [L : K] = [A : L] is a small power of two, the dimension n of K will be
dictated by the choice of module rank d. We construct rank 2 and 4 examples
as follows:

– For d = 2 we have [A : K] = 4, so for total dimension 1024 we set K =
Q(ζ512).



CLWE 25

– For d = 4 we have [A : K] = 16, so for total dimension 1024 we set K =
Q(ζ128).

To obtain algebras in dimension 512 simply pick K with dimension n/2 e.g.
Q(ζ256) and Q(ζ64) respectively. In all cases, Theorem 2 lets us pick the non-
norm element γ as a root of unity.

Three-Power Cyclotomic K Since 3 - 1024, one can not achieve algebras in di-
mension 1024 with a 3-power cyclotomic center and instead we set about search-
ing for algebras of nearby dimensions. Although we are unable to build fields in
this case with dimension around 1024, we can get close to the more lightweight
cryptographic dimension of 512 used in schemes targeting a lower security level.
Recall that if K = Q(ζ3k) then K has dimension n := φ(3k) = 2 · 3k−1. Again,
the module rank is a power of 3 and the choice of module rank will define the
choice of n.

– For d = 3 we have [A : K] = 9, so for total dimension 486 we set K = Q(ζ81).
The next achievable dimension is 1458, for which K = Q(ζ243).

– For d = 9 we have [A : K] = 81. To achieve the same total dimensions we
take small base fields K = Q(ζ9) and Q(ζ27) respectively.

Compositum Fields We give example algebras of dimensions 576, 768 and
1152 in Table 1 with less restrictive dimension using field compositum techniques.
We propose two alternate methods of applying field compositums in Fig. 3(a):
either use Theorem 2 to make an algebra which already has large dimension
by selecting large center K and small extension L, then compose a small field
F onto K and L to tweak the total dimension. Alternatively, one can create
algebras by selecting small fields L and K using Theorem 1 and composing both
with a large field F .

We begin with an example of the first method that achieves dimension 768.
Let L′ be a degree two extension of the field K ′ = Q(ζ64) chosen by Theorem 2
with non-norm root of unity γ, so that the corresponding algebra A′ has di-
mension 128. Compose both L′ and K ′ with the field F = Q(ζ9), denoting the
compositums by L and K respectively. Then γ is still a non-norm element in the
extension L/K, a degree two extension that is cyclic and Galois, and the algebra
A = (L/K, θ, γ) is a cyclic algebra of dimension 6× 128 = 768, as required. We
observe that here the center K corresponds to the fields with fast operations
used in [28].

Our final method of composing large degree fields onto small degree exten-
sions is aimed at targeting odd module ranks. Begin by choosing the desired
module rank d as a (likely small) odd prime. Then set K ′ = Q(ζd) and pick L′

as a cyclic Galois extension of K ′ in which the dth root of unity is a non-norm
element using Theorem 1. Let F := Q(ζ2k) and again let L and K denote its
compositum with L′ and K ′ respectively. Then A = (L/K, θ, γ) is a cyclic alge-
bra with n := [K : Q] = (d − 1)2k−1 and d = [L : K] a small prime. The form
of the total dimension N = d2(d − 1)2k−1 constrains our choice of dimension,
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but for examples of cryptographically relevant sizes with d = 3 one can consider
setting k = 6 or k = 7 to achieve dimension N = 576 or N = 1152 respectively.

3.5 Extensions Where q Splits Completely

All suggested algebras in the previous section satisfy the conditions required
for our chosen norm ‖σA(x)‖2 to be well-defined. In particular, they have root
of unity non-norm γ and K is cyclotomic. Because any q = 1 mod m splits
completely in Q(ζm), it is straightforward to find q which splits completely in
OK .

Later in this paper, in order to enable efficient multiplication algorithms, it
will turn out that it is convenient to have a modulus q that splits completely into
a product of prime ideals in bothOK andOL. Recall Lemmas 6 and 7 also require
q be unramified in L. An appeal to Chebotarev’s Density Theorem suggests that
a proportion of 1/d of the primes q that split completely in K also do so in L.
In cases where d is small this suggests that finding such primes should not prove
too arduous; but since cryptosystems require specific parameters rather than
density arguments, we provide constructions satisfying the requisite conditions
on q in Appendix C.

4 Security Proof

The ‘standard’ security reductions used in [42] and [26] firstly reduce certain
lattice problems to search LWE and RLWE, then establish hardness of the de-
cision problem via a search-decision reduction. This proof follows a sequence of
shorter reductions as shown in Fig. 4.

SVP

DGS

BDD

Search 
LWE

Worst-Case Decision 
LWE

Average-Case 
Decision LWE

Fig. 4. Reductions for LWE. The bold arrow denotes a quantum step.
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The reduction from the approximate SVP to the search LWE problem implies
that search LWE is at least as hard as approximate SVP. It can be explained
as follows: first, the approximate SVP is reduced to the problem of sampling a
discrete Gaussian of narrow variance over a lattice, where intuitively sampling
from a sufficiently narrow Gaussian should output a vector whose norm is rea-
sonably short compared to the first minima. Then, a quantum algorithm reduces
the problem of sampling from a narrow Gaussian to that of solving the BDD
problem on the dual lattice. Finally, a transformation maps an instance of the
BDD problem to an appropriate instance of the LWE problem, reducing the
BDD problem to that of search LWE.

For applications in cryptography, the hardness of the decision problem is
preferred to that of the search problem. Assuming that the decision problem
is hard implies that LWE samples are computationally indistinguishable from
uniform, so intuitively an LWE sample can be used to hide a message m as an
element of Znq by adding it to b.

Using similar machinery, we reduce a BDD problem to search CLWE using
the same method as in [26]. The methodology of their search-decision reduction
is an adaptation of that of Regev’s, which relies on guessing each coordinate
of the secret s separately. The adaptation to the ring case instead guesses the
coordinate of the secret ring element s modulo a suitable collection of ideals pi
such that guessing s mod piO∨K requires only a polynomial number of guesses,
from which s is recovered using the CRT. We apply a similar method in suitable
subrings to deduce the hardness of our decision problem. The main technical
novelty is to deal with non-commutativity in the proof.

For the remainder of this paper, we will always be working in an extension
of number fields L/K, where [L : Q] = [L : K] · [K : Q] = d · n. Recall from the
motivation of structured MLWE and the sample algebras given that in practice
we seek asymptotic security in n, since the parameter d corresponds to the
typically small module dimension.

4.1 Hardness of Search CLWE

In the following, let A be a cyclic division algebra over a number field L with
center K and natural, maximal order Λ with |γ| = 1. Let α = α(n) ∈ (0, 1) and
q = q(n) ≥ 2, unramified in L, be parameters such that α · q ≥ ω(

√
logN). We

denote byA−DGSξ the problem of sampling a discrete Gaussian DI,ξ, where I is
some ideal of the order Λ. Also denote by N the total dimension of A, N := nd2.

For the reduction of BDD to Search CLWE, we begin with the cyclic algebra
analogy of the BDD-to-LWE samples transformation from Section 4 of [26]. As
is standard for LWE security, we use the following ‘modulo q’ definition of BDD:

Definition 21. For any q ≥ 2 the qA−BDDI,δ problem is as follows: given an
instance of the A−BDDI,δ problem y = x + e with solution x ∈ I and error

e ∈
⊕d−1

i=0 u
iLR satisfying ‖e‖2,∞ ≤ δ, output x mod qI.

We use (a special case of) Lemma 3.5 from [42], which lifts immediately since it
is lattice preserving.
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Lemma 9. For any q ≥ 2 there is a deterministic polynomial time reduction
from A−BDDI,δ to qA−BDDI,δ.

We now present an algorithm which transforms qA-BDD samples to CLWE
samples given some additional Gaussian samples. The algorithm is the same in
spirit as Lemma 4.7 of [26], but has some technical differences induced by the
structure of cyclic algebras.

Lemma 10. Let A be as above. There is a probabilistic polynomial time al-
gorithm that on input a prime integer q ≥ 2, a fractional ideal I∨ ⊂ Λ, a
qA−BDDI∨,αq·ω(

√
log(nd))/

√
2nd·r instance y = x+ e where x ∈ I∨, a parameter

r ≥
√

2q·η(I), and samples from the discrete Gaussian DI,r′ with r′ ≥ r, outputs
samples that are within negligible statistical distance of the CLWE distribution
Πq,s,Σ for a secret s = χt(x mod qI∨) ∈ Λ∨q , where χt is as in Lemma 7 and Σ
is an error distribution such that in the case where |γ| = 1 the resulting error e′′

has marginal distribution in its i, jth coordinate that is Gaussian with parameter
ri,j ≤ α.

Proof. The proof will be in two parts - first, we will describe the algorithm, then
we will prove correctness.

Begin by computing an element t ∈ I such that I−1 · 〈t〉 and 〈q〉 are coprime
using Lemma 6. We can now create a sample from the CLWE distribution as
follows: take an element z ← DI,r′ from the Gaussian samples, and compute a
pair

(a, b) = (χ−1t (z mod qI), (z · y)/q + e′ mod Λ∨) ∈ (Λq × (

d−1⊕
i=0

uiLR)/Λ∨)

where e′ ← Dα/
√
2.

We now claim that these samples are within negligible statistical distance
of the CLWE distribution and that s is uniformly random. First we show that
a ∈ Λq is statistically close to uniform. By assumption, r ≥ q · η(I) and so by
appealing to Lemma 1 it can be seen that any value z mod qI is obtained with
probability in the interval [ 1−ε1+ε , 1] · β for some positive β, from which it follows
immediately that the statistical distance between z mod qI and the uniform
distribution is bounded above by 2ε. Since χt of Lemma 7 and its inverse are both
bijections, we conclude that a = χ−1t (z mod qI) is within statistical distance
2ε of the uniform distribution over Λq.

Now we must show that b is in the form (a · s)/q+ e′′, for some suitable error
e′′ and a uniformly random s, where we condition on some fixed value of a. By
construction,

b : = (z · y)/q + e′ mod Λ∨

= (z · x)/q + (z · e)/q + e′ mod Λ∨,

so since z = t · a mod Λ∨q and t lies in the center of A it follows that (z · x)/q =
(a · t · x)/q = (a · s)/q mod Λ∨ for s := χt(x mod qI∨). It follows that s
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is uniformly random over Λ∨q as long as x is uniform over I∨, since χt is a
bijection.

Finally it is left to show that, conditioned on a fixed value of a, the marginal
distribution of the i, jth coordinate of the error term e′′ = (z·e)/q+e′ is negligibly
close to that specified by Σ. We can explicitly calculate the error as

e′′ =

d−1∑
i=0

ui(
∑
j+k=i

θk(zj) · ek(1− (1− γ)1j+k≥d)) + e′ (1)

where the sum j + k is taken modulo d and the functon (1 − (1 − γ)1j+k≥d)
is 1 if j + k < d and γ otherwise6. Since |γ| = 1 and z ← DI,r is spherically
distributed, it follows that multiplying by γ and applying the permutation of j
coordinates induced by θ does not change the distribution of zi,j . Hence, each
marginal distribution may be analyzed independently as in the case of MLWE,
and the result follows using the analysis of the error from Lemma 4.15 of [21].

Though we do not specify the covariance of Σ, one can see that each entry of
σA(z) appears in σA(e′′) exactly d times, and so by symmetry each element of
σA(e′′) has non-zero correlation with at most d2 other entries. Hence, a propor-

tion of at most nd4

n2d4 = 1
n of entries of Σ are non-zero. This is the family of error

distributions we will claim hardness of search CLWE for; we remark that it is a
Gaussian distribution whose marginals are Gaussian with variance at most α.

Definition 22. We define the family of error distributions Σα as the set of
all Gaussian distributions Σ over

⊕d−1
i=0 u

iLR whose marginal distribution in its
(i, j)th coordinate is Gaussian with parameter ri,j ≤ α.

The following theorem is our analogy of Lemma 4.10 of [21].

Theorem 5. Given an oracle that solves CLWEq,Σα for input α ∈ (0, 1), an
integer q ≥ 2, an ideal I ⊂ Λ, a number r ≥

√
2q · ηε(I) satisfying r′ :=

r · ω(
√

logN)/(αq) >
√

2N/λ1(I∨), and polynomially many samples from the
discrete Gaussian DI,r there exists an efficient quantum algorithm that outputs
an independent sample from DI,r′ .

As usual, we obtain Theorem 5 in two steps, first the main reduction of
Lemma 10, then the following quantum step adapted from [42]. We use a form
of A−BDDI,δ from [21] where we bound the offset in the norm ‖e‖2,∞ :=

maxj

√
(
∑d−1
i=0 |σj(ei)|2) ≤ δ, where σ denotes the canonical embedding of I.

Lemma 11. There is an efficient quantum algorithm that given any N = n · d2
dimensional lattice from some ideal I, a real δ < λ1(I∨)/(2

√
2nd), and an oracle

that solves A-BDDI∨,δ with all but negligible probability, outputs an independent
sample from DI,

√
dω(
√

log(nd))/
√
2δ

.

6 This term is just indicating whether or not we have had to use the relation ud = γ
in this summand or not.
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We can then prove Theorem 6 in the standard iterative manner; for a very
large value of r, e.g. r ≥ 22NλN (I), start by sampling classically from DI,r. Then
apply the above algorithm to obtain a polynomial number of samples from DI,r′ .
Repeating this step gives samples from progressively narrower distributions, until
we arrive at the desired Gaussian parameter s ≥ ξ. In order to classically sample
the initial collection of Gaussian samples, we use the standard Lemma 3.2 of [42]

to sample DI,r on the module representation
⊕d−1

i=0 u
iLR.

Theorem 6. Let A be a cyclic division algebra over a number field L with center
K and natural, maximal order Λ with |γ| = 1. Let α = α(n) ∈ (0, 1) and
q = q(n) ≥ 2, unramified in L, be parameters such that α ·q ≥ ω(

√
logN). Then,

there is a polynomial-time quantum reduction from A-DGSξ to search CLWEq,Σα
for any ξ = r ·

√
dω(
√

log (d · n))/αq, where r >
√

2q · ηε(I).

From this we deduce the following corollary, similarly to [21], since the lattice
structure of our algebra is merely a special case of their modules.

Corollary 1. Let A, Λ, α and q be as above. Then, there is a polynomial-time
quantum reduction from A-SIVPξ to search CLWEq,Σα for any

√
8Nd · ξ =

(ω(
√
dn)/α).

4.2 Search To Decision Reduction

In this subsection we will show that the hardness of decision CLWE follows
from that of the search problem. Once again, we will follow a combination of
the expositions of [26] and [21] for the ring and module cases, making necessary
changes for the structure of cyclic algebras. We will make heavy use of the
following CRT style decomposition, a rephrasing of [32, Lemma 4].

