
A Server-Assisted Hash-Based Signature Scheme

Ahto Buldas1, Risto Laanoja1,2, and Ahto Truu1,2,B ?

1 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
2 Guardtime AS, A. H. Tammsaare tee 60, 11316 Tallinn, Estonia

ahto.truu@guardtime.com

Abstract. We present a practical digital signature scheme built from
a cryptographic hash function and a hash-then-publish digital time-
stamping scheme. We also provide a simple proof of existential unforge-
ability against adaptive chosen-message attack (EUF-ACM) in the ran-
dom oracle (RO) model.

1 Introduction

All the digital signature schemes in use today (RSA [42], DSA [22], ECDSA [30])
are known to be vulnerable to quantum attacks by Shor’s algorithm [46]. While
the best current experimental results are still toy-sized [35], it takes a long time
for new cryptographic schemes to be accepted and deployed, so it is of consid-
erable interest to look for post-quantum secure alternatives already now. Error-
correcting codes, discrete lattices, and multi-variate polynomials have been used
as foundations for proposed replacement schemes [4]. However, these are rel-
atively complex structures and new constructions in cryptography, so require
significant additional scrutiny before gaining trust.

Hash functions, on the other hand, have been studied for decades and are
widely believed to be quite resistant to quantum attacks. The best currently
known quantum results against hash functions are using Grover’s algorithm [25]
to find a pre-image of a given k-bit value in 2k/2 queries instead of the 2k queries
needed by a classical attacker, and Brassard et al.’s modification [7] to find a
collision in 2k/3 instead of 2k/2 queries. To counter these attacks, it would be
sufficient to deploy hash functions with correspondingly longer outputs when
moving from pre-quantum to post-quantum setting.

2 Related Work

The earliest digital signature scheme constructed from hash functions is due to
Lamport [31, 19]. Merkle [37] introduced two methods for reducing the key sizes,
one proposed to him by Winternitz. The Winternitz scheme has subsequently

? This research was supported by the European Regional Development Fund through
the Estonian smart specialization program NUTIKAS. The final publication is avail-
able at Springer via https://doi.org/10.1007/978-3-319-70290-2 1

been more thoroughly analyzed and further refined by Even et al. [23], Dods et
al. [21], Buchmann et al. [9], and Hülsing [27]. All of these schemes are one-time,
and require generation of a new key pair and distribution of a new public key
for each message to be signed.

Merkle’s arguably most important contribution in [37] was the concept of
hash tree, which enables a large number of public keys to be represented by a
single hash value. With the hash value published, any one of the N public keys
can be shown to belong to the tree with a proof consisting of log2N hash values,
thus combining N instances of a one-time scheme into an N -time scheme. Buldas
and Saarepera [16] and Coronado Garćıa [17] showed the aggregation to be secure
if the hash function used to build the tree is collision resistant. Rohatgi [43] used
the XOR-tree construct proposed by Bellare and Rogaway [3] to create a variant
of hash tree whose security is based on second pre-image resistance of the hash
function instead of collision resistance. Dahmen et al. [18] proposed a similar
idea with a more complete security proof.

A drawback of the above hash tree constructs is that the whole tree has to be
built at once, which also means all the private keys have to be generated at once.
Merkle [38] proposed a certification tree that allows just the root node of the tree
to be populated initially and the rest of the tree to be grown gradually as needed.
However, to authenticate the lower nodes of the tree, a chain of full-blown one-
time signatures (as opposed to a chain of sibling hash values) is needed, unless
the protocol is used in an interactive environment where the recipient keeps
the public keys already delivered as part of earlier signatures. Malkin et al. [34]
and Buchmann et al. [8, 11] proposed various multi-level schemes where the keys
authenticated by higher-level trees are used to sign roots of lower-level trees to
enable the key sets to be expanded incrementally.

Buchmann et al. [10] proposed XMSS, a version of the Merkle signature
scheme with improved efficiency compared to previous ones. Hülsing et al. [28]
introduced a multi-tree version of it. Hülsing et al. [29] described a modification
hardened against so-called multi-target attacks where the adversary will succeed
when it can find a pre-image for just one of a large number of target output
values of a hash function.

A risk with the N -time schemes is that they are stateful : as each of the one-
time keys may be used only once, the signer will need to keep track of which
keys have already been used. If this state information is lost (for example, when
a previous state is restored from a backup), keys may be re-used by accident.

