
Polar Sampler: A Novel Bernoulli Sampler Using
Polar Codes with Application to Integer

Gaussian Sampling

Jiabo Wang1,[0000−0001−5492−4119]♠ and Cong Ling2

1 Tsinghua University, Beijing 100084, China
wangjiabo@mail.tsinghua.edu.cn

2 Imperial College London, London SW7 2AZ, UK
c.ling@imperial.ac.uk
♠ corresponding author

Abstract. Cryptographic constructions based on hard lattice problems
have emerged as a front runner for the standardization of post quantum
public key cryptography. As the standardization process takes place, op-
timizing specific parts of proposed schemes, e.g., Bernoulli sampling and
integer Gaussian sampling, becomes a worthwhile endeavor. In this work,
we propose a novel Bernoulli sampler based on polar codes, dubbed “po-
lar sampler”. The polar sampler is information theoretically optimum
in the sense that the number of uniformly random bits it consumes ap-
proaches the entropy bound asymptotically. It also features quasi-linear
complexity and constant-time implementation. An integer Gaussian sam-
pler is developed using multilevel polar samplers. Our algorithm becomes
effective when sufficiently many samples are required at each query to the
sampler. Security analysis is given based on Kullback-Leibler divergence
and Rényi divergence. Experimental and asymptotic comparisons be-
tween our integer Gaussian sampler and state-of-the-art samplers verify
its efficiency in terms of entropy consumption, running time and mem-
ory cost. We envisage that the proposed Bernoulli sampler can find other
applications in cryptography in addition to Gaussian sampling.

Keywords: Bernoulli sampling · discrete Gaussian sampling · polar
codes · integer lattice · Kullback-Leibler divergence · Rényi divergence ·

constant-time.

1 Introduction

Lattice-based cryptography is one of the most promising candidates of cryptosys-
tems in the plausible post-quantum age. The security of lattice-based primitives
is guaranteed by the hardness of worst-case lattice problems, e.g. the Learning
With Errors (LWE) problem [34, 22] and Short Integer Solution (SIS) problem
[25, 24]. The discrete Gaussian distribution lies at the core of security proofs of
these primitives, and it is also one of the fundamental building blocks of practi-
cal lattice-based cryptographic applications, e.g. signature schemes, encryption

2 Jiabo Wang♠ and Cong Ling

and key exchanges. In general, the security level of these cryptographic appli-
cations is closely related to the statistical performance of the discrete Gaussian
sampling (DGS) algorithm. From an implementation standpoint, cryptographers
also take other qualities of a DGS into consideration including side-channel re-
sistance, computation and storage efficiency. In practice, the trade-off between
these performances is a bottleneck of this problem.

It has been widely assumed that for cryptographic applications with λ bits
of security the statistical distance (SD) between the ideal distribution and the
approximated one should be roughly 2−λ such that there is only minor loss in
security [12]. Some other measures such as Kullback-Leibler (KL) divergence
and Rényi divergence are proved to provide more efficient security analysis than
SD, as they can lower the requirement for precision and reduce the cost of the
algorithms in many practical cases [30–32, 5]. From a practical point of view, the
difficulty of DGS lies in the implementation of DGS in cryptographic primitives
with constrained resources. Besides the resilience against potential side-channel
attacks, designers looking for the optimal DGS solution to a specific application
must strike the balance of memory consumption and running time, precision and
efficiency.

There are already a variety of works addressing the application of DGS in
lattice-based primitives. Existing techniques include the binary sampling [11],
the cumulative distribution table (CDT) sampler [10], the Knuth-Yao sampler
[20], and the discrete Ziggurat sampler [23], etc. In [14], rejection sampling is
used to generate discrete Gaussian samples where one draws an element x from
a discrete domain uniformly at random and accepts it with probability propor-
tional to exp(−x2/2σ2) where σ is the standard deviation. However, calculating
the exponential function requires high-precision computing and sufficient trials
are needed before the sampler produces an output. In [11], a CDT is used as a
base sampler and the rejection sampling is done in a bitwise manner to produce
discrete Gaussian samples for BLISS. However, the CDT sampling itself takes
35 percent of the total running time of BLISS [19] and the precomputed table
for rejection sampling requires larger memory when a wider distribution is in
need.

In [18], Hülsing et al. replaced the discrete Gaussian distribution by a rounded
Gaussian distribution in Lyubashevsky’s signature scheme without trapdoors
and BLISS showing its effectiveness, security and efficiency. As the term sug-
gested, a rounded Gaussian distribution is derived by rounding continuous Gaus-
sian samples which can be efficiently realized by Box-Muller transform [7] in con-
stant time. A convolution method, first proposed in [28], can expand a discrete
Gaussian distribution with a small parameter to a wider one. Another sampling
design [26] exploits a base sampler with small parameters to efficiently generate
DGS with arbitrary and varying parameters in a convolutional manner. This
application-independent algorithm consists of an online and offline stage, both
of which can be carried out in constant time, proving a resilience against tim-
ing attack. A constant-time sampler was proposed in [39] and Rényi divergence
was used to improve the efficiency. In [35], arithmetic coding, a classical data

Title Suppressed Due to Excessive Length 3

compression technique, was adopted as a sampler in BLISS giving a reduced
signature size.

When reviewing the literature of DGS, we find that Bernoulli sampling is
of vital importance to randomness generation. It is involved in many crypto-
graphic designs and a typical example is BLISS [11] where Bernoulli sampling is
employed to build a discrete Gaussian sampler. To make BLISS safe under side
channel attacks, especially the timing-based one, improved Bernoulli samplers
were devised in [8, 29, 13, 39]. To improve the efficiency of Bernoulli sampling
with biases in exponential or cosh form, as is the case in BLISS, polynomial
approximation with sufficient precision were proposed in [39, 6]. Our research
begins with Bernoulli sampling and we get our inspiration from polar source
coding. The proposed Bernoulli sampler can be used for generating arbitrary
discrete distribution and this paper is concerned about its application to Gaus-
sian sampling.

Contribution In this work, we propose a novel Bernoulli sampler using polar
codes and apply it to DGS over the integers. Polar codes are the first class of ef-
ficiently encodable and decodable codes which provably achieve channel capacity
of symmetric channels [4]. It can also achieve Shannon’s data compression rate
[3]. The power of polar codes stems from the polarization phenomenon: under
Arıkan’s polar transform, information measures of synthesized sources (or chan-
nels) converge to either 0 or 1 when coding becomes trivial. Moreover, the state-
of-the-art decoding runs with O(N log logN) complexity where N denotes the
block length of a polar code [38]. Given their attractive performance, polar codes
have found a wide range of applications in information theory and communica-
tion systems. In particular, they have been standardized for the fifth-generation
(5G) wireless communication networks.

This work tackles the sampling problem from a source coding perspective,
namely, sampling can be considered the inverse problem of source coding. In
source coding or data compression, one typically encodes a block of symbols of a
certain distribution into some bits which become uniformly random as the block
length tends to infinity [9]. Since a source code is invertible, inverting this pro-
cess would produce samples from the desired distribution. Polar sampling is well
suited for applications where a large number of independent discrete Gaussian
samples are required (e.g. fully homomorphic encryption (FHE), digital signa-
tures) as the averaged randomness consumption per sample decreases asymp-
totically to the optimum thanks to the polarization effect. Note that the polar
sampler is not restricted to sampling from the discrete Gaussian distribution,
but can be extended to other distributions of interest in cryptography.

The principal contributions of this paper are summarized as follows:

– A novel approach to sample from a Bernoulli distribution as well as an integer
Gaussian sampler using multilevel polar samplers are developed. Using a
binary partition tree, we recursively partition Z into 2 cosets, 4 cosets, and
so on. The number of partitions is only logarithmic in s. Each partition
gives rise to a binary source, which is produced by one polar sampler. The

4 Jiabo Wang♠ and Cong Ling

advantage of this multilevel sampling approach is that only Bernoulli samples
are needed, which allows simpler implementation than sampling over the
whole integer domain.

– Analysis of approximation errors. Although multilevel polar samplers would
produce the desired distribution DZN ,c,s, it is not exactly so. This is because
the polar sampler converts N i.i.d. Bernoullis into N polarized and unpolar-
ized Bernoullis. We approximate the polarized ones using either unbiased or
determinisitic Bernoullis which will only yield an approximate version of the
desired distribution. We derive upper bounds on the closeness between the
target discrete Gaussian and its approximation measured by KL divergence.

– Security analysis. To achieve a certain security level in a standard crypto-
graphic scheme with oracle access to a discrete Gaussian distribution, the
principle of setting the parameters of our polar sampler is also discussed
based on KL divergence. In cryptographic applications where the number
of queries q to the Gaussian sampler is limited (e.g., q ≤ 264 in the NIST
specifications of signatures), using Rényi divergence can yield considerable
savings according to previous work of [32, 5]. We also apply Rényi divergence
to improve the parameter selection of polar sampler.

The proposed multilevel polar sampler scheme complements and distinguishes
from existing discrete Gaussian samplers in the literature. In addition to offering
a different approach, it exhibits several salient features:

– Information theoretic optimality. Asymptotically, the multilevel polar sam-
pler achieves the entropy bound of the discrete Gaussian distribution. This
implies that it requires minimum resources of random bits to produce the
desired distribution.

– Quasi-linear complexity. The proposed Gaussian sampling approach enjoys
low complexity. The design of a polar sampler can be done at the offline stage,
that is, given a target distribution, it is done once and for all. The online
stage of a polar sampler computes certain a posteriori probabilities which
can be implemented in O(N logN) complexity 3. We also give experimental
and asymptotic comparison between our DGS approach and other existing
samplers including Knuth-Yao sampling, binary sampling and CDT sam-
pling. The prominent advantage of multilevel polar sampler is the entropy
consumption which indicates the cost of randomness. The overall running
time depends on both SC decoding(computing LRs) and Bernoulli sam-
pling. Compared with the binary sampling [11], polar sampler has higher
computational complexity but it asymptotically and effectively reduces the
entropy consumption. We also illustrate in experiments that the multilevel
polar sampler is faster than Knuth-Yao sampling.

– Constant-time implementation. The proposed discrete Gaussian sampler is
constant-time in the sense that the running time is independent of the out-
put values. This makes our sampler attractive when dealing with timing
side-channel attacks. From a perspective of coding theory, polar sampler is

3 It can be upgraded to O(N log logN) using the state-of-the-art SC decoding [38].

Title Suppressed Due to Excessive Length 5

constant-time because polar codes have a fixed code length which compares
favorably with other source coding techniques (e.g. Huffman coding).

Of course, the proposed sampler can be combined with existing “expander”
techniques such as convolution if needed. In this work, we focus on the theoretic
design and analysis of polar samplers, whereas various optimization issues (e.g.,
concrete computational/storage costs etc.) are left to future work. Nevertheless,
we have found it in experiments that even a prototype implementation signifi-
cantly outperforms the Knuth-Yao sampler in speed in benchmark experiments.

Roadmap The roadmap of this paper is given as follows. Section 2 introduces
the proposed Bernoulli sampler, i.e., polar sampler, and elucidates its relation
to polar source coding. Section 3 presents how we devise an integer Gaussian
sampler using multiple polar samplers. Section 4 analyses the approximation er-
ror of our integer Gaussian sampler based on KL divergence. In Section 5, the
security, precision and parameter selection are discussed based on KL and Rényi
divergence. Section 6 gives a comprehensive analysis of the constant-time fea-
ture and compares our integer Gaussian sampler with state-of-the-art samplers
regarding the complexity. Section 7 concludes this paper.