Lemma 12. Let Λ be the natural order of a cyclic division algebra A = (L/K, θ, γ)
and let I be an ideal of OK which splits completely as I = q1...qn as an ideal of
OK . Then, we have the isomorphism

Λ/IΛ ∼= R1 × ...×Rn,

where Ri =
⊕d−1

j=0 u
j(OL/qiOL) is the ring subject to the relations (`+qiOL)u =

u(θ(`) + qiOL) and ud = γ + qi.

Of course, this is not a true CRT decomposition, because we are considering
ideals of OK rather than those of Λ. In the case where γ is a unit, Λ∨ =

⊕
i u

iO∨L
and the above lemma is also valid in the case where each instance ofOL and Λ are
replaced with their respective duals. Also note that γ is a non-norm element in
this lemma. The reduction from DGS to search CLWE requires Λ to be maximal,
and currently the only known value of γ which makes the natural order maximal
is an n-th root of unity, which is also a non-norm element. So these conditions
are consistent.



CLWE 31

As in [26], our reduction will be limited to certain choices of algebras. The
above lemma considers the splitting of the ideal I as an ideal of the base field
K. Setting I = 〈q〉, the ideal generated by the modulus q, we will consider cases
where q splits completely in the base field. Now consider the family of algebras
A in Section 3.3 and let K = Q(ζpa) have dimension n. It follows that if q ≡ 1
mod pa then q splits completely into a product of prime ideals q1, ..., qn as an
ideal of OK . Hence, we obtain the decomposition

Λ/qΛ ∼= R1 × ...×Rn

where Ri is as in Lemma 12.
Also as in [26], we see no way to avoid randomizing the error distribution in

the resulting decision problem. Further, we show that an oracle for D-CLWEq,Υα
on an algebra A = (L/K, θ, γ) is also an oracle for the decision problem on any
algebra A′ = (L/K, θ, γ′) over the same number fields L,K and some other root
of unity γ′ ∈ OK . Intuitively this implies that for fixed L and K as in Section 3.3
the hardness of the D-CLWE problem is invariant under the choice of root of
unity γ, and will be required for Lemma 15. This is because there exist efficient,
easy-to-compute isomorphisms sending A to A′, which we will define shortly.
The security reduction is similar in spirit to that for Ring LWE applying field
automorphisms.

The main theorem of this subsection is Theorem 7 (given in the end of this
subsection); we emphasize that our algorithm is only intended to be efficient in
the dimension n of the base field K, since we expect to fix d as a small constant
in practice. We will prove Theorem 7 in the usual manner: first we show that it is
sufficient to recover the value of s ∈ Λ∨/qΛ∨ in one of the rings Ri (Lemma 13).
Then, we use a hybrid distribution to define a decision problem in Ri, for which
we demonstrate a search to decision reduction (Lemma 14). We then use a hybrid
argument to conclude the proof (Lemma 16).

CLWE in Ri In this section we will abuse notation and denote by s mod Ri the
value of s ∈ Λ∨/qΛ∨ in the Ri coordinate under the isomorphism of Lemma 12.

Definition 23. The Ri−CLWEq,Σα problem is to find the value s mod Ri given
access to the CLWE distribution Πq,s,Σ for some arbitrary Σ ∈ Σα.

In the following lemmata we make use of the automorphisms of K coordinatewise
on the rings Ri. Since K is a Galois extension of Q and q splits completely,
it follows that the automorphisms σi of K act transitively on the ideals qi.
We demonstrate how to extend these to functions of A. First, extend these
automorphisms to automorphisms αi of L in some arbitrary manner. Then, we
can extend these to isomorphisms αi : A → A′, with A′ = (L/K, θ, γ′), which
agree with αi on L and send u to u′ with u′d = αi(γ) and xu′ = u′θ(x) for
x ∈ L. By the construction of K from [20], αi(γ) is a non-norm element since
it is some primitive nth root of unity, and so it is easy to check that this A′
is a well defined division algebra and that αi is indeed an isomorphism which
sends A to A′. Furthermore, it fixes the family of error distributions Σα. This
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is because each component of z · e + e′ is defined coordinatewise over the d
copies of LR in the module representation of A, and since αi induces the same
permutation of the entries of the canonical embedding of L in each coordinate as
an automorphism of L it fixes the family of choices for each of z, e, e′; hence since
αi is an isomorphism the family of distributions z · e+ e′ is fixed. It follows that
the extended αi function maps the Ri−CLWEq,Σα problem in A to the same
problem in A′, and moreover that this map preserves Λ∨ and the CRT style
decomposition (Lemma 12) of Λ∨q by sending Ri to some Rj , where j depends
on the choice of σi. We are now ready for the first step of our reduction.

Lemma 13. There is a deterministic polynomial time reduction from CLWEq,Σα
to Ri−CLWEq,Σα .

Proof. Let Oi be an oracle for the Ri−CLWEq,Σα problem. Since Lemma 12
defines an isomorphism, it is sufficient to use Oi to solve the Rj−CLWEq,Σα
for each j. Let αj/i be an extension of the automorphism of K mapping qj
to qi, which exists by transitivity. Then, given a sample (a, b) ← Πq,s,Σ , we
construct the sample (αj/i(a), αj/i(b)). Since Λq and Λ∨q are fixed by each αj/i,
the resulting pair is a valid CLWE sample in A′ = (L/K, θ, αj/i(γ)); feeding
these samples into Oi outputs a value tj mod Ri.

We claim α−1j/i(tj) = s mod Rj . Since αj/i is an automorphism, each sample

(a, b) is mapped to a new CLWE sample (αj/i(a), αj/i(a · s/q + e) mod Λ∨) in
a new algebra A′. We may write the second coordinate as αj/i(a) · αj/i(s)/q +
αj/i(e) mod Λ∨. Since our automorphisms fix our family of error distributions
Σα and map the uniform distribution to the uniform distribution, it follows that
this is a valid CLWE instance with secret αj/i(s) and error distribution Σ′ ∈ Σα.

Hence, Oi outputs t = αj/i(s) mod Ri, from which we recover α−1j/i(t) = s

mod Rj , as required.

Hybrid CLWE and Search-Decision For this section we must introduce the
cyclic algebra analog of the Hybrid LWE distribution used in [26]; we use the
decomposition into the rings Ri rather than the CRT.

Definition 24. For a secret s ∈ Λ∨q , distribution Σ over
⊕

j u
jLR, and i ∈ [n],

we define a sample from the distribution Πi
q,s,Σ over Λq × (

⊕d−1
i=0 u

iLR)/Λ∨ by
taking (a, b)← Πq,s,Σ and h ∈ Λ∨q which is uniformly random and independent
mod Rj , j ≤ i and 0 mod Rj , j > i, and outputting (a, b + h/q). If i = 0,we
define Π0

q,s,Σ = Πq,s,Σ.

Using this distribution we define a worst-case decision problem relative to one
Ri and reduce it to the search problem Ri−CLWE.

Definition 25. For i ∈ [n] and a family of distributions Σα, the W-D-CLWEiq,Σα
problem is defined as the problem of finding j given access to Πj

q,s,Σ for j ∈
{i− 1, i} and valid CLWE secret s and error distribution Σ ∈ Σα.
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For a technical reason in the following proof, we restrict our secret s so that
s mod Ri lies in a set Gi with the property that g 6= h ∈ Gi implies g − h
is an invertible element. Applying this restriction for each i places s ∈ G for
a set G = G1 × · · · × Gn of size |G| =

∏
i |Gi|. We will call such a set G a

pairwise different set. We need to guarantee that there exist sufficiently large
choices of G. It is not difficult to see that the maximal set sizes |Gi| = qd and
|G| = qnd, because any set of matrices in Md×d(Fq) of size at least qd+1 contains
two matrices with the same first row, whose difference is therefore uninvertible.
Constructions of such maximal sets G are given in Appendix D.

Lemma 14. Assuming s ∈ G, there is a probabilistic polynomial-time reduction
from Ri−CLWEq,s,Σα to W-D-CLWEiq,Σα for any i ∈ [n].

Proof. We follow the standard search-decision methodology of guessing the value
of the secret mod Ri and then modifying the samples so that the decision oracle
tells us whether or not our guess was correct. Note that there are only |Gi|
possible values of s mod Ri, which is bounded above by qd

2

, polynomial in n,
and so we may efficiently enumerate over the possible values.

We define the transform which takes a value g ∈ Λ∨q and maps Πq,s,Σ to

Πi−1
q,s,Σ if g = s mod Ri or Πi

q,s,Σ otherwise as follows. On input a CLWE
sample (a, b)← Πq,s,Σ , output the pair

(a′, b′) = (a+ v, b+ (h+ vg)/q) ∈ Λq × (

d−1⊕
i=0

uiLR)/Λ∨,

where v ∈ Λq is uniformly random mod Ri and 0 mod Rj for j 6= i and h ∈ Λ∨q
is uniformly random and independent mod Rj , j < i and 0 on the other Rj . It
is clear that a′ is still uniformly distributed on Λq, so we are left to show b′ is
correctly distributed. For a fixed value of a′, we write

b′ = b+ (h+ vg)/q

= (as+ h+ vg)/q + e

= (a′s+ h+ v(g − s))/q + e,

where e is still drawn from Σ. If g = s mod Ri, then v(g− s) = 0 mod Ri, and
so the distribution of the pair (a′, b′) is precisely Πi−1

q,s,Σ . Otherwise, v(g − s) is
uniformly random mod Ri by assumption on G and 0 mod the other Rj , and
so letting h′ = h + v(g − s) we see that the distribution of (a′, b′) is precisely
Πi
q,s,Σ .

Remark 7. This is the only stage of the proof which enforces that the asymptotic
complexity scales only with n and not with d, since we are forced to guess all of
s mod Ri at once.

Since the above reduction is secret preserving the required decision oracle for
W-D-CLWEiq,Σα has the additional restriction that s ∈ G, but for the purposes of
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the rest of our proof it will be more convenient to have access to an oracle solving
the at least as hard problem where s is arbitrary. Additionally, in practical
applications we will use the decision problem for arbitrary s, so we see no benefit
of the tighter reduction where s is restricted.

Worst-Case to Average-Case Decision Reduction Now that we have re-
moved the restriction that s ∈ G, we are able to follow the skeleton of the RLWE
search-decision reduction of [26] more liberally.

Definition 26. The error distribution Υα on the family of possible error distri-
butions is sampled from by choosing an error distribution Σ ← Σα and adding it
to Dr, where each ri := α((n · d2)1/4 ·√yi) for y1, ..., yn·d2 sampled from Γ (2, 1).

Definition 27. For i ∈ [n] and a distribution Υα over possible error distri-
butions, an algorithm solves the D-CLWEiq,Υα problem if with a non-negligible
probability over the choice pairs (s,Σ) ← U(Λ∨q ) × Υα it has a non-negligible

difference in acceptance probability on inputs from Πi
q,s,Σ and Πi−1

q,s,Σ.

This is the average case decision problem relative to Ri; in our worst-case to
average-case reduction we will need to randomize the choice of error distribution,
which we do by sampling from Υα.

Lemma 15. For any α > 0 and i ∈ [n] there is a randomized polynomial-time
reduction from W-D-CLWEiq,Σα to D-CLWEiq,Υα .

Proof. Since the definition of Υα is a distribution over the family of distributions
obtained by sampling from Σα and adding an elliptical Gaussian, the proof is
the same as Lemma 5.12 of [26], except we replace each instance of mod qiR

∨

with mod Ri and each instance of Rq with Λq.

Remark 8. This choice of Υα means that the error covariance matrix in our
decision problem is closer to diagonal than that in the corresponding search
problem! In fact, if one increased the elliptical error in the decision problem, one
could ‘flood out’ the non-diagonal entries of the covariance matrix, leading to
elliptical error which is easier to handle in practice.

Finally, we use a hybrid argument. We must first show that Πn
q,s,Σ is uniformly

random given Σ sampled from Υα, but again this follows the same method as
the ring case, except we must replace their use of Lemma 1 by [36, Lemma 2.4].

Lemma 16. Let Υα be as above and let s ∈ Λ∨q . Then given an oracle O which
solves the D-CLWEq,Υα problem there exists an efficient algorithm that solves
D-CLWEiq,Υα for some i ∈ [n] using O.

Proof. The proof is identical to the ring case, Lemma 5.14 of [26], except that
the indexing set Z∗m is replaced by [n].

Denote by CLWEq,Σα,G the search CLWE problem where s ∈ G for arbitrary
fixed G ⊂ Λ∨q . To sum up, we have obtained the main result of this section:
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Theorem 7. Let Λ be the natural order of a cyclic algebra A = (L/K, θ, γ), q ∈
poly(n) and assume that α · q ≥ ηε(Λ∨) for a negligible ε = ε(n). Then, there is
a probabilistic reduction from CLWEq,Σα,G for any pairwise different G ⊂ Λ∨q to
D-CLWEq,Υα which runs in time polynomial in n.

4.3 Summary and a Remedy for Secret Space

There are certain technicalities and subtleties in our security proof, which we
briefly summarize as follows.

The hardness of Search CLWE in Section 4.1 requires a natural order Λ
that is maximal. Nonetheless, Lemma 10 (due to Lemmas 6 and 7) is the only
stage of the proof that assumes such a natural, maximal order. An improved
proof technique may be able to drop this assumption (e.g., to use the natural
order). The search to decision reduction in Section 4.2 requires a natural order
Λ, due to the CRT decomposition of Lemma 12. A better version of CRT may
extend the reduction to a maximal order. Fortunately, the orders we take from
Theorem 2 are both natural and maximal, thereby meeting these requirements.
The requirement of unramified q in Theorem 6 (due to Lemma 6) is minimal:
for the algebras of Theorem 2, the only unsuitable primes are the p and q′ used
in the construction (cf. Section 3.3).

Lemma 14 enforces that s lies in a pairwise different set G. It is the only stage
of the proof which requires such a set. We emphasize that our reduction takes
the search CLWE problem where s ∈ G for arbitrary fixed G to the decision
CLWE problem for arbitrary secret s. In other words, we claim hardness for the
full decision problem, based on hardness of a restricted search problem. Also,
our reduction implies that the decision problem is as hard as the search problem
for the hardest choice of G. See Appendix D for more details.

Remark 9. The so-called normal form is used de facto in LWE-based cryptog-
raphy. We note that the normal form reduction is agnostic to the secret space
G. More precisely, starting with a secret s ∈ G gets cancelled in the transfor-
mation and replaced by a new secret s′ derived from the error distribution (see
Lemma 18 in Section 5.1). Therefore, the secret space in the normal form of
CLWE is the expected space in relation to other LWE normal forms.