Perrig [39] proposed BiBa which has small signatures and fast verification,
but rather large public keys and slow signing. Reyzin and Reyzin [41] proposed
the HORS scheme that provides much faster signing than BiBa. These two are
not strictly one-time, but so-called few-time schemes where a private key can
be used to sign several messages, but the security level decreases with each
additional use. Bernstein et al. [5] proposed SPHINCS, which combines HORS
with XMSS trees to create a stateless scheme that uses keys based on a pseudo-
random schedule that makes the risk of re-use negligible even without tracking
the state.

3 Our Contribution

We propose a signature scheme with a hash function as its sole underlying prim-
itive. At the time of writing, XMSS and SPHINCS are the state of the art in
the stateful and stateless hash signature schemes, respectively, so these are what
new schemes should be measured against.

XMSS has fast signing and verification, and small signatures, but requires
careful management of key state [36]. Our scheme has comparable efficiency, but
the private key to be used is determined by signing time, which removes the risk
of accidental roll-backs. Also, a single private key can be used to sign multiple
messages simultaneously, so no synchronization is required when the scheme is
deployed in multi-threaded or multi-processor environments.

SPHINCS has small keys and efficient verification, but quite large signatures
and rather expensive signing. Our scheme requires orders of magnitude less com-
putations for signing and produces signatures roughly a tenth the size.

A more general feature is that each signature produced by our scheme is in-
herently time-stamped. Most other schemes require time-stamping as a separate
step after signing to handle key expirations, key revocations, and time-limited
signing authority. Due to the time-stamping component, our scheme is necessar-
ily server-assisted. While this may look like a disadvantage, it may in fact be
beneficial in enforcing various key usage policies and limiting damage in case of
a key leakage. For these reasons, even the technically off-line schemes are usually
deployed within on-line frameworks in practice.

4 Preliminaries

Hash Trees. Introduced by Merkle [37], a hash tree is a tree-shaped data struc-
ture built using a 2-to-1 hash function h : {0, 1}2k → {0, 1}k. The nodes of the
tree contain k-bit values. Each node is either a leaf with no children or an in-
ternal node with two children. The value x of an internal node is computed as
x ← h(xl, xr), where xl and xr are the values of the left and right child, re-
spectively. There is one root node that is not a child of any node. We will use
r ← Th(x1, . . . , xN) to denote a hash tree whose N leaves contain the values
x1, . . . , xN and whose root node contains r.

r = h(x1,2, x3,4)

x1,2 = h(x1, x2)

x1 x2

x3,4 = h(x3, x4)

x3 x4

r

x1,2 x3,4

x3 x4

Fig. 1. The hash tree Th(x1, . . . , x4) and the corresponding hash chain x3 r.

Hash Chains. In order to prove that a value xi participated in the computation
of the root hash r, it is sufficient to present values of all the siblings of the nodes
on the unique path from xi to the root in the tree. For example, to claim that
x3 belongs to the tree shown on the left in Fig. 1, one has to present the values
x4 and x1,2 to enable the verifier to compute x3,4 ← h(x3, x4), r ← h(x1,2, x3,4),
essentially re-building a slice of the tree, as shown on the right in Fig. 1. We will
use x

c
 r to denote that the hash chain c links x to r in such a manner.

Intuitively, it seems obvious that if the function h is one-way, the existence
of such a chain whose output equals the original r is a strong indication that x
was indeed the original input. However, this result was not formally proven until
25 years after the hash tree construct was proposed [16, 17].

Hash-Then-Publish Time-Stamping. The general idea of time-stamping informa-
tion by publishing its hash value was used already by Galilei and Hooke in the
XVII century. In more modern cryptographic times, Haber and Stornetta [26]
were the first to propose time-stamping a sequence of records by having each of
them contain the hash of the previous one, in a manner that was later popu-
larized as the blockchain structure. Bayer et al. [2] proposed using hash trees to
aggregate the inputs in batches and then linking the roots of the trees instead of
individual records. The most recent results on security bounds of such schemes
are by Buldas et al. [15, 13, 14].

5 Description of the Scheme

The principal idea of our signature scheme is to have the signer commit to a
sequence of keys such that each key is assigned a time slot when it can be used
to sign messages and will transition from signing key to verification key once the
time slot has passed.

Signing itself then consists of time-stamping the message-key pair in order to
prove that the signing operation was performed at the correct time. For simplicity
of presentation, we count time in aggregation rounds of the time-stamping service
and use the expression “at time t” to mean “during aggregation round t”.