2 Bernoulli Sampling Using Polar Codes

2.1 Notation

Given a vector x1:N and a set A ⊂ {1, · · · , N}, we denote by xA the subvec-
tor of x1:N indexed by A and denote by x(i) the i-th coordinate of x1:N . A
capital letter is used to denote a variable while its lowercase represents a re-
alization. Denote by X ∼ P a distribution P of X over a countable set X .
Then the entropy of X is defined as HP (X) = −

∑
x∈X p(x) log p(x). We write

H(X) = HP (X) for brevity if the distribution is clear. Suppose X and Y have a
joint distribution P (X,Y). The conditional entropy of X given Y is defined as

H(X|Y) =
∑
x∈X ,y∈Y p(x, y) log p(y)

p(x,y) . The logarithm to base 2 is denoted by

log while the natural logarithm is denoted by ln.

2.2 Source Polarization

The key idea of polar source coding can be found in [3] where a polar code was
proposed to achieve Shannon’s source coding bound. Let (X1:N , Y 1:N) denotes
N i.i.d. copies of a memoryless source (X,Y) of joint distribution PX,Y , where X
takes values over X = {0, 1} while Y takes values over a countable set Y. The two
random source X and Y are correlated, and Y is called the side-information. In
source coding, the encoder compresses a sequence X1:N into a shorter codeword
such that the decoder can yield an estimation X̂1:N of X1:N given the shorter
codeword and side information Y 1:N 4.

4 Polar source coding still holds in the absence of side information.

6 Jiabo Wang♠ and Cong Ling

Polar codes are proved to achieve Shannon’s source coding bound asymp-
totically. The source polarization transform from X1:N to U1:N is performed by
applying an entropy-preserving circuit to X1:N , i.e.,

U1:N = X1:NGN , GN =

[
1 0
1 1

]⊗n
BN ,

where ⊗n denotes the n-th Kronecker power, and BN is a bit-reversal permuta-
tion [4] of the input vector. Fig. 1 illustrates the source polarization transform
of X1:2 and X1:4 where ⊕ denotes mod-2 sum. This transform preserves the
entropy in the sense that

H(U1:2 | Y 1:2) = 2H(X | Y), H(U1:4 | Y 1:4) = 4H(X | Y).

Meanwhile, it also polarizes the entropy in the sense that

H(U (1) | Y 1:4) ≥ H(S(1) | Y 1:2) = H(S(2) | Y 3:4) ≥ H(U (2) | Y 1:4, U (1)),

and

H(U (3) | Y 1:4, U1:2) ≥H(R(1) | Y 1:2, S(1))

=H(R(2) | Y 3:4, S(2)) ≥ H(U (4) | Y 1:4, U1:3).

(a) (b)

Fig. 1. The source polarization transform [4]: (a) A two-by-two transform (b) A four-
by-four transform.

By applying the construction in Fig. 1 recursively, we derive a bijection
U1:N = X1:NGN inducing a combined source pair (U1:N , Y 1:N) and a tran-
sition WN : U1:N → Y 1:N . This combined source pair is then split into N
synthesized source pairs (U (i), Y 1:N × U1:i−1) giving rise to N sub-transitions

W
(i)
N : U (i) → Y 1:N × X1:i−1. A polarization phenomenon happened to sub-

source pairs is observed and stated as follows.

Theorem 1 (Source Polarization [3]). Let (X,Y) be a source as above. For
any N = 2n,n ≥ 1, let U1:N = X1:NGN . Then, for any 0 < β < 0.5, as N →∞,∣∣∣{i ∈ [1, N] : H(U (i) | Y 1:N , U1:i−1) ∈ (1− 2−N

β

, 1]
}∣∣∣

N
→ H(X | Y) (1)∣∣∣{i ∈ [1, N] : H(U (i) | Y 1:N , U1:i−1) ∈ [0, 2−N

β

)
}∣∣∣

N
→ 1−H(X | Y). (2)

Title Suppressed Due to Excessive Length 7

Note that in the absence of side information Y , the above theorem still holds by
considering Y independent of X.

Definition 1 (Bhattacharyya Parameter [15]). Let (X,Y) ∈ X × Y be a
pair of random variables where X = {0, 1} = GF(2) and Y is an arbitrary finite
set. Let X and Y follow the joint distribution PXY (x, y). If X is the source to
be compressed and Y is the side information, the Bhattacharyya parameter is
defined as

Z(X|Y) ≡ 2
∑
y

PY (y)
√
PX|Y (0|y)PX|Y (1|y) (3)

= 2
∑
y

√
PX,Y (0, y)PX,Y (1, y).

Proposition 1 ([3], Proposition 2).

(Z(X|Y))2 ≤ H(X|Y) (4)

H(X|Y) ≤ log(1 + Z(X|Y)). (5)

It is implied by Proposition 1 that for a source (X,Y), the parameters H(U (i) |
Y 1:N , U1:i−1) and Z(U (i) | Y 1:N , U1:i−1) polarize simultaneously in the sense
that H(U (i) | Y 1:N , U1:i−1) approaches 0 (resp. 1) as Z(U (i) | Y 1:N , U1:i−1)
approaches 0 (resp. 1).

For β ∈ (0, 1/2) and α = 2−N
β

, the indexes of U1:N can be divided into a
low-entropy set

LX|Y =
{
i ∈ [N] : Z(U (i) | Y 1:N , U1:i−1) ∈ [0, α)

}
(6)

and its complement LcX|Y . Again, in the absence of side information Y , the two
sets are defined in the same way by considering Y independent of X and U .

This gives rise to the encoding and decoding scheme described in [3]. More
specifically, for a realization of (X1:N , Y 1:N) = (x1:N , y1:N), the encoder com-
putes u1:N = x1:NGN and only shares uLc

X|Y
with the decoder. The compression

rate is defined as R = |LcX|Y |/N . The decoder can obtain an estimate û1:N of

u1:N in a successive manner as

û(i) =


u(i), if i ∈ LcX|Y
0, if i ∈ LX|Y and L

(i)
N (y1:N , û1:i−1) ≥ 1

1, if i ∈ LX|Y and L
(i)
N (y1:N , û1:i−1) < 1,

(7)

where L
(i)
N (y1:N , û1:i−1) is called the likelihood ratio (LR) defined by

L
(i)
N (y1:N , û1:i−1) =

P (U (i) = 0|Y 1:N = y1:N , U1:i−1 = û1:i−1)

P (U (i) = 1|Y 1:N = y1:N , U1:i−1 = û1:i−1)
. (8)

8 Jiabo Wang♠ and Cong Ling

Theorem 2 (An upper bound on error probability [3]). For any fixed
R > H(X|Y) and β < 0.5, the probability of error for the above polar source

coding method is bounded as Pe = Pr(Û1:N 6= U1:N) = O(2−N
β

).

It implies that any compression rate R > H(X|Y) is achievable with a vanishing
block error probability for polar source coding of sufficiently large N . As N
goes to infinity, the polarization process removes the randomness of the low-
entropy set almost surely while the other set becomes random. Additionally, the
complexity of polar encoding and decoding are both O(N logN).

2.3 From Source Coding to Bernoulli Sampling

Given the notion of memoryless source (X,Y) ∼ PX,Y and polar source coding,
we now consider the sampling problem, i.e., to sample from a Bernoulli distribu-
tion P (X) given (or without) side information Y . We propose a novel Bernoulli
sampler called PolarSampler(·) in Algorithm 1. The interfaces, key operations
and subroutines are described as follows.

input : N = 2n,y1:N ,HX|Y , LX|Y (Or N = 2n, 11:N ,HX ,LX without Y .)
output: x1:N

1 Define global arrays:LRReg [N][n+ 1], UReg [N][n+ 1];

2 LRReg [:][0]=(1− c[y1:N])/c[y1:N]; // Or LRReg

[:][0]=(1− c[11:N])/c[11:N] without Y
3 for i← 1 to N do
4 LRReg ← CalLR(n,i);
5 if index i ∈ HX|Y then
6 UReg[i][n]←randomBin(); // formula (10).

7 end
8 else if index i ∈ LX|Y then
9 UReg[i][n] = LRReg[i][n] < 1; // formula (10).

10 end
11 else index i ∈ Hc

X|Y \LX|Y
12 UReg[i][n] =Uniform() < 1/(1 + LRReg[i][n]); // Uniform()

produces values in (0,1] uniformly at random; formula

(11).

13 end

14 UReg ← CalBit(n,i); // UReg[:][0] = U1:NGN

15 end

16 return x1:N = UReg[:][0]

Algorithm 1: PolarSampler(·).

Interfaces PolarSampler(·) draws N samples x1:N from the target distribution
P (X) given N samples y1:N of the side information Y ∈ Y := {1, 2, · · · , |Y|}. It

Title Suppressed Due to Excessive Length 9

has access to a precomputed table c = [c1, · · · , c|Y|] where each element indicates
a Bernoulli bias cy = P (X = 1|Y = y) and y is the index of cy in c. The bias
vector c[y1:N] is defined as [cy(1) , · · · , cy(N)] whose elements take values in c

indexed by side information vector y1:N = [y(1), · · · , y(N)].
In addition to the low-entropy set LX|Y as defined in formula (6), we further

define a high-entropy set5

HX|Y =
{
i ∈ [N] : Z(U (i) | Y 1:N , U1:i−1) ∈ (1− α, 1]

}
, (9)

where α = 2−N
β

. In order to define the two sets HX|Y and LX|Y , one needs

to calculate the Bhattacharyya parameter Z(U (i)|Y 1:N , U1:i−1) efficiently. How-
ever, as a source pair (X,Y) turns into a synthesized source pair (U (i), Y 1:N ×
U1:i−1) by polarization transform, the alphabet size of the side information in-
creases exponentially with N . Calculating Z(U (i)|Y 1:N , U1:i−1) according to how
we define it in Definition 1 becomes intractable. Some efficient algorithms to
calculate the Bhattacharyya parameters were proposed in [37]6. In addition,
preparing the bias table c and calculating Z(U (i)|Y 1:N , U1:i−1) are done offline.
We will refer to the offline stage as the construction stage of PolarSampler(·) in
the sequel.

Note that when there is no side information Y , the precomputed table c only
consists of one bias c1 = P (X = 1). The bias vector will be c[11:N] = [c1, · · · , c1]
of length N . The high- and low-entropy sets HX and LX are defined in the same
manner by considering Y independent of X.

Key Operations According to polar source coding, the U (i) for i ∈ HX|Y with
very high entropy is approximately uniformly distributed and is approximately
independent of both U1:i−1 and Y 1:N , while the U (i) for i ∈ LX|Y with very low

entropy is almost deterministic. Those U (i) for i ∈ HcX|Y \LX|Y (i.e., Z(U (i) |
Y 1:N , U1:i−1) ∈ [α, 1−α]) are unpolarized. As N goes to infinity, the fraction of
unpolarized indexes vanishes and the fraction of high-entropy indexes approaches
the entropy H(X|Y) of X given Y according to Theorem 1.

Since the polarization transform GN is invertible with G−1
N = GN , it is

expected to produce an approximation QX1:N of PX1:N by applying the above
transform to U1:N , i.e. X1:N = U1:NGN . However, the unpolarized set may not
be negligible for finite length N , and should be handled with care. More precisely,
those U (i) for i ∈ HcX|Y \LX|Y are neither uniform nor deterministic; assigning
values inaccurately will cause non-negligible distortion of the target distribution.
To minimize the distortion, U (i) should obey the following distribution:

U (i) =

{
{0, 1} ∼ Bernoulli(0.5), if i ∈ HX|Y
arg maxu PU(i)|Y 1:N ,U1:i−1(u|y1:N , u1:i−1), if i ∈ LX|Y

(10)

5 In [3], Lc
X|Y is called the high-entropy set which is larger than HX|Y in (9); more

details will be given in Fig. 2.
6 Matlab codes available in the folder .../PolarFastSCL/HowToConstructPolarCode

at https://github.com/YuYongRun/PolarCodeDecodersInMatlab.git.