Even if our secret space is still exponentially large in n, it may be a concern
with security of CLWE if the above reductions were best possible (e.g. decision
CLWE is polynomial-time equivalent to restricted search, rather than at least
as hard). Fortunately, it is possible to remedy the loss of secret space by using a
prime modulus q that totally ramifies in relative extension L/K. The proofs of
the following theorems are given in Appendix E.

Theorem 8. Let A be a cyclic division algebra over a number field L with center
K and natural, maximal order Λ with |γ| = 1. Let α = α(n) ∈ (0, 1) and
q = q(n) ≥ 2, completely split in K, and the ideals above q in K totally ramify
in L, be parameters such that α · q ≥ ω(

√
logN). Then, there is a polynomial-

time quantum reduction from A-DGSI,ξ to search CLWEq,Σα for any ξ = r ·√
dω(
√

log (d · n))/αq, where r >
√

2q · ηε(I) and I and qΛ are coprime.
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Note the DGS to search CLWE reduction requires a restriction on the ideal
lattice problems that it holds for, but the search to decision part does not depend
on any chosen ideal:

Theorem 9. Let Λ be the natural order of a cyclic division algebra A = (L/K, θ, γ),
q ∈ poly(n) such that the ideals above q in OK are maximally ramified in OL, and
assume that α ·q ≥ ηε(Λ∨) for a negligible ε = ε(n). Then, there is a probabilistic
reduction from CLWEq,Σα to D-CLWEq,Υα which runs in time polynomial in n.

Explicit Primes for the Reduction Which primes is the reduction valid for?
We need q ∈ Z such that q splits completely in K, say as qOK = q1...qg, and

that these primes are maximally ramified in L, i.e. qiOL = Q
[L:K]
i .

To find such primes, we need to review how the algebras used are constructed.
We set K = Q(ζm) and M = Q(ζmq′), where q′ = 1 mod m is a prime, and
gcd(m, q′) = 1. For a degree d extension of K, fix an intermediate field K ⊂ L ⊂
M of the correct degree, via the generator of the Galois group of M/K. Recall
that we impose gcd(d,m) > 1.

From [45], the ramified primes of Q in M are the primes dividing mq′, and
the ramified primes of K in M are the primes dividing q′. Since q′ is prime, there
is only one prime q dividing it, which is itself. To see that q = q′ has the correct
ramification, observe the following:

By our choice of q, it is completely split in K. If we label the ramification
index e, the inertial degree f , and the number of primes q splits into by g, using
the identity [K : Q] = eqK/Qf

q
K/Qg

q
K/Q, we know that gqK/Q = [K : Q], and

fqK/Q = eqK/Q = 1. Moreover, q is ramified in Q(ζmq), and q does not divide m.

This (with the condition on q) implies that fqM/Q = 1. Also, eqM/Q = φ(q) =

q − 1 = [M : K] and gqM/Q = [K : Q] . Multiplicativity of the ramification index

and inertial degree then gives eqL/K = [L : K], fqL/K = 1 and gqL/K = 1, for any

intermediate field L.
This means that once an algebra is fixed, there is only one prime that the

above reduction is valid for. This might seem like a significant issue; but, to
construct an algebra of fixed size, there are infinitely many primes q that can be
used to construct M , and thus L. This means that if we know the kind of prime
we want to use before the algebra is constructed, there are in effect infinitely
many primes to choose from.

Example 3. Consider K = Q(ζ128), and construct a degree 4 extension of K
to generate an algebra of dimension 1024 over Q using the prime q = 3457.
Since q = 3457 is completely splits in K and totally ramified in L/K, the above
reduction holds for these parameters.

Modulus Switching Finally, we apply the modulus switching technique to a
completely spit modulus p so that it enjoys both efficient multiplication and full
secret space.
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Following [21, Theorem 4.8], we can show that, for any p, q ≥ 2, and un-
der some conditions on α and β, there is a polynomial-time reduction from
D-CLWEq,Υα to D-CLWEp,Υβ . We omit the details.

In particular, using a modulus q as in Theorem 8 and an integer p close to
q, the above theorem provides a reduction to D-CLWE with arbitrary p and full
secret space.

Example 4. Continuing Example 3, we find p = 3329 is completely splits in L.
Since it is rather closer to q = 3457, we can use p = 3329 for both efficient
multiplication and full secret space.

5 CLWE in Cryptography

In this section we present a proof-of-concept cryptosystem using CLWE. To
demonstrate our comparison against MLWE our scheme will closely resemble
the typical ‘compact’ LWE cryptography schemes over modules, in particular
KYBER (see [4]), although it is likely that an adaptation of Regev style encryp-
tion from [42] would suit CLWE as well.

5.1 Making CLWE Suitable For Cryptography: Normal Form

We implicitly use some standard LWE facts: firstly, we discretize our error dis-
tribution e to Λ∨q ; discretizing does not reduce security since an attacker may
always discretize the samples themselves. Secondly, we can ‘tweak’ the problem
so that e, s ∈ Λq. Fortunately, in the case where γ is a unit, Λ∨ =

⊕
i u

iO∨L and
so this tweak is precisely multiplying on the right by the tweak factor taking
O∨L to OL (see e.g. [37]). Finally, we require hardness of a ‘normal’ form for
the CLWE distribution, where s is sampled from the same distribution as the
noise e.

We require two facts for our proof: firstly, given that q splits completely in
K the ring Λq is isomorphic to the direct product of n full matrix algebras over
Md×d(Fq), which can be seen by appealing to the CRT-style decomposition of
Lemma 12 and Wedderburn’s Theorem as in [32, Propositions 1 and 4]. Secondly,
we require that a non-negligible fraction in n of elements of Λq are invertible,
which follows for fixed, small, d and q ∈ poly(n) from this direct product de-
composition. Otherwise, our proof follows the outline for that of plain LWE
from [3]. Given these two facts, we proceed with showing that the normal form
of the CLWE distribution is as hard as the case of taking the secret uniformly
at random.

Lemma 17. For a fixed d and q ≥ (n + 1), a non-negligible proportion of ele-
ments of Λq are invertible.

Proof. Following the decomposition of Lemma 12 and Wedderburn’s Theorem,
it is sufficient to show that a non-negligible proportion of elements of

Md×d(Fq)× · · · ×Md×d(Fq)
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are invertible, where there are n copies of Md×d(Fq). The proportion of invertible
elements of Md×d(Fq) is precisely

(qd − 1)(qd − q) . . . (qd − qd−1)

qd2

= (
qd − 1

qd
) . . . (

qd − qd−1

qd
)

= (1− 1

qd
) . . . (1− 1

q
)

≥ (1− 1

q
)d,

from which it follows that the total fraction of invertible elements in Λq is at
least ((1− 1

q )d)n. By assumption, q ≥ n+ 1, and so (1− 1
q )nd ≥ ((1− 1

n+1 )n)d ≥
(e−1)d = e−d, as required.

Remark 10. This lower bound of e−d means that the normal form reduction will
be asymptotic in n but only valid for fixed d. However, as d increases the number
of invertible matrices in Λq is bounded above by (1− 1

q )nd, and so the reduction
would be efficient in d in the case where one enforced a relation on q and d, such
as q ≥ nd+ 1, or more succinctly q ≥ N .

Lemma 18. There is a probabilistic polynomial time reduction from the CLWE
problem with uniformly random secret s, possibly over a limited secret space G,
and error distribution χ to the CLWE problem with secret s′ ← χ.

Proof. It is sufficient to show that there is an efficient transformation taking
samples with secret s to samples with some new secret s′ taken from χ. Sample
pairs (a, b)← Πq,s,χ until a pair (a1, b1 := a1 · s+ e1) such that a1 is invertible
in Λq is obtained. Since a non-negligible fraction of elements of Λq are invertible
by Lemma 17, this step takes only polynomial time.

Now, given a pair (ai, bi) ← Πq,s,χ, we obtain a sample from the CLWE
distribution Πq,e1,χ by outputting (ai, bi) = (aia

−1
1 , aia

−1
1 b1 − bi). Since a−11 is

invertible, ai is uniform. Similarly,

aia
−1
1 b1 − bi = (aia

−1
1 (a1 · s+ e1))− ai · s+ ei

= aia
−1
1 e1 − ei,

and so (ai, bi) is a valid CLWE sample with secret e1 and error distribution χ.
Relabelling e1 as s′ completes the proof.

5.2 Sample Cryptosystem

Our scheme is parameterized by an algebra A := (L/K, θ, γ), where A is as in
Section 3.3, an error distribution Σ, and a prime modulus q ≡ 1 mod m (recall
K = Q(ζm)) which is completely split in L. We will denote with bold faced letters
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the vector form of an element of Λq, e.g. if a = a0 + ua1 + ... + ud−1ad−1 then
a = (a0, a1, ..., ad−1). We note that OL/qOL has a polynomial representation of

dimension n · d, and so we encode our message ∈ {0, 1}n·d2 as an entry of Λq as
a vector m of d {0, 1} polynomials. The scheme proceeds as follows:

– Alice generates a CLWE sample (a, b := a · s+ e), where a ∈ Λq is uniformly
random and s, e← Σ, and outputs public key a,b.

– To encrypt m ∈ {0, 1}n·d2 , Bob samples t, e1, e2 ← Σ and outputs u :=
φ(a)T t + e1,v := φ(b)T t + e2 + d q2c ·m.

– To decrypt, Alice computes c = v− φ(s)Tu and recovers each coordinate of
m by rounding the corresponding entry of c to 0 or d q2c and outputting 0 or
1 respectively.

Remark 11. There are two benefits of instantiating this scheme in the cyclic
algebra setting rather than over modules as in [4], both following from the matrix
embedding φ. Firstly, in the module setting Alice must publish a matrix A rather
than the vector a in her key, since φ(a) lets us generate a matrix; this saves a
factor of d in the size of the public key. Secondly, by extending b to φ(b) we are
able to increase the dimension of v, and correspondingly increase the size of the
message by a factor of d.

Example 5. Recall our explicit algebras from Section 3.3. Without considering
streamlined implementation for specific NIST submissions, we will pick toy com-
parison parameters for equivalent module based systems and ring based schemes,
e.g. KYBER and NewHope. For the module case, consider a module of dimension
4 over a ring L of dimension 256, with 2-power cyclotomic base field [K : Q] = 64.
Our public key (a,b) requires storing only 8 elements of Rq = OL/q · OL rather
than 20 in the form (A,b). Our message consists of 1024 bits, corresponding to
the total dimension of the algebra rather than the module versions 256 which
corresponds to the field dimension; if the private key size is 256, our CLWE
scheme allows a rate-1/4 binary error correction code, while KYBER does not.
Our ciphertext sizes are the same. As far as the modulus q is concerned, we find
q = 3329 splits completely in a quartic cyclic extension L of K, which matches
with the modulus q used in KYBER7. Overall this represents a noteworthy gain
in key and message size without loss in efficiency. For the ring case, consider
an instantiation of NewHope in dimension 1024. Both public keys are in the
form (a, s) and so require equivalent levels of storage (8 elements of a field of
dimension 256 or 2 in dimension 1024), and the same phenomenon is true of ci-
phertext sizes and message length. However, a larger modulus q = 12289 is used
in NewHope. Hence, we hope to gain in security without losing much efficiency.
A limitation of our current method is that we cannot achieve rank d = 3, similar
to the RLWE limitation over power-of-2 rings.

7 The initial version of KYBER uses q = 7681, but it has been reduced to 3329 later
which does not split completely in L = Q(ζ512). It is noteworthy that, with a similar
technique, further reduction of q in CLWE is also possible.



40 C. Grover et al.

Before considering security and correctness we need a somewhat technical
lemma allowing the use of the matrix transpose operation. Essentially, it states
that if the CLWE problem is hard in an algebra A, then for a, s, e ∈ Λq, the
equation φ(a)T s+e is a valid CLWE instance in some other algebra A′ for which
the CLWE problem is still hard.

Lemma 19. Let A = (L/K, θ, γ), where γ is a unit, be a cyclic division algebra
with matrix embedding φ(a) and natural order Λ. Then there exists another cyclic
algebra A′ = (L/K, θ, γ−1) with matrix embedding φ′(a′) and natural order Λ′

such that for a ∈ A there exists a′ ∈ Λ′ satisfying φ(a)T = φ′(a′). Moreover, A′
still satisfies the division algebra condition, and Λ′q and Λq canonically isomor-
phic as additive groups.

Proof. The fact that A′ is still a division algebra follows from the non-norm
property on γ and the fact that NL/K(L×) is a multiplicative group. Λ′q and
Λq are additive isomorphic because both algebras share the same underlying
fields and γ, γ−1 are both units of OL. Since the first row of φ(a) is precisely
(x0, γθ(xd−1), γθ2(xd−2), . . . , γθd−1(x1)), by setting a′ = x0 +uγθ(xd−1) + · · ·+
ud−1γθd−1(x1) and observing that θd is the identity it is easy to check that
φ(a)T = φ′(a′).

The proofs of correctness and security are similar in spirit to those of other
compact LWE schemes such as e.g. NewHope [2] or KYBER [4]. We proceed
with a somewhat informal security argument.

Lemma 20. The defined scheme is IND-CPA secure under the assumption that
the decision CLWEq,Υ problem is hard.

Proof. The goal of an IND-CPA adversary is to distinguish, with non-negligible
advantage, between encryptions of two plaintexts m1,m2. The challenger chooses
i ∈ {0, 1} uniformly at random and encrypts mi as u,v. By the assumption that
the decision CLWE problem is hard, the adversary cannot distinguish between
the case where b = as+ e and the case where it is replaced by a uniform random
b′, so we replace b in the public key given to the adversary by b′ and also use b′

to compute the challenge ciphertext v′. Setting v′′ := v′ − d q2c ·mi, it follows
by Lemma 19 that u,v′′ represent two samples from a valid CLWE distribution
with secret t, and so the adversary cannot distinguish them from uniform with
non-negligible advantage. Hence, the challenger cannot distinguish v′ and hence
v from uniform with non-negligible advantage and so cannot guess i with non-
negligible advantage.

Finally, we demonstrate conditions on the error term for the scheme to be correct.

Lemma 21. The defined scheme is correct as long as the `∞ norm of e′ =
(φ(e)T t + e2 − φ(s)Te1) is less than d q4c, where the `∞ norm is over the vector
of all polynomial coefficients of each ui entry of e′ of dimension n · d2.
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Proof. To decrypt, Alice computes v − φ(s)Tu and computes m by rounding.
Since φ(·) is a homomorphism, we have

v− φ(s)Tu = φ(b)T t + e2 + dq
2
c ·m− φ(s)T (φ(a)T t + e1)

= φ(e)T t + e2 − φ(s)Te1 + dq
2
c ·m

= e′ + dq
2
c ·m.

from which the result follows immediately.