More formally, the classic triple of procedures for key generation, signature
generation, and signature verification [24] is as follows:

Key generation. To prepare to sign messages at times 1, . . . , N , the signer:

1. Generates N signing keys: (z1, . . . , zN)← G(N, k).
We assume the keys are unpredictable values drawn from {0, 1}k.

2. Binds each key to its time slot: xi ← h(i, zi) for i ∈ {1, . . . , N}.
3. Computes the public key p by aggregating the key bindings into a hash tree:
p← Th(x1, . . . , xN).

The resulting data structure is shown in Fig. 2 and its purpose is to be able to
extract hash chains ci ← h(i, zi) p for i ∈ {1, . . . , N}.

p

x1,2

x1

1 z1

x2

2 z2

x3,4

x3

3 z3

x4

4 z4

Fig. 2. Computation of public key for N = 4.

Signing. To sign message m at time t, the signer:

1. Uses the appropriate key to authenticate the message: y ← h(m, zt).
2. Time-stamps the authenticator: at ← y rt.

Here rt is the root hash of the aggregation tree built by the time-stamping
service for the aggregation round t. We assume the root is committed to in
some reliable way, such as broadcasting it to all interested parties, but place
no other trust in the service.

3. Outputs the tuple (t, zt, at, ct), where t is the signing time, zt is the signing
key for time slot t, at is the hash chain from the time-stamping service linking
the key usage to rt, and ct is the hash chain linking the binding of zt and
time slot t to the signer’s public key p.

Note that the signature is composed and emitted after the time-stamping step,
which makes it safe for the signer to release the key zt as part of the signature:
the aggregation round t has ended and any future uses of the key zt can no
longer be stamped with time t.

Verification. To verify that the message m and the signature s = (t, z, a, c)
match the public key p, the verifier:

1. Checks that z was committed as signing key for time t: h(t, z)
c
 p .

2. Checks that m was authenticated with key z at time t: h(m, z)
a
 rt .

6 Security Proof

Goldwasser et al [24] proposed a framework for studying security of signature
schemes where the attackers have various levels of access to signing oracles and
various requirements on what they need to achieve for the attack to be considered
successful (and the scheme broken).

As the highest security level, they defined the concept of existential unforge-
ability (EUF) where an attacker should be unable to forge signatures on any
messages, even nonsensical ones.

They also defined the chosen-message attack where the attacker can submit
a number of messages to be signed by the oracle before having to come up with
a forged signature on a new message, and in particular, as the one giving the
attacker the most power, the adaptive chosen-message attack (ACM) where the
attacker will receive each signature immediately after submitting the message
and can use any information gained from previous signatures to form subsequent
messages.

Luby [33] defined the time-success ratio as a way to express the resilience
of a cryptographic scheme against attacks as the relationship of the probability
that the attack will succeed to the computation time the attacker is allowed to
spend.

We will now combine these notions to define and prove the security of our
signature scheme.

Definition 1. A signature scheme is S-secure existentially unforgeable against
adaptive chosen-message attacks (EUF-ACM), if any T -time adversary, having
access to a signer’s public key p and to a signing oracle S to obtain signatures
s1 ← S(m1), . . . , sn ← S(mn) on adaptively chosen messages m1, . . . , mn, can
produce a new message-signature pair (m, s) such that m 6∈ {m1, . . . ,mn}, but s
is a valid signature on m, with probability at most T/S.

Oracle S (signing oracle)

Query Sig(m, t):
return h(m, zt)

Query Get(t):
If c ≥ t then:

return (zt, xt p)
else:

return ⊥

Oracle R (repository)

Initialize:
c← 0

Query Put(r):
c← c + 1
rc ← r

Query Get(t):
If c ≥ t then:

return rt
else:

return ⊥

Fig. 3. The oracles used in the security condition.

To formalize our security assumptions, we introduce three oracles:
We model the publishing of the root hashes of the time-stamping aggregation

trees as the oracle R (Fig. 3, right) that allows each rt to be published just once.
The signing oracle S (Fig. 3, left) will compute the message authenticators

at any time, but will release only the keys that have already expired for signing
(transitioned to verification keys).

We model the hash function h as a random oracle using the lazy sampling
technique: every time h is queried with a previously unseen input, a new return

value is generated by uniform random sampling from {0, 1}k; when h is queried
with a previously seen input, the same value is returned as last time.