10 Jiabo Wang♠ and Cong Ling

and

U (i) =

{
0 w.p. PU(i)|Y 1:N ,U1:i−1(0|y1:N , u1:i−1)

1 w.p. PU(i)|Y 1:N ,U1:i−1(1|y1:N , u1:i−1)
if i ∈ HcX|Y \LX|Y . (11)

Fig. 2 shows the difference between source coding and sampling: although the
unpolarized set belongs to the compressed codeword in source coding, its bits
should be randomized as in (11) in sampling.

While sampling according to formula (10) is obviously trivial and straight-
forward, the bottleneck of entropy consumption is determined by sampling the
unpolarized set in formula (11). The following lemma is adpated from [27, Lemma
1] which gives the fraction of unpolarized set for finite n = logN .

Lemma 1 (Fraction of unpolarized set [27]). Let µ (3.579 ≤ µ ≤ 4.714)
be a constant called the upper bound on the scaling exponent which is solely
determined by the conditional probability PX|Y . For a constant v > 1 and n =
logN ≥ 1, the following relation holds:∣∣{i ∈ [1, N] : Z(U (i) | Y 1:N , U1:i−1) ∈ [2−vn, 1− 2−vn]

}∣∣
N

< c2−n/µ,

where the constant c depends solely on v and it does not depend on n or PX|Y .

(a)

(b)

Fig. 2. Polar source coding vs. polar sampling: (a) Subsets of indexes for polar source
coding (b) Subsets of indexes for polar sampling. The fraction of Lc

X|Y \HX|Y vanishes
as N goes to infinity.

Corollary 1 (Asymptotic property of polarization). Let X ∼ P (X) be the
target Bernoulli distribution with side information Y . As N → ∞, the fraction
of HX|Y goes to H(X|Y), the fraction of LX|Y goes to 1 − H(X|Y) and the

fraction of LcX|Y \HX|Y scales as N−
1
µ for 3.579 ≤ µ ≤ 4.714.

In the absence of side information Y , the above property also holds by sub-
stituting X for X|Y .

Title Suppressed Due to Excessive Length 11

Proof. Recall it from Proposition 1 that Z(U (i) | Y 1:N , U1:i−1) and H(U (i) |
Y 1:N , U1:i−1) polarize simultaneously. Therefore Theorem 1 can be restated as
follows. For any 0 < β < 0.5, as N →∞,∣∣∣HX|Y :=

{
i ∈ [1, N] : Z(U (i) | Y 1:N , U1:i−1) ∈ (1− 2−N

β

, 1]
}∣∣∣

N
→ H(X | Y)∣∣∣LX|Y :=

{
i ∈ [1, N] : Z(U (i) | Y 1:N , U1:i−1) ∈ [0, 2−N

β

)
}∣∣∣

N
→ 1−H(X | Y).

Given a threshold 2−N
β

, we can find a v such that N−v = 2−N
β

. Lemma
1 implies that the Bhattacharyya parameter Z(U (i) | Y 1:N , U1:i−1) falls on the
interval [N−v, 1−N−v] with a probability smaller than cN−1/µ where 3.579 ≤
µ ≤ 4.714 and c is determined by v and P (X|Y). Therefore, the fraction of
unpolarized set LcX|Y \HX|Y scales as N−1/µ. The above conclusions still hold in
the absence of side information Y by considering X independent of Y . Q.E.D.

Subroutines To carry out the operations in formula (10) and (11), one also
needs to calculate PU(i)|Y 1:N ,U1:i−1 . Recall that the definition of likelihood ratio
is

L
(i)
N (yN1 , u

1:i−1) =
PU(i)|Y 1:N ,U1:i−1(0|y1:N , u1:i−1)

PU(i)|Y 1:N ,U1:i−1(1|y1:N , u1:i−1)
. (12)

Since these likelihood ratios can be computed with quasi-linear complexity
O(N logN) by SC decoding proposed in [4], the posterior probability PU(i)|Y 1:N ,U1:i−1

in (10) and (11) can be equivalently computed. When there is no side informa-
tion Y , we can compute PU(i)|U1:i−1 in the same manner as above by considering
Y independent of X.

In PolarSampler(·), we first define a two-dimensional likelihood ratio array
LRReg[N][n + 1] and a two-dimensional bit array UReg[N][n + 1] indexed by
integers 1 ≤ i ≤ N and 0 ≤ m ≤ n. We also define an array of N × (n+ 1) nodes
connected by multiple 2-by-2 butterfly circuits “ ./” as in Fig. 3 for N = 8. Each
node takes the responsibility to update a unique element of LRReg[N][n+1] and
a unique element of UReg[N][n+ 1] of the same index. We define two properties
of each layer of the array, i.e., phase and branch denoted by integers φ and ψ,
respectively. In Fig. 3, we distinguish different phases at each layer by different
colors. At layer m, the branch and phase satisfy 1 ≤ φ ≤ 2m and 0 ≤ ψ < 2n−m.
Note that for any layer m, each index 1 ≤ i ≤ 2n has a unique representation as

i = 〈φ, ψ〉m = φ+ 2m · ψ.

And for a generic array A we abbreviate A[〈φ, ψ〉m][m] as A[〈φ, ψ〉][m]. To ease

the notations, we also use the notation of likelihood ratio L
(φ)
2m to denote the

node by which it is calculated. In Line 2 of PolarSampler(·), the raw likelihood

ratios L
(1)
1 = P (X = 0|y)/P (X = 1|y) are stored in LRReg[:][0] given side

12 Jiabo Wang♠ and Cong Ling

information samples y1:N . Other elements of LRReg[i][m] = LRReg[〈φ, ψ〉][m]
and UReg[i][m] = UReg[〈φ, ψ〉][m] for m > 1 will be uniquely calculated by

node L
(φ)
2m of phase φ and branch ψ at layer m. After PolarSampler(·) finishes its

work, the likelihood ratios in formula (12) are finally stored in the n-th column
LRReg[:][n] of LRReg and the bit vector U1:N is finally stored in UReg[:][n].

The subroutines CalLR(·) and CalBit(·) are employed to recursively calcu-
late and update the likelihood ratio array LRReg[N][n + 1] and the bit array
UReg[N][n+1]. This process is exactly what SC decoding does as proposed in
[4, Section VIII] and modularized in [36, Section II]. As a high level description,

input : m,φ
output: updated LRReg

1 if m = 0 then return;
2 set κ = dφ/2e;
3 if φ mod 2 = 1 then CalLR (m− 1, κ);
4 for ψ = 0, · · · , 2n−m − 1 do

5 if φ mod 2 = 1 then LRReg [〈φ, ψ〉][m]
equation(13)←−−−−−−−−

(LRReg[〈κ, 2ψ〉][m− 1], LRReg[〈κ, 2ψ + 1〉][m− 1]);

6 else temp=UReg [〈φ− 1, ψ〉][m]; LRReg [〈φ, ψ〉][m]
equation(14)←−−−−−−−−

(LRReg[〈κ, 2ψ〉][m− 1], LRReg[〈κ, 2ψ + 1〉][m− 1]);

7 end

Algorithm 2: The CalLR(m,φ) function.

input : m,φ
output: updated UReg

1 if φ mod 2 = 1 then return;
2 set κ = φ/2;
3 for ψ = 0, · · · , 2n−m − 1 do
4 UReg [〈κ, 2ψ〉][m− 1]← UReg[〈φ− 1, ψ〉][m]⊕ UReg[〈φ, ψ〉][m];
5 UReg [〈κ, 2ψ + 1〉][m− 1]← UReg[〈φ, ψ〉][m];

6 end
7 if κ mod 2 = 0 then CalBit (m− 1, κ) ;

Algorithm 3: The CalBit(m,φ) function.

CalLR(·) recursively assembles two likelihood ratios of the same phase but dif-
ferent branches at layer m − 1 (two nodes on RHS of “ ./”) and derive two new
likelihood ratios of different phases but the same branch at layer m (two nodes

Title Suppressed Due to Excessive Length 13

on LHS of “ ./”) according to formula (13) and (14) as7

LRReg[〈2κ−1, ψ〉][m] =
LRReg[〈κ, 2ψ〉][m− 1] · LRReg[〈κ, 2ψ + 1〉][m− 1] + 1

LRReg[〈κ, 2ψ〉][m− 1] + LRReg[〈κ, 2ψ + 1〉][m− 1]
(13)

LRReg[〈2κ, ψ〉][m] = [LRReg[〈κ, 2ψ〉][m− 1]]
1−2·temp ·LRReg[〈κ, 2ψ+1〉][m−1],

(14)
where temp = UReg[〈2κ − 1, ψ〉][m]. CalBit(·) works in the other way around
as in Line 4 and 5 of Algorithm 3 which gives two bits UReg[〈κ, 2ψ〉][m − 1]
and UReg[〈κ, 2ψ + 1〉][m− 1] of the same phase but different branches at layer
m − 1 (two nodes on RHS of “ ./”) given two bits UReg[〈2κ − 1, ψ〉][m] and
UReg[〈2κ, ψ〉][m] of different phases but the same branch at layer m (two nodes
on LHS of “ ./”).

We give an example to demonstrate how CalLR(·) and CalBit(·) work in

Figure 3. In PolarSampler(·), CalLR(n, i) begins with i = 1 for node L
(1)
8 . It

in turn activates two L
(1)
4 nodes at layer 2, then four L

(1)
2 nodes at layer 1 and

terminates at eight L
(1)
1 nodes at layer 0. The nodes at layer 0 pass their likeli-

hood ratios LRReg[〈1, ψ〉][0] for 0 ≤ ψ ≤ 7 to the blue nodes at layer 1 where
new likelihood ratios LRReg[〈1, ψ〉][1] for ψ = 0, 1, 2, 3 are computed according
to formula (13). Likewise, the newly computed likelihood ratios are passed for-

ward and computed until node L
(1)
8 are finally reached and LRReg[〈1, 0〉][3] is

updated. All the nodes activated so far are blue nodes in Figure 3. At iteration

i = 2, node L
(2)
8 does not activate any node but computes LRReg[〈2, 0〉][3] ac-

cording to formula (14) given the values of LRReg[〈1, 0〉][2] and LRReg[〈1, 1〉][2]

already calculated by two L
(1)
4 nodes as well as the value of UReg[〈1, 0〉][3].

Then node L
(2)
8 updates UReg[〈2, 0〉][3] as in line 6 or 9 or 12 of Algorithm 1.

Given UReg[〈1, 0〉][3] and UReg[〈2, 0〉][3], CalBit(·) calculates UReg[〈1, 0〉][2] and

UReg[〈1, 1〉][2] using the 2-by-2 transform G2 =

[
1 1
1 0

]
. CalBit(·) is suspended

for i = 2. It cannot proceed to activate the four L
(1)
2 nodes to update the bit

array UReg because UReg[〈2, 0〉][2] and UReg[〈2, 1〉][2] are yet to be available.
For every iteration i, CalLR(·) activates all the nodes in the same phase (i.e.,

the same color) and updates the corresponding elements in LRReg[N][m + 1].
CalBit(·) recursively calculates UReg[〈κ, 2ψ〉][m − 1], UReg[〈κ, 2ψ + 1〉][m − 1]
if both UReg[〈2κ− 1, ψ〉][m] and UReg[〈2κ, ψ〉][m] are available. Every node in
the array is activated once to update LRReg and one more time to update UReg
leading to an overall computational complexity O(N logN).