We note that the error term e′ will be unsurprising to those familiar with LWE
based cryptography. Although we do not provide concrete correctness estima-
tions, the error parameters for our decision reduction are equivalent to those of
MLWE up to some small covariance terms. We do not expect this covariance
to greatly affect the distribution of the error and thus for equivalent parameter
choices we expect a similarly small probability of decryption failure.

5.3 Operational Complexity in Cyclic Algebras

In the previous subsection we showed that the CLWE problem can be used
to construct a standard LWE based cryptosystem. Assuming that parameters
across all variants of the LWE assumption are roughly equivalent, the CLWE
problem supports key and message sizes as advantageous as those of the RLWE
problem, and better than those of the module case. Along with storage consid-
erations, another important facet of the ambient space in LWE cryptography is
the efficiency of operations. Here, we will consider the asymptotic complexity of
multiplication in a cyclic algebra in order to compare it to the ring and module
variants. Since in practice we consider operations modulo some prime q, addition
in rings, modules, and cyclic algebras can be considered as addition in vector
spaces over Zq, which has complexity dominated by that of multiplication.

Consequently, we only concern ourselves with a comparison of the cost of
computing the multiplication operation As in the three cases. In order to keep
our comparison consistent, we let N denote the total dimension of the underlying
LWE instance. In the ring case, N denotes the ring dimension; in the module
case, N = nd, where n denotes the ring dimension and d the module rank; in
the cyclic algebra case N = nd2, where the ring dimension is nd and the algebra
has ‘module’ rank d. However, since it will be important later we remark here
that the cyclotomic part of the ring will be of dimension n rather than nd. The
three cases can be considered as follows:

– In the ring case, the operation As over Zq is a representation of the ring
operation a · s in Rq ∼= Zq[X]/(XN + 1). Using the CRT decomposition
in dimension N of [27], this operation is decomposed into coordinatewise
multiplication in a vector of dimension N over Zq, following which the de-
composition is reversed to recover a · s. The complexity of this technique is
dominated by that of the CRT decomposition, which takes time O(N logN),
although the coordinatewise multiplication also requires time O(N).
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– In the module case, A is a d×d matrix over Rq. In this case, one can compute
As by applying the CRT in dimension n coordinatewise on A and s. This
requires d2 + d applications of the CRT, for a total asymptotic complex-
ity of O(d2n log n) = O(Nd log(N/d)). Again, this hides a coordinatewise
multiplication step which takes time O(Nd) in this setting.

– In the cyclic algebra case, A is a matrix in the shape φ(a), where φ(a) is
the left regular representation of a ∈ Λq. We estimate the complexity of the
operation φ(a) · s in Appendix F. Explicitly, our algorithm has complexity
O(N log(N/d2)) + Õ(Ndω−2) in the case where q splits completely in L,
with ω ∈ [2, 2.373] denoting the exponent of matrix multiplication. The
latter term corresponds to the cost of multiplication in our analog of the
finite fields used in the CRT method for RLWE.

We see that, in the case of completely splitting q, cyclic algebras compare
favourably with modules for multiplication in the same dimension N , depending
on the exact relationship between log d2 and dω−2. Since d is likely to be fixed
while n scales up, we expect that the O(N logN) term will dominate the com-
plexity. Nonetheless, we include the second term in our results to quantify our
claims. The second term Õ(Ndω−2) becomes O(Nd) with naive matrix multipli-
cation instead of the algorithms of [14], yet its overall multiplication complexity
is still lower than that of module multiplication in the same dimension. For
multiplication, the improvement saves Õ(d3−ω) with fast arithmetic. However,
currently we do not know how to construct CLWE instances for arbitrary field
degree and module rank, e.g., n = 256 and d = 3 like in Kyber.

6 Conclusions and Future Work

The primary goal of this work is the introduction of the Learning with Errors
problem over Cyclic Algebras, CLWE, adding to the family of available LWE
assumptions for use in cryptography. To this end, the central pillars of an LWE
problem are provided for the cyclic algebra case. First, in order to provide a
foundation for the construction the notion of lattices derived from ideals of the
natural order of a cyclic algebra are applied in cryptography for the first time.
Then, in Section 3, the CLWE problem is formally introduced, following which
explicit algebras are provided with dimensions and structure appropriate for
cryptographic use. Then, in Section 4, the usual LWE security reductions are
established in the CLWE case, namely, samples from the CLWE distribution
appear pseudorandom to an onlooker with no knowledge of the secret s. Finally,
in Section 5, the necessary steps are taken to mold the CLWE problem into a
practical format for cryptography. Normal form reduction is shown and a sample
cryptosystem in this form is provided. Additionally, the complexity of operations
in CLWE cryptography is compared to that of RLWE and MLWE based schemes.

Cyclic algebras exhibit substantial novel structures within lattice-based cryp-
tography, and discovering use cases for these previously unseen features repre-
sents an exciting area of future research. We outline a few directions of future
research in the following.
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Another method of establishing the hardness of decision RLWE that is not
shown for CLWE in this work is a direct-to-decision reduction, which more gen-
erally represents a security proof for the decision problem that holds for wider
classes of cyclic division algebras than those of Section 4.2. The direct-to-decision
reduction of RLWE [39] establishes the hardness of the decision problem without
enforcing that K is a cyclotomic field within which q splits completely, as in the
search-decision reduction of [26]. Dropping this restriction, and hence widening
the possible choices of cyclic algebras supporting the hardness of the decision
problem, would provide larger design space for CLWE based cryptography.

As for another direction of future work, we view a drawback of our work
to be that we are restricted to certain instances of cyclic algebras. Although in
practice most cryptography would use a fixed choice of algebra, this is a function
of our methods and may be possible to remove. Additionally, showing the afore-
mentioned direct-to-decision reduction may generalize the choice of algebras.

Finally, this work is focused on the theoretical construction of a non-commutative
Ring-LWE assumption, and we leave practical analysis and implementation of
cryptography based on CLWE as further research.
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A Impossible Algebras

We show that certain algebras that would otherwise be what we are looking for
do not exist under our restrictions. As discussed above we would like to begin
with a base field that is cyclotomic, K = Q(ζm) for integer m, and proceed to
fix some low degree cyclic Galois extension L/K and non-norm element γ ∈ OK
with |γ| = 1 e.g. γ is a root of unity. Given these restrictions and the shape of
lattice cryptography, the most natural fields to look for are low degree extensions
of two-power cyclotomics e.g. m = 2k. Unfortunately, we are able to prove the
non-existence of a large class of such extensions.

Theorem 10. Let K = Q(ζm) for some positive integer m and let p ≥ 2 be
some integer which is coprime with m. Then, for any Galois extension L/K of
degree p each ζm, ζ

2
m, . . . , ζ

m−1
m lies in NL/K(K×).

Proof. Since L/K is a Galois extension of degree p, the relative norm map
NL/K(·) induces the map x → xp on elements x ∈ K×. Let 1 ≤ i ≤ m − 1
be an integer; we will prove the theorem by finding 1 ≤ j ≤ m − 1 such that
NL/K(ζjm) = ζim. Since ζm and its powers lie in K, the relative norm map takes
ζjm to ζjpm and we are left to solve the congruence jp ≡ i mod m. By assumption,
g.c.d.(m, p) = 1 and so p is invertible modulo m. Denoting this inverse p−1 and
letting j = p−1i mod m it is easy to see that jp ≡ ip−1p ≡ i mod m. The
theorem statement follows immediately.
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This theorem precludes the existence of a very large class of cyclic division
algebras with cyclotomic base field. In particular, if the degree of [L : K] is
coprime with m then we can not have our restrictions that |γ| = 1, is integral,
and that K is cyclotomic. We draw attention to the specific classes whose non-
existence we are interested in: in an ideal world we might instantiate CLWE
with K = Q(ζ2k) and [L : K] = d for arbitrary small integer d corresponding to
the module rank, which in practice is likely to be at most say 5. However, as a
result of Theorem 10 we know that d can not be coprime with 2k and must be
even in order to permit a suitable γ, from which it follows that we can not have
d = 3, 5.

B Proofs of Theorem 3 and Theorem 4

Before proving Theorem 3 we need some additional concepts and a Lemma.
Given a K-central division algebra A and some OK order Λ in it, then the OK-
discriminant of Λ, d(Λ/OK), is a certain ideal in OK [43, p.126]. While A has
many maximal orders they all share the same discriminant, which is called the
discriminant of the algebra dA. Now the key fact about discriminants we need
is that an order Λ is maximal if and only it’s discriminant equals that of dA.

We will now use the notation of Section 3.3. According to [20] the field M
and therefore also its subfield L are subfields of Q(ζm, ζq′), where m = pa, and
q′ 6= p is some large prime. Let n = ϕ(m) = pa−1(p−1). Furthermore it is known
that q′ splits completely in the field K = Q(ζm). Let us now denote with

q′OK = q′1 · · · q′n,

the prime ideal decomposition of q′ in K. We then have the following result.

Lemma 22. Let (L/K, θ, ζm) be an index d division algebra of Theorem 2 and
let Λ be the corresponding natural order. Then we have that

d(Λ/OK) = (q′1, · · · q′n)d(d−1). (2)

Proof. According to [44, Lemma 5.4] we have that

d(Λ/OK) = d(L/K)dζd(d−1)m = d(L/K)d,

where d(L/K) is the relative number field discriminant of the extension L/K.
In order to find the discriminant of the natural order, it is now enough to find
d(L/K). By the basic theory of cyclotomic fields we know that Q(ζm, ζq′) =
Q(ζmq′). We also know that the only ramified primes in the extension Q(ζmq′)/Q
are p and q′ and their ramification indices are e1 = n and e2 = q′ − 1, respec-
tively. Furthermore ramification index of p in the extension Q(ζm)/Q is e1. As
ramification indices are multiplicative in towers of extensions we can deduce that
the only primes that are possibly ramified in the extension Q(ζmq′)/Q(ζm) are
those that lie above q′ in the ring OK . As q′ is not ramified in Q(ζm), we get
again by the multiplicativity of the ramification indices that all the primes q′i are
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totally ramified in the extension Q(ζmq′)/Q(ζm). Therefore they are also totally
ramified in the extension L/Q(ζm). Because q′ does not divide d the prime ideals
q′i are tamely ramified. Dedekind’s discriminant theorem now implies that

d(L/K) = (q′1 · · · q′n)(d−1).

Now we are ready to prove the natural order in Theorem 3 is actually maxi-
mal.

Proof. The proof is based on the result in [43] that states that an order is
maximal if and only if it has the same discriminant as the discriminant of the
algebra. According to Lemma 22 we have that

d(Λ/OK) = d(L/K)d = (q′1 · · · q′n)d(d−1). (3)

According to [43] the discriminant of the maximal order will always divide the
discriminant of the natural order. Hence we know that the only prime ideals
that can possibly divide the discriminant of the maximal order are q′i. Let us
now assume that Qi is prime ideal above q′i in M . By abusing notation we will
denote with Mq′i

the Qi-adic completion of M and in the same way the respective
completion Lq′i

.
Following the proof of [20, Theorem 4] we can see that the authors actually

prove that ζm is a non-norm element in the extension Mq′i
/Kq′i

for each prime
ideal q′i. Using the same proof as in Theorem 2 we can now see that ζm is a non-
norm element in the extensions Lq′i

/Kq′i
, for all i. According to [43, Theorem

30.8] A ⊗K Kq′i
∼= (Lq′i

/Kq′i
, θ′, ζm), where θ′ naturally extends θ. As ζm is a

non-norm element, (Lq′i
/Kq′i

, θ′, ζm) is an index d division algebra. By definition
of the local index we can see that the local indices mq′i

are d for all q′i. We now
know that q′i are the only possible primes dividing the discriminant and that
their local indices are d. According to [43, Theorem 32.1] the discriminant of the
algebra A is

dA =

n∏
i=1

q′
(mq′

i
−1) d2

m
q′
i

i =

n∏
i=1

q′
(d−1)d
i ,

completing the proof.

The proof of Theorem 4 is similar.

Proof. We have K = Q(ζn) for n = pr where p is prime, and L/K a degree d
extension. Thus we have K ⊂ L ⊂ Q(ζnm) for some integer m, by the Kronecker-
Weber theorem. In our context, we may take gcd(n,m) = 1. The prime ideals of
OKF which ramify in OLF lie above the same integer primes as the prime ideals
of OK which lie above OL, because of the disjointness of L and F . Denote this
set of primes by S = {p1, ..., pl}. Write piOKF =

∏
j pij ; the ramification index

of pi in KF is 1. Moreover, pij is totally ramified in Q(ζnmqt), and if ramified in
LF , is totally ramified in LF by multiplicativity of the ramification data. Since
L/K induces a CDA with maximal natural order, and [LF : KF ] = [L : K],
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we know that pi - d, and so the pij are tamely ramified. This means we can
apply Dedekind’s discriminant theorem and obtain d(Λ′/OKF ) = d(LF/KF )d =∏
i,j p

d(d−1)
ij .

It remains to see that A′ is a division algebra, and what dA′ is. As in the
subfield case, we consider algebras arising from completions of number fields
at certain prime ideals. Let piOK =

∏
j qij . We know that by construction

Aqij = (Lqij/Kqij , θ
∗, ζn) is an index d CDA, where Aqij denotes the completion

of A at qij and θ∗ extends θ. We are interested in the index of algebras A′pij =
(LFpij/KFpij , θ

′′, ζn). These can be presented in form Aqij ⊗Kqij
KFpij

∼= A′pij .

It is a consequence of [43, Theorem 31.9] that A′pij has local index d if and
only if gcd([KFpij : Kqij ], d) = 1. As KF/K is a Galois extension we know
that [KFpij : Kqij ] divides [KF : K] = [F : Q]. Therefore it follows that since
gcd(d, [F : Q]) = 1, also gcd([KFpij : Kqij ], d) = 1. We can conclude that
mpij = d for all pij . It follows that A′ is a division algebra and that dA′ =∏
i=1 p

(mpij
−1) d2

mpij

ij =
∏n
i=1 p

(d−1)d
ij = d(Λ′/OKF ), as required.

C Extensions Where q Splits Completely in L

We would like q to be of roughly appropriate cryptographic size (say between
3000 and 15000 as a soft estimate, once again presuming parameters similar
to those of NewHope or KYBER). Having q split completely in L is not as
straightforward as in K because L is not a cyclotomic field, so we return to our
examination of the proof of Theorem 1. Recall that in this proof the extension
field L is a subfield of K(ζmq′) for some prime integer q′ satisfying q′ = 1 mod m
and, for m = pa, pa+1 does not divide q′− 1. That is, a is the highest power of p
that divides q′ − 1. We have several methods to ensure that q splits completely
in L, of which we start with the most naive.