A(x1, . . . , xN)

(m, (t, z, a, c))

S(z1, . . . , zN)
S
i
g
(m

,t
)

h
(m

,z
t
)

G
e
t
(t

)

(z
t
,c

t
)

/
⊥

h R

P
u
t
(r

)

G
e
t
(t

)

r t
/
⊥

Fig. 4. The adversary’s interactions with the oracles.

The adversary A will be interacting with the oracles as shown in Fig. 4 with
the goal of producing a forgery.

To model the fact that the signer needs to keep secret only the keys z1, . . . , zN ,
we explicitly initialize the adversary with x1, . . . , xN . Note that the verification
rule still assumes that the verifier has access only to the signer’s public key p,
which means the adversary is not limited to presenting hash chains that were
actually extracted from Th(x1, . . . , xN).

Also note that we leave the aggregation process of the time-stamping service
fully under the adversary’s control; only the repository R needs to be trusted to
operate correctly.

As normally signing message m involves first calling S.Sig(m, t), then com-
mitting to R the root of a hash tree that includes the return value, and then
calling S.Get(t), we formalize the forgery condition by demanding that the ad-
versary can’t make the two S calls in that order:

Definition 2. The pair (m, s) produced by an adversary is a successful forgery if
s is a valid signature on m, but the adversary did not make the calls S.Sig(m, t),
S.Get(t), in that order, for any t ∈ {1, . . . , N}.

Theorem 1. Our signature scheme, when instantiated with a hash function
h : {0, 1}2k → {0, 1}k indistinguishable from a random oracle, is at least 2k/2−1-
secure existentially unforgeable against adaptive chosen-message attacks by any
T -time adversary.

Proof. We will directly show an upper bound on the success probability of the
adversary in the forgery game F (Fig. 5).

Game F (forgery)

(z1, . . . , zN)← G(N)
xi ← h(i, zi) for i ∈ {1, . . . , N}
p← Th(x1, . . . , xN)

(m, (t, z, a, c))← Ah,S,R(x1, . . . , xN)

If A did not call S.Sig(m, t), S.Get(t),

but h(t, z)
c
 p and h(m, z)

a
 rt

then:
return 1

else:
return 0

Fig. 5. The forgery game.

Assume that the adversary does not call S.Get(t). To win the game F, he must

produce t, z, c such that h(t, z)
c
 p. For that, the output of the last step of

the chain computation must equal the root of the tree Th(x1, . . . , xN). Let’s
now consider the inputs to that step. If they equal the corresponding children
of the root of the tree, we can repeat the reasoning for the second last step and
the corresponding node of the tree, and so on. As we walk a finite chain and
simultaneously traverse a finite tree from the root towards leaves, one of the
following events must eventually happen:

1. We run out of the chain at the same time we run out of the tree. This
means the adversary has found t and z such that xi = h(t, z) for some
i ∈ {1, . . . , N}. If i 6= t, then the adversary has found a second pre-image
for the xi originally computed as h(i, zi). With h being a random oracle, the
probability of a T -time adversary achieving that for any given i is ≤ T/2k.
If i = t, then the adversary may have found a second pre-image for xt, with
probability ≤ T/2k, or may have guessed zt, also with probability ≤ T/2k.
Thus the total probability of h(t, z) matching a leaf of the tree is πA,1 ≤
(N + 1)T/2k.

2. We run out of the chain before we run out of the tree. This means h(t, z)
matches one of the internal nodes of the tree, say x. This can be the case in
two ways:
(a) The left child of x contains t and the adversary uses the right child of x

as z. The probability of any given node having the given value t is 1/2k.
As there are N − 1 candidate nodes and N possible values of t, the total
probability is ≤ (N − 1)N/2k.

(b) The adversary has found a second pre-image for x. The probability of a
T -time adversary achieving that for any given node is ≤ T/2k. As the
adversary has N − 1 nodes as potential targets for such a hit, the total
probability is ≤ (N − 1)T/2k.

Thus the total probability of h(t, z) matching an internal node of the tree is
πA,2 ≤ (N − 1)(N + T)/2k.

3. We run out of the tree before we run out of the chain. This means that the
adversary has found a pre-image for one of the 2N values {1, z1, . . . , N, zN}.
The probability of that is πA,3 ≤ 2NT/2k.

4. We encounter a hash step where the output of the step equals an internal
node in the tree, say x, but the inputs of the step do not match the children
of x. This means the adversary has found a second pre-image for x. The
probability of that is πA,4 ≤ (N − 1)T/2k.