2.4 Closeness Analysis of Polar Sampler

A good closeness metric can help reduce the complexity of implementation. In
this section, we will evaluate the closeness error of the proposed sampling scheme.

7 One may concern about the floating-point divisions for safety reason. The LR re-
cursions can be equivalently replaced by division-free probability recursions of the
same complexity; see Appendix B for further details.

14 Jiabo Wang♠ and Cong Ling

Fig. 3. The butterfly circuit.

Definition 2 (Kullback-Leibler divergence). Let P and Q be two distribu-
tions over a common countable set Ω, and let A ⊂ Ω be the strict support of P
(P (a) > 0 iff. a ∈ A). The KL divergence DKL of Q from P is defined as:

DKL(P‖Q) =
∑
a∈A

P (a) ln

(
P (a)

Q(a)

)
with the convention that ln(x/0) = +∞ for any x > 0.

Let PX1:N (x1:N) denote the distribution of N i.i.d. Bernoullis X defined as
above. For any 0 < β < 0.5, N = 2n, n ≥ 1 and the corresponding high- and low-
entropy sets defined in (9) and (6), one can generate a distribution QX1:N (x1:N)
using the rules (10) and (11). To give the KL divergence between PX1:N (x1:N)
and QX1:N (x1:N), we first modify the Bernoulli sampling rules (10) and (11) to
be

U (i) =

{
0 w.p. 1

2

1 w.p. 1
2

if i ∈ HX|Y (15)

U (i) =

{
0 w.p. PU(i)|Y 1:N ,U1:i−1(0|y1:N , u1:i−1)

1 w.p. PU(i)|Y 1:N ,U1:i−1(1|y1:N , u1:i−1)
if i ∈ HcX|Y , (16)

where only the deterministic decisions for U (i) in LX|Y are replaced by random
decisions. Let Q′X1:N (x1:N) denote the distribution derived by the new Bernoulli
sampling rules described in (15) and (16).

Theorem 3 (Polar Sampling Theorem). Let X ∼ P (X) be the target Bernoulli
distribution with bias c1 = P (X = 1). To sample from the Bernoulli distribution
Ber(c1), PolarSampler(·) in Algorithm 1 takes a bias table c = [c1, · · · , c1] to-
gether with the high- and low-entropy set HX ,LX as input and computes N new

Title Suppressed Due to Excessive Length 15

Bernoulli biases b1, b2, · · · , bN for a 2-power N . Sampling independent variables
U1:N according to biases b1, b2, · · · , bN and applying the transform GN lead to
a vector X1:N = U1:NGN of distribution QX1:N . Let Q′X1:N be the intermediate
distribution defined earlier in this section. Then for 0 < β < 0.5, we derive

DKL(PX1:N ‖Q′X1:N) ≤ 2 ln 2 ·N2−N
β

and DKL(QX1:N ‖Q′X1:N) ≤ ln 2 ·N2−N
β

.

In the presence of a side information Y ∈ Y := {y1, · · · , y|Y|}, X can be seen
as a combination of a sequence of Bernoullis with a bias table c = [c1, · · · , c|Y|]
for cy = P (X = 1|Y = y). PolarSampler(·) takes the side information y1:N and
the high- and low-entropy set HX|Y ,LX|Y as input. The above closeness bound
still holds by substituting X|Y for X.

Proof. The KL divergence between PX1:N and Q′X1:N is bounded by the KL
divergence between PU1:N |Y 1:N and Q′U1:N |Y 1:N because the following relation

hold.

DKL(PX1:N ‖Q′X1:N) ≤ DKL(PX1:N ,Y 1:N ‖Q′X1:N ,Y 1:N)

(a)
= DKL(PY 1:N ‖Q′Y 1:N) +DKL(PX1:N |Y 1:N ‖Q′X1:N |Y 1:N)

(b)
= DKL(PX1:N |Y 1:N ‖Q′X1:N |Y 1:N)

(c)
= DKL(PU1:N |Y 1:N ‖Q′U1:N |Y 1:N) (17)

The above equalities are derived as follows.
(a) The chain rule of KL divergence.
(b) DKL(PY 1:N ‖Q′Y 1:N) = 0.
(c) One-to-one mapping between U1:N and X1:N .

The conditional KL divergence DKL(PU1:N |Y 1:N ‖Q′U1:N |Y 1:N) is derived as

DKL(PU1:N |Y 1:N ‖Q′U1:N |Y 1:N)

(d)
=

N∑
i=1

DKL(PU(i)|U1:i−1,Y 1:N ‖Q′U(i)|U1:i−1,Y 1:N)

(e)
=
∑
i∈Hk

DKL(PU(i)|U1:i−1,Y 1:N ‖Q′U(i)|U1:i−1,Y 1:N)

(f)
=
∑
i∈Hk

ln 2
[
1−HP (U (i)|U1:i−1, Y 1:N)

]
(g)

≤
∑
i∈Hk

ln 2
[
1− ZP (U (i)|U1:i−1, Y 1:N)2

]
(18)

(h)

≤ 2 ln 2 ·N2−N
β

, (19)

where the equalities and inequalities are explained as follows.
(d) The chain rule of KL divergence.
(e) For i ∈ HcX|Y , Q′(u(i)|u1:i−1, y1:N) = P (u(i)|u1:i−1, y1:N).

16 Jiabo Wang♠ and Cong Ling

(f) The definition of DKL(·‖·) and Q′(U (i)|u1:i−1, y1:N) = 1
2 for i ∈ HX|Y .

(g) Z(X|Y)2 ≤ H(X|Y) [3].
(h) Definition of HX|Y (9).

In a similar fashion, the KL divergence of QX1:N
1:r

and Q′
X1:N

1:r
is as follows.

DKL(QX1:N ‖Q′X1:N) ≤ DKL(QU1:N |Y 1:N ‖Q′U1:N |Y 1:N)

=

N∑
i=1

DKL(QU(i)|U1:i−1,Y 1:N ‖Q′U(i)|U1:i−1,Y 1:N)

(i)
=

∑
i∈LX|Y

DKL(QU(i)|U1:i−1,Y 1:N ‖Q′U(i)|U1:i−1,Y 1:N)

(j)
=

∑
i∈LX|Y

ln 2
∑

u1:i−1,y1:N

−Q′(u1:i−1, y1:N) logQ′(ū(i)|U1:i−1, Y 1:N)

(k)

≤
∑

i∈LX|Y

ln 2 ·HP (U (i)|U1:i−1, Y 1:N)

(l)

≤
∑

i∈LX|Y

ln 2 · Z(U (i)|U1:i−1, Y 1:N) (20)

(m)

≤ ln 2 ·N2−N
β

, (21)

where the equalities and inequalities come from
(i) For i ∈ LcX|Y , Q′(u(i)|u1:i−1, y1:N) = Q(u(i)|u1:i−1, y1:N).

(j) The definition of DKL(·‖·) (see Appendix A).
(k) See Appendix A.
(l) H(X|Y) ≤ Z(X|Y) [15].
(m) Corollary 1.

Therefore, the closeness measured by KL divergence can be concluded as

DKL(PX1:N ‖Q′X1:N) ≤ 2 ln 2 ·N2−N
β

and DKL(QX1:N ‖Q′X1:N) ≤ ln 2 ·N2−N
β

.

Note that polar sampling without side information is easier. In the absence
of Y , the above closeness analysis for KL divergence still hold by seeing Y inde-
pendent of X.

Q.E.D.

Although we cannot give the KL divergence between PX1:N and QX1:N due
to the lack of triangle inequality, the absence of DKL(PX1:N ‖QX1:N) will not
prevent us from giving the security analysis which will be explained in Section
5.

Title Suppressed Due to Excessive Length 17

3 Gaussian Sampling over the Integers Using Polar
Sampler

Definition 3. For any c ∈ R, s > 0, define the discrete Gaussian distribution
over Z as

∀x ∈ Z, DZ,c,s(x) = ρc,s(x)/ρc,s(Z)

where ρc,s(x) = exp(−π|x− c|2/s2) and ρc,s(Z) =
∑
z∈Z ρc,s(z).

In the above definition, the denominator ρc,s(Z) is for normalization. For
convenience, we may omit c for c = 0, e.g. ρ0,s(x) = ρs(x) and DZ,0,s(x) =
DZ,s(x).

Gaussian sampling over the integers Z can be formulated as a multilevel
sampling problem over a binary partition chain Z ⊂ 2Z ⊂ 4Z ⊂ · · · 2rZ · · · of
which each level is labeled by X1, X2, . . . , Xr, . . . (see Fig. 4). Then the discrete
Gaussian distribution over the integers Z induces a distribution PX1:r whose limit
is exactly DZ,c,s as r goes to infinity. By cutting off the tail area of negligible
probability, a discrete Gaussian distribution over the integer lattice Z can be
reduced to a distribution over a finite set. For example, if the cutoff points of
DZ,0,s=3

√
2π are ±16, the left and right tail areas are approximately 2−20.

input : c = [c1, · · · , cr],HXk|X1:k−1
,LXk|X1:k−1

for k = 1, · · · , r.
output: x1:N

1 temp = 11:N ;

2 x1:N1 =PolarSampler(temp,HX1 ,LX1); // It has access to the

precomputed table c1 = P (X1 = 1).

3 temp = x1:N1 ;

4 x1:N2 =PolarSampler(temp,HX2|X1
,LX2|X1

); // It has access to

c2 = [P (X2 = 1|X1 = 0), P (X2 = 1|X1 = 1)].
5 · · ·
6 temp = x1:N1:r−1;

7 x1:Nr =PolarSampler(temp,HXr|X1:r−1
,LXr|X1:r−1

);// It has access to

cr = [P (Xr = 1|Xr−1, · · · , X1 = 0 · · · 0), · · · , P (Xr = 1|Xr−1, · · · , X1 =
1 · · · 1)]

8 return x1:N = x1:N1 + 2 · x1:N2 + · · ·+ 2r−1 · x1:Nr

Algorithm 4: GaussianSampling(·).

We now begin to demonstrate how PolarSampler(·) can be used for discrete
Gaussian sampling as in Algorithm 4 GaussianSampling(·). Suppose r levels
of partition are employed to approximate DZ,c,s. The chain rule of conditional
probability and the chain rule of conditional entropy, i.e.

P (X1:r) =

r∏
k=1

P (Xk|X1:k−1) and H(X1:r) =

r∑
k=1

H(Xk|X1:k−1),

18 Jiabo Wang♠ and Cong Ling

Fig. 4. An r-level binary partition tree of the integer lattice Z.

imply that the Gaussian distribution over the finite constellation can be gener-
ated in a level-by-level way. For the k-th level, we can sample from the component
source Xk using PolarSampler(·) given the samples x1:k−1 from lower levels as
side information. GaussianSampling(·) has access to a bias table c = [c1, · · · , cr]
defined as follows.

c1 = [P (X1 = 1)]1×1

c2 = [P (X2 = 1|X1 = 0), P (X2 = 1|X1 = 1)]2×1

· · ·
cr = [P (Xr = 1|X1:r−1 = 0 · · · 0), · · · , P (Xr = 1|X1:r−1 = 1 · · · 1)]2r−1×1

The high- and low-entropy sets HXk|X1:k−1
and LXk|X1:k−1

are computed ac-
cording to the bias table c offline. We call this stage the construction stage of
GaussianSampling(·). The online stage of GaussianSampling(·) draws Bernoulli
samples level by level using PolarSampler(·) and we call it the implementation
stage.