Naive Method For our general method we rely on the following fact: If qi is
an ideal of OK which splits completely in an extension M/K then it splits com-
pletely in any intermediate field M/L/K. As it is conceptually simpler to apply
this idea to the integer q than to the OK-ideals qi we use a simpler statement,
that if 〈q〉 splits completely in some M containing L then it splits completely in
L. This gives us an easy way to find some q that splits completely by examining
a cyclotomic field that contains L: let K = Q(ζm) and let M = K(ζq′). Then
since q′ = 1 mod m it follows that M = Q(ζmq′). Thus q splits completely in
M if and only if q = 1 mod mq′ and consequentially splits completely in our
extension L if q = 1 mod mq′. Since there are infinitely many primes equal
to 1 mod mq′ this recipe always provides a prime q that splits completely in
L. The upside of this method is that it is both very general and simple, since
all candidate fields L we construct are contained in a larger cyclotomic field.
Theoretically, this method can be extended to any abelian extension of Q us-
ing the partial converse of the Kronecker-Weber Theorem. However, using the
Kronecker-Weber Theorem constructively is not as straightforward as picking q′
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as in the proof of Theorem 1, so this extension to general abelian L is slightly
contrived.

The downside to this method is that it seems that often this will result in
unrealistically large q. Since q′ = 1 mod m and not 1 mod pa+1, q′ must be
chosen carefully and there are not many ‘small’ primes satisfying these condi-
tions. For example, in our quadratic extension case with m = 512 the smallest
prime that is 1 mod m but not 1 mod 2m is q′ = 7681. The smallest q which
is 1 mod (512 · 7681) has to be bigger than 512 · 7681 = 3932672, which is in-
appropriately large for lattice cryptography. Of course, one could be lucky here
and have much smaller q for different choices of L and K, but in general we re-
gard this as a theoretical result rather than a practical method. Even for smaller
2-power cases such as m = 128 one must set q′ = 641, which leads to a smallest
valid prime of q = 820481.

Remarkably, this is much less bad in the cubic case; K = Q(ζ81) gives q′ =
163 as a suitable prime and q = 26407 still splits completely. This is perhaps
slightly too large, but certainly not so much so that it is completely impractical.
Nonetheless, we move on to a better method for quadratic cases.

Quadratic Case In the case where L/K (K = Q(ζ512)) is a quadratic extension
we are able to choose substantially smaller q by examining the unique quadratic
subfields of E′ := Q(ζq′). We rewrite M as the compositum of E′ and K, and
observe that since our chosen L contains K our method of choosing L as a
subfield of M allows us to write L = EK for a subfield E of E′. In the case
where L is a degree two extension of K we know that E is a quadratic field,
and since E′ is a prime cyclotomic field we have an explicit description for its
unique quadratic subfield E; namely that E = Q(

√
q′) if q′ = 1 mod 4 and

E = Q(
√
−q′) is q′ = 3 mod 4. It is a standard fact that the discriminant dE

of E is q′ if q′ = 1 mod 4 and −q′ otherwise. Finally, we know that a prime
q splits completely in E if and only if the congruence dE = x2 mod q has a
solution e.g. if dE is a square mod q. Plugging in the prime numbers q = 12289
and q′ = 7681 that are common in cryptography we see that q′ = 1 mod 4 and
that 7681 = 37882 mod 12289, so that q = 12289 splits completely in E,K, and
thus L, as required. Since this prime is explicitly the prime used in NewHope
for all parameter sets we view this method as a substantial improvement on the
previous technique.

Quartic Fields Again, we use the method of describing L as a compositum
MK/K. Now, M will be a quartic subfield of the field Q(ζq′) and one can
establish the linearly disjoint nature of M and K required to express L as this
compositum by e.g. examining their discriminants: since K is a power-of-two
cyclotomic field the only prime appearing in its discriminant is 2, and since M
is a subfield of Q(ζq′) the only prime in its discriminant is q′. Since they have
coprime discriminants they are linearly disjoint, and since ramified primes are
factors of the discriminant we have a relatively easy way to discount q being
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ramified (q 6= 2, q′), so the remaining case to concern ourselves with is q being
inert.

Since the discriminants are coprime we have a method for explicitly describ-
ing the integral basis of L = MK; the integral basis for K is clear, and an
integral basis for M in fixed dimension can be computed relatively easily since
it has degree 4. Then, the product of their integral bases is an integral basis for
L. Now one only needs to check whether q splits completely in M , since splitting
in K is well understood. We are unable to provide a general method for finding
such q, but an easy computation reveals that for q = 10753 and K = Q(ζ256)
there is a quartic field M such that q splits completely in M and K and hence
L. Since we have a relatively small range in which we wish to place q and M has
low degree we do not consider the cost of this search as a large drawback since
it can be done efficiently on computational software such as SAGE or PARI.

Remark 12. In fact, this quartic method can be applied to other instances where
we do not have an explicit description of the subfields ofK(ζq′) which have degree
d over K: define the families of q which split completely in K, then check whether
those q split completely in L using computational software. Since q = 1 mod m
and m is relatively large, there will not be many q to check of appropriate size
for lattice cryptography, and so we conclude that this method is sufficient for
fixed choices of fields L,K for which a satisfactory q exists.

Compositum Fields Since a prime q is completely split in a compositum field
K1K2 if and only if it is completely split in both K1 and K2, it is ready to
extend the above method to compositum fields.

For the case of Fig. 3(a), suppose we have found primes q completely split
in K ′ and L′ using the above method. Then we choose q that is also completely
split in F , which ensures it is completely split in compositum field K = K ′F ,
hence in L = L′F .

For the case of Fig. 3(b), we choose q that is also completely split in K, which
ensures it is completely split in compositum field L = KL′.

D Restricting the Secret Space

In Lemma 14 we need to use a fact that is implicit in the search-decision reduction
of [26]: for uniformly random v ∈ Ri and an incorrect guess g of the secret s
modulo Ri, the distribution of v(g − s) is uniformly random. In the ring and
module cases, the secret space is decomposed into a direct product of finite fields,
so it is clear that v(g − s) is uniformly random in each finite field for g 6= s.

In our case, an appeal to Wedderburn’s theorem demonstrates that, since for
our parameter choices eachRi is a central simple algebra overOK∨/qiOK∨ ∼= Fq,
each Ri is isomorphic to the full matrix ring Md×d(Fq), for which it is not true
in general that v(g − s) is uniformly random for g 6= s; in fact, it is uniformly
random if and only if g − s is invertible. Thus we restrict our secret s so that
s mod Ri lies in a set Gi with the property that g 6= h ∈ Gi implies g − h is
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an invertible matrix. Applying this restriction for each i places s ∈ G for a set
G = G1 × · · · × Gn of size |G| =

∏
i |Gi|. Now, an incorrect guess g ∈ Gi of s

mod Ri results in a distribution of v(g− s) which is uniformly random mod Ri.
We will call such a set G a pairwise difference set.

We also need to guarantee that there exist sufficiently large choices of G. A
simple method for constructing a valid Gi is by fixing some arbitrary embedding
β of Fqd into Mn×n(Fq) and letting Gi equal the image of this embedding, such
that |Gi| = qd and |G| = qnd. Indeed, a Gi constructed in this way is maximal
because any set of matrices in Md×d(Fq) of size at least qd + 1 contains two
matrices with the same first row, whose difference is therefore uninvertible.

There are a number of choices of embedding β, and thus set Gi, equal to the
number of irreducible polynomials of degree d in Fq[x], which can be calculated
by the Necklace polynomial and in general will vastly exceed q. We make clear
that our reduction will take the decision CLWE problem for arbitrary secret s to
the search CLWE problem where s ∈ G for arbitrary fixed G, which we denote by
CLWEq,Σα,G. Thus, our reduction states that the decision problem is as hard as
the search problem for the hardest choice of G, precluding obvious attacks on the
unique case where G = OLq∨ and the CLWE problem with s ∈ G corresponds
to d parallel copies in L of the RLWE problem8. For a general set G, s ∈ G
will not provide parallelization since they need not have the property of L that
they are entirely contained in one u coordinate of A. Additionally, even though
elements of G constructed this way co-commute, they do not lie in the center of
Λ and the multiplication a · s in the CLWE instance will not be a commutative
operation.

Of course, fixing a G of size qnd restricts the size of the secret space by a factor

of qnd

qnd2
, a substantial loss in size even for fixed, small d. For concrete parameter

settings, this may result in a much easier problem, but asymptotically it is still
exponential in n and thus establishes a suitable hardness property for decision
CLWE. Of course, attacks based on exhaustive search are unlikely to represent
the best attacks on the CLWE problem, so this may or may not substantially
aid an attacker in practice.

In fact, there is no a priori reason why Gi should be a field, or even closed
under multiplication. For example, fixing a pair of invertible matrices M1,M2

and replacing Gi with M1 · Gi ·M2 = {M1XM2|X ∈ Gi} results in a new set
of size qd whose pairwise differences are all invertible but is not multiplicatively
closed in general. Although the field embedding technique is perhaps the most
elegant way of building Gi, and certainly the most constructive, it may transpire
that taking s from some set with less algebraic structure is advantageous in terms
of the hardness of the resulting search problem. One can also construct the valid
set Gi+X by adding a fixed matrix X to each element of Gi, but this technique is
somewhat constrained by the fact that LWE samples are additive in the secret s
(e.g. one could just add a·X into the second coordinate of the resulting samples).

Although this restriction is not ideal, we have a remark about the implications
on the security of the CLWE problem. Restricting the secret space in (R)LWE

8 Although this case exists only when each qiOL is a prime ideal in OL.
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problems is not an uncommon idea: tertiary secrets, where each coordinate of
s ∈ {−1, 0, 1}, are used in the NIST candidate LAC [23] amongst others, and
security whilst restricting the secret to orders or subfields is discussed in [10], and
to other K-lattices in [38]. Overall, we suspect that the decision CLWE problem
is polynomial time equivalent to the search CLWE problem without restriction
on s, in particular when the number of samples is small as in our applications
in Section 5, and that the restriction is a function of our reduction technique
rather than some causal property of the CLWE distribution. For the purposes
of constructing a cryptosystem, we assume that this reduction implies that the
decision CLWE problem is hard.

E The Case Where q Totally Ramifies in Relative
Extension L/K

Here, we apply a decomposition in terms of Λ ideals:

Λq = Λ/qΛ = Λ/Pe11 ...Pegg , (4)

where the Pi are maximal two-sided ideals in Λ and the ei are some positive
integers. Moreover, the following holds (see [29]):

Λ/Pi ∼= Mfi(Fqei ),

where fiei = d. When ei = d, we have Λ/Pi ∼= M1(Fqd) = Fqd , a finite field.
We reduce CLWE to CLWE modulo Pdi using a similar proof as above, and

from there reduce to CLWE modulo Pi. The secret then lies in some finite field,
so the difference of any two elements will invert and the size of the secret space
will be unrestricted. However, in order to achieve this we will have to consider
the reduction for ideal lattice problems where the ideal is coprime to the ideal
generated by the modulus q. This is still an infinite set of ideal lattices. Before
proceeding with the reduction, we first remove the restriction on the ramification
of the modulus present in the statements of the technical lemmas.

In [33], Propositions 1 and 4 state that for pi ⊂ OK unramified, and inert or

split in OL, piΛ =
⊕d−1

j=0 u
jpiOL, and the piΛ are the largest two-sided ideals

containing qΛ. In our case, we are dealing with pi ramified and not split in OL.
Let p ∈ Z be a prime such that pOK = p1...p[K:Q]. Moreover, let piOL =

(P1...Pg)
e, where eg = [L : K] and e > 1; importantly, this means that fPi =

[OL/Pi : OK/pi] = 1. Set I = P1...Pg ⊕ uP1...Pg ⊕ ... ⊕ ud−1P1...Pg in
Λ = OL ⊕ uOL ⊕ ...⊕ ud−1OL. It can be verified that I is a two-sided ideal.

Background on the following definitions can be found in [43].

Definition 28. The order ideal ordOK (X) of a finitely generated OK-module
X is defined as follows:

1. If X = 0, ordOK (X) = OK ;
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2. If X is not an OK-torsion module, ordOK (X) = 0;

3. If X is a nonzero OK-torsion module, then X has an OK-composition series,
whose composition factors are {OK/pi} , with pi ranging over some set of
maximal ideals of OK . Set ordOK (X) =

∏
i pi, where the number of factors

equals the number of composition factors of X.

Definition 29. Let M be an integral ideal of Λ. Define its norm by

NA/K (M) = ordOKΛ/M

Lemma 23 (24.6 of [43]). Let J be a prime ideal of Λ, and let J ∩ OK = p.
Set f = [Λ/J : OK/p]. Then NA/K(J ) = pf .

Lemma 24 (Theorem 24.13 of [43]). For any maximal integral ideal M ,
Nrd(M) = p for M lying above p, if OK/p is a finite field.

To prove the desired result we use a norm argument, considering the norm of
I, NA/K(I), defined in Definition 29 to be ordOK (Λ/I). What is ordOK (Λ/I)?
Since Λ/I is non-zero, ordOK (Λ/I) 6= OK . Furthermore, Λ/I has OK-torsion:
observe that (OK∩I)(x+I) ⊂ I(x+I) ∈ I, for all x ∈ Λ, so (OK∩I)(Λ/I) = 0
and Λ/I is an OK-torsion module. Thus ordOK (Λ/I) 6= 0. This leaves 3. Com-
position series can be hard to figure out explicitly, but in fact our calcula-
tion of ordOK (Λ/I) will reduce to figuring out ordOK (OL/J ), for some ideal
J of OL. This has an easy description when J is a product of prime ideals:
ordOK (OL/P) = pfL/K , where P ∩ OK = p and fL/K = [OL/P : OK/p], the
inertial degree. So ordOK (OL/P) = NL/K(P) (see [43], 4.33).

Proposition 2. Let pOL = (P1...Pg)
e, where eg = [L : K] and e > 1. Set

I = P1...Pg ⊕ uP1...Pg ⊕ ...⊕ ud−1P1...Pg. Then I is a maximal ideal in Λ.