So, the total success probability of a T -time adversary who does not call S.Get(t)
is πA ≤ πA,1+πA,2+πA,3+πA,4 ≤ (N+1)T/2k+(N−1)(N+T)/2k+2NT/2k+
(N − 1)T/2k < (N2 + 5NT)/2k.

Assume now that the adversary does call S.Get(t). Then we can, without loss of
generality, also assume that

– he calls S.Get(t) only after committing rt, as before that S.Get(t) would
always return ⊥, which would provide no useful information;

– he calls S.Get(t) only once, as all additional calls to S.Get(t) would return
the same result, which would provide no new information;

– he never calls S.Sig(m, t), as he is not allowed to call S.Sig(m, t) before
calling S.Get(t) according to the security condition, but after calling S.Get(t)
he already has zt and can compute h(m, zt) directly with no need to call the
signing oracle any more.

Finally, we can also assume that in order to win the game F, the adversary must
produce m and a such that h(m, zt)

a
 rt. Indeed, if the adversary wins the game

with h(m, z)
a
 rt where z 6= zt, then he has not used the information gained

from the S.Get(t) call and thus could not have done any better than without the
call, a case we have already analyzed.

Let H be the set of h-calls y ← h(x1, x2) the adversary made before commit-
ting rt. As the adversary is T -time, we have |H| ≤ T . Consider now the h-calls

to be made during the computation of h(m, zt)
a
 rt:

1. If all the calls are in H, then the adversary must have called h(m, zt) before
committing rt and thus also before learning zt from the call to S.Get(t). This
means that the adversary guessed zt. The probability of a T -time adversary
achieving that is πB,1 ≤ T/2k.

2. If none of the calls are in H, then there are two possibilities:
(a) The value rt was not returned from any of the calls in H. This means

the adversary was able to find a pre-image of rt after committing it, the
probability of which is ≤ T/2k.

(b) The value rt was returned by some call in H. Since the chain a is com-
puted entirely using calls not in H, the inputs of the final step of the
computation represent a second pre-image of rt. The probability of a
T -time adversary achieving that is also ≤ T/2k.

Thus the total probability of the adversary finding a chain entirely outside
of H is πB,2 ≤ 2T/2k.

3. Some, but not all of the calls are in H. Let’s examine, among the calls that
are not in H, the one made last during the computation of the chain. Let it
be y ← h(x1, x2). Again, there are two possibilities:
(a) The value y was not returned from any of the calls in H. However, the

next step in a is already a call in H. This means that y is among the
inputs of calls in H and the adversary was able to find a pre-image of
it. The probability of the adversary achieving that for any given y is
≤ T/2k. As there are 2|H| possible values of y, the total probability is
≤ 2|H|T/2k.

(b) The value y was returned by some call in H. Since the call y ← h(x1, x2)
is not in H, the adversary must have found a second pre-image of y. The
total probability of that over all available values of y is ≤ |H|T/2k.

Thus the probability of the adversary finding a chain entering into H is
πB,3 ≤ 3|H|T/2k ≤ 3T 2/2k.

Hence the total success probability of a T -time adversary who calls S.Get(t) is
πB ≤ πB,1 + πB,2 + πB,3 ≤ T/2k + 2T/2k + 3T 2/2k = (3T + 3T 2)/2k.

Summary. If the adversary does not call S.Get(t), he can win the forgery game
F with probability πA < (N2 + 5NT)/2k. If he does call S.Get(t), he can win
with probability πB ≤ (3T + 3T 2)/2k. Overall, he can win with probability
π = max(πA, πB).

Since generating the N keys z1, . . . , zN and making the 2N − 1 calls to h to
compute x1, . . . , xN and Th(x1, . . . , xN) is something the signers are expected
to do routinely, we can assume that N � T . Already with N < T/10, we have
πA < (N2 + 5NT)/2k < (T 2/100 + T 2/2)/2k < T 2/2k. With T > 10N ≥ 10, we
have T 2 > 3T and thus πB ≤ (3T + 3T 2)/2k < 4T 2/2k.

Therefore, π = max(πA, πB) < 4T 2/2k, or T 2/π > 2k−2. As π ≤ 1, we also
have (T/π)2 ≥ T 2/π, which yields the claim T/π > 2k/2−1.