For the first level, we want to generate the component source X1 in the
absence of any side information.

1. Construction: By performing the source polarization transformation GN on
N i.i.d. copies of X1, we obtain an N dimensional vector U1:N

1 = X1:N
1 GN .

For any β ∈ (0, 1/2) and α = 2−N
β

, we formally define two sets HX1
and

LX1
as

HX1
=
{
i ∈ [N] : Z(U

(i)
1 | U1:i−1

1) ∈ (1− α, 1]
}

(22)

and

LX1
=
{
i ∈ [N] : Z(U

(i)
1 | U1:i−1

1) ∈ [0, α)
}
. (23)

Title Suppressed Due to Excessive Length 19

For any i ∈ HX1
, U

(i)
1 is approximately uniform and independent of U1:i−1

1 ,

while for i ∈ LX1
, U

(i)
1 is almost deterministic given the knowledge of U1:i−1

1 .
2. Implementation: As discussed in Subsection 2.3, PolarSampler(·) calculates

the posterior probability P
U

(i)
1 |U

1:i−1
1

using SC decoding. Given the two sets

HX1 , LX1 and P
U

(i)
1 |U

1:i−1
1

, PolarSampler(·) generates N i.i.d. samples of X1

by applying the polarization transform circuit to the vector U1:N
1 of which

each entry takes a value according to the following rule:

U
(i)
1 =

{
Bernoulli(1

2) if i ∈ HX1

arg max
u
(i)
1
P
U

(i)
1 |U

1:i−1
1

(u
(i)
1 |u

1:i−1
1) if i ∈ LX1

, (24)

and

U
(i)
1 =

{
0 w.p. P

U
(i)
1 |U

1:i−1
1

(0|u1:i−1
1)

1 w.p. P
U

(i)
1 |U

1:i−1
1

(1|u1:i−1
1)

if i ∈ HcX1
\LX1

. (25)

Once we have a realization u1:N
1 of U1:N

1 , we derive a realization x1:N
1 = u1:N

1 GN
of X1:N

1 and pass it to the next level for further processing.
For higher levels with k ∈ (1, r], our task is to generate N i.i.d. samples of

source Xk given the side information x1:N
1:k−1 which were generated at the previous

k − 1 levels.

1. Construction: By performing the source polarization transformation circuit
GN on N i.i.d. copies of Xk, we obtain an N dimensional vector U1:N

k =

X1:N
k GN . For β ∈ (0, 1/2) and α = 2−N

β

, we defineHXk|X1:k−1
and LXk|X1:k−1

as

HXk|X1:k−1
=
{
i ∈ [N] : Z(U

(i)
k | X

1:N
1:k−1, U

1:i−1
k) ∈ (1− α, 1]

}
(26)

LXk|X1:k−1
=
{
i ∈ [N] : Z(U

(i)
k | X

1:N
1:k−1, U

1:i−1
k) ∈ [0, α)

}
. (27)

2. Implementation: Again PolarSampler(·) calculates P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

using

SC decoding. Then it generates N i.i.d. copies of Xk by applying the po-
larization transformation circuit to vector U1:N

k of which each entry takes a
value according to the following rule:

U
(i)
k =

{
Bernoulli(1

2) if i ∈ HXk|X1:k−1

arg maxu PU(i)|X1:N
1:k−1,U

1:i−1
k

(u|x1:N
1:k−1, u

1:i−1
k) if i ∈ LXk|X1:k−1

(28)

U
(i)
k =

0 w.p. P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(0|x1:N
1:k−1, u

1:i−1
k)

1 w.p. P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(1|x1:N
1:k−1, u

1:i−1
k)

if i ∈ HcXk|X1:k−1
\LXk|X1:k−1

. (29)

20 Jiabo Wang♠ and Cong Ling

(a) (b)

Fig. 5. The construction and implementation of the GaussianSampling(·): (a) Con-
struction (runs offline) (b) Implementation (runs online).

Once we have a realization u1:N
k of U1:N

k , we derive a realization x1:N
k =

u1:N
k GN of X1:N

k and pass it to the next level for further processing. Recall
that the approximation error for each level is determined by parameter β and
N . To achieve a target closeness between the ideal distribution and the one we
can produce, the two sets HXk|X1:k−1

and LXk|X1:k−1
for each level are properly

chosen and determined offline. By repeating the operations in (28) and (29) from
level 2 to level r, we can finally obtain N samples x1:N from DZ,c,s, i.e.,

x1:N =

r∑
k=1

2k−1x1:N
k . (30)

Fig. 5 shows how this Gaussian sampler works at each level in terms of con-
struction and implementation. It also shows how to combine the output of
each level. At the construction stage, W designates the probability transition

from Xk to X1:k−1 and W
(i)
N designates the transition of synthesized source pair

(U
(i)
k , U1:i−1

k ×X1:N
1:k−1). At this stage the Bhattacharyya parameters of W

(i)
N are

calculated to define HXk|X1:k−1
and LXk|X1:k−1

. At the implementation stage, re-

alizations of U1:N are produced according to the implementation rules (28) and
(29). Given the two parameters N and β, the closeness between the ideal dis-
tribution and the one our sampler can produce will be analysed in next section.

Title Suppressed Due to Excessive Length 21

4 Closeness Analysis of Discrete Gaussian Sampling

4.1 The Approximation Error Model

In a concrete implementation, an ideal discrete Gaussian distribution is replaced
by an approximation. To give a sharp estimation of the accuracy/security of
a cryptographic primitive, the closeness between the ideal distribution and its
approximation should be measured. In this section, we will derive the upper
bounds on the closeness between the ideal distribution and the one generated
by our sampling scheme measured by KL divergence.

The approximation error comes from two sources, the tailcut (owing to fi-
nite levels of partitions) and the polar sampling. On the one hand, we need
to decide how many levels of partitions are needed. On the other hand, the
error introduced by polar sampling should also be analysed. Denote by DZ,c,s
the target discrete Gaussian distribution and we decide to employ r levels of
partition. If polar sampling did not introduce any error, we would generate a
distribution PX1:r

with a closeness measure δ(DZ,c,s, PX1:r
) which is determined

only by r for some metric δ. In reality, polar sampling produces a distribution
QX1:r (x1:r) and it introduces an error of δ(PX1:r , QX1:r). We will in this section
analyse the above two closeness quantities using Kullback-Leibler (KL) diver-
gence. Since the KL divergence does not satisfy the triangle inequality, we will
give DKL(DZ,c,s‖PX1:r

) and DKL(PX1:r
‖QX1:r

) separately rather than a total
KL divergence DKL(DZ,c,s‖QX1:r). However, as discussed in [31, Chapter 3] the
lack of symmetry and triangle inequality can be handled by a KL-based security
argument which will be presented in Section 5.

4.2 Approximation Error from Tailcut

Definition 4 (Smoothing Parameter [25]). For an n-dimensional lattice Λ,
and positive real ε > 0, we define its smoothing parameter ηε(Λ) to be the smallest
s such that ρ1/s(Λ

∗ \ {0}) ≤ ε.

The smoothing parameter quantifies how large s must be for DΛ,c,s to behave
like a continuous Gaussian distribution. It is implied by Definition 4 that for
any ε > 0, the smoothing parameter ηε(Z) of Z is the smallest s such that
ρ(sZ) ≤ 1 + ε.

Lemma 2 (Lemma 4.2, [14]). For any ε > 0, any s > ηε(Z), and any t > 0,

Pr
x←DZ,c,s

(|x− c| ≥ t· s) ≤ 1 + ε

1− ε
· 2e−πt

2

.

Instead of sampling over the full domain of the integer lattice, a distribution tail
of negligible probability is cut off in practice. Suppose 2r samples are left after
the tailcut. Let A = Z ∩ [−2r−1 + c, 2r−1 + c). The distribution of the finite set
is

Dγ(a) =
ρc,s(a)∑
a∈A ρc,s(a)

= DZ,c,s(a)/DZ,c,s(A),

22 Jiabo Wang♠ and Cong Ling

where a ∈ A and γ is the probability of the tail. This constellation A of 2r points
can be represented as a binary partition tree labeled by X1:r in the same way as
Fig. 4. In our sampling scheme, we derive a sample labeled by

x1:N =

r∑
k=1

2k−1x1:N
k .

There exists a one-to-one mapping from X1:r to A. Therefore PX1:r
and the tail-

cut distribution Dγ are exactly the same and we can obtain DKL(DZ,c,s‖PX1:r
)

by calculating DKL(DZ,c,s‖Dγ). The distribution Dγ over the finite constellation
A can be written in the form

P (X1:r = x) = DZ,c,s(a)/
∑
a∈A

DZ,c,s(a) = DZ,c,s(a|a ∈ A).

The KL divergence between Dγ and DZ,c,s is

DKL(Dγ‖DZ,c,s) =
∑
a∈A

DZ,c,s(a|a ∈ A) ln
DZ,c,s(a|a ∈ A)

DZ,c,s(a)

=
∑
a∈A

DZ,c,s(a|a ∈ A) ln
DZ,c,s(a|a ∈ A)

DZ,c,s(a|a ∈ A)DZ,c,s(x ∈ A)

=
∑
a∈A

DZ,c,s(a|a ∈ A) ln
1

DZ,c,s(a ∈ A)
= ln

1

DZ,c,s(a ∈ A)
.

According to the second-order Taylor bound, if DZ,c,s(a ∈ A) = 1 − γ for any
0 < γ < 1, DKL(Dγ‖DZ,c,s) is bounded by

DKL(Dγ‖DZ,c,s) = γ +O(γ2). (31)

and so is DKL(PX1:r‖DZ,c,s).

4.3 Approximation Error from Polar Sampling

The target discrete Gaussian distribution is tailcutted to be PX1:r
which is ex-

actly the distribution of r bits of Bernoullis. Let PX1:N
1:r

denote the distribution
of N i.i.d. X1:r. As discussed in Section 3, for properly chosen 0 < β < 0.5,
N = 2n, n ≥ 1 and the corresponding high- and low-entropy sets defined in
(26) and (27), one can approximate PX1:N

1:r
in a level-by-level manner using

PolarSampler(·) for r times giving rise to the produced distribution QX1:N
1:r

.

Recall it in Theorem 3 that an intermediate distribution Q′ is introduced to
analyse the KL divergence between P and Q. Likewise, for every 1 ≤ k ≤ r we
introduce an intermediate distribution Q′

X1:N
k

such that X1:N
k = U1:N

k GN and

U
(i)
k =

{
0 w.p. 1

2

1 w.p. 1
2

if i ∈ HXk|X1:k−1

U
(i)
k =

0 w.p. P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(0|x1:N
1:k−1, u

1:i−1
k)

1 w.p. P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(1|x1:N
1:k−1, u

1:i−1
k)

if i ∈ HcXk|X1:k−1
,

Title Suppressed Due to Excessive Length 23

where only the deterministic decisions for U
(i)
k in LXk|X1:k−1

are replaced by
random decisions. We can bound the KL divergence between PX1:N

1:r
and Q′

X1:N
1:r

as

DKL(PX1:N
1:r
‖Q′X1:N

1:r
)

(a)
= DKL(PU1:N

1:r
‖Q′U1:N

1:r
)

(b)
= DKL(PU1:N

1
PU1:N

2 |U1:N
1
· · ·PU1:N

r |U1:N
1:r−1
‖Q′U1:N

1
Q′U1:N

2 |U1:N
1
· · ·Q′U1:N

r |U1:N
1:r−1

)

(c)
=

r∑
k=1

N∑
i=1

DKL(P
U

(i)
k |U

1:i−1
k ,U1:N

1:k−1

‖Q′
U

(i)
k |U

1:i−1
k ,U1:N

1:k−1

)
(d)

≤ 2 ln 2 · rN2−N
β

, (32)

where the equalities and inequalities are derived by (a) one-to-one mapping
from X1:N

1:r to U1:N
1:r ; (b) the chain rule of joint distribution; (c) the chain rule of

KL divergence; (d) Theorem 3. Likewise, we bound the KL divergence between
QX1:N

1:r
and Q′

X1:N
1:r

as

DKL(QX1:N
1:r
‖Q′X1:N

1:r
) = DKL(QU1:N

1:r
‖Q′U1:N

1:r
)

=

r∑
k=1

N∑
i=1

DKL(Q
U

(i)
k |U

1:i−1
k ,U1:N

1:k−1

‖Q′
U

(i)
k |U

1:i−1
k ,U1:N

1:k−1

)
(e)

≤ ln 2 · rN2−N
β

, (33)

where the inequality (e) is derived by Theorem 3. An explicit security anal-
ysis based on the KL divergence DKL(PX1:r

‖DZ,c,s), DKL(PX1:N
1:r
‖Q′

X1:N
1:r

) and

DKL(QX1:N
1:r
‖Q′

X1:N
1:r

) will be given in the sequel.