Proof. We consider two related norms, the norm from A to K, denoted NA/K ,

and the reduced norm, denoted Nrd. They are related as follows: NA/K = Nd
rd,

where [L : K] = d. In our case the inertial degree fL/K = 1, so OL/Pj
∼=

OK/p ∼= Fp, and [OL/Pj : OK/p] = 1. Moreover, we have

Λ/I = (OL ⊕ uOL ⊕ ...⊕ ud−1OL)/(P1...Pg ⊕ uP1...Pg ⊕ ...⊕ ud−1P1...Pg)

∼= OL/P1...Pg ⊕ uOL/uP1...Pg ⊕ ...⊕ ud−1OL/ud−1P1...Pg

∼= (OL/P1...Pg)
d ∼= (OK/p)g·d,

so f = gd. Thus if I is prime, by Lemma 23 above, NA/K(I) = pgd. We have:

NA/K(I) = ordOK (Λ/I) = ordOK ((OL/P1...Pg)
d) = ordOK (OL/Pd

1...P
d
g)

= NL/K(Pd
1...P

d
g) = NL/K(Pd

1)...NL/K(Pd
g) = NL/K(P1)d...NL/K(Pg)

d

= ordOK (OL/P1)d...ordOK (OL/Pg)
d = pd...pd = pgd,

as required. So I has the same norm as a prime ideal.
We finally show that if I were not a maximal two-sided ideal (so prime), then
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we obtain a contradiction. Suppose we have I ( J ( Λ, where J is a maximal
two-sided ideal of Λ. Then |Λ/J | < |Λ/I|, and so [Λ/J : OK/p] < [Λ/I : OK/p],
or equivalently fJ < fI for f as defined previously. Then NA/K(I) = pfI (
pfJ = NA/K(J ); using the relation between the norms gives Nrd(I) ( Nrd(J ),
which are both ideals of OK - but Nrd(I) is maximal in OK , so Nrd(J ) cannot
be a proper ideal containing it. This is a contradiction, and the result follows.

Corollary 2. Let pi ⊂ OK be a prime ideal above prime q ∈ Z, such that
piOL = Pe

i , for some positive integer e ≤ [L : K] = d. Then I = Pi + uPi +
...+ ud−1Pi is the maximal ideal of Λ lying above pi.

Proof. We have three statements to prove: that I is a two-sided ideal, that it
is maximal, and that it lies above pi. The latter statement is clear: I ∩ OK =
Pi ∩ OK = pi. Moreover, maximality follows from Proposition 2.

To see that it is an ideal, first note that it is additively closed. In addition, for
any element of Gal(L/K), say θ, we have θ(Pi) = Pi, because the automorphism
permutes the primes above pi, and there is only one that can be permuted. We
now drop the subscript and write P. Let a ∈ I and b ∈ Λ. Then

1. a · b = (a1 + ua2 + ...+ ud−1ad−1) · (b1 + ub2 + ...+ ud−1bd−1)

=
∑d−1
j=0 u

jγαijk
∑d−1
i+k≡j mod d θ

k(ai)bk ⊂
∑d−1
j=0 u

jγαijk
∑d−1
i+k≡j mod d θ

k(P)bk

⊂
∑d−1
j=0 u

jγαijk
∑d−1
i+k≡j mod dP ⊂ P⊕ uP⊕ ...⊕ ud−1P = I,

and
2. b · a = (b1 + ub2 + ...+ ud−1bd−1) · (a1 + ua2 + ...+ ud−1ad−1)

=
∑d−1
j=0 u

jγαijk
∑d−1
i+k≡j mod d θ

k(bi)ak ⊂
∑d−1
j=0 u

jγαijk
∑d−1
i+k≡j mod d θ

k(bi)P

⊂
∑d−1
j=0 u

jγαijk
∑d−1
i+k≡j mod dP ⊂ P⊕ uP⊕ ...⊕ ud−1P = I,

where αijk =

{
1, i+ k 6= j

0, i+ k = j
. Thus I is closed by multiplication on both sides.

We can use our result on maximal ideals to say the following:

Lemma 25. Assume q ∈ Z is prime such that q is completely split in OK ,
fqL/Q = 1, and eqL/K > 1. Let I ⊂ Λ be an ideal not contained in the same

maximal ideal as qΛ, and let J = q · Λ = 〈q〉 · Λ, where q is a prime integer
and 〈q〉 =

∏r
i=1 qi is a decomposition into prime ideals in OK . Assume γ /∈ qi

for each i. Then, there exists an element t ∈ I ∩ OK such that t · I−1 ⊂ Λ is
coprime to J , and we can compute such a t efficiently given I and the prime
factorization of J .

Proof. For an ideal I denote by I its intersection with K, which is a non-

trivial ideal of OK . As usual, we obtain t ∈ I such that t · I−1 and J are
coprime as ideals of OK and t ∈ I\

⋃r
i=1 qi · I. Assume, for a contradiction, that

t ·I−1+J 6= Λ i.e. the ideals are not coprime. Then, there is some maximal ideal
M of Λ containing t·I−1 and J . Write qiOL = (P1...Pg)

e. Since q is has inertial
degree equal to 1 in OL and γ /∈ qi, by the theorem in the previous section,
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this ideal must be one of the form P1...Pg ⊕ uP1...Pg ⊕ ud−1P1...Pg since it
contains J . Then t·I−1 ⊂ P1...Pg⊕uP1...Pg⊕ud−1P1...Pg and consequentially
t ∈ (P1...Pg⊕uP1...Pg⊕ud−1P1...Pg)·I because I·I−1 = Λ in a maximal order.
Since t is central it follows that t ∈ ((P1...Pg⊕uP1...Pg⊕ud−1P1...Pg)·I)∩OK .
Thus we have t ∈ qi and t ∈ I, i.e. t ∈ qi ∩ I. Since I is not contained in any
of the maximal ideals above q, I lies above an integer m where gcd(q,m) = 1.
Bezout’s theorem tells us that there exist a, b ∈ Z such that aq + bm = 1. Thus
qi and I are coprime, and t ∈ qi ∩ I = qiI - which is a contradiction.

Note here we have had to impose an extra condition - that I does not share a
maximal ideal with q. This means that the relevant intersections with OK are
coprime ideals, and the proof goes through. This is not a particularly strong
restriction, as there are many such ideals I.

Lemma 26. Let Λ, γ, and q be given in Lemma 3. Let I,J be ideals of Λ as
above, with t ∈ I ∩ OK chosen as above such that t · I−1 and J are coprime as
ideals, and let P denote an arbitrary fractional ideal of Λ. Then, the function
χt : A → A defined as χt(x) = t · x induces a module isomorphism from P/J ·
P → I · P/I · J · P. Furthermore, in the case J = 〈q〉 for a prime integer q we
can efficiently compute the inverse.

Proof. The proof only relies on the ramification of q insofar as the above lemma
does, so the proof holds under the conditions of the previous lemma.

The above results mean that, subject to the weak condition in Lemma 25, the
reduction to search CLWE in the main body of the paper holds for primes q such
that q is split completely in OK , and has fqL/Q = 1, using an ideal I ∈ Λ that

doesn’t share a maximal ideal with the prime q. This removes the restrictions
on q, and we have traded q unramified in OL with arbitrary ideal I, for q having
fqL/Q = 1 with I containing any integer which is coprime to q. There has been a

tradeoff between the number of valid primes and the number of valid ideals.
The following is the first step in the reduction using ramified primes.

Reducing CLWE to CLWE modulo Pd
i As above, we use the extended

embeddings of K to A. Since any embedding of K can be extended to an em-
bedding of L, we use those extended embeddings to send A = (L/K, θ, γ) to
A′ = (L/K, θ, γ′), where γ′ is the image of γ under a chosen embedding. These
maps preserve the decomposition of Λ∨q by sending Pi to some Pj - we below
show that these embeddings permute the primes Pi modulo qΛ. We will abuse
notation and denote the action of α on the cosets Λ/qΛ also by α.

Lemma 27. Let α be an isomorphism from A → A′ as above. Fix a prime
q ∈ Z such that qOK = p1...pg. Let Pi be a prime ideal of Λ lying above the
prime ideal pi ⊂ OK . Then, considering α as acting on the cosets of Λ/qΛ,
α(Pi + qΛ) = Pj + qΛ, for some i 6= j.
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Proof. First observe that α permutes the primes of OK , since it was induced
by an element of Gal(K/Q). Thus α(pi) = pj , and so α(pi + qΛ) = pj + qΛ,
where we have used that α fixes Λq. Moreover, since pi ⊂ Pi, we have pj + qΛ =
α(pi + qΛ) ⊂ α(Pi + qΛ) = α(Pi) + qΛ. Since α fixes Λ/qΛ, we in fact have that
α(Pi)+qΛ ⊂ Λ/qΛ. Note that α(Pi) is a prime (and hence maximal) α(Λ) ideal.
Thus α(Pi) + α(qΛ) = α(Pi) + qΛ is a prime ideal of α(Λ)/α(qΛ) = α(Λ/qΛ) =
Λ/qΛ. So we find that α(Pi + qΛ) corresponds to a maximal ideal of Λ/qΛ lying
above pj ; thus α(Pi + qΛ) = Pj + qΛ.

Lemma 28 (Reduction from CLWE to Pdi -CLWE). There is a determin-
istic polynomial time reduction from CLWEq,Σα to Pdi -CLWEq,Σα .

Proof. Let Oi denote an oracle for the Pdi -CLWEq,Σ problem. Equation (4) de-
fines an isomorphism, so we can use the oracle Oi to solve the Pdj -CLWEq,Σ
problem for each j. Let αj/i be an extension of the automorphism of K that
maps qj to qi.
Given sample (a, b)← Πq,s,Σα , construct a sample of the form

(
αj/i(a), αj/i(b)

)
.

Since Λq and Λ∨q are fixed by each αj/i, the sample is a valid CLWE sample in

A′ = (L/K, θ, αj/i(γ)
)
. Feeding this sample into Oi outputs a value tj mod Pdi .

We show that α−1j/i (tj) = s mod Pdj . Since αj/i is an automorphism, each

(a, b) is mapped to CLWE sample
(
αj/i(a), αj/i(a · s/q + e) mod Λ∨

)
in the al-

gebra A′, and we can write αj/i(a) ·αj/i(s)/q+αj/i(e) mod Λ∨. As stated above,
our automorphisms fix our family of error distributions, and map the uniform
distribution to the uniform distribution, so this is a valid CLWE instance with
secret αj/i(s) ∈ αj/i(Λ∨q ) = Λ∨q and error distribution Σ′ ∈ Σα. So Oi outputs

t = αj/i(s) mod Pdi , which yields α−1j/i(t) = s mod Pdj , since the embeddings

permute the Pi, and thus the Pdi , as required.

CLWE Modulo Pi We now show that it suffices to solve the problem modulo
Pi, rather than modulo Pdi . Since s is not zero in Λ/qΛ, s is not in Pd1 ...Pdg , so

there exists a k : s 6∈ Pdk . We will first show that the corresponding problem
for RLWE can be solved; we will then show that the problem for CLWE can be
solved using the method for RLWE. First, we need some lemmas and definitions.

RLWE Let R = Z[x]/Φn(x), where Φn(x) is the nth cyclotomic polynomial.
Then R is the ring of integers of the nth cyclotomic field, denoted K. Let Rp =
R/pR, and R∨ = {x ∈ K : Tr(xR) ⊂ Z} be the dual lattice. An RLWE sample
has the form (a, b) = (a, (a ·s)/p+e mod R∨) ∈ Rp×T, where a← Rp uniformly
at random, s← R∨p , and e sampled according to some error distribution; finally,
T is the unit torus. Let pOK =

∏r
i=0 p

e
i , for e > 1. Let pi,j-RLWE be the problem

of finding s mod pji , given RLWE sample (a, b). We show that we can solve this
problem, given access to a pi,1-RLWE oracle. Note that knowing s mod pei is
sufficient to find s, by using automorphisms and the CRT.

Lemma 29. Given RLWE sample (a, b) and an oracle for pi,1-RLWE oracle,
we can solve pi,e-RLWE.



CLWE 55

Proof. Let (a, b) be an RLWE sample, and submit (a, b) to the oracle to obtain
an element x such that x ≡ s mod pi. Then x − s ∈ pi. We can write x − s =
α·p+β ·fi(ζn), where α, β ∈ OK , since OK = Z[ζn] for cyclotomic fields, and p =
(p, fi(ζn)), where Φn(x) =

∏
i=0 fj(x) mod p, and the fj are irreducible modulo

p. So x− s−βfi(ζn) = α · p ⊂ pOK , and s ≡ x−βfi(ζn) mod pOK . We proceed
to construct an element congruent to s modulo peOK , since peOK ⊂ peiOK .

Replace s by (x−s−βfi(ζn))/p. Then (a, b′) = (a, (a·( 1
p (x−s−βfi(ζn)))/p+

e′ mod R∨) is a valid RLWE sample. Submit it to the oracle to obtain y such

that y ≡ x−s−βfi(ζn)
p mod pi. As before, write this in terms of the generators

of p, and subtract the fi(ζn) term to obtain an element in pOK , resulting in

y−d ·fi(ζn)− x−s−βfi(ζn)
p = p · e for some d and e ∈ Ok. Replace x−s−βfi(ζn)

p by
y−d·fi(ζn)

p − x−s−βfi(ζn)
p2 . Continue in this manner until we have v−w·fi(ζn)

p − ...−
y−d·fi(ζn)

pe−1 − x−s−βfi(ζn)
pe = z ∈ OK . Rearrange for s = pez−pe−1(v−w ·fi(ζn))+

...+ p(y− d · fi(ζn)) + x− βfi(ζn). Clearly s ≡ pez − pe−1(v−w · fi(ζn)) + ...+
p(y − d · fi(ζn)) + x − βfi(ζn) ≡ x mod pi. Moreover by construction we have
found an element in the same coset modulo pe as s, namely pe−1(v−w ·fi(ζn))−
...− p(y − d · fi(ζn))− x+ βfi(ζn). Reducing modulo pei , we obtain an element
of OK congruent to s, which is a solution to pi,e-RLWE.

Solving Pi,d-CLWE

Lemma 30. Let q ∈ Z be prime such qOK =
∏

pi, piOL = Pd
i and qΛ =

Pd1 ...Pdg . Given CLWE sample (a, b) and an oracle for the CLWE modPi prob-

lem, we can solve the CLWE modPdi -problem.

Proof. Submit (a, b) to the oracle for x ∈ Λ∨q : x ≡ s mod Pi. By Proposition 2,

I = Pi +uPi + ...+ud−1Pi is the maximal ideal of Λ lying above pi. So we can
take Pi = Pi + uPi + ...+ ud−1Pi. Then x− s ∈ Pi, and hence xi − si ∈ Pi for
each i, where xi and si are the ith coefficient of x and s respectively.