7 Practical Considerations

Key Generation. In the description of the scheme we assumed that the signing
keys z1, . . . , zN are unpredictable values drawn from {0, 1}k, but left unspecified
how they might be generated in practice. Obviously they could be generated
as independent truly random values, but this would be rather expensive and
also would necessitate keeping a large number of secret values over a long time.
It would be more practical to generate them pseudo-randomly from a single
random seed s. There are several known ways of doing that:

– Iterated hashing: zN ← s, zi−1 ← h(zi) for i ∈ {2, . . . , N}.
This idea of generating a sequence of one-time keys from a single seed is
due to Lamport [32] and has also been used in the TESLA protocol by
Perrin et al. [40]. Implemented this way, our scheme would also bear some
resemblance to the Guy Fakes protocol by Anderson et al. [1]. Note that the
keys have to be generated in reverse order, otherwise the earlier keys released

as signature components could be used to derive the later ones that are still
valid for signing. To be able to use the keys in the direct order, the signer
would have to either remember them all, re-compute half of the sequence
on average, or implement a traversal algorithm such as the one proposed by
Schoenmakers [45].

– Counter hashing: zi ← h(s, i).

With a hash function behaving as a random oracle, this scheme would gen-
erate keys indistinguishable from truly random values, but there does not
appear to be much research on the security of practical hash functions when
used in this mode.

– Counter encryption: zi ← Es(i).

The signing keys are generated by encrypting their indices with a symmet-
ric block cipher using the seed as the encryption key. This is equivalent to
using the block cipher in the counter mode as first proposed by Diffie and
Hellman [20]. The security of this mode is extensively studied and well un-
derstood for all common block ciphers. Another benefit of this approach
is that it can be implemented using standard hardware security modules
where the seed is kept in a protected storage and the encryption operations
are performed in a security-hardened environment.

Time-Stamping. As already mentioned, we side-step the key state management
problems [36] common for most N -time signing schemes by making the signing
keys not one-time, but time-bound instead. This in turn raises the issue of clock
synchronization.

We first note that even when the signer’s local clock is running fast, prema-
ture key release is easy to prevent by having the signer verify the time-stamp on
h(m, zt) before releasing zt. This is how the condition c ≥ t of the signing oracle
S in Fig. 3 should be implemented in practice.

The next issue is that the signer needs to select the key zt before computing
h(m, zt) and submitting it to time-stamping. If, due to clock drift or network
latency, the time in the time-stamp received does not match t, the signature
can’t be composed. To counter clock drift and stable latency, the signer can first
time-stamp a dummy value and use the result to compare its local clock to that
of the time-stamping service.

To counter network jitter, the signer can compute the message authenticators
h(m, zt′) for several consecutive values of t′, submit all of them in parallel, and
compose the signature using the components whose t′ matches the time t in the
time-stamps received. Buldas et al. [12] have shown that with careful scheduling
the latency can be made stable enough for this strategy even in an aggregation
network with world-wide scale.

Finally, we note that time-stamping services operating in discrete aggrega-
tion rounds are particularly well suited for use in our scheme, as they only return
time-stamps once the round is closed, thus eliminating the risk that a fast ad-
versary could still manage to acquire a suitable time-stamp after the signer has
released a key.

Efficiency. In the following estimates, we assume the use of SHA-256, a common
256-bit hash function. On small inputs, a moderate laptop can perform about a
million SHA-256 evaluations per second. We also assume a signing key sequence
containing one key per second for a year, or a total of a bit less than 32 million,
or roughly 225 keys.

Using the techniques described above, generation of N signing keys takes N
applications of either a hash function or a symmetric block cipher. Binding them
into a public key takes 2N − 1 hashing operations. Thus, the key generation in
our example takes about 100 seconds.

The resulting public key consists of just one hash value. In the private key,
only the seed s has to be kept secret. The signing keys z1, . . . , zN can be erased
once the public key has been computed, an then re-generated as needed for sign-
ing. The hash tree Th(x1, . . . , xN) presents a space-time trade-off. It may be
kept (in regular unprotected storage, as it contains no sensitive information),
taking up 2N − 1 nodes, or about 1 GB, and then the key authentication hash
chains can be just read from the tree with no additional computations needed.
Alternatively, one can use a hash tree traversal algorithm, such as the one pro-
posed by Szydlo [47], to keep only 3 log2N nodes of the tree and spend 2 log2N
hash function evaluations per chain extraction, assuming all chains are extracted
consecutively.