Remark 1. According to the KL-based closeness, GaussianSampling(·) can ar-
bitrarily approximate DZ1:N ,c,s for sufficiently large N and properly chosen β
and r. We highlight that the multilevel polar sampler would be attractive in
applications consuming many more than one discrete Gaussian samples. There
are plenty of applications of this kind in lattice-based cryptography and the
prominent one is FHE. In FHE, it is quite common that dimension N can
be tens of thousands. Even for lattice signature schemes (e.g. BLISS, Falcon),
N = 512, 1024 is quite common, plus one may generate a batch of samples
(except for embedded devices).

5 Security Analysis and Parameter Selection

5.1 Security Analysis with KL Divergence

Lemma 3 (Bounding Success Probability Variations, [30]). Let EP be an
algorithm making at most q queries to an oracle sampling from a distribution P
and returning a bit. Let ε ≥ 0, and Q be a distribution such that DKL(P‖Q) <
ε. Let x (resp. y) denote the probability that EP (resp. EQ) outputs 1. Then,
|x− y| ≤

√
qε/2.

24 Jiabo Wang♠ and Cong Ling

Security argument [31] It can be concluded from Lemma 3 that if a scheme is
λ-bit secure with oracle access to a perfect distribution P and the KL diver-
gence between P and another distribution Q satisfies DKL(P‖Q) ≤ 2−λ, then
this scheme is also about λ-bit secure with oracle access to Q. Note that this
security argument holds only if E is a search problem but not a decisional one.
The security argument based on KL divergence satisfies symmetry and trian-
gle inequality though KL divergence itself does not (see Section 3.2 in [31] for
detail).

Consider that a scheme with access to a perfect distribution DZN ,c,s is λ-bit
secure. Assume an adversary obtains N samples at each query. By the additivity
of KL divergence and equation (31), we have DKL(DZ1:N ,c,s‖PX1:N

1:r
) ≤ N(γ +

γ2). In order to achieve λ-bit security after the tailcut, we need to set N(γ +
γ2) ≈ 2−λ by selecting t ≈

√
(λ+ logN) ln 2/π. The number of levels needed

is therefore r = dlog(2t · s)e. As given in Section 4.3, the approximation error
introduced by polar sampling is determined by both DKL(PX1:N

1:r
‖Q′

X1:N
1:r

) and

DKL(Q′
X1:N

1:r
‖PX1:N

1:r
) which are upper bounded as

DKL(PX1:N
1:r
‖Q′X1:N

1:r
) ≤ 2 ln 2 · rN2−N

β

, DKL(QX1:N
1:r
‖Q′X1:N

1:r
) ≤ ln 2 · rN2−N

β

.

In order to preserve λ-bit security after PX1:N
1:r

is replaced by QX1:N
1:r

, we need to

select n = logN and β properly such that 2−2nβ+n+log(r)+1 ≈ 2−λ.
Fig. 6 shows how the security level of interest is related to β in terms of

different s and n. We can observe that the curves with the same n but different
in s are quite close. It is understandable because the security is dependent on the
approximation error as is almost independent of what the target distribution is if
the proposed GaussianSampling(·) is used. We also find that to preserve λ = 128
bits of security, a larger n implies a smaller β. This is because larger n means
deeper polarization and therefore smaller unpolarized set (i.e. smaller β). This
observation is instructional in selecting parameters for GaussianSampling(·). At

the implementation stage, the entropy consumption to produce U
(i)
k are totally

different for polarized and unpolarized set. Given optional choices of β and n to
preserve λ-bit security, we suggest smaller β for less entropy consumption per
sample.

5.2 Security Analysis of Tailcut and Precision With Rényi
Divergence

The KL-based security analysis is a reminder about Rényi divergence (RD).
However, the approximation error of the proposed sampler measured by Rényi
divergence is not given in this work because how polarization phenomenon con-
verges in the metric of RD is an open problem in the area of coding theory.
Nonetheless, RD can still be used to analyse the tailcut and precision.

Definition 5 (Rényi divergence). Let P , Q be two distributions with supports
SP and SQ, respectively. Let SP ⊆ SQ. For a ∈ (1,+∞), we define the Rényi

Title Suppressed Due to Excessive Length 25

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

β

60

80

100

120

140

160

180

200

220

240

260

S
e

c
u

ri
ty

 L
e

v
e

l

λ=128

n=13,s=1.3

n=13,s=2
10

n=14,s=1.3

n=14,s=2
10

n=15,s=1.3

n=15,s=2
10

n=16,s=1.3

n=16,s=2
10

n=17,s=1.3

n=17,s=2
10

n=18,s=1.3

n=18,s=2
10

n=19,s=1.3

n=19,s=2
10

Fig. 6. Security level λ vs. β: s = 1.3 and s = 210.

divergence of order a by

Ra(P‖Q) =

(∑
x∈SP

P (x)a

Q(x)a−1

) 1
a−1

.

In [32], a sharper bound on security based on Rényi divergence is given under
the assumption that the number of adversarial queries q to a λ-bit secure scheme
is far less than 2λ. Consider a cryptographic scheme with λ bits of security and
the number of queries to Q satisfies q ≤ 264. By the security argument in [32],
this scheme is proved to lose at most one bit of security when Q is replaced by
Qγ provided that one of following conditions is satisfied.

(a) If Qγ is the distribution under tailcut, then

Qγ
Q
≤ 1 + γ for γ =

1

4q
.

(b) If Qγ denote a distribution having the same support with Q subject to some
relative error, it should be satisfied that

1− γ ≤ Qγ
Q
≤ 1 + γ for

γ2

(1− γ)a+1
≤ 1

4λq
.

In the context of multilevel polar sampling, if t ≈
√

ln 2(66+logN)
π and r =⌈

log

(
2s
√

(66+logN) ln 2
π

)⌉
, a (λ + 1)-bit secure scheme will be at least λ-bit

26 Jiabo Wang♠ and Cong Ling

secure when the ideal distribution DZ,c,s is replaced by its tailcut PX1:r
for

λ = 128, q = 264 and a = 2λ. Compared with the KL-based analysis of tailcut,
Rényi divergence contributes to a smaller r by reducing the partitions by at most
1 level. Moreover, the security argument for relative error can be translated to
γ ≤ 2−36.5 for λ = 128, q = 264 and a = 2λ [32]. The precision requirement
of polar sampler to achieve the target security is determined by the Bernoulli
sampling step in formula (28) and (29). A practical approach to draw Bernoulli
samples is to calculate the bias Qγ subject to the relative precision provided.
Then sample q ∈ (0, 1) uniformly at random and yield 1 if q < Qγ . As long
as the relative precision provided for the LR recursions in Algorithm 2 and the
biases computed in formula (28) and (29) is more than 36 bits, polar sampler
can achieve λ = 128. In our application, it suffices to use double precision in
the LR recursions which provides 52 bits of relative precision. It can also be
simulated using fixed-point numbers of 64 bits of precision particularly in 64-bit
architectures.

6 Complexity and Comparison

6.1 A Constant-Time Algorithm

Given a probabilistic or deterministic algorithm, we consider it to be constant-
time if its execution time is independent of the sensitive part of its input and
output [17]. Instead of making every operation finish exactly in a constant in-
terval, we protect sensitive information from being recovered by timing-based
side channel attacks. The proposed GaussianSampling(·) algorithm composes
of multiple serially connected PolarSampler(·). We now study which part of
PolarSampler(·) is constant-time and which part is not.

The input of PolarSampler(·) includes the block length N , the side infor-
mation vector y1:N , a precomputed bias table c and the corresponding high-
and low-entropy sets HX|Y ,LX|Y , meanwhile it yields a Bernoulli sample vector
x1:N . Normally, we do not expect to disclose either the Bernoulli biases or the
output samples. Therefore, it makes sense to consider N and y1:N to be non-
sensitive as they are irrelevant to what the target biases and output samples
are. Table c and the two sets HX|Y ,LX|Y are sensitive as the Bernoulli biases
P (X = 1|Y) for every Y = y are stored in c and HX|Y ,LX|Y are also computed
according to P (X = 1|Y).

PolarSampler(·) composes of four types of operations: (a) table look-up for
c[y1:N] given y1:N ; (b) recursive calculating the LRs by SC decoding; (c) proba-
bilistic/deterministic sampling of 1 bit; (d) calculating x1:N = u1:NGN . Whether
these operations are relevant to the aforementioned sensitive information is listed
in Table 1.

Firstly, the table look-up for c[y1:N] may remind us of the cache-based at-
tack breaking BLISS which exploits the weakness of CDT table search and the
Bernoulli sampling with a precomputed table of exponential values [8]. Fortu-
nately, this is not the case for PolarSampler(·). On one hand, the bias vector

Title Suppressed Due to Excessive Length 27

Table 1. PolarSampler(·): Whether the execution time is relevant to sensitive infor-
mation; relevant: X; irrelevant: ×; alternative for recursively calculating LRs: ∗.

operations
positions in
Algorithm 1

Bernoulli biases
output samplesHX|Y ,LX|Y precomputed

table c

table look-up line 2 × × ×
recursively calculating LRs line 4 × X ×
*division-free alternative of
LR calculations

line 4 × × ×

probabilistic/deterministic
sampling

line 6,9,12 X × ×

x1:N = u1:NGN line 14 × × ×

c[y1:N] is indexed by the side information y1:N and no binary search or search-
with-guide-table method as in CDT sampling is needed. On the other hand,
the Bernoulli sampler in BLISS leaks information about the yielded Bernoulli
samples because of the conditional branching in the table look-up and bitwise
sampling process. As a result, Bernoulli samples yielded faster (resp. slower) are
more likely to be 0s (resp. 1s). But such conditional branches are not needed
when searching for c[y1:N] in c as long as table c is allocated with continuous
memory. In this case one can easily find c[y1:N] by moving the pointer to c by
offset y1:N . This operation is irrelevant to what the biases and the output are.

Secondly, if the block length is N , the SC decoding carries out exactly N logN
2

LR calculations as in formula (13) along with exactly N logN
2 LR calculations as

in formula (14) regardless of what the input and output are. Concerns arise from
the floating-point instructions and a comprehensive analysis is given as follows.

– If we assume floating-point instructions to be constant-time as in [17] 8 or
we make a constant-time transformation to those floating-point calculations
(e.g., CTFP transformation [2] or replacement by fixed-point instructions),
those LR calculations will be safe.