The prime ideals of the ring of integers of an algebraic number field lying
above the prime q have the form Pi = (q, fi(α)), for some polynomial fi and
α ∈ OL. Thus, proceeding as in the RLWE case, we can express xi− si in terms
of q and fi(α), subtract the fi(α) term, and have an element divisible by q. We

replace the si with the resulting element,
xi−si−bi·fj(α)

q , for each i, to obtain a

new valid CLWE sample with new secret x′, and then query the oracle for a
value congruent to x′ modulo Pi. We can iterate the procedure as before, until
we have an element yi such that yi ≡ si mod Pd

i .
We can then obtain an element y such that yi − si is divisible by qd for each

i, and hence y − s is divisible by qd, so y − s ∈ Pdi .

This lemma means that if we can solve search CLWE modulo Pi, we can con-
struct a solution to search CLWE modulo Pdi ; we can then use the argument of
the preceding section (using the embeddings and the CRT) to find the secret s
and solve CLWE.

In the following section, in a series of steps mirroring the standard methods,
adapted largely from [25], we establish the hardness of the decision problem.
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Hybrid CLWE and Search to Decision

Definition 30. For s ∈ Λ∨q , distribution Σ over ⊕jujLR, and i ∈ [n], define a

sample from distribution Πi
q,s,Σ over Λq ×

(
⊕d−1j=0u

jLR
)
/Λ∨ by taking (a, b) ←

Πq,s,Σ and h ∈ Λ∨q which is uniformly random and independent mod Pj, for
j ≤ i and 0 mod Pj, for j > i, and outputting (a, b + h/q). If i = 0, define
Π0
q,s,Σ = Πq,s,Σ. Then for i ∈ [n] and a family of distributions Σα, the WD-

CLWEiq,Σα problem is to find j given access to Πj
q,s,Σ for j ∈ {i − 1, i} and

CLWE secret and error distribution s,Σ.

Lemma 31. For any i ∈ [n] there is a probabilistic polynomial-time reduction
from Pi-CLWEq,s,Σα,G to WD-CLWEiq,s,Σα .

Proof. We proceed as usual. There are |Λ/Pi| possible values of s mod Pi, which
is bounded above by |Λ/Pi| = qd, so we may efficiently enumerate over the
possible values. We want a transform which takes g ∈ Λ/Pi and maps Πq,s,Σ

to Πi−1
q,s,Σ if g = s mod Pi or to Πi

q,s,Σ otherwise. Take CLWE sample (a, b) ←
Πq,s,Σ , and output

(a′, b′) = (a+ v, b+ (h+ vg)/q) ∈ Λq ×

(
d−1⊕
i=0

uiLR

)
/Λ∨,

with v ∈ Λq uniformly random mod Pi and 0 mod Pj for j 6= i, and h ∈ Λ∨q
uniformly random and independent mod Pj for j < i and 0 on the other Pj .
Then a′ is uniformly distributed on Λq, so it remains to prove b′ is distributed
correctly. Fix a′, then

b′ = b+ (h+ vg)/q

= (as+ h+ vg)/q + e

= (a′s+ h+ v(g − s)) /q + e

where e is drawn from Σ. If g = s mod Pi, then v(g − s) = 0 mod Pi so the
distribution of (a′, b′) is Πi−1

q,s,Σ . Otherwise, v(g − s) is uniformly random mod
Pi (since Λ/Pi is a field) and 0 modulo the other Pj . Setting h′ = h+ v(g − s),
one can see that the distribution of (a′, b′) is Πi

q,s,Σ , as required.

Worst-Case to Average-Case Decision Reduction This stage of the re-
duction holds identically to that of the main body of the paper, replacing Ri
with Pi.

F Estimating the Multiplication Complexity

The overall flow to compute the multiplication is depicted in Fig. 5, which is
explained in detail in the sequel.
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𝑎, 𝑠 ∈ Λ𝑞

𝑎1, 𝑠1 ∈ 𝓡1

𝑎2, 𝑠2 ∈ 𝓡2

𝑎𝑛, 𝑠𝑛 ∈ 𝓡𝑛

[CLB17]

⋮

[CLB17]

[CLB17]

𝑎1 ⋅ 𝑠1 ∈ 𝓡1

𝑎2 ⋅ 𝑠2 ∈ 𝓡2

𝑎𝑛 ⋅ 𝑠𝑛 ∈ 𝓡𝑛

⋮ ⋮ 𝑎 ⋅ 𝑠 ∈ Λ𝑞
CRT-Like

Split
Input Skew 
Polynomials

Output Skew 
Polynomials

CRT-Like
Recombine

Fig. 5. Depiction of the multiplication algorithm for cyclic algebras. [CLB17] is referred
to as [14].

F.1 Algorithm for Multiplication in Cyclic Algebras

We recall some details necessary to understand our multiplication algorithm.
Recall that in the explicit constructions of Theorem 2 the base field K is cy-
clotomic and q is a prime integer chosen so that 〈q〉 splits completely in OK as
〈q〉 = q1 . . . qn, where n is the dimension of K as an extension of Q. Further-
more, the degree of L over K is a typically small d. Then, following the CRT-like
decomposition of Lemma 12 we write

Λq ∼= R1 × · · · × Rn

forRi =
⊕d−1

j=0 u
jOL/qiOL. We will show that eachRi is a skew polynomial ring

over Zq, and in particular a skew polynomial ring for which we can apply the

algorithms of [14] to compute multiplication independently in each Ri in Õ(dω)
operations in Zq, which output elements whose u coordinates are in the form∑
i `iki for ki ∈ OKq and {`i} some arbitrary normal basis for OLq over OKq. We

remark that the representation as a skew polynomial ring need not contradict the
fact that we viewed the rings Ri as matrix rings in Section 4.2, since computing
matrix multiplication can be reduced to the problem of computing multiplication
of skew polynomials (see [14]). Since ω ≤ 2.373, this leads to a complexity
of approximately Õ(Nd0.373) and it is possible to compute the multiplication
in each Ri in parallel. However, we must also compute the complexity of the
splitting isomorphism.
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F.2 The Rings Ri

In order to apply the algorithm of [14], we must confirm that each Ri satisfies
the following conditions:

– Ri is the quotient of a skew polynomial ring with center OK/qi by a poly-
nomial in the form Xd − γ.

– γ is a norm from OL/qiOL into OK/qi.9
– OL/qiOL is a field extension of OK/qi or an étale-OK/qi algebra.

The first of the conditions follows immediately from the definitions of a skew
polynomial ring and a cyclic algebra. The veracity of the latter conditions will
depend on how the prime ideal qi of OK splits in OL as qiOL. Since qi is prime
in K and L/K is Galois, we know

qiOL =

g∏
j=1

(qi,j)
e

for some prime ideals qi,j in OL and integers e, g satisfying efg = [L : K] = d,
where f denotes the inertial degree. Assuming that L is constructed as a subfield
of a cyclotomic field as in [20], it is a Galois number field and it follows that
each qi splits with the same e, f, and g. Furthermore, since they are coprime as
ideals of OK , their factorizations’ in L are disjoint. Thus, we are left to consider
three cases.

We first consider the case where each qiOL remains prime in OL. It fol-
lows that OL/qiOL is a finite field, and computing the norm of qiOL indicates
OL/qiOL ∼= Fqd . In this case it is easy to see that OL/qiOL is a finite field ex-
tension of OK/qi ∼= Fq and consequentially, because the norm map is surjective
over finite field extensions, that γ is a norm. Here it is clear that the algorithms
of [14] can be applied.

The second case we consider is g = d, e = f = 1. Now each qiOL splits
completely in OL into a product of prime ideals qi,1 . . . qi,d. By the CRT we
have

OL/qiOL ∼=
d⊗
j=1

OL/qi,j

where eachOL/qi,j ∼= Fq, and it follows thatOL/qiOL is an étale-OK/qi algebra.
We are left to show that γ is a norm, which we show via the stronger condition
that the norm map in this extension is surjective. By the CRT, OL/qiOL is
isomorphic to a direct product of d copies of Fq. Since the embeddings of L
cyclically permute the ideal factors of qi it follows that the relative norm of
an element (x1, . . . , xd) ∈

⊗d
j=0OL/qi,j is precisely

∏d
k=1 xk mod q. It is easy

to see that this norm is surjective (because any x ∈ Fq is the norm of e.g.

9 Due to the modulo reduction this does not contradict the assumption that γ is not
a global norm.
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(1, 1, . . . , x)) and now once again we can apply the multiplication algorithms
of [14].

Intermediate cases, where qi splits into a product of prime ideals with the
same norm such that e = 1, fg = d, can be handled using a straightforward
combination of these two methods.

The final case to consider is the ramified case, when e 6= 1. Now the factoriza-
tion of qiOL contains some power peii of a prime OL ideal pi. In this case, we are
not able to verify that the necessary conditions for the algorithms of [14] hold.
However, we observe that the ideal 〈q〉 ramifies in OL if and only if q divides
the discriminant of OL. Since only a finite number of primes divide this discrim-
inant, we restrict ourselves to considering the cases where q does not ramify.
We emphasize that in the main cases of interest, where K is the mth cyclotomic
field with m having small divisors and [L : K] is small, it is particularly unlikely
that the large modulus q typical in cryptography divides the discriminant of L.
Indeed, when we pick L as a subfield of K(ζq′) for some large prime integer q′

using the techniques of [20] as in Theorem 2, it is easy to quantify which primes
potentially ramify for a fixed choice of fields: either q′ or the primes smaller than
or equal to the divisors of m. As an easy example, the modulus q = 12289 does
not ramify in the example algebras given in the Section 3.4 achieving dimension
1024.

F.3 Complexity of the CRT Style Isomorphism

We have shown that we may apply the algorithms of [14] to compute the mul-
tiplication operation in each Ri in complexity Õ(dω). We are left to consider
the complexity of the isomorphism defined by Lemma 12 generating the rings
Ri. Essentially, this operation is a coordinatewise split of the u coordinates of
Λq =

⊕d−1
j=0 u

jOL, where each entry is split into its mod qiOL parts. That is,
the isomorphism maps

d−1∑
j=0

ujxj →
n⊗
i=1

d−1∑
j=0

uj(xj mod qiOL).

Splitting one element xi ∈ OK can be done in time O(n log n) using the CRT
algorithm of [27] when K is a cyclotomic field of dimension n. However, L is
a not a cyclotomic field, but instead a small degree d cyclic extension of a
cyclotomic. Furthermore, we are trying to split the elements of L modulo ideals
of K extended to those of L. We do not know of an existing general, efficient
way of doing this. The naive estimate for an optimal method would take time
O(nd log nd), where nd is the dimension of L, but we suspect something this
efficient is impossible. We have to perform d such splits, which would result in
a total complexity of O(N logN/d). Note that this compares relatively closely
with the Õ(Nd0.3) claimed for the multiplication step, and since these steps
are sequential rather than parallel which of them dominates the asymptotic
complexity would depend on the exact relationship between n and d, but the
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result is an operational complexity essentially equivalent to that of the ring
variant.

Of course, the discussion of the previous paragraph relies on our implausibly
low estimate of O(nd log nd) complexity of the CRT split and so we do not
claim such efficiency. Instead, we present techniques in the proceeding sections
to work around the problem of splitting the L part modulo the K ideals in the
factorization of q. Our methods are particularly efficient in the case where q
splits completely in L, but can be generalized to arbitrary splitting at only a
small cost.

F.4 Fast Cryptography When q Splits Completely in L

We consider an explicit method for implementing fast cryptography in the special
case where the ideal 〈q〉 splits completely in OL. By construction, 〈q〉 =

∏
i qi

in OK , so in this case we split 〈q〉 =
∏
i,j qi,j in OL, where the prime OK-ideals

have prime decomposition in OL denoted qiOL =
∏d
j=1 qi,j .

We recall some facts about the extension OLq of OKq. It is clear that the
extension is cyclic of degree d, with Galois group generated by θ. By the CRT,

OKq ∼=
∏
i

OK/qi ∼= Fqn

OLq ∼=
∏
i,j

OL/qi,j ∼= Fqnd

where operations on the finite field products are applied coordinatewise. We
represent the CRT decomposition of OLq as (Fqd)n, where each copy of Fqd cor-
responds to the extension

∏
j OL/qi,j of OK/qi. In the finite field representation

of
∏
j OL/qi,j , the elements of OK/qi embed as elements of Fqd with the same

entry in each coordinate, e.g. (x, x, . . . , x), corresponding to scalars over (Fq)d,
which can be seen from the following argument: for k ∈ OK , k = x mod qi
implies k − x ∈ qi. Then it follows that k − x ∈ qi,j and thus k = x mod qi,j
for each j. Furthermore there is a simple, explicit, description of the action of θ
in this representation: since θ cyclically shifts the ideals in the factorization of
qi, one can order each copy of Fqd so that the action of θ on (Fqd)n is a cyclical

shift of the coordinates of each of the n copies of Fqd concurrently. We exhibit
this with a trivial example: set d = 3, n = 2. Then the action of θ on (Fq3)2 is

θ(a1, a2, a3, b1, b2, b3) = (a3, a1, a2, b3, b1, b2).

A validOK/qi basis forOL/qiOL of size d is e1, . . . , ed, where ei = (0, . . . , 1, . . . 0)
denotes the ith element of the standard basis of dimension d. Furthermore, this
basis is orthonormal in the sense that ei · ej = ei for i = j and 0 otherwise and
cyclic10 in the sense that θ(ei) = ei+1 (e.g. normal), since the Galois group 〈θ〉
of L over K permutes the factors qi,j of qiOL for each i. Because the CRT splits

10 As long as we choose the ordering in the right way.
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OLq into a direct product within which operations are computed coordinatewise,
we can extend this to a basis of OLq over OKq in the finite field representation
by concatenating n copies of this basis together, denoting by eni the vector of
dimension nd (ei, ei, . . . , ei). This basis is still cyclic, with θ operating indepen-
dently on each of the n copies of Fqd and hence the n copies of ei. Concatenating
the bases in this way also preserves the orthonormal property.

Denote the above basis by `1, . . . , `d. Recall that the CRT-like decomposition
Lemma 12 splits each u coordinate, an element of OLq, into its mod qiOL parts.
However, we already know the mod qiOL parts of each `j by construction. So, if

we store elements of OLq as ` =
∑d
j=1 `jkj for kj ∈ OKq we can split ` into its

OL/qiOL components in time O(d ·n log n) as long as the kj elements are stored
in the polynomial representation of OKq. Consequentially, we can perform the
CRT style decomposition of an element in Λq whose u coordinates are stored in
this manner in time O(d2 · n log n) = O(N log(N/d2)).

Now we see a way to achieve fast multiplication in Λq. We are required to
perform the CRT in each of the d u coordinates, after which we can plug the
rings Ri into the fast multiplication algorithm of [14]. Since the CRT is an
isomorphism and we know the image of `i under the CRT, this reduces to d
copies of the CRT in OK , each with complexity O(dn log n), and therefore a
total multiplication complexity of O(N log(N/d2)) + Õ(Ndω−2). However, this
algorithm comes with complications associated with the chosen representation
of elements of OLq, which we handle in the next section.