The size of the signature (t, zt, at, ct) is dominated by the two hash chains.
The key authentication chain consists of log2N hash values, for a total of about
800 B for our 1-year key sequence. The time-stamping chain consists of log2M
hash values, where M is the number of requests received by the time-stamping
service in the round t. Assuming the use of the KSI service described in [12]
under its theoretical maximum load of 250 requests, this adds about 1 600 B.
Thus we can expect signatures of less than 3 kB.

As the verification means re-computing the hash chains, it amounts to less
than a hundred hash function evaluations.

8 Conclusions and Outlook

We have presented a simple and efficient digital signature scheme built from a
hash function and a hash-then-publish time-stamping scheme. Considering that
the existence of hash functions is a necessary pre-condition for the existence of
digital signatures [44], one could argue our scheme is based on minimal assump-
tions. However, there is still much room for improvement in both theoretical and
practical aspects.

Current security proofs are given in the random oracle model and in the
classical setting. It would be desirable to prove the security also in the standard
model and in the quantum setting, in particular taking into account the effects of
quantum-oracle access to the hash function [6] and possible quantum interactions
between the aggregation and the hash chain extraction phases of time-stamping,
as these are all under the adversary’s control.

It would also be good to reduce, or at least defer, the key generation costs,
perhaps by adopting some of the incremental tree generation approaches, and to
develop a version of the scheme suitable for personal signing devices like smart
cards and USB dongles. These devices, in addition to having significantly less
memory and computational power, also lack several functional qualities of the
full-sized computers: they are powered on only intermittently, and do not have
on-board real-time clocks or independent network communication capabilities.

References

1. R. J. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R. M.
Needham. A new family of authentication protocols. Operating Systems Review,
32(4):9–20, 1998.

2. D. Bayer, S. Haber, and W. S. Stornetta. Improving the efficiency and reliability of
digital time-stamping. In Sequences II, Proceedings, volume 9056 of LNCS, pages
329–334. Springer, 1992.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS’93, Proceedings, pages 62–73. ACM, 1993.

4. D. J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-Quantum Cryptog-
raphy. Springer, 2009.

5. D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS:
Practical stateless hash-based signatures. In EUROCRYPT 2015, Proceedings,
Part I, volume 9056 of LNCS, pages 368–397. Springer, 2015.

6. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In ASIACRYPT 2011, Proceedings, volume
7073 of LNCS, pages 41–69. Springer, 2011.

7. G. Brassard, P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-
free functions. In LATIN’98, Proceedings, volume 1380 of LNCS, pages 163–169.
Springer, 1998.

8. J. A. Buchmann, L. C. Coronado Garćıa, E. Dahmen, M. Döring, and E. Klint-
sevich. CMSS—An improved Merkle signature scheme. In INDOCRYPT 2006,
Proceedings, volume 4329 of LNCS, pages 349–363. Springer, 2006.

9. J. A. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert. On the
security of the Winternitz one-time signature scheme. IJACT, 3(1):84–96, 2013.

10. J. A. Buchmann, E. Dahmen, and A. Hülsing. XMSS—A practical forward secure
signature scheme based on minimal security assumptions. In PQCrypto 2011,
Proceedings, volume 7071 of LNCS, pages 117–129. Springer, 2011.

11. J. A. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume. Merkle
signatures with virtually unlimited signature capacity. In ACNS 2007, Proceedings,
volume 4521 of LNCS, pages 31–45. Springer, 2007.

12. A. Buldas, A. Kroonmaa, and R. Laanoja. Keyless signatures’ infrastructure: How
to build global distributed hash-trees. In NordSec 2013, Proceedings, volume 8208
of LNCS, pages 313–320. Springer, 2013.

13. A. Buldas and R. Laanoja. Security proofs for hash tree time-stamping using hash
functions with small output size. In ACISP 2013, Proceedings, volume 7959 of
LNCS, pages 235–250. Springer, 2013.

14. A. Buldas, R. Laanoja, P. Laud, and A. Truu. Bounded pre-image awareness and
the security of hash-tree keyless signatures. In ProvSec 2014, Proceedings, volume
8782 of LNCS, pages 130–145. Springer, 2014.

15. A. Buldas and M. Niitsoo. Optimally tight security proofs for hash-then-publish
time-stamping. In ACISP 2010, Proceedings, volume 6168 of LNCS, pages 318–335.
Springer, 2010.