– If we only consider the floating-point division hard to be implemented in
constant time as in [39, 33], a division-free alternative of the LR calculations
of the same computational complexity is given in Appendix B and the above
concern will be eliminated.

– Otherwise, the running time of LR calculations might be somehow rele-
vant to c. Recall it in Fig. 3 that the intermediate LRs are deduced from
the rightmost column of LRs which are derived by c[y1:N]. It might take
longer/shorter to finish an LR calculation given the two LRs of some spe-
cific values from last round of recursion. However, instead of observing a
single LR calculation, an adversary has to guess c given the total running
time of N logN LR calculations which may be impractical. Furthermore, the
shuffled circuit makes the timing-based cryptanalysis even harder. As for the
sensitive output, they are irrelevant to the running time taken to finish all

8 A weaker notion dubbed “isochronous” is used instead of constant-time.

28 Jiabo Wang♠ and Cong Ling

the LR calculations. Only the N LR results in register LRReg[:][n] (i.e. the
leftmost column LRs in Fig. 3) derived by the end of SC decoding and the
succeeding deterministic/probabilistic sampling in line 6, 9 and 12 of Algo-
rithm 1 determine the output samples, while how long it takes to calculate
the intermediate LRs does not.

Thirdly, line 6, 9 and 12 of Algorithm 1 are non constant-time with respect
to the input if no further measurements are taken. Sampling for the high- and
low-entropy sets would be easy as it consumes only 1 bit of randomness for
HX|Y and 0 for LX|Y , whereas sampling for HcX|Y \LX|Y is complicated and
would take longer time. Therefore, the running time of line 6, 9 and 12 may
reveal the proportion of HX|Y ,LX|Y and HcX|Y \LX|Y which in turn discloses
some information about the biases. As for the output, we consider it to be safe
regardless of the running time of line 6, 9 and 12. The weak points are those
floating-point comparisons in line 9 and 12. Generally speaking, comparing two
approximate floating-point values would take longer, but it is equally likely to
return True and False nonetheless. Therefore, it makes sense to consider this
type of operations to be unsafe with respect to input but safe with respect to
output.

Lastly, calculating x1:N = u1:NGN takes exactly N logN binary additions
which is obviously constant-time.

To conclude, we claim that PolarSampler(·) is constant-time in the sense that
its running time is irrelevant to the output samples. The same statement holds
for the proposed integer Gaussian sampling for two reasons if PolarSampler(·) is
adopted as in Algorithm 4. Firstly, the number of levels r is determined by the
width of the integer Gaussian distribution. Secondly, if no further measurements
are taken, the floating-point implementation of PolarSampler(·) is non constant-
time with respect to input.

6.2 Time Complexity

The latest trend of DGS solutions is to expand a base sampler into one for
arbitrary parameters. For example, the Knuth-Yao and CDT sampler can work
as a base sampler to produce samples which are then combined into new samples
with a relatively large standard deviation in a convolutional manner [26, 30]. Our
Gaussian sampler is also eligible for such extension for potential speedup. The
focus of this subsection is to compare the GaussianSampling(·) with other base
samplers. Karmakar et al. [19] compared the time complexity of Knuth-Yao and
CDT showing that the former can be made more time-saving. Therefore, it is
fair to compare our Gaussian sampler only with Knuth-Yao and we used a non
constant-time Knuth-Yao implemented in C++9 as well as its constant-time
version10. We also give the benchmarks of a prototype GaussianSampling(·) for

9 https://github.com/AaronHall4/BKW-Algorithm
10 https://github.com/jnortiz/HIBE-Gaussian-Sampling

Title Suppressed Due to Excessive Length 29

different choices of parameter s in C++ 11. Note that we substitute probability
recursion for LR recursion (see Appendix B) to avoid floating-point divisions.

The experiment is conducted on a PC with Ubuntu 18.04 and an Intel i9-
9900K processor running at 3.60 GHz using one core. We use g++ to compile
both Knuth-Yao and our implementation with compilation flag -Ofast enabled.
For the benchmarks, we select s ∈

√
2π · {3, 8, 32, 256} and a target security level

λ = 64.12 According to the KL-based security analysis in Section 5, we specify β
to achieve 64 bits of security with respect toN ∈ {213, 214, 215}, and we select r =
dlog(2st)e where t ≈

√
(λ+ logN) ln 2/π. We assume that the adversary obtains

N integer samples for each query to the sampling algorithm. The simulation
results are shown in Table 2. Firstly, our Gaussian sampler always outperforms
Knuth-Yao in speed with respect to the above setting. Secondly, Knuth-Yao
slows down almost linearly as 2r grows while GaussianSampling(·) still provides
a competitive speed. This advantage stems from the binary partition of the
integers. Thirdly, GaussianSampling(·) shows modest speed reduction as the
block length increases from 213 to 215. This doesn’t contradict the asymptotic
information optimality which implies less randomness consumption per sample
for larger N . The polarization effect can reduce the consumption of randomness
and contribute to the speed. However, the overall running time, in the current
implementation, is dominated by the floating-point recursions in Fig. 3 with
complexity O(N logN). In the literature, practical boosting approaches for the
butterfly circuit include semi-parallel design [21] and pruned SC decoding [1, 38]
giving computational complexity up to O(log logN).

Table 2. Comparison between the GaussianSampling(·) and Knuth-Yao.

2r s
Knuth-Yao (samples/second) GaussianSampling(·) (samples/second)

constant-time non constant-
time

N = 213 N = 214 N = 215

26
3
√

2π 2.809E5/s 3.876E5/s
β = 0.487

1.333E6/s
β = 0.4535

1.283E6/s
β = 0.4244

1.168E6/s

27
8
√

2π 1.172E5/s 2.212E5/s
β = 0.4876

1.194E6/s
β = 0.454

1.097E6/s
β = 0.425

1.010E6/s

29
32
√

2π 3.255E4/s 6.017E4/s
β = 0.488

0.960E6/s
β = 0.4544

0.861E6/s
β = 0.4252

0.792E6/s

212
256
√

2π 4.464E3/s 6.760E3/s
β = 0.4885

0.680E6/s
β = 0.455

0.621E6/s
β = 0.4257

0.572E6/s

11 https://github.com/jwangit/polarsampler
12 GaussianSampling(·) is extendable to other security levels (e.g. 128,256) in our dou-

ble precision setting as discussed in Section 5.2.

30 Jiabo Wang♠ and Cong Ling

Table 3. Comparison of entropy, computational and storage complexity between multi-
level polar sampler and existing samplers (λ: precision; t∗s: tailcut;H/N : the fraction of
high entropy set; H(X): the entropy of X; µ is a constant bounded as 3.579 ≤ µ ≤ 4.714
according to Lemma 1).

computational
complexity/sample

entropy
consumption/sample

storage

multilevel
polar sampler

O(t ∗ s ∗ log(N)) floating
point13

O(λ ∗N−
1
µ +H/N)→
H(X)

O(λ ∗ t ∗ s)

binary
sampling

O(log(t ∗ s)) integer
arithmetic

> 6 + 3 log(s) O(λ ∗ log(2.4 ∗ t ∗ s2))

CDT O(log(t ∗ s)) binary
search

λ O(λ ∗ t ∗ s)

Knuth-Yao O(log(t ∗ s)) Boolean
functions

λ O(log(t ∗ s)) Boolean
functions

6.3 Memory Cost

At the construction stage, we need to store a table c of biases, i.e., P (xk = 1|x1:k−1)
for 1 ≤ k ≤ r. The table consists of 2r − 1 elements for the overall r levels. The
biases are stored in natural order of X1:k−1 such that once the samples x1:k−1

for the preceding k− 1 levels are ready we can find the associated biases in c by
moving the pointer by offset x1:k−1.

6.4 Asymptotic Comparison

We also give in Table 3 an asymptotic comparison of entropy consumption,
computational and storage complexity between GaussianSampling(·) and other
existing samplers, e.g. the binary sampling algorithm [11] and its constant-time
version in [29, 13, 39], constant-time CDT [16], constant-time Knuth-Yao sam-
pler[19].

The overall running time of GaussianSampling(·) depends on the SC decoding
(LR recursions) and Bernoulli sampling (entropy consumption). As indicated in

Corollary 1, the fraction of unpolarized set scales as N−
1
µ . When N → ∞, the

average entropy consumption approaches H(X) which is the Shannon’s entropy
of the target distribution X.

For binary sampling in BLISS [11], one sample requires entropy consumption
of O(6+3∗log(s)) . If we use a full-table access CDT for the base sampler and use
a full-table Bernoulli sampler, the computational complexity would be O(log(t ∗
s0)) (s0: the parameter of base sampler) for binary search plus O(log(t ∗ s)) for
integer arithmetic and the entropy cost will be much greater thanO(6+3∗log(s)).
Falcon uses bimodal Gaussian and rejection sampling which should have similar
complexity to binary sampling.

10 Or O(t ∗ s ∗ log logN) floating point operations if the state-of-the-art SC decoding
in [38] is used.

Title Suppressed Due to Excessive Length 31

The full-table access CDT [16] has a computational complexity of O(log(t ∗
s)) and requires a storage of O(λ ∗ t ∗ s). For constant time Knuth-Yao [19],
the computational complexity is O(log(t ∗ s)) Boolean function evaluations and
the entropy consumption is O(λ). It requires large program memory to store
O(log(t ∗ s)) Boolean functions.

In conclusion, we claim our multilevel polar sampler to achieve the information-
theoretic optimality (i.e., asymptotically optimal entropy consumption) which
compares favorably with other samplers. For most sampling methods, the overall
speed depends on computational complexity and randomness generation (e.g.
producing Bernoulli samples in the binary sampling method). The computa-
tional complexity of our sampler is less attractive due to the log(N) factor but
(a) multilevel polar sampler saves the time of producing randomness which is
not considered as computational complexity but entropy consumption (b) our
experiments in Table 2 show that multilevel polar sampler is much faster than
Knuth-Yao. In addition, there is room to improve the computational efficiency
seeing that the state-of-the-art SC decoding achieves a per-bit complexity of
O(log logN) [38].

7 Conclusions and Future Work

The polar sampler and its multilevel application for DGS is efficient, application-
independent and constant-time. Our algorithm is effective in the case that a
large number of samples from a certain distribution, e.g., integer Gaussian, are
required. The optimization of entropy consumption stems from the polariza-
tion process in which the randomness moves to the high-entropy set. For fixed
parameters, the construction stage is prepared offline and the implementation
stage is carried out online. The floating-point implementation given in this work
is constant-time in the sense that its running time is independent of output
samples. KL and Rényi divergence are used for security analysis, precision anal-
ysis and parameter selection. Since the Rényi divergence-based analysis of polar
coding is still an open problem by now, it deserves more efforts to give a com-
plete Rényi divergence-based analysis for our sampler and to carry out potential
efficiency improvement.

In this paper, we only use the basic 2× 2 kernel, whose finite-length perfor-
mance is not the best. Optimizing finite-length performance using other kernels
of polar codes as well as adapting the pruned/semi-parallel SC decoding are left
to future work.

8 Statements and Declarations

· Funding: This work was funded by the UK Engineering and Physical Sci-
ences Research Council (grant EP/S021043/1).
· Competing Interests: The authors have no conflicts of interest to declare

that are relevant to the content of this article.