Handling Elements in the Representation To use the above multiplication
algorithms in the scheme of Section 5.2 we need to be able to store the elements
compactly and sample the elements efficiently. Storing elements in this form
turns out to be straightforward: each OLq element requires storing d elements of
OKq. An element of Λq is d elements of OLq, so in total we store d2 elements of
OKq, corresponding to one element of dimension N = nd2, which is equivalent
to storing d elements of dimension nd.

We now discuss how to efficiently sample elements of Λq according to an
appropriate error distribution. Recall from the security reduction of Section 3
that the error distributions we recommend in practice are spherical or elliptical
Gaussians in the coordinates of the embedding σA. We sample using the following
result.

Theorem 11. Let L/K be a tower of number fields with [K : Q] = n and
[L : K] = d where K is a prime-power cyclotomic field. Let q ≥ 2 be a prime
modulus which splits completely in OL and let `1, . . . , `d be the cyclic basis of OLq
over OKq satisfying `i ·`j = `i if i = j and 0 otherwise. Then, the distribution on
OLq obtained by sampling k1, . . . , kd independently from a discrete Gaussian over
OKq in the polynomial representation and outputting ` =

∑
i `iki is a discrete

Gaussian over OLq in the `2 norm over LR.

Proof. Recall that in the case where K is a prime power cyclotomic the power
basis is a rotation and a scaling of the canonical basis (see e.g. [18]), so a discrete
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Gaussian in the polynomial representation corresponds to a discrete Gaussian
in the canonical basis as well. Order the canonical embedding of OL such that
elements of OK embed as vectors of n blocks of length d that are the same in
each block, e.g.

k1 = (k1,1, k1,1 . . . , k1,1, k1,2, . . . , k1,n),

where each entry ki,j of ki appears d times. Since the `i form a cyclic basis, in
each d-block the entries of `i+1 are just a cyclic shift of those of `i

11. For a fixed
choice of basis the distribution in each d-block of ` is independent, because the
ki,j are sampled independently from a spherical Gaussian. So we can consider
one d block of ` at a time, and write the d-block of `1 as a1, . . . , ad. Since
multiplication in the canonical embedding is coordinatewise and the `i form a
cyclic basis, the first block of ` can be written as

a1 a2 . . . ad
ad a1 . . . ad−1
...

...
. . .

...
a2 a3 . . . a1

 ·

k1,1
k2,1

...
kd,1

 .

Call the left matrix A and the right vector k. k is a Gaussian of parameter
r, so Ak has has a Gaussian distribution with covariance matrix r · AA† by
e.g. [24, Lemma 2.5], and if this is diagonal and constant on the lead diagonal
then we are done. Due to the structure of the canonical embedding and how we
picked our basis in the OL/〈q〉 representation, we have that ai = θi(a1), and
that for i 6= j θi(a1) · θj(a1) = 0 mod q. It follows that the off-diagonal entries
of AA† are 0 (since product being 0 is preserved under representations) and

the diagonal entries are
∑d
i=1 |ai|2, where | · | denotes the absolute value. Hence,

the first d-block of ` is a spherical Gaussian distribution, and since this analysis
holds for any block it follows that each block of ` is a spherical Gaussian. One
also needs to show that the Gaussian distribution has the same variance in each
block, but this follows from the fact that the K-embeddings permute the mod qi
values and fix the `2 norm of KR. Explicitly, by construction each K embedding
modulo 〈q〉 can be extended ‘identically’ onto OL mod 〈q〉 in a way that fixes
each `i, so they must have the same set of values in each block (this would not
be the case if we considered their norm in a global sense, and the restriction
modulo q is strictly necessary).

Note that the statement does not define the resulting parameter of the Gaussian
outputting `, but the proof allows one to compute this: say each ki was chosen
from a discrete Gaussian of parameter r. Then each element of ` has parameter√∑

i |ai|2 · r. Computing
√∑

i |ai|2 is a one time cost for a fixed choice of
`1, . . . , `d, so one can sample the required Gaussian over OLq of parameter r′ by

sampling from the discrete Gaussian over OKq of parameter r = r′/
√∑

i |ai|2.

11 Again assuming a sensible ordering.
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Finally, to sample elements of Λq we merely sample each u coordinate inde-
pendently according to the above technique. If we wanted to use this method
in the cryptosystem of Section 5.2 to attain efficient operations then we would
sample and store all elements using this representation over the cyclic basis
`1, . . . `d.

Unfortunately, we are unable to generalize this theorem to the case where qi
remains prime, or even intermediate cases. In this case, there exist cyclic bases of
OL/qiOL over OK/qi, but since OL/qiOL is a finite field and thus has no zero-
divisors the cyclic bases are not orthogonal. Consequentially, the matrix A does
not in general give a diagonal AA† and thus the distribution of Ak has several
potentially large covariance terms. If one were able to tolerate the covariance,
the method can be extended in this case. It is also possible that a cyclic basis
satisfying the condition that AA† is diagonal may exist for certain choices of
field, but we were not able to find such a family of fields. We note that this
question can be asked as a more generic question about finite fields: let F = Fqd
be a finite field with d > 1 and let θ denote the Frobenius automorphism of F .
Does there exist a cyclic basis b1, . . . , bd with bj = θj(b1) for F over Fq satisfying

d−1∑
i=0

θi(b1 · θj−k(b1)) = 0

for all j 6= k less than d? Here j and k correspond to j, kth entry of AA†. We
were unable to come up with a basis satisfying this condition, but neither can
we show that no such basis exists.

Example 6. We exhibit an example of the basis `1, `2 in the simplest setting,
that of a degree 2 extension of Q. Let L = Q(i), with ring of integers OL = Z[i],
and consider the ideal 〈5〉 of OL. 5 factorizes in OL as 5 = (2 + i)(2 − i), and
it is clear that 〈5〉 = 〈2 + i〉 · 〈2− i〉 is a decomposition into a product of prime
ideals.

Using the notation q1 := 〈2 + i〉, q2 := 〈2 − i〉, it is easy to check that
2 + i = −1 mod q2 and thus −(2 + i) = −2− i is a valid choice for `1. Similarly,
−(2−i) = −2+i is an appropriate choice for `2. Correspondingly, the distribution
obtained by sampling k1, k2 ← Dr, the discrete Gaussian of parameter r over Z5,
and outputting k1 ·(−2+i)+k2 ·(−2−i) is a discrete Gaussian over OL mod 〈5〉.
Furthermore, to multiply two elements k = k1`1 + k2`2 and g = g1`1 + g2`2
modulo 5 one outputs kg = (k1g1 mod 5) · `1 + (k2g2 mod 5) · `2, at a cost of
two operations in Z5, and performing the OL mod 5 CRT on each u coordinate
of an element of the resulting natural order Λ5 can be done by merely reading
off the d2 = 4 values of ki and no additional computation.

Furthermore, this is an example where the techniques of our next section
may be advantageous. We will generalize the multiplication and CRT technique
so that one is free to use any basis of OL over Z, for example the basis {1, i}. In
this basis it is particularly easy to sample a discrete Gaussian in the polynomial

representation of OL mod 〈5〉 ∼= Z5[x]
x2+1 , but the resulting multiplication opera-

tion and CRT decomposition is not coordinatewise in the basis and so a small
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amount of efficiency is lost at a gain in parameter of the Gaussian. Specifically,
to compute the CRT on an element k = k1 + k2 · i, one has to precompute12 the
values i = −2 mod q1, i = 2 mod q2 and output

(k1 − 2k2 mod q1, 2k2 mod q2),

which requires additional operations over Z5.

F.5 Generalizing to non-Split q and Arbitrary Bases

In order to construct the cyclic, orthonormal, basis of Theorem 11, the previous
section requires that q be completely split in both K and L. However, it is possi-
ble to drop the splitting condition in L and obtain fast multiplication algorithms
in the general case at only a small loss of efficiency. We demonstrate the tech-
nique in this section and then briefly describe cases where a general algorithm
may be superior to the one requiring that q splits by discussing alternatives to
Theorem 11.

Observe that, regardless of the prime ideal decomposition of each qiOL, under
the CRT decomposition the quotient ringOL/qiOL is a vector space of dimension
d over Fq ∼= OK/qi. Consequentially, an arbitrary OKq basis `1, . . . , `d of OLq
can be decomposed into n bases `j = (`1,j , . . . , `n,j) so that each collection
`i,1, . . . , `i,d of qiOL parts is a vector space basis of dimension d over OK/qi.
Indeed, in the split case we constructed each `i in this manner. Armed with this
knowledge, we adapt the multiplication algorithm as follows.

Choose an arbitrary integral OK-basis `1, . . . , `d of OL. As a precomputation
phase, compute and store the images `j mod qiOL for each i and j. The CRT-
like decomposition of Lemma 12 splits each of the u coordinates of an element
of Λq, an element of OLq, into its mod qiOL parts. Once again, we suggest

an algorithm where elements of OLq are stored in the form ` =
∑d
j=1 `jkj for

kj ∈ OKq, e.g. on elements stored as K-combinations of this basis. We split
` ∈ OLq into its OL/qi components in time O(d · n log n), since

d∑
j=1

`jkj mod qiOL =

d∑
j=1

(`j mod qiOL) · (kj mod qiOL),

where each kj mod qi can be computed in time O(n log n) by the K-CRT and
each `j mod qi mod OL was computed in the precomputation phase. Conse-
quentially, we can perform the CRT style decomposition of an element in Λq
whose u coordinates are all stored in this manner in time O(d2 · n log n), since
we must split d2 elements of OK . This decomposing complexity is the same as
in the previous case where q splits completely. Following this, each ring Ri can
be plugged in to the algorithm of [14] to compute the multiplication in time
Õ(Ndω−2). However, since the `i do not correspond to a standard orthonormal
basis we incur an extra cost when reversing this transformation. Namely, each of

12 Note that precomputing the image of 1 is trivial.
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the u coordinates of each ring Ri is output by the algorithm of [14] as an element
` ∈ OL mod qiOL expressed in an arbitrary normal basis. Before reversing the
decomposition we must allow for the complexity of expressing each element of the
output in the bases obtained by the images of `1, . . . , `d mod qiOL, as this basis
was not necessarily normal. Since OL mod qiOL is a vector space of dimension
d over Fq this can be done via a precomputed change of basis matrix over Fq in

time Õ(dω), and since there are n rings with d coordinates each the complexity
of computing this on every coordinate is Õ(ndω+1). The resulting multiplication
algorithm has total complexity O(N log(N/d2)) + Õ(Ndω−1). While this repre-
sents only a minor asymptotic loss, especially since we expect the first term to
dominate the complexity, it is likely in practice that the extra step required to
recover the basis representation would cause a tangible slowdown.

An unfortunate issue with this technique is that by replacing the orthonormal
basis with an arbitrary basis we have lost Theorem 11 and thus the efficient
method for sampling a discrete Gaussian in the representation ` =

∑
j `jkj .

However, this generalization allows for the use of an arbitrary basis `1, . . . , `d,
unlike in the split case in which we chose a specific basis. Since we require that
elements of Λq are input into the algorithm with u coordinates in the form∑
j `jkj this algorithm can be combined with the cryptosystem of Section 5.2

in the case where there is a basis g1, . . . , gd of OLq over OKq in which one can
compute the representation ` =

∑
j gjkj particularly efficiently. This is because

one can just sample ` from the usual Gaussian distribution over the polynomial
basis of OLq, compute its representation as ` =

∑
j gjkj , and then apply the

multiplication algorithm in this form. More generally, the flexible choice of basis
allows for both non-split q and for a user to choose their favourite OL basis
properties, such as a normal basis or a basis consisting of small elements. We
remark that it is likely possible to construct a pair of fields L/K that allow for
a basis `1, . . . , `d permitting a fast algorithm transforming from the polynomial
representation of OL to the representation

∑
i `iki with each ki in polynomial

representation, which would allow one to bypass the complications of sampling
Gaussian distributions by just sampling in OL directly.

F.6 Generalizing to Other Centers

In the exposition of the previous section we required that q splits completely
in the center K. This corresponds to the requirement in the ring and module
cases that q splits completely in the field K, which allows the use of the NTT
to compute multiplications over a direct product of finite fields. However, there
has been recent progress in loosening this requirement for the NTT and allowing
the modulus q to be 1 mod n rather than 1 mod m, where as usual K is the
mth cyclotomic field of degree n. For example, in the second round specification
of KYBER [4] q is set as 3329 and n = 256, yet they still support efficient NTT
based multiplication. In such cases, q is ‘well’ split but not completely split, and
the fast NTT operations use the method of [28], where q splits into some product
of prime ideals qi whose norms can be small powers of q.
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We observe that our methods can be partially generalized to this case in the
following manner. Say 〈q〉 =

∏
i qi is a decomposition into prime ideals in OK

and there exists an efficient algorithm for fast multiplication in OKq. We can
replace our condition that q splits completely in OL with the condition that
each ideal qi in the OK-factorization of q splits completely into a product of d
prime ideals qiOL =

∏d
j=1 qi,j in OL of the same norm. Then, we can replicate

the method of Appendix F.4 to find a cyclic, orthonormal basis e1, . . . , ed of
OL/qiOL over OK/qi and concatenate together the bases for each i to make
the cyclic, orthonormal, basis `1, . . . , `d of OLq over OKq. Since the basis is
orthonormal, if ` =

∑
i `iki and g =

∑
i `igi with each ki, gi ∈ OKq, then

` · g =

d∑
i=1

`i(gi · ki).

Since the basis is cyclic,

θ(`) =
∑
i

θ(`i)ki

=
∑
i

`iki−1

where we define k0 := kd.
Now we are able to use existing fast multiplication algorithms in OKq to

compute operations in OLq by expressing elements in this basis. Represent each

x =
∑d−1
i=0 u

ixi ∈ Λq by expressing each xi ∈ OLq in the `j basis. Then, to
multiply x and y in Λq one only has to compute multiplications in OKq, since
the operations required are just computing the non-commutative relation `u =
uθ(`), which merely permutes the `i using θ, and computing multiplication and
addition, which can be done coordinatewise in the orthonormal `i basis. Each
L multiplication requires d multiplications in K, and each u coordinate of Λ
requires d multiplications in L. Consequentially, naive multiplication in Λq takes
d3 instances of the efficient OKq-multiplication algorithm we have access to.
For specific K-multiplication algorithms it is likely that this process can be
streamlined; the intention of this section is merely to demonstrate that one
can build efficient Λq operations from more general efficient operations over the
center in the same manner that the techniques of Appendix F.4 used the CRT
method.
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