16. A. Buldas and M. Saarepera. On provably secure time-stamping schemes. In
ASIACRYPT 2004, Proceedings, volume 3329 of LNCS, pages 500–514. Springer,
2004.

17. L. C. Coronado Garćıa. Provably Secure and Practical Signature Schemes. PhD
thesis, Darmstadt University of Technology, Germany, 2005.

18. E. Dahmen, K. Okeya, T. Takagi, and C. Vuillaume. Digital signatures out of
second-preimage resistant hash functions. In PQCrypto 2008, Proceedings, volume
5299 of LNCS, pages 109–123. Springer, 2008.

19. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theory, 22(6):644–654, 1976.

20. W. Diffie and M. E. Hellman. Privacy and authentication: An introduction to
cryptography. Proc. IEEE, 67(3):397–427, 1979.

21. C. Dods, N. P. Smart, and M. Stam. Hash based digital signature schemes. In Cryp-
tography and Coding, Proceedings, volume 3796 of LNCS, pages 96–115. Springer,
2005.

22. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

23. S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. J. Cryp-
tology, 9(1):35–67, 1996.

24. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

25. L. K. Grover. A fast quantum mechanical algorithm for database search. In 28th
ACM STOC, Proceedings, pages 212–219. ACM, 1996.

26. S. Haber and W. S. Stornetta. How to time-stamp a digital document. J. Cryp-
tology, 3(2):99–111, 1991.

27. A. Hülsing. W-OTS+—Shorter signatures for hash-based signature schemes.
In AFRICACRYPT 2013, Proceedings, volume 7918 of LNCS, pages 173–188.
Springer, 2013.

28. A. Hülsing, L. Rausch, and J. A. Buchmann. Optimal parameters for XMSS MT.
In CD-ARES 2013, Proceedings, volume 8128 of LNCS, pages 194–208. Springer,
2013.

29. A. Hülsing, J. Rijneveld, and F. Song. Mitigating multi-target attacks in hash-
based signatures. In PKC 2016, Proceedings, Part I, volume 9614 of LNCS, pages
387–416. Springer, 2016.

30. D. Johnson, A. Menezes, and S. A. Vanstone. The elliptic curve digital signature
algorithm (ECDSA). Int. J. Inf. Sec., 1(1):36–63, 2001.

31. L. Lamport. Constructing digital signatures from a one way function. Technical
report, SRI International, Computer Science Laboratory, 1979.

32. L. Lamport. Password authentification with insecure communication. Commun.
ACM, 24(11):770–772, 1981.

33. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University
Press, 1996.

34. T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure sig-
natures with an unbounded number of time periods. In EUROCRYPT 2002, Pro-
ceedings, volume 2332 of LNCS, pages 400–417. Springer, 2002.

35. E. Mart́ın-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien.
Experimental realization of Shor’s quantum factoring algorithm using qubit recy-
cling. Nature Photonics, 6(11):773–776, 2012.

36. D. A. McGrew, P. Kampanakis, S. R. Fluhrer, S.-L. Gazdag, D. Butin, and J. A.
Buchmann. State management for hash-based signatures. In SSR 2016, Proceed-
ings, volume 10074 of LNCS, pages 244–260. Springer, 2016.

37. R. C. Merkle. Secrecy, Authentication and Public Key Systems. PhD thesis, Stan-
ford University, 1979.

38. R. C. Merkle. A digital signature based on a conventional encryption function. In
CRYPTO’87, Proceedings, volume 293 of LNCS, pages 369–378. Springer, 1987.

39. A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In
ACM CCS 2001, Proceedings, pages 28–37. ACM, 2001.

40. A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The TESLA broadcast authen-
tication protocol. CryptoBytes, 5(2):2–13, 2002.

41. L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast
signing and verifying. In ACISP 2002, Proceedings, volume 2384 of LNCS, pages
144–153. Springer, 2002.

42. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

43. P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet
authentication. In ACM CCS’99, Proceedings, pages 93–100. ACM, 1999.

44. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd ACM STOC, Proceedings, pages 387–394. ACM, 1990.

45. B. Schoenmakers. Explicit optimal binary pebbling for one-way hash chain rever-
sal. In FC 2016, Revised Selected Papers, volume 9603 of LNCS, pages 299–320.
Springer, 2017.

46. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Review, 41(2):303–332, 1999.

47. M. Szydlo. Merkle tree traversal in log space and time. In EUROCRYPT 2004,
Proceedings, volume 3027 of LNCS, pages 541–554. Springer, 2004.