32 Jiabo Wang♠ and Cong Ling

References

1. Alamdar-Yazdi, A., Kschischang, F.R.: A simplified successive-cancellation decoder
for polar codes. IEEE Communications Letters 15(12), 1378–1380 (2011)

2. Andrysco, M., Nötzli, A., Brown, F., Jhala, R., Stefan, D.: Towards verified,
constant-time floating point operations. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. p. 1369–1382. CCS ’18,
Association for Computing Machinery, New York, NY, USA (2018)

3. Arıkan, E.: Source polarization. In: 2010 IEEE International Symposium on Infor-
mation Theory. pp. 899–903 (June 2010)

4. Arıkan, E.: Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Transactions on In-
formation Theory 55(7), 3051–3073 (2009)

5. Bai, S., Lepoint, T., Roux-Langlois, A., Sakzad, A., Stehlé, D., Steinfeld, R.: Im-
proved security proofs in lattice-based cryptography: Using the Rényi divergence
rather than the statistical distance. Journal of Cryptology 31(2), 610–640 (2018)

6. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.A., Rossi, M., Tibouchi, M.: Galac-
tics: Gaussian sampling for lattice-based constant- time implementation of crypto-
graphic signatures, revisited. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. p. 2147–2164. CCS ’19, Association
for Computing Machinery, New York, NY, USA (2019)

7. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates.
Ann. Math. Statist. 29(2), 610–611 (06 1958)

8. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and reload–a
cache attack on the BLISS lattice-based signature scheme. In: International Con-
ference on Cryptographic Hardware and Embedded Systems. pp. 323–345. Springer
(2016)

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons
(2012)

10. Devroye, L.: Sample-based non-uniform random variate generation. In: Proceedings
of the 18th Conference on Winter Simulation. pp. 260–265. ACM (1986)

11. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Annual Cryptology Conference. pp. 40–56. Springer (2013)

12. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Applicable Algebra in Engineering,
Communication and Computing 25(3), 159–180 (2014)

13. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures: Exploiting branch tracing against strongSwan and elec-
tromagnetic emanations in microcontrollers. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. p. 1857–1874.
CCS ’17, Association for Computing Machinery, New York, NY, USA (2017)

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing. pp. 197–206. ACM (2008)

15. Honda, J., Yamamoto, H.: Polar coding without alphabet extension for asymmetric
models. IEEE Transactions on Information Theory 59(12), 7829–7838 (2013)

16. Howe, J., Khalid, A., Rafferty, C., Regazzoni, F., O’Neill, M.: On practical discrete
Gaussian samplers for lattice-based cryptography. IEEE Transactions on Comput-
ers 67(3), 322–334 (2016)

Title Suppressed Due to Excessive Length 33

17. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous Gaussian sampling:
From inception to implementation. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum
Cryptography. pp. 53–71. Springer International Publishing, Cham (2020)

18. Hülsing, A., Lange, T., Smeets, K.: Rounded Gaussians: fast and secure constant-
time sampling for lattice-based crypto. In: Public-Key Cryptography - PKC 2018 -
21st IACR International Conference on Practice and Theory of Public-Key Cryp-
tography, Proceedings. pp. 728–757. Springer, Germany (2018)

19. Karmakar, A., Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Constant-
time discrete Gaussian sampling. IEEE Transactions on Computers 67(11), 1561–
1571 (2018)

20. Knuth, D.: The complexity of nonuniform random number generation. Algorithm
and Complexity, New Directions and Results pp. 357–428 (1976)

21. Leroux, C., Raymond, A.J., Sarkis, G., Gross, W.J.: A semi-parallel successive-
cancellation decoder for polar codes. IEEE Transactions on Signal Processing
61(2), 289–299 (2013)

22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 1–23. Springer (2010)

23. Marsaglia, G., Tsang, W.W., et al.: The Ziggurat method for generating random
variables. Journal of Statistical Software 5(8), 1–7 (2000)

24. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Advances in Cryptology–CRYPTO 2013, pp. 21–39. Springer (2013)

25. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM Journal on Computing 37(1), 267–302 (2007)

26. Micciancio, D., Walter, M.: Gaussian sampling over the integers: Efficient, generic,
constant-time. In: Annual International Cryptology Conference. pp. 455–485.
Springer (2017)

27. Mondelli, M., Hashemi, S.A., Cioffi, J.M., Goldsmith, A.: Sublinear latency for
simplified successive cancellation decoding of polar codes. IEEE Transactions on
Wireless Communications 20(1), 18–27 (2021)

28. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Annual
Cryptology Conference. pp. 80–97. Springer (2010)

29. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: Attacking
strongSwan’s implementation of post-quantum signatures. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. p.
1843–1855. CCS ’17, Association for Computing Machinery, New York, NY, USA
(2017)

30. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: International Workshop on Cryptographic Hardware
and Embedded Systems. pp. 353–370. Springer (2014)

31. Prest, T.: Gaussian sampling in lattice-based cryptography. Ph.D. thesis, École
Normale Supérieure (2015)

32. Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi diver-
gence. In: International Conference on the Theory and Application of Cryptology
and Information Security. pp. 347–374. Springer (2017)

33. Prest, T., Ricosset, T., Rossi, M.: Simple, fast and constant-time Gaussian
sampling over the integers for falcon. Tech. rep., Second PQC Standardiza-
tion Conference (2019), https://csrc.nist.gov/Presentations/2019/simple-fast-and-
constant-time-gaussian

34 Jiabo Wang♠ and Cong Ling

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of
Computing. pp. 84–93. STOC ’05, ACM, New York, NY, USA (2005)

35. Saarinen, M.J.O.: Arithmetic coding and blinding countermeasures for lattice sig-
natures. Journal of Cryptographic Engineering 8(1), 71–84 (Apr 2018)

36. Tal, I., Vardy, A.: List decoding of polar codes. IEEE Transactions on Information
Theory 61(5), 2213–2226 (2015)

37. Tal, I., Vardy, A.: How to construct polar codes. IEEE Transactions on Information
Theory 59(10), 6562–6582 (2013)

38. Wang, H.P., Duursma, I.M.: Log-logarithmic time pruned polar coding. IEEE
Transactions on Information Theory 67(3), 1509–1521 (2021)

39. Zhao, R.K., Steinfeld, R., Sakzad, A.: Facct: Fast, compact, and constant-time
discrete Gaussian sampler over integers. IEEE Transactions on Computers 69(1),
126–137 (2019)

A KL Divergence for the Low-Entropy Set

For i ∈ LXk|X1:k−1
, Q′ and Q follow the distribution respectively as

Q′(u
(i)
k |u

1:i−1
k , u1:N

1:k−1) = P (u
(i)
k |u

1:i−1
k , u1:N

1:k−1)

Q(ū
(i)
k |u

1:i−1
k , u1:N

1:k−1) = 1 for ū
(i)
k = arg max

u∈{0,1}
P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(u|x1:N
1:k−1, u

1:i−1
k).

By definition of KL divergence, we have

DKL(Q
U

(i)
k |U

1:i−1
k ,U1:N

1:k−1

‖Q′
U

(i)
k |U

1:i−1
k ,U1:N

1:k−1

)

=
∑

u1:i−1
k ,u1:N

1:k−1

Q′(u1:i−1
k , u1:N

1:k−1)[−1 · logQ′(ū
(i)
k |u

1:i−1
k , u1:N

1:k−1)

− 0 · log(1−Q′(ū(i)
k |u

1:i−1
k , u1:N

1:k−1)) + (0 log 0 + 1 log 1)].

By definition Shannon entropy,

HP (U
(i)
k |U

1:i−1
k , U1:N

1:k−1)

= −
∑

u1:i−1
k ,u1:N

1:k−1

Q′(u1:i−1
k , u1:N

1:k−1)
∑
u
(i)
k

Q′(u
(i)
k |u

1:i−1
k , u1:N

1:k−1) logQ′(u
(i)
k |u

1:i−1
k , u1:N

1:k−1)

for i ∈ LXk|X1:k−1
. For 0.5 ≤ Q′(ū

(i)
k |u

1:i−1
k , u1:N

1:k−1) < 1 which is easily satisfied
by choosing the low-entropy set LXk|X1:k−1

properly, we can prove that∑
u
(i)
k ∈{ū

(i)
k ,1−ū(i)

k }

−Q′(u(i)
k |u

1:i−1
k , u1:N

1:k−1) logQ′(u
(i)
k |u

1:i−1
k , u1:N

1:k−1) ≥ − logQ′(ū
(i)
k |u

1:i−1
k , u1:N

1:k−1)

and DKL(Q
U

(i)
k |U

1:i−1
k ,U1:N

1:k−1

‖Q′
U

(i)
k |U

1:i−1
k ,UN1:k−1

) ≤ HP (U
(i)
k |U

1:i−1
k , U1:N

1:k−1).

Title Suppressed Due to Excessive Length 35

B A Division-Free Alternative for LR Calculations

As mentioned in footnote 7, the LR recursion can be replaced by transition
probability recursion which has the same computational complexity O(N logN)
as well (Proposition 3 of [4]). In the prototype implementation referred to foot-
note 11, we give both LR recursion (i.e. polar::recursivelyCalcLR) and probability
recursion (i.e. polar::recursivelyCalcP) and the benchmarks are derived by the
latter. Since LR is defined as the ratio of transition probabilities, recursively
calculating LRs and transition probabilities are equivalent and interchangeable.
Specifically, instead of defining an LR array of dimension N × (n + 1) as in
Fig. 3, we define two probability arrays PReg0 and PReg1 of the same size
N × (n + 1). The notion of branch and phase will be the same as used in an
LR array. Then the LR recursions can be replaced by the probability recursions
as follows. To initiate, the rightmost column of the two probability arrays are
PReg0[〈1, ψ〉][0] = 1 − c[y(ψ+1)] and PReg1[〈1, ψ〉][0] = c[y(ψ+1)], respectively
where 0 ≤ ψ ≤ 2n− 1, c is the bias table and y(ψ+1) is the (ψ+ 1)-th coordinate
of side information vector y1:N .

Then, for 0 < m ≤ n, we update PReg0 and PReg1 by

PReg0[〈2κ− 1, ψ〉][m] =
1

2
PReg0[〈κ, 2ψ〉][m− 1] · PReg0[〈κ, 2ψ + 1〉][m− 1]

+
1

2
PReg1[〈κ, 2ψ〉][m− 1] · PReg1[〈κ, 2ψ + 1〉][m− 1],

(34)

PReg1[〈2κ− 1, ψ〉][m] =
1

2
PReg1[〈κ, 2ψ〉][m− 1] · PReg0[〈κ, 2ψ + 1〉][m− 1]

+
1

2
PReg0[〈κ, 2ψ〉][m− 1] · PReg1[〈κ, 2ψ + 1〉][m− 1],

(35)

PRReg0[〈2κ, ψ〉][m] =
1

2
PRegtemp[〈κ, 2ψ〉][m− 1] · PReg0[〈κ, 2ψ + 1〉][m− 1],

(36)

PRReg1[〈2κ, ψ〉][m] =
1

2
PRegtemp⊕1[〈κ, 2ψ〉][m− 1] · PReg1[〈κ, 2ψ + 1〉][m− 1],

(37)

where temp = UReg[〈2κ − 1, ψ〉][m] and ⊕ is XOR operation. Formula (34,35)
and (36,37) will substitute for the LR calculations in formula (13) and (14)
respectively and line 5 and 6 in Algorithm 2 will be adapted accordingly. After
the N probabilities in the leftmost column of PReg0 and PReg1 are derived,
the probabilistic/deterministic sampling in line 9 and 12 of Algorithm 1 will be
replaced by UReg[i][n] = PReg0[i][n] < PReg1[i][n] and UReg[i][n] = Uniform() <
PReg1[i][n], respectively.

